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Abstract 29 
 30 
Within the scope of SAMPL7 challenge for predicting physical properties, the Integral 31 

Equation Formalism of the Miertus-Scrocco-Tomasi (IEFPCM/MST) continuum 32 

solvation model has been used for the blind prediction of n-octanol/water partition 33 

coefficients and acidity constants of a set of 22 and 20 sulfonamide-containing 34 

compounds, respectively. The log P and pKa were computed using the B3LPYP/6-31G(d) 35 

parametrized version of the IEFPCM/MST model. The performance of our method for 36 

partition coefficients yielded a root-mean square error of 1.03 (log P units), placing this 37 

method among the most accurate theoretical approaches in the comparison with both 38 

globally (rank 8th) and physical (rank 2nd) methods. On the other hand, the deviation 39 

between predicted and experimental pKa values was 1.32 log units, obtaining the second 40 

best-ranked submission. Though this highlights the reliability of the IEFPCM/MST 41 

model for predicting the partitioning and the acid dissociation constant of drug-like 42 

compounds compound, the results are discussed to identify potential weaknesses and 43 

improve the performance of the method.  44 

 45 
Keywords 46 
 47 
SAMPL7 – Physical properties – water-octanol log P – pKa – Solvation Free Energy – 48 
MST model – Continuum solvation models – Conformational study 49 
 50 
  51 



 3 

Introduction 52 

Lipophilicity and (de)protonation are physicochemical properties that play a fundamental 53 

role to understand the biological activity of drugs [1-4]. From a pharmacokinetic point of 54 

view, these properties exert a marked influence on the ADME-Tox profile of drugs, 55 

affecting solubility in physiological fluids and permeability through biological barriers, 56 

as well as the excretion rate from the human body [5]. With regard to drug 57 

pharmacodynamics, lipophilicity affects recognition and binding of drugs to their 58 

macromolecular targets, since the global hydrophobic character is related to the changes 59 

in (de)solvation involved in ligand binding, whereas a complementarity between the 3D 60 

distribution of hydrophobic/hydrophilic regions in the drug and the binding pocket should 61 

reinforce the drug-target interaction [6-8]. On the other hand, the (de)protonation of a 62 

compound can clearly exert influence on the bioavailability of a molecule, affecting not 63 

only the biodistribution of the bioactive compound in the organism, but altering the 64 

interaction pattern that may be formed with specific residues in the binding pocket [9,10]. 65 

The n-octanol/water partition coefficient (log P) is the physicochemical parameter 66 

generally adopted to quantify the lipophilicity of a compound, and can be experimentally 67 

determined from the partitioning between aqueous and n-octanol phases. From a 68 

computational point of view, log P can be estimated from the transfer free energy 69 

(ΔΔGw→o; Scheme 1) of the molecule between these two solvents, which in turn can be 70 

derived from the solvation free energy in n-octanol (ΔGsolv
o ) and water (ΔGhyd

w ). The 71 

ionization equilibrium of a titratable compound is quantified by the negative logarithm of 72 

the acid dissociation constant (pKa), which reflects the population of acidic and basic 73 

species. This quantity can be related to the free energy change for the ionization of the 74 

compound in water (ΔGaq; Scheme 1), which in turn can be calculated combining the free 75 

energy change for this process in the gas phase with the solvation free energies of 76 
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protonated (HX) and deprotonated (X-) species of the compound and the solvation free 77 

energy of the proton [11,12]. 78 

 79 

 80 

Scheme 1. Thermodynamic cycles used to determine (left) the transfer free energy of a 81 

neutral (HX) compound between n-octanol and water, and (right) the pKa estimation of a 82 

titratable compound, where HX and X- stand for the acidic and basic species, respectively.  83 

 84 

The availability of computational tools able to provide accurate estimates of log P and 85 

pKa is valuable to provide useful guides in the search of novel hit compounds and the 86 

drug development process [13,14]. This may deserve special interest in the screening of 87 

large libraries of compounds, as the experimental measurement of these properties would 88 

be demanding and often facing experimental challenges for specific classes of 89 

compounds. In this context, we present here the results obtained in the context of the 90 

SAMPL7 blind challenge [15]. Given the fundamental role of the solvation free energy 91 

in the computational prediction of both log P and pKa, our computational strategy exploits 92 

the B3LYP/6-31G(d) parametrized version [16,17] of the quantum mechanical 93 

IEFPCM/MST solvation model [18], which relies on the Integral Equation Formalism of 94 

the Polarizable Continuum model [19,20]. Here, we report the results obtained for 95 

predicting the log P and pKa for a group of sulfonamide-containing compounds. The 96 
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results are discussed in light of the experimental data provided by the organizers of 97 

SAMPL7 [21] and the theoretical estimates reported by others groups, as well as with the 98 

IEFPCM/MST results obtained in previous editions of this contest [22,23]. 99 

 100 
Methods 101 
 102 
Test compounds.  The dataset used in the SAMPL7 challenge contains 22 compounds 103 

(numbered SM25 to SM46; Figure 1) provided by Carlo Ballatore and coworkers at 104 

UCSD (University of California, San Diego). Most of the compounds share chemical 105 

motifs, including the presence of a sulfonamide unit, a phenylethyl moiety (with the 106 

exception of compounds SM41- SM46), and a four-membered ring fused to the main 107 

chain, often containing oxygen and sulphur. Few compounds (SM41-SM46) include 108 

specific moieties, such as isoxazole (SM41-SM43) and triazole (SM44-SM46), in the 109 

main chain. Finally, besides the sulfonamide group, certain compounds contain sulfoxide 110 

(SM35-SM37) or sulfone (SM38-SM40) groups in their chemical structure. The smiles 111 

codes of the 22 compounds were obtained from the SAMPL7 website [15], and used to 112 

generate their 3D geometries with OpenBabel [24].  113 

Log P computation. A preliminary sampling of the conformational preferences of the 114 

compounds was performed with Frog 2.14 [25]. Let us note that this program not only 115 

generates conformations at a reduced computational cost, but also exhibits a high 116 

performance in generating conformations close to the bioactive species, as noted in a 117 

rmsd 0.74 ± 0.44 Å for 85 drug-like compounds (Astex dataset), and a median rmsd below 118 

1 Å for a subset of compounds containing up to 7 rotatable bonds [25]. On the basis of 119 

the structural complexity of the molecules, generation of conformations was limited to a 120 

maximum of 20 conformers, which were visually checked in order to eliminate redundant 121 

conformations. The geometry of the conformers in water and n-octanol was optimized at 122 

the B3LYP/6-31G(d) level of theory [26, 27] taking into account solvent effects on the 123 
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geometrical parameters with the IEFPCM/MST model, which was implemented in a local 124 

version of Gaussian 16 [28]. The minimum energy nature of the optimized geometries in 125 

each solvent was verified upon inspection of the vibrational frequencies, and 126 

conformations displaying negative frequencies were discarded. Thermal corrections 127 

determined in water and n-octanol were subsequently added to estimate the relative free 128 

energy of conformations in the two solvents. Finally, single-point energy calculations in 129 

the gas phase were performed to estimate the solvation free energy of each conformation. 130 

Then, the log P was determined considering the Boltzmann-weighted population of the 131 

conformational families obtained in water and n-octanol.  132 

 133 

 134 
 135 
Figure 1. Dataset of 22 small molecules proposed in the SAMPL7 log P challenge. 136 
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pKa computation. The pKa of the deprotonation equilibria between acid and basic 137 

microstates was based on the thermodynamic cycle shown in Scheme 1. The ensemble of 138 

conformations determined in water for the set of compounds was used as starting 139 

geometries to build up the species involved in the deprotonation equilibria, according to 140 

the information provided by the SAMPL7 organizers for the different microstates [15]. 141 

The addition/removal of hydrogen atoms from the starting geometry of conformers was 142 

done manually using GaussView 6 (i.e., the graphical interface of Gaussian software) 143 

[29]. The geometries were optimized at the B3LYP/6-31G(d) level of theory taking into 144 

account hydration effects with the IEFPCM/MST model. The free energy difference 145 

between protonated and deprotonated species was estimated by combining the relative 146 

energies determined with single-point computations performed at the MP2/aug-cc-pVDZ 147 

level of theory [30] with solvation free energies and thermal corrections to the free energy 148 

calculated at the B3LYP/6-31G(d) in water. The pKa was determined using the 149 

experimental free energy of the proton in water (-270.29 kcal/mol), which was determined 150 

by combining the gas phase free energy (-6.28 kcal/mol), the free energy correction from 151 

1 atm and 298 K to 1M and 298 K state (1.89 kcal/mol), and the hydration free energy of 152 

the proton (-265.9 kcal/mol) [31]. Finally, a Boltzmann weighting scheme was applied to 153 

account for the relative stabilities of the conformational species determined for the 154 

microstates involved in the deprotonation reaction, following the computational strategy 155 

adopted in previous studies [32,33]. 156 

Raw data. The datasets generated during and/or analysed during the current study are 157 

available in the SAMPL7-IEF-PCM-MST GitHub repository [34]. 158 

 159 

 160 

 161 
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Results and Discussion 162 

Log P prediction. The predicted log P values are listed in Table 1. The root-mean square 163 

deviation (rmsd) between IEFPCM/MST results and experimental data is 1.03 log units, 164 

which places our results among the most accurate values in the comparison with both 165 

physical (rank 2nd) and global (comprising all submissions within empirical and physical 166 

categories; rank 8th) methods [21], taking into account the small differences observed 167 

between methods with rmsd ≤ 1 (see Supporting Information Fig. S1). The best ranked 168 

QM-based solvation models (see Supporting Information Fig. S2) were the Cosmotherm 169 

version of COSMO-RS [35]  (ID COSMO RS, rmsd=0.78), our method (ID TFE IEFPCM 170 

MST, rmsd=1.03), the NHLBI TZVP model (ID TFE NHLBI TZVP QM, rmsd=1.55), 171 

which combined B3LYP/Def2-TZVP computations in the gas phase with solvent effects 172 

determined  using the SMD solvation model [36], the 3D integral equation theory with a 173 

cluster embedding approach [37] (ID EC RISM wet, rmsd=1.84), and another finally 174 

model that combined B3LYP computations with dispersion corrections in the gas phase 175 

with the SMD model [36] (ID TFE b3lyp3d, rmsd=2.19), reflecting a performance similar 176 

to the trends found in the SAMPL6 challenge [38]. 177 

 178 

Table 1. Calculated (ID TFE IEFPCM MST) and experimental n-octanol/water partition 179 

coefficient (log P) determined for the set of compounds included in the SAMPL7 dataset.a 180 

Compound Calculated Experimentalb Δlog P (calc - exptl) 

SM25 1.89  2.67 -0.78 
SM26 -0.21 1.04 -1.25 
SM27 1.76 1.56 0.20 
SM28 0.83 1.18 -0.35 
SM29 1.24 1.61 -0.37 
SM30 3.54 2.76 0.78 
SM31 1.62 1.96 -0.34 
SM32 1.64 2.44 -0.80 
SM33 4.29 2.96 1.33 
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SM34 2.40 2.83 -0.43 
SM35 0.77 0.88 -0.11 
SM36 3.75 0.76 2.99 
SM37 1.88 1.45 0.43 
SM38 0.48 1.03 -0.55 
SM39 2.48 1.89 0.59 
SM40 1.43 1.83 -0.40 
SM41 0.88 0.58 0.30 
SM42 3.75 1.76 1.99 
SM43 1.85 0.85 1.00 
SM44 -0.16 1.16 -1.32 
SM45 2.04 2.55 -0.51 
SM46 0.95 1.72 -0.77 
msec -0.07   
muec 0.80   
rmsdc 1.03   

a Bold values indicate compounds with the largest deviation (> 1.50 log P units) 181 
between predicted and experimental values. 182 
b See [39]. 183 
c Mean signed error (mse), mean unsigned error (mue), and root-mean square deviation 184 
(rmsd) calculated relative to the experimental values (log P units). 185 
 186 

The largest deviations (> 1.50 log P units) between predicted and experimental log P 187 

values are found for SM36 and SM42 (see Table 1). These deviations are in line with the 188 

analysis of the compounds that presented the highest mean absolute error between 189 

computed and experimental values (see Supporting Information Fig. S3), since SM42 and 190 

SM36 are in ranks 1 and 5, respectively. Upon exclusion of these compounds, the rmsd 191 

is reduced to 0.72 log P units, and the correlation between calculated and experimental 192 

values improves from 0.52 to 0.76 (see Fig. 2). 193 

 194 
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 195 
Figure 2. Comparison between experimental and IEFPCM/MST n-octanol/water log P 196 
for the SAMPL7 dataset. Red points represent the compounds with the largest errors in 197 
the original submission. Statistical analyses are shown for (top left) all compounds and 198 
(bottom right) after exclusion of SM36 and SM42.  199 
 200 

Compared to SM35 and SM41, SM36 and SM42 imply the replacement of a methyl group 201 

by a phenyl substituent, which would increase the hydrophobicity of the compound. This 202 

trend is reflected in the experimental log P values for pairs SM41-SM42, SM29-SM30, 203 

SM32-SM33, SM38-SM39 and SM44-SM45, where the methyl-phenyl replacement 204 

leads to an average increase of 1.02 log P units.  In this context, the pair SM35-SM36 205 

shows a distinctive trait, as the log P is decreased by -0.12. In fact, more than 80% of 206 

submissions predicted the log P of SM36 and SM42 to be larger compared to the log P 207 

of SM35 and SM41, respectively (see Supporting Information Fig. S4). 208 

Finally, we have compared the predictions performed for the SAMPL7 dataset with the 209 

results obtained in the SAMPL6 edition, which comprised a series of 11 fragment-like 210 

small molecules [38]. Upon exclusion of SM36, the comparison yields an overall rmsd 211 

of 0.66 log P units (see Fig. 3). Therefore, assuming that the reported accuracy for log P 212 

determination is ~1 log unit, present results lend support to the reliability of the IEF-213 
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PCM/MST model and encourage future efforts for achieving a better description of 214 

solvation effects.  215 

   216 

 217 
 218 

Figure 3. Comparison between experimental and IEFPCM/MST n-octanol/water log P 219 
for the combined dataset including the 11 fragment-like small molecules in the SAMPL6 220 
log P challenge (blue) and 22 N-acylsulfonamides in the SAMPL7 log P challenge 221 
(lightblue). The red point represents the compound with the largest error in the final 222 
dataset. Statistical analyses are shown for (top left) all compounds and (bottom right) 223 
after exclusion of SM36.  224 
 225 

Without detracting from our values, among the set of methods presented in the current 226 

edition of log P SAMPL7 challenge, one may notice that methods based on Machine 227 

Learning (ML) have led to a better match with the experimental values provided by the 228 

organization. In our view, these type techniques present great advantages, since they 229 

allow a very quick estimation due to their low computational cost, making them suitable 230 

for large compound screening campaigns. However, the reliability of these methods may 231 

be affected by the chemical coverage of the data used in their training. In this context, 232 

QM-based methods seem better suited to provide a detailed analysis of the structural and 233 
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energetic features of compounds, though this requires a significantly larger computational 234 

cost, which may be necessary in the analysis of compounds containing novel chemical 235 

scaffolds. Keeping in mind the vast diversity of the chemical space [40], it may be 236 

expected that integration of QM and ML techniques will be very powerful to enhance the 237 

quality and reliability of ML models in the prediction of physicochemical properties, 238 

enabling large-scale exploration of the chemical space [41, 42]. 239 

 240 

pKa prediction. Only physical methods contributed to predicting the pKa values for the 241 

22 sulfonamide-containing compounds included in the blind test. Table 2 reports the pKa 242 

values estimated from IEFPCM/MST computations and submitted to SAMPL7. 243 

Compared to the values available with the SAMPL7 repository [39], the difference 244 

between the originally submitted results and those estimated by the organizers from the 245 

microstates reported in our original submission is in general within 0.10 pKa units, except 246 

for SM37, where the difference increases up to 3.90 pKa units (detailed values are 247 

available in Supporting Information Table S1). The origin of this difference was due to a 248 

mistake in the relative free energy reported by us for the negatively charged microstate 249 

of compound SM37, as we had flipped the values for microstates SM37_micro004 and 250 

SM37_micro005 in the file submitted to the SAMPL7 website. This mistake led to a 251 

different macroscopic pKa value between the one calculated automatically by the 252 

organizers and the one reported in the original submission. For these reasons, we have 253 

kept the macroscopic pKa value of the original submission in Table 2.  254 

The rmsd between predicted and experimental pKa values is 1.32 log units, which places 255 

our results among the best-ranked submissions (rank 2nd, Supporting Information Fig. 256 

S5). The largest deviations (> 1.50 in pKa units) involve four compounds: SM25, SM27, 257 

SM37 and SM42. Exclusion of these compounds reduces the rmsd to 0.98 pKa units, and 258 
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the correlation between calculated and experimental values changes from 0.86 to 0.92 259 

(see Fig. 4).  260 

To explore the potential sources of these deviations, we compared the results obtained for 261 

SM25, SM27, SM37 and SM42 with the values reported by the contributors ranked 1st 262 

(ID EC_RISM) and 3rd (ID TVZP_QM) in the blind test (see Table 3). The results show 263 

that EC_RISM provides a range of values (5.42-10.17) that compares well with the 264 

experimental data (4.49-10.45), whereas our results are distributed in a slightly larger 265 

range (4.86 to 12.34). In contrast, the TVZP_QM values are in a narrower range (6.77-266 

7.65). We then checked the workflow used to compute the macroscopic pKa and found a 267 

mistake in the definition of the Boltzmann weights for the conformations sampled for the 268 

main microstates of compound SM25 (Fig. 5), which caused a 3.94 units decrease in the 269 

pKa value (pKa = 3.30), remaining at 1.19 units from the experimental value. 270 

 271 

Table 2. Calculated (ID IEFPCM MST) and experimental pKa determined for the set of 272 
compounds included in the SAMPL7 dataset.a 273 
 274 

Compound Calculated Experimentalb 
ΔpKa 

(calc - exptl) 
SM25 7.24/3.30 4.49 2.75/1.19 
SM26 4.52 4.91 -0.39 
SM27 12.34 10.45 1.89 
SM28 16.12 >12.00 - 
SM29 11.51 10.05 1.46 
SM30 11.00 10.29 0.71 
SM31 10.84 11.02 -0.18 
SM32 11.95 10.45 1.50 
SM33 10.69 >12.00 - 
SM34 10.64 11.93 -1.24 
SM35 10.28 9.87 0.41 
SM36 9.20 9.8 -0.6 
SM37 8.11 10.33 -2.22 
SM38 9.82 9.44 0.38 
SM39 8.85 10.22 -1.37 
SM40 8.26 9.58 -1.32 
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SM41 5.13 5.22 -0.09 
SM42 4.86 6.62 -1.76 
SM43 4.43 5.62 -1.19 
SM44 7.09 6.34 0.75 
SM45 7.37 5.93 1.44 
SM46 5.56 6.42 -0.86 
mse 0.00   
mue 1.13   
rmsd 1.32   

a Bold values indicate the compounds with the largest deviation (> 1.50 in pKa units) 275 
between theoretical and experimental values. For SM25, the value of the original 276 
submission and the corrected one during the revision of the calculated data are indicated 277 
as plain text and in italics, respectively 278 
b Ref. [43]  279 
 280 

 281 

Figure 4. Comparison between experimental and IEFPCM/MST pKa for the SAMPL7 282 
Dataset. Red points denote compounds with the largest errors in the original submission. 283 
Statistical analyses are shown for (top left) all compounds and (bottom right) after 284 
exclusion of SM25, SM27, SM37 and SM42.  285 

 286 

 287 

 288 

 289 
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Table 3. Comparative results of the four highly deviated compounds with the first (ID 290 

EC_RISM) and third (ID TZVP_QM) ranked methods in the SAMPL7 pKa challenge.  291 

Compoun

d 
Exp. 

Calculated 

IEFPCM/MST 

Calculate

d 

EC_RISM 

ΔpKa 
EC_RISM 

Calculated 

TZVP_QM 

ΔpKa 
TZVP_Q

M 

SM25 4.49 7.24 5.42 -0.93 7.34 -2.85 

SM27 10.45 12.34 10.17 0.28 7.65 2.80 

SM37 10.33 8.11 9.95 0.38 6.77 3.56 

SM42 6.62 4.86 5.59 1.03 7.45 -0.83 

 292 

This analysis points out the need to perform an adequate sampling of the conformational 293 

states available for the different species involved in the deprotonation reaction [44, 45]. 294 

In particular, since our approach relied on the sampling performed for the neutral 295 

compounds (see above), the population of conformers obtained for ionized species may 296 

be inaccurate for some compounds, affecting the final estimate of the macroscopic pKa. 297 

Nevertheless, one must also keep in mind the intrinsic errors of the gas phase and 298 

solvation contributions to the aqueous free energy change for the deprotonation of the 299 

different microstates. At this point, the uncertainty of the IEFPCM/MST model in 300 

predicting the hydration free energy for simple neutral molecules amounts, on average, 301 

to 0.7 kcal/mol, but can be sensibly larger for charged compounds [46, 47]. This would 302 

then represent an additional difficulty for the proper estimation of the free energy change 303 

determined for microscopic deprotonation equilibria, challenging the ability of QM-based 304 

continuum solvation models to yield pKa estimates with an uncertainty below 1 pKa unit. 305 

 306 
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 307 

 308 

 309 

 310 

 311 

 312 

 313 

 314 

 315 

 316 

Figure 5. Microstates involved in the error of SM25 pKa estimate. 317 

 318 

Overall, the results support the suitability of our QM-based approach for computing log 319 

P and pKa properties. SAMPL6 blind challenge mainly relied on rigid compounds [38], 320 

but SAMPL7 presented more complex compounds considering both chemical diversity 321 

and flexibility [21]. In the blind challenges mentioned above, the Frog tool has been used 322 

to explore the conformational space in our QM workflow mainly due to the good balance 323 

between computational cost and accuracy of the conformer ensemble [25]. Ongoing 324 

research in our group is seeking to explore protocols for characterizing the conformer 325 

generation based on multilevel strategies [45], since the proper sampling of the 326 

conformational space is a crucial issue that can directly impact the reliable prediction of 327 

physicochemical properties [48-50]. The other two critical components of our QM 328 

approach are the calculation of the internal energy of the generated conformers and the 329 

inclusion of solvation effects, which are relevant in determining the accuracy of the 330 

relative stabilities of conformers in condensed phases. For example, extrapolation of the 331 

MP2 energies to complete basis set or the inclusion of higher-level electron correlation 332 

corrections, like coupled cluster with single and double substitutions (CCSD), could 333 

improve the accuracy of our protocol by several tenths of kcal/mol when computing 334 
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deprotonation free energies or relative conformer stabilities [33,51]. The improvement of 335 

solvation effects is more complicated, as there is no systematic strategy to improve the 336 

accuracy of the results given the empirically parametrized nature of continuum models. 337 

Nevertheless, the performance obtained in the SAMPL6 and SAMPL7 challenges shows 338 

close agreement with the results obtained in previous studies [16, 22, 32, 52] for rigid 339 

compounds, thus lending confidence to the computational protocol used in this study. 340 

After checking and considering the different drawbacks of our workflow, we consider 341 

that further improvements should be focused on two computational aspects that may 342 

affect the prediction of physicochemical properties. The first deals with obtaining a 343 

proper sampling of the conformational space available for drug-like compounds in water 344 

and n-octanol (or by extension other organic solvents), as it is reasonable to expect that 345 

distinct conformational ensembles will be adopted depending on the chemical features 346 

present in flexible compounds. In this context the exhaustiveness in sampling the whole 347 

conformational space can be calibrated through the analysis of the conformations sampled 348 

with other techniques, such as Molecular Dynamics simulations. The second is related to 349 

the capability of continuum solvation models to provide an accurate description of 350 

specific (i.e., hydrogen bonding) and nonspecific (i.e., bulk solvent electrostatic 351 

screening) interactions with solvent molecules, which is challenging for charged 352 

molecules. In this sense, the usage of cluster-continuum solvation models may lead to 353 

meaningful improvement with respect to pure continuum solvation models for modeling 354 

diverse chemical process in solution [53]. 355 

 356 

Conclusions 357 

The results obtained in the SAMPL7 physical properties challenge has revealed the 358 

reliability of the IEFPCM/MST method to provide accurate estimates of both log P and 359 
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pKa, which are relevant properties for understanding the pharmacokinetics of bioactive 360 

compounds. Nevertheless, the analysis of the results also points out that a major source 361 

of error comes from an improper weight of the conformational preferences of some 362 

compounds, particularly regarding the population distribution of ionized forms. In 363 

contrast, the prediction of the log P value resulted to have a marked deviation in one out 364 

of 22 compounds, though this marked deviation was also shared by a significant number 365 

of methods. Future modifications and improvements will be centered in finding an 366 

efficient approach for gaining better definition of the conformational space of flexible 367 

compounds in n-octanol and in water as well as to estimate the hydration free energies of 368 

charged species.  369 
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