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1   Human genome 

The human genome is a vast sequence of over three billion base pairs which encodes the basis 

of what the human being is. This sequence is contained in a DNA double-strand helix (Watson 

and Crick, 1953), packed into 23 chromosome pairs: one set from each progenitor. Every human 

cell contains a DNA copy. Although small when packed, the DNA macromolecule is 

approximately two meters long when stretched (Alberts et al., 2002). The DNA sequence 

encodes around 20,000 protein-coding genes (Ezkurdia et al., 2014; Salzberg, 2018) which 

account for a small portion of the entire genome (approximately 1%). Because of alternative 

splicing, these protein-coding genes encode a larger number of transcripts and, consequently, 

a larger number of proteins. The rest of the genome consists of regions with different functions 

such as introns, non-coding genes, regulatory DNA sequences, repetitive regions such as short 

or long interspersed nuclear elements, or intergenic regions whose function is frequently 

unknown. 

In 1990, an international public consortium called The Human Genome Project started to 

obtain the complete sequence of the human genome. Eight years later, a private initiative called 

Celera Genomics started a parallel project to accomplish the same task. The effort of the two 

projects resulted in the publication of two drafts of the human genome in early 2001 (Venter 

et al., 2001; Lander et al., 2001), which covered 90% of the whole sequence. Three years later, 

the Human Genome Project increased the percentage of the human genome reference 

sequenced by resolving complex regions and other genomic areas. That genome version 

release, Build 35, contained 2.85 billion nucleotides interrupted by only 341 gaps (Abdellah et 

al., 2004). 

Since the human genome publication, scientists have worked towards a better description and 

understanding of the human genome sequence. In this regard, multiple initiatives began to 

identify the functional elements in the genome sequence, a task known as genome annotation. 

This task bridges the gap from the genome sequence to the biology of the organism (Stein, 

2001). Ensembl, HAVANA, RefSeq, and GENCODE are some examples of genome annotation 

databases. Ensembl (Hubbard et al., 2002) and HAVANA projects, developed by the European 

Bioinformatics Institute, use an automated and manual annotation approach, respectively. 

GENCODE (Harrow et al., 2006), a scientific consortium currently led by the Wellcome Trust 

Sanger Institute, follows a combined approach by joining both Ensembl and HAVANA 

annotations. For its part, RefSeq (National Center for Biotechnology Information) (Pruitt et al., 

2007) uses a combined approach by complementing the computational annotation with the 

manual curation and the propagation from other already annotated genomes.  
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The better understanding of the human genome has allowed for a wide variety of applications 

and research projects. One of them is the identification of genomic variants and their 

relationship with human health and disease. 

2   Genetic variation 

A genetic variant is a specific difference between two genomes. Genetic variants cover a wide 

range of sizes, from single-nucleotide variants (SNVs) to those that affect entire chromosomes. 

From a broader perspective, the term genetic variation describes the difference in DNA 

sequences that occurs among individuals or populations.  

2.1  Single-nucleotide variants (SNVs) 

SNVs are substitutions of one nucleic acid in the genome (Figure 1). If an SNV exists in a 

population above a certain frequency (usually over 1%), the variant is called single-nucleotide 

polymorphism (SNP). SNVs are the most well-characterized and frequent variants: a human 

genome contains between four and five million SNVs (reviewed in Eichler, 2019).  

An SNV can appear within a protein-coding region or outside it. When it appears in a protein-

coding region, it can be classified into three categories depending on the protein effect. SNVs 

are called synonymous mutations when they do not produce an amino acid change (the new 

set of nucleotides encodes the same amino acid). On the contrary, if an amino acid change 

occurs, SNVs are called non-synonymous or missense mutations. Most known disease-causing 

mutations are non-synonymous SNVs (Katsonis et al., 2014). On the other hand, if the 

nucleotide change produces a stop codon, SNVs are called non-sense or stop-gain mutations.  

Non-sense SNVs cause the translation process to prematurely finish the protein, which easily 

results in a non-functional protein. 

2.2  Small insertions and deletions (INDELs) 

Another variant type consists of small insertions or deletions (INDELs) (Figure 1), usually from 

one to 49 base pairs (bp) (Eichler, 2019). Their frequency in a human genome ranges from 

700,000 to 800,000 per genome (reviewed in Eichler, 2019). When an INDEL appears in a 

protein-coding region, it can be classified into non-frameshift or frameshift categories 

depending on the effect of the variant on the reading frame. Non-frameshift INDELs are 

multiples of three base pairs, so they modify the protein sequence by introducing/deleting one 
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or more amino acids, but the rest of the sequence remains unaffected. On the contrary, 

frameshift INDELs produce a change in the reading frame, which changes the protein sequence 

from the mutation point onwards and usually truncates it, affecting its function in most cases. 

 

Figure 1. Classes of genetic variants. Adapted from (Smith et al., 2017). 

2.3  Structural variants 

Structural variants are a larger type of genetic variation. This variant category includes large 

deletions, duplications and insertions of over 50 bp, inversions, and translocations (Figure 1). 

Although structural variants are less frequent, from 23,000 to 28,000 events per human 

genome on average, they are the variant type that most contributes to base-pair differences 

between two human haplotypes (reviewed in  Eichler, 2019). 

Within the structural variation category, copy-number variants (CNVs) can be defined as 

deletions (losses) or duplications (gains) of genomic regions larger than 50 bp. CNVs represent 

between 4.8% and 9.5% of the human genome (Zarrei et al., 2015). Moreover, they play an 
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important role in contributing to the variation within a population, as well as underlying disease 

phenotypes (McCarroll and Altshuler, 2007). 

2.4  Somatic and germline variants 

When the genetic variants appear during cell replication in somatic tissues, they are called 

somatic variants. This kind of variant only affects the cells descending from the original cell in 

which the genetic variant appeared. Their effect is limited to the tissue of the individual where 

the somatic variant arose, that is, they are not inherited between individuals. On the other 

hand, germline variants appear in germ cells, so they can be inherited between individuals. 

They contribute to the variability of a population and play a key role in human survival and 

adaptation. In fact, the accumulation of germline variants is the origin of most of the speciation 

processes. 

3   Hereditary diseases 

Genetic diseases can be associated with either somatic or germline variants. There are more 

than 6,800 genetic diseases for which approximately 4,400 genes have been identified (see 

OMIM reference). Hereditary diseases are genetic diseases caused by germline variants, so 

these diseases can be inherited through generations and can be classified into monogenic, 

polygenic, or chromosomal diseases. Monogenic diseases, also known as Mendelian or single-

gene diseases, segregate according to Mendel’s inheritance patterns and are caused by 

germline variants in a single gene. Polygenic diseases, also referred to as complex or 

multifactorial diseases, can be explained by germline variants in multiple genes and 

environmental factors. On the other hand, chromosomal diseases are due to structural 

differences in one or more chromosomes. 

3.1  Hereditary cancer 

Cancer is a genetic disease characterized by the uncontrolled proliferation of cells. It is caused 

by variants in genes that regulate three main processes: cell fate determination, cell survival, 

and genome maintenance (Vogelstein et al., 2013). Genes associated with cancer can be 

classified into two classes: oncogenes and tumor suppressor genes. Oncogenes accelerate 

carcinogenesis by promoting growth and cell proliferation, while tumor suppressor genes are 

responsible for controlling genome integrity, and cell division and replication. 
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Usually, cancer-causing variants are acquired during one’s lifetime due to environmental factors 

that damage the DNA, such as sun exposure or tobacco smoke, or due to errors during cell 

division. However, about 5-10% of all cancers are the consequence of germline variants; these 

are called hereditary cancers.  

3.2  Hereditary cancer syndromes 

About 200 hereditary cancer syndromes and 100 cancer predisposition genes have been 

described in the literature (reviewed in Nagy et al., 2004; Rahman, 2014) (Table 1). Individuals 

carrying a pathogenic variant in a cancer-predisposition gene manifest the disease differently 

depending on the penetrance of the allele (Taeubner et al., 2018). When the variant is in a 

highly penetrant gene more severe phenotypes are expected, and its frequency in the 

population is expected to be very low. On the contrary, low-penetrance variants have a very 

limited effect, and a cumulative addition with more low-risk alleles is required to significantly 

impact the phenotype. 

Most hereditary cancer syndromes are inherited in an autosomal dominant (AD) manner with 

incomplete penetrance (Nagy et al., 2004). Some very well studied AD hereditary cancer 

syndromes examples are Li-Fraumeni syndrome, caused by germline variants in TP53 and 

CHEK2 genes, familial adenomatous polyposis (the APC gene), Lynch syndrome (the mismatch 

repair genes MLH1, MSH2, MSH6, PMS2 and EPCAM), and hereditary breast and ovarian cancer 

(BRCA1 and BRCA2 genes) (Sánchez, 2019). Some other hereditary cancer syndromes have an 

autosomal recessive inheritance, as is the case of Fanconi anemia (produced by germline 

variants in the FANCA, FANCB, FANCC, FANCD, FANCE, FANCF, FANCG, and FANCL genes), 

polyposis associated with MUTYH, and Werner syndrome (caused by germline variants in WRN 

gene). 

Usually, hereditary cancer patients are characterized by early age at diagnosis, multiple tumors 

in a single patient, and other cases in the family history (Sánchez, 2019). When a patient is 

diagnosed with hereditary cancer, clinicians can provide specific cancer risk assessment and 

the establishment of appropriate surveillance measures for the patient and family members. 

Moreover, pathogenic variant carriers can receive targeted surgical and chemotherapeutic 

treatments (Pennington et al., 2014; Musella et al., 2015). 
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Table 1. Most common hereditary cancer predisposition syndromes. Adapted from (Sánchez, 2019) 
and guidelines from the Catalan Consensus on Hereditary cancer. 

Hereditary cancer predisposition syndromes Inheritance Usually screened Gene(s) 

Hereditary breast and ovarian cancer AD ATM, BRCA1, BRCA2, BRIP1, CHEK2, MLH1, 
MSH2, MSH6, PALB2, RAD51C, RAD51D 

Hereditary breast cancer AD 
ATM, BARD1, BRCA1, BRCA2, BRIP1, CHEK2, 
MLH1, MSH2, MSH6, NBN, PALB2, RAD51C, 
RAD51 

Hereditary ovarian cancer AD BRCA1, BRCA2, BRIP1, MLH1, MSH2, MSH6, 
RAD51C, RAD51D 

Lynch syndrome AD BRCA1, BRCA2, EPCAM, MLH1, MSH2, MSH6, 
MUTYH, PMS2, POLD1, POLE 

Familial adenomatous polyposis AD 
APC, BMPR1A, BRCA1, BRCA2, MLH1, MSH2, 
MSH6, MUTYH, NTHL1, POLD1, POLE, RNF43, 
SMAD4 

Multiple endocrine neoplasia type 1 / 2 / 4 AD MEN1 / RET / CDKN1B 

Cowden syndrome AD PTEN 

Von Hippel–Lindau disease AD VHL 

Hereditary retinoblastoma AD RB1 

Peutz-Jeghers syndrome AD STK11 

Li-Fraumeni syndrome AD TP53 

Gorlin syndrome AD PTCH1, SUFU, PTCH2 

Tuberous sclerosis AD TSC1, TSC2 

Familiar melanoma AD BAP1, BRCA1, BRCA2, CDK4, CDKN2A, MITF, 
MLH1, MSH2, MSH6, POT1, TERT 

Neurofibromatosis 1 / 2 AD NF1 / NF2 

Schwannomatosis AD SMARCB1 

Familiar paraganglioma / pheochromocytoma AD SDHB, SDHC, SDHB, SDHAF2 

Hereditary gastric cancer AD BRCA1, BRCA2, CDH1, CTNNA1, MLH1, 
MSH2, MSH6 

Juvenile polyposis syndrome AD SMAD4, BMPR1A 

Birt–Hogg–Dubé syndrome AD FLCN 

Fanconi Anemia AR FANCA-FANCM 

Bloom syndrome AR RECQL3 

Carney complex AD PRKRA1A 

Congenital dyskeratosis AD, X-linked DKC1 

Hereditary prostate cancer AD ATM, BRCA1, BRCA2, HOXB13, MLH1, MSH2, 
MSH6 

Werner syndrome AR WRN 

Xeroderma pigmentosum AR XPA-XPG, DDB2 

Ataxia–telangiectasia AR ATM 

Carney-Stratakis syndrome AD SDHB, SDHC, SDHD 
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Hereditary renal cancer syndromes AD BRCA1, BRCA2, FH, FLCN, MET, MLH1, MSH2, 
MSH6, SDHB, SDHC, SDHD, VHL 

Hereditary uterine and cutaneous leiomyoma AD FH 

Duncan's disease X-linked SH2D1A 

Sotos syndrome AD NSD1 

Currarino syndrome AD HLXB9 

Chediak-Higashi syndrome AR LYST 

BAP1 tumor predisposition syndrome AD BAP1 

Rothmund-Thomson syndrome AR RECQL4 

DICER1 syndrome AD DICER1 

Familiar Wilms' tumors AD WT1 

Beckwith–Wiedemann syndrome AD KIP2 (CDKN1C) 

Costello syndrome AD HRAS 

Familiar gastrointestinal stromal tumors AD KIT, PDGFRA 

Nijmegen syndrome AR NBS1 

Hereditary pancreatitis AD PRSS1 

Simpson-Golabi-Behmel syndrome X-linked GPC3 

Familiar nonmedullary thyroid cancer AD HABP2 

AD: autosomal dominant; AR: autosomal recessive 

4   Genetic diagnostics of hereditary diseases 

Genetic diagnostics consists of the detection of variants that predispose to or cause diseases. 

For hereditary diseases, genetic diagnostics comprises sample collection from the patient and 

the analytical procedures to detect any variants associated with the hereditary disease. The 

most common sample used is peripheral blood, although other body fluids or cells are also 

used, like saliva or oral epithelial cells. Sometimes, tumor samples are also used. Once the 

biological sample is obtained, nucleic acids are extracted depending on the genetic test to be 

performed: usually DNA, although sometimes RNA is also obtained. 

4.1  SNVs, INDELs and larger events detection 

Multiple methods for SNVs and INDELs detection have been developed during the last decades. 

Initially, methods where limited to one or a few DNA fragments, like allele-specific 

oligonucleotide ligation assays or Sanger sequencing (Sanger et al., 1977). Sanger sequencing 

is still being used in genetic diagnostics, mainly for Mendelian diseases in which a mutation has 

been previously found in the patient’s family. Nevertheless, the arrival of Next-generation 
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sequencing (NGS) has revolutionized genetic testing since millions of fragments can be 

analyzed in parallel in a single experiment (see paragraphs 5 and 6). 

Identification of large rearrangements and copy number alterations require the use of other 

detection methods. In the early stages of DNA testing, karyotyping was used to identify 

chromosomal abnormalities. The introduction of fluorescence in situ hybridization (FISH) 

improved karyotyping performance by detecting smaller known chromosomal events (Langer-

Safer et al., 1982). Later, other methods contributed to the detection of smaller DNA events, 

like array comparative genomic hybridization (aCGH) (Pinkel et al., 1998), multiplex ligation-

dependent probe amplification (MLPA) (Schouten et al., 2002) and single nucleotide 

polymorphism arrays (Chen and Sullivan, 2003). In the last few years, aCGH and MLPA have 

been considered the gold standards for CNV detection in genetic diagnostics (Talevich et al., 

2016; Kerkhof et al., 2017). All mentioned methods are time-consuming and costly, so 

frequently diagnostic laboratories test CNV events only in a small number of genes. 

In any case, when performing genetic diagnostics, some challenging aspects have to be taken 

into account to accomplish an effective and successful diagnosis (McPherson, 2006). First, 

sensitivity, since an ideal diagnostic test should not produce any false negative. Second, 

specificity, because a false positive (FP) involves reporting a wrong positive diagnosis to a 

patient. Third, clinical interpretation of the identified variants since sometimes there might not 

be enough evidence to assess their clinical interpretation. Fourth, cost, as genetic testing 

involves consumables and personnel resources that should be optimized to be cost-effective. 

4.2  Variant classification 

On average, each individual has up to five million germline variants. While most of them do not 

affect a person’s health, others might lower or increase the risk of disease. Based on its effect 

on the degree of likelihood of pathogenicity, a variant can be classified into five groups: benign, 

likely benign, variant of unknown significance (VUS), likely pathogenic, and pathogenic (Plon et 

al., 2008; Richards et al., 2015) (Table 2). This classification has been adopted internationally 

and is used as a standardized reporting system in genetic diagnostics, including hereditary 

cancer.  
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Table 2 Variant classification based on the degree of likelihood of pathogenicity. The pathogenicity 

probability was obtained from (Plon et al., 2008). 

Variant classification is a challenging task that requires gathering information from multiple 

sources: functional studies, in-silico predictor analyses, population frequencies, and familiar 

cosegregation analysis. In-silico predictors, like SIFT or Polyphen (Ramensky et al., 2002; Ng and 

Henikoff, 2003), are bioinformatic tools that estimate the functional impact of variants. Many 

other informatics and bioinformatic resources have been developed to provide useful 

information when classifying variants. Population databases, like the dbSNP database (SNP 

Consortium) or The Genome Aggregation Database (gnomAD) (Sherry et al., 2001; Karczewski 

et al., 2020) (Table 3), store variant data from numerous individuals to provide population 

frequencies of variants. Moreover, to unravel the relationship between variants and human 

diseases, there have been initiatives to aggregate clinical assertions and evidence in public 

databases such as ClinVar, HGMD, or LOVD (Stenson et al., 2003; Fokkema et al., 2005; Landrum 

et al., 2014) (Table 4).  

Multiple procedures have been proposed for variant classification in a clinical context. The 

International Society for Gastrointestinal Hereditary Tumors (InSIGHT) Variant Interpretation 

Committee in 2014 developed multiple criteria for the classification of variants in mismatch 

repair (MMR) genes. Similarly, the Evidence-based Network for the Interpretation of Germline 

Mutant Alleles (ENIGMA) has been developing criteria for the classification of variants in BRCA1 

and BRCA2 genes, the last version (2.5.1) being published in June 2017. In 2015, the American 

College of Medical Genetics and Genomics (ACMG) and the Association for Molecular 

Pathology (AMP) standardized the clinical interpretation of variants linked to Mendelian 

diseases (Richards et al., 2015) (Figure 2). 

Variant class Description Pathogenicity probability 

Benign 
Variants that do not increase disease risk, and are highly fre-
quent within the population or have been demonstrated neu-
tral in family or functional studies. 

<0.001 

Likely benign 
Variants that are not expected to have a major effect on dis-
ease, although it cannot be proved conclusively with current 
evidence (under 10% certainty of being disease-causing). 

0.001–0.049 

Unknown  
Significance 

Variants for which there is a lack of knowledge that prevents 
their classification to the other groups. 

0.05–0.949 

Likely 
Pathogenic 

Variants that have over 90% certainty of being disease-caus-
ing, although additional evidence is expected to confirm their 
pathogenicity. 

0.95–0.99 

Pathogenic Disease-causing variants. >0.99 
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Table 3. Population databases. Adapted from (Richards et al., 2015). 

Database Description 

Exome  
Variant 
Server 

Database of variants found during exome sequencing of several large cohorts of individuals of 
European and African American ancestry. Includes coverage data to inform the absence of 
variation. 

1000  
Genomes 

Database of variants found during low-coverage and high-coverage genomic and targeted se-
quencing from 26 populations. Provides more diversity compared to EVS but also contains 
lower quality data and some cohorts contain related individuals. 

dbSNP 
Database of short genetic variations (typically 50 bp or less) submitted from many sources. 
May lack details of originating study and may contain pathogenic variants. 

dbVar Database of structural variation (typically greater than 50 bp) submitted from many sources. 

gnomAD 
Database of variants from 125,748 exome sequences and 15,708 whole-genome sequences 
from unrelated individuals (v2). Originally known as Exome Aggregation Consortium (ExAC). 

Table 4. Disease databases. Source: (Richards et al., 2015). 

Database Description 

ClinVar 
Database of assertions about the clinical significance and phenotype relationship of 
human variation. 

OMIM 
Database of human genes and genetic conditions that also contains a representative 
sampling of disease-associated genetic variants. 

Human Gene  
Mutation Database 

Database of variant annotations published in the literature. Requires fee-based sub-
scription for much of the content. 

Locus/Disease/ 
Ethnic/Other-Specific 
Databases 

The HGVS site developed a list of thousands of different databases that provide vari-
ant annotations on specific subsets of human variation. A large percentage of data-
bases are built in the LOVD system. 

DECIPHER 
A molecular cytogenetic database for clinicians and researchers linking genomic mi-
croarray data with phenotype using the Ensembl genome browser. 
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Figure 2. ACMG-AMP criteria for variant interpretation (Adapted from Richards et al., 2015). BS: 
benign strong; BP: benign supporting; FH: family history; LOF: loss of function; MAF: minor allele 
frequency; path: pathogenic; PM: pathogenic moderate; PP: pathogenic supporting; PS: pathogenic 
strong; PVS: pathogenic very strong 

 Benign Pathogenic 

Strong Supporting Supporting Moderate Strong Very 
strong 

Population data MAF is too high for 
disorder BA1/BS1 
OR observation in 
controls 
inconsistent with 
disease 
penetrance BS2 

  Absent in 
population 
databases PM2 

Prevalence in 
affecteds 
statistically 
increased 
over controls 
PS4 

 

Computational 
and predictive 
data 

 Multiple lines of 
computational 
evidence suggest no 
impact on gene/gene 
product BP4 

Missense in gene 
where only truncating 
cause disease BP1 

Silent variant with 
non-predicted splice 
impact BP7 

In-frame indels in 
repeat w/out known 
function BP3 

Multiple lines of 
computational 
evidence 
support a 
deleterious 
effect on the 
gene /gene 
product PP3 

Novel missense 
change at an 
amino acid 
residue where a 
different 
pathogenic 
missense 
change has 
been seen 
before PM5 

Protein length 
changing variant 
PM4 

Same amino 
acid change 
as an 
established 
pathogenic 
variant PS1 

Predicted 
null variant 
in a gene 
where LOF 
is a known 
mechanism 
of disease 
PVS1 

Functional data Well-established 
functional studies 
show no 
deleterious effect 
BS3 

 Missense in 
gene with low 
rate of benign 
missense 
variants and 
path. missenses 
common PP2 

Mutational hot 
spot or well-
studied 
functional 
domain without 
benign variation 
PM1 

Well-
established 
functional 
studies show 
a deleterious 
effect PS3 

 

Segregation data Nonsegregation 
data with disease 
BS4 

 Cosegregation 
with disease in 
multiple affected 
family members 
PP1 

 

Increased 
segregation data 

  

De novo data    De novo (without 
paternity & 
maternity 
confirmed) PM6 

De novo 
(paternity and 
maternity 
confirmed) 
PS2 

 

Allelic data  Observed in trans 
with a dominant 
variant BP2 

Observed in cis with 
a pathogenic variant 
BP2 

 For recessive 
disorders, 
detected in trans 
with a 
pathogenic 
variant PM3 

  

Other database  Reputable source 
w/out shared data = 
benign BP6 

Reputable 
source = patho-
genic PP5 

   

 

Other data 
 Found in case with 

an alternate cause 
BP5 

Patient’s 
phenotype or FH 
highly specific 
for gene PP4 
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5   Next-generation sequencing 

The human genome reference obtained by the Human Genome Project allowed for the 

development of a second-generation genome sequencing between 2004 and 2005. Next-

generation sequencing (NGS) methods, also referred to as second-generation sequencing or 

massive parallel sequencing, is the term used to include all the high-throughput methods that 

sequence several DNA fragments in parallel. Very briefly, NGS methods require the isolation 

and fragmentation of DNA, followed by massively parallel sequencing which produces millions 

of short reads, usually from 50 bp to 300 bp. These short reads are then aligned to a human 

genome reference, which is available because of the Human Genome Project releases.  

Multiple NGS platforms have appeared, such as Illumina, the Applied Biosystems SOLiD System, 

454 Life Sciences (Roche), or Life Technologies Ion Torrent, among others. Although there are 

multiple differences across NGS methods, most of them include these steps: library 

preparation, optional enrichment, sequencing, and bioinformatic analysis. 

5.1  Library preparation 

Library preparation starts by fragmenting the DNA sample (genomic DNA or reverse-

transcribed RNA) into small pieces usually of ~500 bp or less. Then, adapter sequences are 

ligated to the ends of the DNA fragments. This way, each fragment becomes a template that 

has to be clonally amplified to allow its detection during sequencing. Template preparation 

strategies can be classified into emulsion PCR (454 - Roche, SOLiD - Thermo Fisher, GeneReader 

- Qiagen, Ion Torrent - Thermo Fisher), solid-phase (Illumina), and DNA nanoball generation 

(Complete Genomics - BGI).  

 

Figure 3. Emulsion PCR. Source: (Goodwin et al., 2016). 

With the emulsion PCR (emPCR) approach (Figure 3), each template is attached to the surface 

of a bead that contains oligonucleotide probes complementary to the template adaptors. The 
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beads are then distributed into water-oil emulsion droplets where PCR amplification is 

produced to obtain thousands of copies of the original template. 

In Solid-phase amplification (Figure 4) the process occurs on a slide. First, templates bind to 

complementary primers available on the slide surface and, second, templates bend over to 

form bridges with the adjacent primers, a process that creates clusters after several rounds. 

Recent NGS platforms form high-density template clusters on flow cells to achieve higher 

sequencing throughput. 

 

Figure 4. Solid-phase amplification. Adapted from (Goodwin et al., 2016). 

 

Figure 5. DNA nanoball generation. Source: (Goodwin et al., 2016). 

For DNA nanoball generation (Figure 5), circular templates with four different adapters are 

created through four rounds consisting of adapter ligation, circularization, and cleavage. The 

amplification occurs due to a rolling circle amplification process that allows for the generation 

of large concatamers called nanoballs, which are later placed on a flow cell. 
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5.2  Optional target enrichment: WGS, WES or targeted gene panels 

NGS based DNA-sequencing approaches can also be classified into whole-genome sequencing 

(WGS), whole-exome sequencing (WES), and targeted gene panels. WGS, which does not 

require previous targeted enrichment, entails the sequencing of the complete individual DNA, 

including intragenic and intergenic regions. In contrast, WES and targeted gene panels require 

target enrichment before sequencing. WES involves the sequencing of all the protein-coding 

genomic regions, that is, the exons that make up the exome (approximately) and represent a 

small portion of the human genome. On the other hand, in targeted gene panels, only the 

exons of a subset of genes of interest are sequenced. Here, the number of sequenced genes 

ranges from a few to hundreds of them. 

Multiple target enrichment approaches have been developed based on the polymerase chain 

reaction (PCR), molecular inversion probes (MIP), and hybrid capture (Mamanova et al., 2010). 

The PCR-based approach accounts for different methods: the uniplex PCR approach, for which 

only one amplicon is produced in each reaction, the multiplexed PCR, which allows multiple 

amplicons for each reaction, and the RainStorm platform approach, which allows for the 

generation of up to 4,000 amplicons in each reaction. In the MIP-based approach, a common 

linker, flanked by the ligation and extension arms, hybridizes to either side of the target genomic 

sequence, so the gap is filled and the target is amplified by PCR. In the hybridization-based 

capture approach, modified DNA libraries hybridize to target-specific probes in a solution or on 

a microarray surface, and the background DNA is removed by washing. Each of the approaches 

has advantages and disadvantages in terms of cost, sensitivity, specificity, ease of use, mass of 

DNA required, uniformity, and reproducibility, which have to be considered in order to better 

adapt to the project’s needs (Mamanova et al., 2010). 

5.3  Sequencing 

Multiple methods for parallel sequencing have been developed to date. Sequencing strategies 

can be summed up as sequencing by ligation, sequencing by synthesis, and single-molecule 

real-time methods. Sequencing by ligation (SOLiD, Complete Genomics) methods use universal 

sequences that flank an unknown genomic tag as anchor primer sites. The sequence of the 

target DNA molecule is identified by taking advantage of the mismatch sensitivity of a DNA 

ligase. In contrast, sequencing by synthesis methods, which can be classified into sequencing 

by synthesis with cyclic reversible termination [Illumina (Figure 6), Qiagen] and sequencing by 

synthesis with single-nucleotide addition (Roche 454, Ion Torrent) (Goodwin et al., 2016), 

employ a DNA polymerase to perform the sequencing. Usually, the DNA polymerase is used to 
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include a fluorescently labeled nucleotide which contains a reversible terminator. Finally, single-

molecule real-time methods (Pacific Biosciences, Oxford Nanopore) do not require template 

amplification and perform the sequencing in real-time: there is no pause after the detection of 

a nucleotide or series of nucleotides. 

 

Figure 6. Illumina sequencing by synthesis with cyclic reversible termination. Source: (Goodwin et 
al., 2016). 

Sequencing methods do not only differ in technological and chemistry aspects, their 

performance also varies widely for multiple parameters such as runtime, cost, read length or 

throughput. For example, read length ranges from 36 bp in some Illumina platforms to over 

1Mb in Oxford Nanopore MinION (Logsdon et al., 2020); throughput ranges between dozens 

of Mb in 454 GS Junior platforms and up to 4 Tb in Oxford Nanopore Promethium (Goodwin et 

al., 2016). 

5.4  Bioinformatic analysis 

The sequencing process results in the production of large amounts of data that require 

bioinformatic processing and analysis. The whole bioinformatic analysis can be divided into 

three levels : primary, secondary, and tertiary (Moorthie et al., 2013) (Figure 7). 
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Figure 7. Primary, secondary and tertiary analysis for NGS data. Source: (Moorthie et al., 2013). 

The primary analysis consists of the conversion of the raw signals, like electrical current or light 

intensity, into sequences of nucleotides, also called reads. A single experiment can produce 

millions of reads that are usually stored in a specific format file: FASTQ. This text-based format 

stores the nucleotide sequence along with a quality score for each base call. Quality scores are 

encoded using ASCII character encoding to minimize the file size. After FATSQ creation, it is 

common to perform a quality check of the sequenced reads. Among other options, and 

depending on the downstream analysis, some low-quality reads can be filtered out or the 

adapter sequences can be trimmed. Tools like fastqc or fastp (Chen et al., 2018) are used for 

this purpose. 

In the secondary analysis, reads are mapped to a genome reference to produce the SAM files 

or BAM files (binary version of the former). Dozens of aligners, such as bwa or bowtie 

(Langmead and Salzberg, 2012; Li, 2013), have been developed to date, each of which has its 

own strengths and drawbacks. After read mapping, variants are called using the information 
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provided by the reads. GATK (McKenna et al., 2010), VarScan (Koboldt et al., 2012), or 

FreeBayes (Gibbs et al., 2015) are some of several tools available for variant calling. Although 

comma-separated and tab-separated formats are sometimes used, variant calls are usually 

stored in VCF files. This text format is very flexible and can store several variant fields for 

multiple samples. 

Tertiary analysis involves the interpretation of the detected variants, that is, to explain the role 

that a variant plays, for example, in the development of a disease. For this purpose, each variant 

has to be annotated using external genomic variant databases and in-silico predictors that 

evaluate its protein impact. In clinical contexts, variant curators and clinicians will perform the 

clinical interpretation taking into account all the available information. 

5.5  From Sanger to NGS 

Until the 2000s, Sanger was the most used method for DNA sequencing (Sanger et al., 1977; 

Kulkarni and Roy, 2015). However, this very accurate technology suffers from poor scalability, 

high cost, and being a time-consuming procedure. Moreover, Sanger sequencing only allows 

for the detection of SNVs and small INDELs. The arrival of NGS technologies revolutionized the 

sequencing paradigm (Figure 8). In 2005, the first NGS platforms became available and the 

technology evolved rapidly in terms of cost and performance. From 2005 to 2019, advances in 

NGS produced an 18,000-fold decrease in the cost of human genome sequencing: from more 

than 17 million dollars to less than one thousand dollars (Wetterstrand, 2019). The cost 

reduction, along with higher throughput and longer read lengths, enabled the use of NGS 

sequencing for multiple purposes, such as genetic diagnostics. 

6   NGS in genetic diagnostics 

A new healthcare model called precision medicine has been emerging during the last few years. 

Precision medicine aims to customize medical decisions and treatments, tailoring them to the 

patient (Xue and Wilcox, 2016). To achieve this customization in genetically-based diseases, 

such as hereditary cancer, it is key to detect genomic alterations cost-effectively. In this respect, 

NGS has changed the way genetic testing is performed in the laboratory routine. Due to its low 

cost and high throughput, NGS has expanded the number of analyzed genes to several dozens. 

High and moderate-risk genes have been included into the routine of genetic diagnostics 

laboratories, a fact that has improved the final diagnostic yield, providing additional relevant 

clinical information for the families (Kurian et al., 2014; Feliubadaló et al., 2017). 
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Figure 8. Comparison between Sanger sequencing and next-generation sequencing (NGS) 
technologies. Source: (Bunnik and Le Roch, 2013). 

However, it is worth mentioning that NGS approaches have some limitations. Compared with 

Sanger sequencing, NGS error rates (~0.1-15%) are higher and read lengths, which most 

frequently range from 50 bp to 400 bp, are shorter (Liu et al., 2012; Goodwin et al., 2016). 

These problems make mapping and variant calling more difficult and may result in more false 

positives and false negatives. This is especially important in genetic diagnostics, where a clinical 

decision that affects a patient has to be made depending on the variants found.  

The problem of false positives can be addressed by using an orthogonal validation method to 

confirm or discard the variants found. For example, SNVs and INDELs can be validated by Sanger 

sequencing, and CNVs can be validated using orthogonal methods like aCGH or MLPA. However, 

false negatives represent a more difficult problem. If a variant is not detected by the 

bioinformatic analysis pipeline, it will be missed unless a suspicion of a specific variant exists 
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from a patient’s relative. Therefore, sensitivity has to be considered as a key factor given that 

false negatives have to be avoided in genetic diagnostics. 

Consequently, it is necessary to correctly assess the performance of any diagnostic method 

before using it in a clinical routine, with a special emphasis on sensitivity. Of course, specificity 

should ideally also be high, although the consequences of a false positive are easier to manage 

as we explained before. The assessment of a new method, like setting up a targeted gene panel 

or a bioinformatic pipeline, should include samples with known variants and a wide range of 

variant types, sizes, and genes. The more conditions considered, the better the genetic 

diagnostics method is assessed. Specific guidelines for validating NGS bioinformatic pipelines 

have been published (Roy et al., 2018). 

6.1  WGS, WES and targeted gene panels in genetic diagnostics 

WGS, WES, and targeted gene panels present different advantages and limitations for genetic 

diagnostics. WGS is the least cost-effective approach for diagnostic purposes. For many years, 

its use was limited to a research context, although the drop in NGS costs facilitated its use in 

diagnostics, so it has been used in some cases (Van El et al., 2013; Turro et al., 2020). Of course, 

sequencing the whole genome allows for variant detection in any part of the genome, including 

variants in non-coding regions. Besides the higher cost of WGS, this approach suffers from 

other drawbacks. WGS produces an enormous amount of data, which is time-consuming and 

hard to manage in a demanding laboratory routine. Moreover, detecting variants in the whole 

genome opens the door to a much larger number of incidental findings that have to be 

considered in a clinical scenario; they should be discussed and agreed with the patient before 

initiating the genetic test (Green et al., 2013; Knoppers et al., 2015). 

WES produces information for all the protein-coding genes of an individual, that is, a very small 

portion of the genome. These coding regions are the most explored and understood part of 

the genome, so their relationship with disease is better known. WES was first introduced as a 

cost-effective approach when WGS prices remained very high and when it was estimated that 

the exome contained about 85% of important disease-related variants (Choi et al., 2009; Ng et 

al., 2009). This approach is especially useful in the genetic diagnostics of very heterogeneous 

diseases. It is currently used in clinical settings, and its utility does not only apply to the 

diagnosis of a certain disease. In the context of a universal health system, it can be a cost-

effective approach for the genetic diagnostics of multiple hereditary diseases, which may be a 

matter of interest in the long-term. Similar to WGS, WES results may also include some 

incidental findings that have to be discussed with the patient. 
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However, current targeted gene panels are the most cost-effective NGS approach for testing 

genetically heterogeneous disorders (Kurian et al., 2014; Laduca et al., 2014). Panels focus only 

on the genes of clinical interest associated with a disease, which make them the best option 

for genetic diagnostics in terms of cost and coverage depth (Feliubadaló et al., 2017). 

Sequencing at a much higher depth enables the identification of some rare variants. Also, 

sequencing only the genes of interest has two other benefits. First, the incidental findings are 

limited to the genes tested. Second, more samples can be sequenced in a single run, which is 

an advantage in those demanding diagnostic scenarios where several samples have to be 

diagnosed routinely. Of course, targeted gene panels suffer from limitations that have to be 

considered. On one hand, non-coding regions are not included (same as WES), which limits the 

ability to detect structural and intronic variants. On the other hand, testing can only be 

successful if the gene causing the disease is included in the panel, which limits the diagnostic 

yield in the mid-term (Sun et al., 2015). 

7   CNV detection strategies from NGS data 

NGS CNV detection strategies can be classified into four categories: paired-end mapping, split-

read, depth of coverage, and assembly (Figure 9) (Zhao et al., 2013; Pirooznia et al., 2015; 

Mason-Suares et al., 2016). Each strategy has its strengths and drawbacks, and some tools 

implement a combination of them. At least 81 NGS CNV detection tools have been developed 

to date (Tables 5-9). 
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Figure 9. CNV detection methods from NGS data. Adapted from (Rausch et al., 2012; Zhao et al., 
2013; Pirooznia et al., 2015). 
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7.1  Paired-end mapping 

Paired-end mapping methods (Table 5), also referred to as read-pair methods, work only on 

paired-end reads, so DNA fragments are expected to have a specific distribution around the 

insert size (Korbel et al., 2007). Paired-end methods compare the average insert size between 

the sequenced paired reads with the expected size from the reference genome, so CNVs can 

be inferred when mapped paired reads show an unexpected insert size. By using these 

methods, duplications can be detected only if they are smaller than the average insert size. 

Moreover, small deletions and duplications cannot be detected because small insert size 

differences cannot be distinguished from normal variability. Also, the exact number of gains 

cannot be reported when using paired-end methods. 

Table 5. Tools for CNV detection from NGS data using paired-end mapping strategy. 

Tool Language Availability Purpose 

BreakDancer Perl, C++ breakdancer.sourceforge.net/ WGS 

GASV Java code.google.com/p/gasv/ WGS 

PEMer Perl, Python sv.gersteinlab.org/pemer/ WGS 

TARDIS C github.com/BilkentCompGen/tardis WGS 

VariationHunter C NA WGS 

NA: Not available 

7.2  Split-read 

Split-read methods (Table 6) also work on paired-end reads. Here, one read is perfectly mapped 

to the genome while the other partially or totally fails to map. This second read should contain 

the breakpoint produced by the CNV. Accordingly, split-read methods divide this second read 

into several fragments and map them to detect the exact breakpoint. The main limitation of 

this method is that mapping errors can produce false positives and false negatives. As a 

consequence, calls cannot be reliable in genomic regions where aligners struggle, such as 

repetitive regions. 

Table 6. Tools for CNV detection from NGS data using split-read strategy. 

Tool Language Availability Purpose 

AGE C++ sv.gersteinlab.org/age WGS 

Pindel C++ gmt.genome.wustl.edu/packages/pindel/ WGS 

SLOPE C++ NA WGS 

SRiC NA NA WGS 
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7.3  Depth of coverage 

Depth of coverage or read-depth methods (Table 7) can work on single-end and paired-end 

reads. Under the hypothesis that depth of coverage differs in the presence of CNVs, these 

methods call CNVs by comparing depth of coverage within a certain region with the expected 

calculated depth. First, reads are aligned and coverage is computed for each predefined 

window. Second, coverage is normalized to account for coverage biases. Third, depth of 

coverage methods usually use a statistical approach to predict the CNVs based on the expected 

coverage for a certain genomic region. 

These methods can detect the exact number of CNV gains, but they are unable to report the 

exact breakpoints. Also, their performance is affected by coverage biases like DNA quality, batch 

effects, repetitive regions, and nucleotide composition. This problem is larger for WES and 

targeted gene panel data because, for these NGS approaches, DNA capture and amplification 

produce an additional bias (Tewhey et al., 2009; Aird et al., 2011). Anyway, the depth of 

coverage strategy is commonly used for CNV detection in WES and targeted gene panels 

because sparse data makes it difficult to detect breakpoints or consider insert sizes, which 

causes paired-end mapping and split-read approaches to perform poorly. 

Table 7. Tools for CNV detection from NGS data using depth of coverage strategy. 

Tool Language Availability Purpose 

Atlas-CNV Perl, R github.com/theodorc/Atlas-CNV panel 

BIC-seq Perl, R compbio.med.harvard.edu/Supplements/PNAS11.html WGS 

BIC-seq2 Perl, R, C math.pku.edu.cn/teachers/xirb/downloads/software/BICseq2/BICseq2.html WGS 

CANOES R columbia.edu/~ys2411//projects/canoes/ WES 

Canvas C#, Python github.com/Illumina/canvas WGS / WES 

CLAMMS C, Python, R github.com/rgcgithub/clamms WES 

CMDS C, R github.com/ding-lab/cmds WGS 

cn.MOPS R bioinf.jku.at/software/cnmops/ WGS 

CNAseg R NA WGS 

CNVeM C NA WGS 

cnvHMM C NA WGS 

CNVkit Python github.com/etal/cnvkit WES / panel 

 CNVnator C++, Python github.com/abyzovlab/CNVnator WGS 

CNVnorm R precancer.leeds.ac.uk/cnanorm WGS 

cnvOffSeq Java sourceforge.net/projects/cnvoffseq/files/cnvOffSeq/ WES 

CNVPanelizer R bioconductor.org/packages/release/bioc/html/CNVPanelizer.html panel 

CNV-seq Perl, R sourceforge.net/projects/cnv-seq/ WGS 
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CODEX R bioconductor.org/packages/release/bioc/html/CODEX.html WES 

CODEX2 R github.com/yuchaojiang/CODEX2 WES / panel 

CoNIFER Python conifer.sf.net/ WES 

CONTRA Python contra-cnv.sourceforge.net/ WES 

Control-FREEC C++ bioinfo-out.curie.fr/projects/freec/ WGS / WES 

CoNVaDING Perl github.com/molgenis/CoNVaDING WES / panel 

CONVector Java, Python, R github.com/parseq/convector panel 

CopyWriteR R bioconductor.org/packages/release/bioc/html/CopywriteR.html WES / panel 

DECoN R github.com/RahmanTeam/DECoN/ panel 

EXCAVATOR Perl sourceforge.net/projects/excavatortool/ WES 

ExoCNVTest Java, R NA WES 

ExomeCNV R cran.r-project.org/src/contrib/Archive/ExomeCNV/ WES 

ExomeCopy R bioconductor.org/packages/release/bioc/html/exomeCopy.html WES 

ExomeDepth R cran.r-project.org/web/packages/ExomeDepth/index.html WES 

FishingCNV Java, R sourceforge.net/projects/fishingcnv/ WES 

GROM-RD NA NA WGS 

iCopyDAV C++, R github.com/vogetihrsh/icopydav WGS 

JointSLM R academic.oup.com/nar/article/39/10/e65/1309398#82689075 WGS 

mrCaNaVar C mrcanavar.sourceforge.net/ WGS 

panelcn.MOPS R www.bioinf.jku.at/software/panelcnmops/ panel 

PatternCNV Perl, R bioinformaticstools.mayo.edu/research/patterncnv/ WES 

PropSeq R, C bioinformatics.nki.nl/ocs/ WES 

RDXplorer Python, Shell rdxplorer.sourceforge.net/ WGS 

ReadDepth R code.google.com/p/readdepth/ WGS 

RSICNV C, C++ github.com/yhwu/rsicnv WGS 

rSW-seq C compbio.med.harvard.edu/Supplements/BMCBioinfo10-2.html WGS 

SegSeq Matlab broad.mit.edu/cancer/pub/solexa_copy_numbers/ WGS 

SeqCNV Java, Python github.com/parseq/convector WES / panel 

VarScan2 Java sourceforge.net/projects/varscan WES 

VisCap R github.com/pughlab/VisCap WES / panel 

XCAVATOR Fortran, Perl, R sourceforge.net/projects/excavatortool/ WGS 

XHMM C++ atgu.mgh.harvard.edu/xhmm/ WES 

NA: Not available 

7.4  Assembly 

In assembly methods (Table 8), reads are first assembled to build contigs without a reference 

genome. Then, contigs are compared with the reference genome to discover structural 

variants, in particular CNVs. Since short reads are usually used in NGS, assembly methods 

40



    

 

 

perform poorly in complex regions like genomic repeats. Moreover, these methods are 

computationally demanding, so they are not frequently used. 

Table 8. Tools for CNV detection from NGS data using assembly strategy. 

Tool Language Availability Purpose 

Cortex assembler C cortexassembler.sourceforge.net/ WGS 

Magnolya Python sourceforge.net/projects/magnolya/ WGS 

TIGRA-SV C bioinformatics.mdanderson.org/public-software/archive/tigra/ WGS 

NA: Not available 

7.5  Combined approaches 

As we have seen, each of the four strategies has advantages and disadvantages. Many tools 

using a combination of approaches have been developed to date (Table 9). Combined 

approaches aim to achieve more accurate CNV detection by covering the weaknesses of one 

strategy with the strengths of another.  

We have also included an additional strategy in Table 9 that can provide evidence to support 

or discard the existence of a CNV: the use of SNVs. This source of information has not been 

frequently included in germline CNV calling algorithms. If a true heterozygous SNV is detected 

within a germline CNV deletion call, the CNV deletion call may be a false positive. Similarly, the 

allele frequency of the heterozygous SNVs detected within germline CNV duplications should 

be either close to 33% or 66%, so values close to 50% provide evidence to discard the CNV 

duplication call. 

Table 9. Tools for CNV detection from NGS data using combined approaches. 

Tool Language Strategy Availability Purpose 

Clever-sv C++, Python PEM + SR bitbucket.org/tobiasmarschall/clever-toolkit WGS 

CNVer Perl, C++ PEM + DOC compbio.cs.toronto.edu/CNVer/ WGS 

cnvHiTSeq Java PEM + DOC + SR sourceforge.net/projects/cnvhitseq/ WGS 

CONDEX Java DOC + SNVs code.google.com/p/condr/ WES 

DELLY C++/R PEM + SR github.com/tobiasrausch/delly WGS 

ERDS C, Perl DOC + SNVs github.com/JieYang031/erds1.1 WGS 

GASVPro C++ PEM + DOC code.google.com/p/gasv/ WGS 

Genome STRiP Java, R PEM + DOC broadinstitute.org/software/genomestrip WGS 

Gindel C++ PEM + DOC + SR sourceforge.net/projects/gindel WGS 

HadoopCNV Java DOC + SNVs github.com/WGLab/HadoopCNV WGS 
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HYDRA Python PEM + A code.google.com/p/hydra-sv/ WGS 

Hydra-Multi C++ PEM + A github.com/arq5x/Hydra WGS 

inGAP-sv Java PEM + DOC ingap.sourceforge.net/ WGS 

LUMPY C++ PEM + DOC + SR github.com/arq5x/lumpy-sv WGS 

Manta C++, Python PEM + SR github.com/Illumina/manta WGS 

NovelSeq C PEM + A novelseq.sourceforge.net/Home WGS 

PSCC Perl PEM + DOC NA WGS 

SoftSearch Perl PEM + SR code.google.com/p/softsearch WGS 

SVDetect Perl PEM + DOC svdetect.sourceforge.net/ WGS 

SVseq C PEM + SR NA WGS 

NA: Not available; PEM: Paired-end mapping; SR: Split-read; DOC: Depth of coverage; A: Assembly;  

SNVs: Single-nucleotide variants 

8   NGS CNV detection from targeted gene panel data 

Many bioinformatic tools have been developed with the aim of identifying CNVs from NGS data 

(Zhao et al., 2013; Abel and Duncavage, 2013; Mason-Suares et al., 2016). However, most tools 

were developed to work with WGS or WES data. Also, most tools usually have a high 

performance when detecting large CNVs but have problems detecting small CNVs, those 

affecting one or a few exons. Nevertheless, these small CNVs are involved in multiple hereditary 

diseases (Truty et al., 2019). In a diagnostic setting, MLPA and aCGH are the gold standards for 

CNV testing (Talevich et al., 2016; Kerkhof et al., 2017). Hence, it is a matter of interest to 

identify an NGS detection tool able to detect single-exon and multi-exon CNVs in NGS panel 

data with sufficient sensitivity for using as a screening step before MLPA or aCGH. 

Multiple benchmarks of CNV calling tools for targeted gene panel data have been published, 

although they suffer from some deficiencies. Published benchmarks were performed by the 

own authors of the tools and executed against a single dataset (Johansson et al., 2016; Fowler 

et al., 2016; Povysil et al., 2017; Kim et al., 2017; Chiang et al., 2019), or used mainly simulated 

data with a small number of validated CNVs (Roca et al., 2019). Consequently, there is a gap in 

performing an independent benchmark of multiple CNV calling tools against different datasets 

generated in diagnostic settings. 

42



    

 

 

9   ICO-IGTP Joint Program on Hereditary Cancer 

The ICO-IGTP Joint Program on Hereditary Cancer is an initiative focused on the detection and 

interpretation of germline variants that predispose to hereditary cancer. Although many 

hereditary cancer syndromes are considered, the program specializes in the genetic diagnostics 

of hereditary colorectal cancer (hereditary non-polyposis colorectal cancer and familial 

adenomatous polyposis), hereditary breast and ovarian cancer, neurofibromatosis type 1 and 

type 2 (NF1, NF2) and other related disorders such as RASopathies and Phakomatoses. The 

clinical and genetic heterogeneity of all these syndromes requires multiple gene testing (Laduca 

et al., 2014), for which targeted gene panel is the most cost-effective approach. 

To perform the diagnostic activity, a custom gene panel was developed: I2HCP (Castellanos et 

al., 2017; Feliubadaló et al., 2017, 2019) (Figure 10), which ranged from 122 to 135 genes (v2.0-

v2.2) related to hereditary cancer. The inclusion of all genes of interest in the I2HCP panel 

allowed for the simplification of laboratory workflows and data management when testing for 

different clinical conditions. A custom SureSelect bait library was designed using the Agilent 

eArray to cover a set of regions of interest (ROIs) obtained from translated isoforms of the 

Ensemble release 67 (GRCh37). 

 

Figure 10. I2HCP diagnostics strategy, including pre- and post-test clinical evaluation. Source: 
(Castellanos et al., 2017). 

Hereditary cancer patients are referred through genetic counselling units based on clinical 

suspicion. Usually, DNA Isolation is performed from peripheral blood lymphocytes using 

FlexiGene DNA Kit (Qiagen GmbH, Hilden, Germany) and samples are sequenced in either a 
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MiSeq with 2×301 bp reads or a HiSeq with 2×251 bp reads. A custom analysis pipeline 

performs quality check reports, aligns FASTQ reads to the GRCh37 human genome assembly 

(Ensembl release 67) using BWA-mem, creates sorted bam files using samtools (Li et al., 2009), 

and calls SNVs and INDELs calling with VarScan2 (Koboldt et al., 2012). Variants obtained for 

each patient are then evaluated by variant curators, pathogenic and likely pathogenic variants 

are always confirmed using Sanger. 
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This PhD thesis has been carried out with the aim of improving, from a bioinformatic-based 

approach, the genetic diagnostics of hereditary cancer. More specifically, the aims were: 

1. To perform a comprehensive evaluation of tools suitable for detecting CNVs from NGS 

panel data at single-exon resolution. 

2. To select the best candidate tool to implement in the genetic diagnostics pipeline of the 

ICO-IGTP program on hereditary cancer. 

3. After implementing it, to evaluate the impact of including the selected NGS CNV 

detection tool as a first-tier screening step prior to MLPA validation. 

4. To develop a tool to identify false positives produced by germline NGS CNV detection 

tools. 

5. To develop a web-based tool to support the entire diagnostic process during the 

laboratory routine. 
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Abstract
Although germline copy-number variants (CNVs) are the genetic cause of multiple hereditary diseases, detecting them from
targeted next-generation sequencing data (NGS) remains a challenge. Existing tools perform well for large CNVs but
struggle with single and multi-exon alterations. The aim of this work is to evaluate CNV calling tools working on gene panel
NGS data and their suitability as a screening step before orthogonal confirmation in genetic diagnostics strategies. Five tools
(DECoN, CoNVaDING, panelcn.MOPS, ExomeDepth, and CODEX2) were tested against four genetic diagnostics datasets
(two in-house and two external) for a total of 495 samples with 231 single and multi-exon validated CNVs. The evaluation
was performed using the default and sensitivity-optimized parameters. Results showed that most tools were highly sensitive
and specific, but the performance was dataset dependant. When evaluating them in our diagnostics scenario, DECoN and
panelcn.MOPS detected all CNVs with the exception of one mosaic CNV missed by DECoN. However, DECoN
outperformed panelcn.MOPS specificity achieving values greater than 0.90 when using the optimized parameters. In our in-
house datasets, DECoN and panelcn.MOPS showed the highest performance for CNV screening before orthogonal
confirmation. Benchmarking and optimization code is freely available at https://github.com/TranslationalBioinforma
ticsIGTP/CNVbenchmarkeR.

Introduction

Next-generation sequencing (NGS) is an outstanding tech-
nology to detect single-nucleotide variants and small deletion
and insertion variants in genetic testing for Mendelian con-
ditions. However, detection of large rearrangements such as
copy-number variants (CNV) from NGS data is still chal-
lenging due to issues intrinsic to the technology including
short read lengths and GC-content bias [1]. Nevertheless, it is
well recognized that germline CNVs are the genetic cause of
several hereditary diseases [2], so their analysis is a neces-
sary step in a comprehensive genetic diagnostics strategy.

The gold standards for CNV detection in genetic diag-
nostics are multiplex ligation-dependent probe amplification
(MLPA) and array comparative genomic hybridization
(aCGH) [3, 4]. Both methods are time consuming and
costly, so frequently only a subset of genes is tested,
excluding others from the analysis, especially when using
single-gene approaches. Therefore, the possibility of using
NGS data as a first CNV screening step would decrease the
number of MLPA/aCGH tests required and would free up
resources.
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Many tools for CNVs detection from NGS data have
been developed [5–7]. Most of them can reliably call large
CNVs (in the order of megabases) but show poor perfor-
mance when dealing with small CNVs affecting only one or
a few small exons, which are CNVs frequently involved in
several genetic diseases [8]. In addition, most of these tools
were designed to work with whole-genome or whole-exome
data and struggle with the sparser data from NGS gene
panels used in routine genetic testing. Therefore, the chal-
lenge is to identify a tool able to detect CNVs from NGS
panel data at a single-exon resolution with sufficient sen-
sitivity to be used as a screening step in a diagnostic setting.

Other benchmarks of CNV calling tools on targeted NGS
panel data have been published. However, they were per-
formed by the authors of the tools and executed against a
single dataset [9–13], or used mainly simulated data with a
small number of validated CNVs [14]. The aim of this work
is to perform an independent benchmark of multiple CNV
calling tools, optimizing, and evaluating them against
multiple datasets generated in diagnostics settings, to

identify the most suitable tools to be used for genetic
diagnostics (Fig. 1).

Materials and methods

Datasets and tools

Four datasets were included in this benchmark (ICR96 exon
CNV validation series [15], panelcnDataset [11], In-house
MiSeq and In-House HiSeq) (Table 1) with data from two
hybridization-based target capture NGS panels designed for
hereditary cancer diagnostics: TruSight Cancer Panel (Illu-
mina, San Diego, CA, USA) and I2HCP [16]. All datasets
were generated in real diagnostics settings and contained
single and multi-exon CNVs, all of them validated by
MLPA. Negative MLPA data, meaning no detection of any
CNV, were also available for a subset of genes. Detailed
information on MLPA-detected CNVs for each dataset can
be found in Supplementary files 2–5.

Fig. 1 Benchmark design and augmented datasets. a The panel
shows the benchmark design and the objective of applying the results
in the diagnostics routine. b To evaluate the diagnostics scenario, a
new dataset was built for each run belonging to the original dataset.
The augmented datasets contained all the samples originally sequenced

in the run and, in the case of the MiSeq datasets (upper), a set of
51 samples with no known CNV from different runs (MLPA multiplex
ligation-dependent probe amplification; aCGH array comparative
genomic hybridization; NGS next-generation sequencing; CNV copy-
number variant).

1646 J. M. Moreno-Cabrera et al.
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Samples from the In-house MiSeq and in-house HiSeq
datasets were generated at the ICO-IGTP Joint Program for
Hereditary Cancer and are available at the EGA under the
accession number EGAS00001004316. In addition to these
samples, a total of 1103 additional samples (505 MiSeq and
598 HiSeq), with no CNVs detected in the subset of genes
tested by MLPA, were used to build the augmented datasets
used in the diagnostics scenario analysis. Informed consent
was obtained for all samples in the in-house datasets.

Five tools were tested in the benchmark (Table 2):
CoNVaDING v1.2.0 [9], DECoN v1.0.1 [10], panelcn.
MOPS v1.0.0 [11], ExomeDepth v1.1.10 [17], and
CODEX2 v1.2.0 [18].

Data preprocessing

All samples were aligned to the GRCh37 human genome
assembly using BWA mem v0.7.12 [19, 20]. SAMtools
v0.1.19 [21] was used to sort and index BAM files. No
additional processing or filtering was applied to the
BAM files.

Regions of interest

The regions of interest (ROIs) were dependent on the
dataset. For TruSight based datasets, ICR96 and panelcn-
Dataset, we used the targets bed file published elsewhere
[10] with some modifications: the fourth column was
removed, the gene was added and it was sorted by chro-
mosome and start position (Supplementary file 6). For in-
house datasets, we generated a target bed file containing all
coding exons from all protein-coding transcripts of genes in
the I2HCP panel v2.1 (Supplementary file 7). These data
were retrieved from Ensembl BioMart version 67 [22]
(http://may2012.archive.ensembl.org). All genes tested by
MLPA and used in the benchmark were common to all
I2HCP versions (v2.0-2.2).

Benchmark evaluation metrics

The performance of each tool for CNVs detection was
evaluated at two levels: per ROI and per gene.

Per ROI metrics treated all ROI as independent entities,
assigning each of them a correctness value: true positive
(TP) or true negative (TN) if the tool matched the results of
MLPA, false negative (FN) if the tool missed a CNV
detected by MLPA and false positive (FP) if the tool called
a CNV not detected by MLPA. This is the most fine-grained
metric.

Per gene metrics consider the fact that most MLPA kits
cover a whole gene and so the true CNVs would be detected
by MLPA when confirming any CNV call in any ROI of the
affected gene. Therefore, per gene metrics assigned aTa
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correctness value to each gene taking into account all its
exons: TP if one of its ROIs was a TP; FN if MLPA
detected a CNV in at least one of its ROIs and none of them
were detected by the tool; FP if the tool called a CNV in at
least one ROI and none of them were detected by MLPA;
TN if neither MLPA nor the tool detected a CNV in any of
its ROIs.

For each tool against each dataset and evaluation level
various performance metrics were computed: sensitivity
defined as TP/(TP+ FN), specificity defined as TN/(TN+
FP), positive predictive value (PPV) defined as TP/(TP+ FP),
negative predictive value (NPV) defined as TN/(TN+ FN),
false negative rate (FNR) defined as FN/(FN+ TP), false
positive rate (FPR) defined as FP/(FP+ TN), and F1 score
(F1) defined as 2TP/(2TP+ FP+ FN).

Parameter optimization

Parameters of each tool were optimized against each dataset
to maximize sensitivity while limiting specificity loss: each
dataset was split into two halves, a training set used to opti-
mize tool parameters and a validation set to evaluate them
(Supplementary file 8). The optimization algorithm followed a
greedy approach: a local optimization was performed at each
step with the aim of obtaining a solution close enough to the
global optimum. Further details of the optimization algorithm
can be found in Supplementary file 9.

Benchmarking framework execution

An R framework, CNVbenchmarkeR, was built to perform
the benchmark in an automatically and configurable way.
Code and documentation are available at https://github.com/
TranslationalBioinformaticsIGTP/CNVbenchmarkeR. Each
selected tool was first executed against each dataset using
default parameters as defined in tool documentation and
then using the optimized parameters. Default and optimized
parameter values can be found in Supplementary file 10.
Tool outputs were processed with R v3.4.2, Bioconductor
v3.5 [23], plyr [24], GenomicRanges [25], and biomaRt
[26]. Plots were created with ggplot2 [27]. Confidence
intervals (CIs) were calculated with epiR v1.0-14 at a CI of
95%. In addition, for each dataset, all executions were
repeated to compare performance on two subsets: one
excluding single-exon CNVs samples and one excluding
multi-exon CNVs samples.

Diagnostics scenario evaluation

The In-house MiSeq and In-house HiSeq datasets were
composed of a selection of samples from different
sequencing runs. In a real diagnostics scenario, the objective
is to analyze a new run with all its sequenced samples. ToTa
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simulate and evaluate the diagnostics scenario, we built the
augmented datasets (Fig. 1), which contained all the sam-
ples from the sequencing runs instead of a selection of them.
For the augmented datasets, the tools were executed against
each run and metrics were computed by combining the
results of all runs. Since some tools recommend more than
16 samples for optimal performance, we added 51 samples
from other runs with no known CNVs when executing the
tools on the runs of the augmented MiSeq dataset.

We also defined a new metric, whole diagnostics strat-
egy, to take into account that in a diagnostics setting all
regions where the screening tool was not able to produce a
result (no call) should be identified and tested by other
methods. Thus, any gene containing at least one positive
call or no call in a ROI was considered as a positive call of
the whole gene: TP if the gene contained at least one ROI
affected by a CNV; FP if the gene did not contain any
ROI affected by a CNV. In addition, if a tool identified a
ROI both as a deletion and a duplication, it was considered
a no call when computing metrics.

Results

To identify the CNV calling tools that could be used as a
screening step in a genetic diagnostics setting, we needed
first to select the candidate tools, and then to evaluate their
performance with a special emphasis on the sensitivity, both
with their default parameters and with dataset-dependent
optimized parameters.

CNV calling tool selection

The first in the benchmark was to identify candidate tools that
have shown promising results. After a literature search pro-
cess, we selected five CNV calling tools to be evaluated
(Table 2), all of them based on depth-of-coverage analysis.
Three tools have been reported to perform well on NGS panel
data at single-exon resolution: CoNVaDING v1.2.0 [9],
DECoN v1.0.1 [10], and panelcn.MOPS v1.0.0 [11]. Exo-
meDepth v1.1.10 [17] was included due to its high perfor-
mance in benchmarks on WES data [28, 29] and because the
developers reported good performance with panel data
(https://github.com/vplagnol/ExomeDepth). CODEX2 v1.2.0
was included due to the high sensitivity shown on WES data
[18] and the availability of specific scripts for panel data
(https://github.com/yuchaojiang/CODEX2).

Benchmark with default parameters

We executed each tool on each dataset with the default
parameters and computed evaluation statistics at two levels:
per ROI and per gene (see “Methods”).

Regarding the per ROI metric, most tools showed sen-
sitivity and specificity values over 0.75, with sensitivity in
general over 0.9 (Fig. 2 and Table 3). However, tool per-
formance varied across datasets. For the ICR96 and
panelcnDataset datasets, specificity was always higher than
0.98, while sensitivity remained higher than 0.94 (with the
exception of CODEX2). This performance was not
achieved when using the in-house datasets, where lower
sensitivity and specificity can be observed, and only CoN-
VaDING obtained sensitivity close to 1 at the expense of a
lower specificity.

As expected in unbalanced datasets with a much larger
number of negative elements than positive ones, NPV was
higher than the PPV in all tool-dataset combinations. All
NPVs were above 0.96 while PPV varied across datasets,
ranging from 0.36 (CoNVaDING in ICR96) to 0.96 (Exo-
meDepth in In-house MiSeq). ExomeDepth had the highest
PPV in all datasets.

Regarding the per gene metric, sensitivity was slightly
improved compared to per ROI, and for each dataset, at
least one tool showed a sensitivity of 1 and was able to
identify all CNVs (Supplementary files 11 and 12).

When excluding single-exon CNVs or multi-exon CNVs,
the exclusion of single-exon CNVs generally provided a
better PPV, while sensitivity varied depending on the
dataset (Supplementary file 13).

Benchmark with optimized parameters

In addition to evaluating the performance of the different
tools tested with default parameters, we performed an
optimization process to identify, for each tool and dataset,
the combination of parameters that maximized the sensi-
tivity as required for a screening tool in a diagnostics
context (see “Methods” and Supplementary files 8 and 9).

Parameter optimization was performed on a subset
(training) of each dataset and the optimized parameters
(Supplementary file 10) were compared to the default ones
on the samples not used for training (validation subset).
Figure 3 shows the optimization results at the ROI level. In
general, the optimization process improved sensitivity by
slightly decreasing specificity. For panelcnDataset, sensi-
tivity was increased by a higher margin driven by
CODEX2, which increased its sensitivity by 58.6%. On the
other hand, tools were not able to improve or showed small
differences in the In-house MiSeq dataset (Supplementary
files 14 and 15).

Benchmark in a diagnostics scenario

In a real diagnostic setting, all CNVs detected in genes of
interest and all regions where the screening tool was not
able to produce a result (no call) should be confirmed by an
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orthogonal technique. To account for this, we evaluated the
performance of all tools using the whole diagnostics strat-
egy metric which takes the no calls into account. This
evaluation was performed in a modified version of the in-
house datasets, the augmented in-house datasets (Fig. 1),
which contained all the samples from the original sequen-
cing runs instead of a selection of them (see “Methods”).

Figure 4 shows sensitivity and specificity on the aug-
mented in-house datasets when executing tools with the
optimized parameters compared to the default parameters.
For the In-house MiSeq dataset, two tools detected all
CNVs: panelcn.MOPS achieved it with both optimized and
default parameters (CI: 94.4–100%), with a specificity of
67.8% (CI: 60.3–74.8%) and 80.7% (CI: 74.0–86.3%),

respectively. DECoN detected all CNVs only with the
optimized parameters (CI: 94.4–100%) reaching 91.3% (CI:
86.0–95.0%) specificity. CoNVaDING also detected all
CNVs, but its high no-call rate led to very low specificity,
4.1% (CI: 1.6–8.2%). For the In-house HiSeq dataset, only
panelcn.MOPS detected all CNVs (CI: 93.8–100%) with an
acceptable specificity (81.5% (CI: 75.0–86.9%) and 83.2%
(CI: 76.8–88.3%) with the default and optimized parameters
respectively). DECoN missed one CNV, being a mosaic
sample, and its specificity remained high, 96.6% (CI:
92.8–98.8%) with the optimized parameters. On the other
hand, CODEX2 and ExomeDepth obtained high sensitivity
and specificity values for both datasets, but they did not
report no calls (Table 4 and Supplementary files 16 and 17).

Fig. 2 Benchmark results with default parameters: per ROI
metrics. Shows results when executing tools with the default para-
meters and computing the per ROI metrics. ExomeDepth and DECoN

tools obtained same sensitivity and specificity in panelcnDataset (ROI
region of interest; PPV positive predictive value; F1 F1 score).

1650 J. M. Moreno-Cabrera et al.

58



Discussion

CNVs are the genetic cause of multiple hereditary diseases
[2]. To detect them, specific tools and techniques are
required. In genetic diagnostics, this is mainly done using
either MLPA and aCGH or using software tools to infer
copy-number alterations from NGS data generated in the
diagnostics process. MLPA and aCGH are the gold standard
methods [3], but both are time-consuming and expensive
approaches that frequently lead laboratories to only use
them in a subset of genes of interest. On the other hand,
multiple tools for CNV calling from NGS data have been
published [5–7], but their performance on NGS gene panel
data has not been properly evaluated in a genetic diag-
nostics context. This evaluation is especially critical when
these tools are used as a screening step in a diagnostics
strategy, since a nonoptimal sensitivity would lead to a
higher number of misdiagnosis.

Most CNV calling tools have not been developed to be
used as a screening step in genetic diagnostics but as part of a
research-oriented data analysis pipeline. Therefore, they were
originally tuned and optimized for a certain sensitivity-
specificity equilibrium. To be used as screening tools, we
need to alter their default parameters to shift that equilibrium
toward maximizing the sensitivity even at the expense of
lowering their specificity. This parameter optimization must

be performed in a dataset-specific way, since tools show
performance differences between dataset due to dataset
specificities coming from target regions composition, tech-
nical differences, or sequencing characteristics.

In this work, we selected 5 tools that have shown pro-
mising results on panel data, and we measured their per-
formance, with the default and sensitivity-optimized
parameters, over 4 validated datasets from different sources:
a total of 495 samples with 231 single and multi-exon
CNVs. CNVbenchmarkeR, a framework for evaluating
CNV calling tools performance, was developed to under-
take this task. We also evaluated their performance in a
genetic diagnostics-like scenario and showed that some of
the tools are suitable to be used as screening methods before
MLPA or aCGH confirmation.

Benchmark with default parameters

The benchmark with default parameters showed that most
tools are highly sensitive and specific, but the top perfor-
mers depend on the specific dataset. Most tools performed
best when using data from panelcnDataset. DECoN, Exo-
meDepth and CoNVaDING reached almost 100% sensi-
tivity and specificity. A possible reason for this is that
this dataset contains the lowest number of single-exon
CNVs (n= 13), which are the most difficult type of CNVs

Table 3 Bechmark results with default parameters and per ROI metrics.

Dataset Tool TP TN FP FN Total Sensitivity Specificity PPV NPV F1 FNR FPR

ICR96 DECoN 286 28473 106 10 28875 0.9662 0.9963 0.7296 0.9996 0.8314 0.0338 0.0037

panelcn.MOPS 284 28236 343 12 28875 0.9595 0.988 0.453 0.9996 0.6154 0.0405 0.0120

CoNVaDING 283 28068 511 13 28875 0.9561 0.9821 0.3564 0.9995 0.5193 0.0439 0.0179

exomedepth 283 28507 72 13 28875 0.9561 0.9975 0.7972 0.9995 0.8694 0.0439 0.0025

CODEX2 275 28503 76 21 28875 0.9291 0.9973 0.7835 0.9993 0.8501 0.0709 0.0027

panelcnDataset DECoN 317 9442 44 5 9808 0.9845 0.9954 0.8781 0.9995 0.9283 0.0155 0.0046

panelcn.MOPS 304 9438 48 18 9808 0.9441 0.9949 0.8636 0.9981 0.9021 0.0559 0.0051

CoNVaDING 316 9367 119 6 9808 0.9814 0.9875 0.7264 0.9994 0.8349 0.0186 0.0125

exomedepth 317 9442 44 5 9808 0.9845 0.9954 0.8781 0.9995 0.9283 0.0155 0.0046

CODEX2 142 9423 63 180 9808 0.441 0.9934 0.6927 0.9813 0.5389 0.5590 0.0066

In-house MiSeq DECoN 486 4189 59 36 4770 0.931 0.9861 0.8917 0.9915 0.911 0.0690 0.0139

panelcn.MOPS 349 4162 86 173 4770 0.6686 0.9798 0.8023 0.9601 0.7294 0.3314 0.0202

CoNVaDING 513 4076 173 8 4770 0.9846 0.9593 0.7478 0.998 0.85 0.0154 0.0407

exomedepth 440 4232 16 82 4770 0.8429 0.9962 0.9649 0.981 0.8998 0.1571 0.0038

CODEX2 483 4128 120 39 4770 0.9253 0.9718 0.801 0.9906 0.8587 0.0747 0.0282

In-house HiSeq DECoN 351 4197 61 44 4653 0.8886 0.9857 0.8519 0.9896 0.8699 0.1114 0.0143

panelcn.MOPS 223 4188 70 172 4653 0.5646 0.9836 0.7611 0.9606 0.6483 0.4354 0.0164

CoNVaDING 382 3994 265 12 4653 0.9695 0.9378 0.5904 0.997 0.7339 0.0305 0.0622

exomedepth 314 4237 21 81 4653 0.7949 0.9951 0.9373 0.9812 0.8603 0.2051 0.0049

CODEX2 324 4195 80 54 4653 0.8571 0.9813 0.802 0.9873 0.8286 0.1429 0.0187

TP true positive, TN true negative, FP false positive, FN false negative, PPV positive predictive value, NPV negative predictive value, F1 F1 score,
FNR false negative rate, FPR false positive rate.
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to be detected. DECoN was the best performer for ICR96, a
dataset published by the same authors, but other tools
obtained similar results in that dataset. CoNVaDING was
the most sensitive tool when analyzing our in-house data-
sets but showed the lowest PPV in all datasets with the
exception of panelcnDataset. ExomeDepth showed the
highest PPV in all datasets, making it one of the most
balanced tools regarding sensitivity and specificity. Differ-
ences in tool performance depending on the dataset were
also observed in previous works [29, 30].

Optimization

The different CNV calling tools included in this work were
originally designed with different aims with respect to their
preferred sensitivity and specificity equilibrium or the type
of CNVs they expected to detect, and this is reflected in

their default parameters and their performance in the initial
benchmark. Our aim with this work was to evaluate these
CNV callers as potential screening tools in a genetic diag-
nostics setting and for this reason, we required their max-
imum sensitivity.

The parameter optimization process allowed us to
determine the dataset-specific parameter combination max-
imizing their sensitivity without an excessive specificity
loss. The optimization had a different impact on different
tools: while CODEX2 showed a higher sensitivity in all
four datasets the rest of the tools showed modest
improvements. This is mainly due to the fact that sensitivity
was already over 0.9 for most combinations and the number
of false negatives to correctly call was small (between 4 and
8) in the per gene metric.

The final optimized parameters were dataset specific, so
we do not recommend using them directly on other datasets

Fig. 3 Optimization results at ROI level. Shows sensitivity and specificity on validation sets when executing tools with the optimized parameters
in comparison to the default parameters (ROI region of interest).
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where the data have been obtained differently (different
capture protocol or sequencing technologies, for example).

Based on our results, we would recommend optimizing the
parameters for each specific dataset before adding any CNV
calling tool to a genetic diagnostics pipeline to maximize its

sensitivity and reduce the risk of misdiagnosis. To that end,
we have developed an R framework, CNVbenchmarkeR
(freely available at https://github.com/TranslationalBioinforma
ticsIGTP/CNVbenchmarkeR), that will help to perform the
testing and optimization process in any new dataset.

Fig. 4 Benchmark results for
the diagnostics scenario: whole
diagnostics strategy metrics.
Shows sensitivity and specificity
on the augmented in-house
datasets when executing tools
with the optimized parameters in
comparison to the default
parameters.

Table 4 Benchmark results with
default and optimized
parameters in the diagnostics
scenario.

Dataset Parameters Tool TP TN FP FN Sensitivity Specificity F1

In-house MiSeq Default
parameters

DECoN 63 135 37 1 0.9844 0.7849 0.7683

panelcn.MOPS 64 138 33 0 1 0.807 0.795

CoNVaDING 64 7 165 0 1 0.0407 0.4369

exomedepth 56 171 1 8 0.875 0.9942 0.9256

CODEX2 61 163 6 3 0.9531 0.9645 0.9313

Optimized
parameters

DECoN 64 157 15 0 1 0.9128 0.8951

panelcn.MOPS 64 116 55 0 1 0.6784 0.6995

CoNVaDING 64 7 165 0 1 0.0407 0.4369

exomedepth 59 167 5 5 0.9219 0.9709 0.9219

CODEX2 61 168 1 3 0.9531 0.9941 0.9683

In-house HiSeq Default
parameters

DECoN 57 168 10 1 0.9828 0.9438 0.912

panelcn.MOPS 58 145 33 0 1 0.8146 0.7785

CoNVaDING 58 39 139 0 1 0.2191 0.4549

exomedepth 51 176 2 7 0.8793 0.9888 0.9189

CODEX2 53 173 5 5 0.9138 0.9719 0.9138

Optimized
parameters

DECoN 57 172 6 1 0.9828 0.9663 0.9421

panelcn.MOPS 58 148 30 0 1 0.8315 0.7945

CoNVaDING 58 17 161 0 1 0.0955 0.4188

exomedepth 54 173 5 4 0.931 0.9719 0.9231

CODEX2 54 150 28 4 0.931 0.8427 0.7714
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Diagnostics scenario

Two tools showed performance good enough to be imple-
mented as screening methods in the diagnostics scenario
evaluated in our two in-house datasets (Fig. 4): DECoN and
panelcn.MOPS. While panelcn.MOPS was able to detect all
CNVs both with the default and the optimized parameters,
DECoN reached almost perfect sensitivity and out-
performed panelcn.MOPS specificity when using the opti-
mized parameters, although the difference is not statistically
significant. DECoN only missed a mosaic CNV affecting
two exons of the NF2 gene. CoNVaDING also detected all
CNVs, but the high number of no-call regions reduced its
specificity to values between 4.1 and 21.9%, which ren-
dered it non-valid as a screening tool.

The parameter optimization process improved the sen-
sitivity of most tools. For example, for the In-house MiSeq
dataset, DECoN sensitivity increased from 98.4% (CI:
91.6–100%) to 100% (CI: 94.4–100%), and the specificity
increased from 78.5% (CI: 71.6–84.4%) to 91.3% (CI:
86.0–95.0%). This improvement highlights the importance
of fine-tuning the tool parameters for each specific task, and
shows that the optimization process performed in this work
has been key for the evaluation of the different tools.

The high sensitivity reached by DECoN and panelcn.
MOPS in different datasets, where they identified all known
CNVs, shows that NGS data can be used as a CNV
screening step in a genetic diagnostics setting. This
screening step has the potential to improve the diagnostics
routines. As an example, the high specificity reached by
DECoN in the in-house MiSeq dataset with the optimized
parameters means that around 91% of genes with no CNV
would not need to be specifically tested for CNVs when
using DECoN as a screening step. The resources saved by
the reduction in the number of required tests could be used
to expand the number of genes analyzed, potentially
increasing the final diagnostics yield.

In conclusion, according to our analysis, DECoN and
panelcn.MOPS provide the highest performance for CNV
screening before orthogonal confirmation. Although
panelcn.MOPS showed a slightly higher sensitivity in one
of the datasets, DECoN showed a much higher specificity in
the diagnostics scenario. Our results also showed that tools
performance depends on the dataset. Therefore, it may be
important to evaluate potential tools on an in-house dataset
before implementing one as a screening method in the
diagnostics routine.

Acknowledgements This study makes use of the ICR96 exon CNV
validation series data generated by Professor Nazneen Rahman’s team
at The Institute of Cancer Research, London as part of the TGMI. We
are grateful to the Katharina Wimmer team at Division Human
Genetics, Medical University Innsbruck for providing access to the
dataset deposited at EGA and hosted by the EBI, under the accession

number EGAS00001002481. We thank the participating patients and
all the members of the Unit of Genetic Diagnostics of the Hereditary
Cancer Program of the Catalan Institute of Oncology (ICO-IDIBELL)
and the Genetics Diagnostics Unit of the Hereditary Cancer Group of
the Germans Trias i Pujol Research Institute (IGTP). We also thank the
IGTP HPC Core Facility, Iñaki Martínez de Ilarduya and Adriana
López-Doriga for their help. We thank CERCA Programme/General-
itat de Catalunya for institutional support.

Funding This work has been supported by: the Spanish Ministry of
Science and Innovation, Carlos III Health Institute (ISCIII), Plan
Estatal de I+D+ I 2013–2016, and co-financed by the FEDER
program; the Government of Catalonia, the Spanish Association
Against Cancer (AECC) and Fundació La Marató de TV3. Contract
grant numbers: ISCIIIRETIC RD06/0020/1051, RD12/0036/008,
PI11/1609, PI13/00285, PIE13/00022, PI14/00577, PI15/00854, PI16/
00563, PI19/00553, 2017SGR1282, and 2017SGR496.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

References

1. Teo SM, Pawitan Y, Ku CS, Chia KS, Salim A. Statistical chal-
lenges associated with detecting copy number variations with
next-generation sequencing. Bioinformatics. 2012;28:2711–8.

2. Zhang F, Gu W, Hurles ME, Lupski JR. Copy number variation in
human health, disease, and evolution. Annu Rev Genomics Hum
Genet. 2009;10:451–81.

3. Kerkhof J, Schenkel LC, Reilly J, McRobbie S, Aref-Eshghi E,
Stuart A, et al. Clinical validation of copy number variant detec-
tion from targeted next-generation sequencing panels. J Mol
Diagn. 2017;19:905–20.

4. Talevich E, Shain AH, Botton T, Bastian BC. CNVkit: genome-
wide copy number detection and visualization from targeted DNA
sequencing. PLoS Comput Biol. 2016;12:1–18.

5. Zhao M, Wang Q, Wang Q, Jia P, Zhao Z. Computational tools
for copy number variation (CNV) detection using next-generation
sequencing data: features and perspectives. BMC Bioinforma.
2013;14:S1.

6. Abel HJ, Duncavage EJ. Detection of structural DNA variation
from next generation sequencing data: a review of informatic
approaches. Cancer Genet. 2013;206:432–40.

1654 J. M. Moreno-Cabrera et al.

62

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


7. Mason-Suares H, Landry L, S. Lebo M. Detecting copy number
variation via next generation technology. Curr Genet Med Rep.
2016;4:74–85.

8. Truty R, Paul J, Kennemer M, Lincoln SE, Olivares E, Nussbaum
RL, et al. Prevalence and properties of intragenic copy-number
variation in Mendelian disease genes. Genet Med.
2019;21:114–23.

9. Johansson LF, van Dijk F, de Boer EN, van Dijk-Bos KK,
Jongbloed JDH, van der Hout AH, et al. CoNVaDING: Single
Exon Variation Detection in Targeted NGS Data. Hum Mutat.
2016;37:457–64.

10. Fowler A, Mahamdallie S, Ruark E, Seal S, Ramsay E, Clarke M,
et al. Accurate clinical detection of exon copy number variants in
a targeted NGS panel using DECoN. Wellcome Open Res.
2016;1:1–20.

11. Povysil G, Tzika A, Vogt J, Haunschmid V, Messiaen L,
Zschocke J, et al. panelcn.MOPS: Copy number detection in
targeted NGS panel data for clinical diagnostics. Hum Mutat.
2017;38:889–97.

12. Kim H-Y, Choi J-W, Lee J-Y, Kong G, Kim H-Y, Choi J-W, et al.
Gene-based comparative analysis of tools for estimating copy
number alterations using whole-exome sequencing data. Onco-
target. 2017;8:27277–85.

13. Chiang T, Liu X, Wu TJ, Hu H, Sedlazeck FJ, White S, et al.
Atlas-CNV: a validated approach to call single-exon CNVs in the
eMERGESeq gene panel. Genet Med. 2019;0:1–10.

14. Roca I, González-Castro L, Fernández H, Couce ML, Fernández-
Marmiesse A. Free-access copy-number variant detection tools for
targeted next-generation sequencing data. Mutat Res/Rev Mutat
Res. 2019;779:114–25.

15. Mahamdallie S, Ruark E, Yost S, Ramsay E, Uddin I, Wylie H,
et al. The ICR96 exon CNV validation series: a resource for
orthogonal assessment of exon CNV calling in NGS data. Well-
come Open Res. 2017;2:35.

16. Castellanos E, Gel B, Rosas I, Tornero E, Santín S, Pluvinet R,
et al. A comprehensive custom panel design for routine hereditary
cancer testing: Preserving control, improving diagnostics and
revealing a complex variation landscape. Sci Rep. 2017;7:39348.

17. Plagnol V, Curtis J, Epstein M, Mok KY, Stebbings E, Grigor-
iadou S, et al. A robust model for read count data in exome

sequencing experiments and implications for copy number variant
calling. Bioinformatics. 2012;28:2747–54.

18. Jiang Y, Wang R, Urrutia E, Anastopoulos IN, Nathanson KL,
Zhang NR. CODEX2: Full-spectrum copy number variation
detection by high-throughput DNA sequencing. Genome Biol.
2018;19:1–13.

19. Li H, Durbin R. Fast and accurate short read alignment with
Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60.

20. Li H. Aligning sequence reads, clone sequences and assembly
contigs with BWA-MEM. arXiv. 2013;1303:3997v. http://arxiv.
org/abs/1303.3997.

21. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N,
et al. The sequence alignment/map format and SAMtools.
Bioinformatics. 2009;25:2078–9.

22. Flicek P, Amode MR, Barrell D, Beal K, Brent S, Carvalho-Silva
D, et al. Ensembl 2012. Nucleic Acids Res. 2012;40:D84–90.

23. Gentleman R, Carey V, Bates D, Bolstad B, Dettling M, Dudoit S,
et al. Bioconductor: open software development for computational
biology and bioinformatics. Genome Biol. 2004;5:R80.

24. Wickham H. The split-apply-combine strategy for data analysis. J
Stat Softw. 2011;40:1–29.

25. Lawrence M, Huber W, Pagès H, Aboyoun P, Carlson M, Gen-
tleman R, et al. Software for computing and annotating genomic
ranges. PLoS Comput Biol. 2013;9:e1003118.

26. Durinck S, Spellman PT, Birney E, Huber W. Mapping identifiers
for the integration of genomic datasets with the R/bioconductor
package biomaRt. Nat Protoc. 2009;4:1184.

27. Wickham H. ggplot2: elegant graphics for data analysis. New
York: Springer-Verlag; 2016. https://doi.org/10.18637/jss.v077.
b02.

28. de Ligt J, Boone PM, Pfundt R, Vissers LELM, Richmond T,
Geoghegan J. et al. Detection of clinically relevant copy number
variants with whole exome sequencing. Hum Mutat.
2013;34:1439–48.

29. Sadedin SP, Ellis JA, Masters SL, Oshlack A. Ximmer: a system
for improving accuracy and consistency of CNV calling from
exome data. Gigascience. 2018;7:1–11.

30. Hong CS, Singh LN, Mullikin JC, Biesecker LG. Assessing the
reproducibility of exome copy number variations predictions.
Genome Med. 2016;8:82.

Evaluation of CNV detection tools for NGS panel data in genetic diagnostics 1655

63

http://arxiv.org/abs/1303.3997
http://arxiv.org/abs/1303.3997
https://doi.org/10.18637/jss.v077.b02
https://doi.org/10.18637/jss.v077.b02


    

 

 

  

64



    

 

 

Article 2 - Screening of CNVs using NGS data improves mutation detection yield and 

decreases costs in genetic testing for hereditary cancer 

José Marcos Moreno-Cabrera, Jesús del Valle, Lidia Feliubadaló, Marta Pineda, Sara González, 

Olga Campos, Raquel Cuesta, Joan Brunet, Eduard Serra, Gabriel Capellà, Bernat Gel* & Conxi 

Lázaro* 

Journal of Medical Genetics. Published Online First: 20 November 2020.  

doi: 10.1136/jmedgenet-2020-107366 

IF 2019 = 4.943. Rank 30/177 (GENETICS & HEREDITY), First tertile, first quartile (Q1). 

Journal link: https://jmg.bmj.com/content/early/2020/11/20/jmedgenet-2020-107366  

Supplementary File available in Appendix B. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

65

https://jmg.bmj.com/content/early/2020/11/20/jmedgenet-2020-107366


    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

66



1Moreno- Cabrera JM, et al. J Med Genet 2020;0:1–4. doi:10.1136/jmedgenet-2020-107366

SHORT REPORT

Screening of CNVs using NGS data improves 
mutation detection yield and decreases costs in 
genetic testing for hereditary cancer
José Marcos Moreno- Cabrera    ,1,2,3 Jesús del Valle,1,2 Lidia Feliubadaló,1,2 
Marta Pineda,1,2 Sara González,1,2 Olga Campos,1,2 Raquel Cuesta,1,2 Joan Brunet,1,2,4 
Eduard Serra,2,3 Gabriel Capellà,1,2 Bernat Gel    ,3 Conxi Lázaro    1,2

Diagnostics

To cite: Moreno- Cabrera JM, 
del Valle J, Feliubadaló L, 
et al. J Med Genet Epub 
ahead of print: [please 
include Day Month Year]. 
doi:10.1136/
jmedgenet-2020-107366

 ► Additional material is 
published online only. To view, 
please visit the journal online 
(http:// dx. doi. org/ 10. 1136/ 
jmedgenet- 2020- 107366).

1Hereditary Cancer Program, 
Joint Program on Hereditary 
Cancer, Catalan Institute of 
Oncology, Institut d’Investigació 
Biomèdica de Bellvitge - 
IDIBELL- ONCOBELL, L’Hospitalet 
de Llobregat, Spain
2Centro de Investigación 
Biomédica en Red Cáncer 
(CIBERONC), Instituto de Salud 
Carlos III, Madrid, Spain
3Hereditary Cancer Group, 
Program for Predictive and 
Personalized Medicine of Cancer 
- Germans Trias i Pujol Research 
Institute (PMPPC- IGTP), Campus 
Can Ruti, Badalona, Spain
4Hereditary Cancer Program, 
Catalan Institute of Oncology, 
IDIBGi, Girona, Spain

Correspondence to
Dr Conxi Lázaro, Hereditary 
Cancer Program, Catalan 
Institute of Oncology, 
L’Hospitalet de Llobregat, 
08908 Catalunya, Spain;  
 clazaro@ iconcologia. net
Dr Bernat Gel;  bgel@ igtp. cat

Received 23 July 2020
Revised 23 September 2020
Accepted 24 September 2020

© Author(s) (or their 
employer(s)) 2020. No 
commercial re- use. See rights 
and permissions. Published 
by BMJ.

ABSTRACT
Introduction Germline CNVs are important 
contributors to hereditary cancer. In genetic diagnostics, 
multiplex ligation- dependent probe amplification (MLPA) 
is commonly used to identify them. However, MLPA is 
time- consuming and expensive if applied to many genes, 
hence many routine laboratories test only a subset of 
genes of interest.
Methods and results We evaluated a next- generation 
sequencing (NGS)- based CNV detection tool (DECoN) 
as first- tier screening to decrease costs and turnaround 
time and expand CNV analysis to all genes of clinical 
interest in our diagnostics routine. We used DECoN in 
a retrospective cohort of 1860 patients where a limited 
number of genes were previously analysed by MLPA, and 
in a prospective cohort of 2041 patients, without MLPA 
analysis. In the retrospective cohort, 6 new CNVs were 
identified and confirmed by MLPA. In the prospective 
cohort, 19 CNVs were identified and confirmed by MLPA, 
8 of these would have been lost in our previous MLPA- 
restricted detection strategy. Also, the number of genes 
tested by MLPA across all samples decreased by 93.0% 
in the prospective cohort.
Conclusion Including an in silico germline NGS CNV 
detection tool improved our genetic diagnostics strategy 
in hereditary cancer, both increasing the number of CNVs 
detected and reducing turnaround time and costs.

INTRODUCTION
Germline CNVs are one of the mutation types 
underlying multiple hereditary diseases.1 Currently, 
its detection is recommended in comprehensive 
genetic testing strategies. For many years, the gold 
standard for CNV detection for one or a few genes 
has been multiplex ligation- dependent probe ampli-
fication (MLPA),2 while hybridisation arrays have 
also been used for comprehensive testing of dozens 
or hundreds of genes at once.3 Although MLPA is 
relatively affordable when testing a few genes and 
patients, its price increases with the number of 
patients and genes tested, making it impractical to 
test a large number of genes in an extensive cohort. 
In addition, MLPA is time- consuming and requires 
a specific design for each gene of clinical interest. 
For these reasons, many genetic testing laboratories 
restrict CNV analysis to a few key candidate genes.

Nowadays, next- generation sequencing (NGS) 
is widely used in clinical settings due to its cost- 
effective yield.4 Targeted NGS gene panels are 
commonly used for genetic diagnostics, containing 
up to hundreds of genes, depending on the test. 
NGS bioinformatics analyses commonly include 
single- nucleotide variants and small deletion and 
insertion variants. However, CNVs are challenging 
variants due to several aspects, like short read 
lengths and GC- content bias,5 especially when the 
variant affects a single exon. Multiple CNV detec-
tion approaches have been developed over the past 
years, although top- performing approaches are 
based on comparing read depth between samples 
and genomic regions.6–10 Some authors have argued 
against the use of an NGS CNV detection tool in 
a clinical setting because of performance limita-
tions,11 12 especially when the CNV affects a single 
exon. However, our recent benchmark confirmed 
that there are CNV calling tools with sufficient sensi-
tivity to be used as a screening step prior to orthog-
onal validation, even for single exon CNVs.13 In 
our diagnostics datasets, we observed that DECoN8 
detected all CNVs (except one in a mosaic sample) 
with a specificity of over 90%. Once this bench-
mark has been performed, it was of our interest to 
evaluate the clinical impact of its implementation, 
in terms of detection yield and costs.

Here, we present an evaluation of the impact of 
using DECoN as a screening method in a heredi-
tary cancer genetic diagnostics setting, testing it in 
a retrospective and in a prospective cohort (online 
supplemental figure graphical abstract).

METHODS
Patients and samples
All patients were selected by our genetic counselling 
units based on the clinical suspicion of hereditary 
cancer. Genomic DNA was extracted from periph-
eral blood lymphocytes using the FlexiGene DNA 
Kit (Qiagen GmbH, Hilden, Germany). Samples 
were analysed using our custom hybridisation- 
based target capture NGS panel for hereditary 
cancer diagnostics, called I2HCP,14 15 which ranged 
from 122 to 135 genes (V.2.0–V.2.2). Mutations 
were examined on a subset of genes in each patient 
depending on their clinical suspicion.16 Samples 
were sequenced in either a MiSeq with 2×300 bp 
reads or a HiSeq with 2×251 bp reads. All samples 
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were aligned to the GRCh37 human genome assembly using 
BWA mem V.0.7.12.17 SAMtools V.0.1.19 was used to sort and 
index BAM files. No additional filtering was applied to the BAM 
files.

NGS CNV detection strategy
We chose DECoN for NGS CNV screening because of its perfor-
mance in our previous study, where all CNVs were detected 
when using optimised parameters in our diagnostics datasets, 
except one in a mosaic sample.13 Therefore, our NGS CNV 
detection strategy consisted of two steps: first, screening of all 
genes of clinical interest using DECoN V.1.0.1 with modified 
parameters (online supplemental table 1), and second, validation 
of putative CNVs by MLPA according to manufacturer’s proto-
cols. To discard DECoN CNV calls with low statistical support, 
only those with a Bayesian factor (BF) ≥2 were included for 
MLPA testing. We chose this cut- off after observing that all true 
CNVs from our previous validation study13 had a BF value >2, 
except for a case of mosaicism. Additionally, we also performed 
MLPA when DECoN detected a failed region in a gene of clinical 
interest, meaning that the region coverage or the sample correla-
tion value were below the required thresholds (see more details 
in online supplemental file).

Retrospective and prospective cohorts
We used our NGS CNV detection strategy to test a retrospec-
tive and a prospective cohort. The retrospective one consisted 
of 1860 patients, for which MLPA results of one or two genes 
were available in most of them, depending on their clinical char-
acteristics (online supplemental table 1). In this cohort, we tested 

the remaining clinically relevant genes according to the patient’s 
clinical phenotype. We also used DECoN to evaluate whether 
it could detect the 20 CNVs previously identified using MLPA. 
The prospective cohort consisted of 2041 patients tested for 
CNVs in all genes of clinical interest, according to the patient’s 
phenotype, with our NGS CNV detection strategy.

RESULTS
CNV identification in the retrospective cohort
We used DECoN to screen all genes of clinical interest not 
previously analysed by MLPA in the retrospective cohort (1860 
patients), and to evaluate whether the 20 CNVs detected by our 
previous MLPA- restricted strategy, were also detected. DECoN 
successfully identified the 20 CNVs previously identified. Also, 
six new true CNVs were identified and subsequently confirmed 
by MLPA (four CHEK2, one RAD51C and one PALB2), which 
represents an increase in CNV detection of 30%, from 20 to 
26 CNVs (table 1). By performing this DECoN analysis, 13 687 
genes were analysed across all samples. In addition to the 26 
true positive signals, we obtained a total of 128 false positive 
calls, 68 deletions and 60 duplications that were confirmed 
as false positives by MLPA analysis. Furthermore, DECoN 
detected 87 failed regions that were tested by MLPA. In total, 
the number of genes tested by MLPA after DECoN in this 
retrospective cohort was 221, in contrast to the 2660 required 
with the previous MLPA- restricted strategy (table 2). Also, 
the average number of genes evaluated per sample with this 
new strategy was 7.35 compared with 1.43 using our previous 
detection strategy.

Table 1 New CNVs identified using DECoN

Retrospective cohort

Sample Clinical suspicion Gene Exons CNV type Classification

S1 Hereditary renal cancer syndromes CHEK2 3–4 Duplication VUS

S2 Hereditary breast and ovarian cancer CHEK2 3–4 Deletion PAT

S3 Hereditary non polyposis colon cancer CHEK2 3–4 Duplication VUS

S4 Hereditary breast cancer CHEK2 2 Deletion LPAT

S5 Hereditary breast cancer PALB2 8 Deletion PAT

S6 Hereditary ovarian cancer RAD51C 4 Deletion PAT

Prospective cohort

S7 Hereditary breast cancer ATM 63 Duplication VUS

S8 Hereditary prostate cancer ATM 27–37 Duplication VUS

S9 Hereditary breast and ovarian cancer CHEK2 3–4 Duplication VUS

S10 Hereditary breast cancer PALB2 7–11 Deletion LPAT

S11 Hereditary breast cancer PALB2 7 Deletion VUS

S12 Hereditary breast cancer PALB2 7–11 Deletion LPAT

S13 Hereditary ovarian cancer RAD51C 4–5 Deletion PAT

S14 Polyposis STK11 5–8 Deletion PAT

S15 Polyposis APC Whole gene Deletion PAT

S16 Hereditary breast cancer BRCA1 21 Deletion PAT

S17 Hereditary ovarian cancer BRCA1 9–13 Deletion PAT

S18 Hereditary ovarian cancer BRCA1 1–3 Deletion PAT

S19 Hereditary ovarian cancer BRCA1 24 Duplication PAT

S20 Hereditary breast and ovarian cancer BRCA1 3–5 Deletion PAT

S21 Hereditary ovarian cancer BRCA1 Whole gene Deletion PAT

S22 Hereditary breast cancer BRCA2 2 Deletion LPAT

S23 Hereditary non- polyposis colon cancer EPCAM 8–9 Deletion PAT

S24 Hereditary non- polyposis colon cancer MSH2 4–6 Deletion PAT

S25 Hereditary non- polyposis colon cancer MSH2 7 Deletion PAT

Samples S7–S14 contain CNVs that would not have been found with our previous MLPA- restricted strategy.
LPAT, likely pathogenic; MLPA, multiplex ligation- dependent probe amplification; PAT, pathogenic; VUS, variant of uncertain significance.
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CNV identification in the prospective cohort
We used DECoN to screen all genes of clinical interest in the 
prospective cohort (2041 patients). Most of the CNV calls 
(53.2%) were discarded because they obtained a BF <2 (online 
supplemental figure 1). DECoN called 158 CNVs of which 
19 were confirmed by MLPA (table 1). Out of those, 8 would 
have not been identified using our previous MLPA- restricted 
approach (online supplemental table 1): 3 in PALB2, 2 in ATM, 
1 in STK11, RAD51C and CHEK2. This represents an increase of 
72.7% in CNV detection, from 11 to 19 CNVs. For the 18 836 
genes analysed by DECoN across all samples, DECoN produced 
a total of 139 false positive CNV calls (71 duplications and 68 
deletions) and 82 failed regions, discarded after MLPA analysis. 
It is worth mentioning that, compared with our previous MLPA- 
restricted strategy, the number of genes tested by MLPA across 
all samples decreased from 3442 to 240, representing a 93.0% 
decrease (table 2). Furthermore, the average number of genes 
tested per sample increased from 1.69 to 9.22 with the new 
strategy.

DISCUSSION
The implementation of NGS technologies in genetic diagnosis 
has been a breakthrough in diagnostic performance allowing 
the analysis of multiple genes at the same time, reducing costs 
and turnaround time. However, establishing accurate bioinfor-
matics algorithms for CNV detection from NGS data has been 
more challenging than for other types of mutations such as point 
mutations or small deletions and insertions.

In this retrospective and prospective study, we evaluated the 
use of an NGS CNV calling tool as a screening step before MLPA 
validation in a hereditary cancer genetic diagnostics setting. An 
ideal screening tool should have 100% sensitivity to avoid missing 
any true positive. Therefore, we chose DECoN as a first- tier in 
silico screening tool based on its performance in our previous 
benchmarking effort.13 Including an in silico screening step to 
our diagnostics strategy allowed us to analyse CNVs for all the 
genes of clinical interest, most of them had not tested before due 
to turnaround time and budget restrictions. This implementa-
tion resulted in an improved diagnostics yield in both cohorts, 
with up to 72.7% of additional CNVs detected. As expected, 
DECoN showed high sensitivity, detecting the 20 previously 
known CNVs in the retrospective cohort. It is extremely worth 
highlighting the important clinical impact of this yield improve-
ment which allowed us to discover the genetic cause of cancer in 
previously uninformative families. The detection of pathogenic 
CNVs in clinically actionable genes is paramount for the clinical 
management of the patient carrying the CNV, as well as for their 
relatives. It allows the individualisation of cancer risk assessment 

for all family members as well as the establishment of specific 
surveillance measures and appropriate therapeutic strategies for 
all the carriers.

Besides the yield improvement, the use of an in silico 
screening tool to identify CNVs based on NGS data entailed an 
important decrease in the resources required for this analysis. In 
the prospective study, we observed a reduction of 93.0% in the 
number of genes requiring MLPA testing across all samples, with 
the associated savings in time and costs. The high specificity of 
DECoN, validated in our previous study, along with the intro-
duction of a BF cut- off, made possible an important reduction in 
the number of genes tested by MLPA.

Although some authors have exposed limitations for the use 
of NGS CNV detection tools in clinical settings for different 
reasons,11 12 18 others have argued in favour of its use in this 
context.7–10 19 20 This work, together with our previous bench-
mark on CNV calling tools for genetic diagnostics,13 shows that 
CNV in silico screening is viable in a genetic diagnostics setting, 
and results in a reduction of costs and turnaround times and, 
most importantly, in an increase in the diagnostic yield.
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Table 2 Impact of using DECoN as CNV screening tool in the retrospective and prospective cohorts

Retrospective Prospective

MLPA- restricted strategy With DECoN MLPA- restricted strategy With DECoN

Number of samples 1860 1860 2041 2041

Total number of genes tested by MLPA 2660 221 3442 240

Average number of genes tested by MLPA, per sample 1.43 0.12 1.69 0.12

Total number of genes tested by DECoN 0 13 687 0 18 836

Total number of genes covered in the testing strategy 2660 13 687 3442 18 836

Average number of genes covered per sample 1.43 7.35 1.69 9.22

Average number of kilobases covered per sample 12.94 24.26 11.22 39.27

CNVs confirmed by MLPA 20 6 11 19

The ‘MLPA—Prospective’ column contains an estimation of what would have happened if DECoN had not been used as a screening step prior to MLPA validation.
MLPA, multiplex ligation- dependent probe amplification.
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José Marcos Moreno-Cabrera, Jesús del Valle, Elisabeth Castellanos, Lidia Feliubadaló, Marta 

Pineda, Eduard Serra, Gabriel Capellá, Conxi Lázaro* and Bernat Gel* 
 
 
 
 
 

Summary: Germline copy-number variants (CNVs) are relevant mutations for multiple genetics 

fields, such as the study of hereditary diseases. However, available benchmarks show that all 

next-generation sequencing (NGS) CNV calling tools produce false positives. We developed 

CNVfilteR, an R package that uses the single nucleotide variant calls usually obtained in 

germline NGS pipelines to identify those false positives. The package can detect both false 

deletions and false duplications. We evaluated CNVfilteR performance on callsets generated by 

13 CNV calling tools on 3 whole-genome sequencing and 541 panel samples, showing a 

decrease of up to 44.8% in false positives and consistent F1-score increase. Using CNVfilteR to 

detect false-positive calls can improve the overall performance of existing CNV calling pipelines. 

Availability and Implementation: CNVfilteR is released under Artistic-2.0 License. Source code 

and documentation are freely available at Bioconductor 

(http://www.bioconductor.org/packages/CNVfilteR)  

Supplementary Information: Supplementary data will be available at Bioinformatics online. 

 
 
 

Introduction 

Copy-number variants (CNVs) are a type of structural variant which has been a matter of 

interest in multiple genetic fields. In the research and diagnosis of hereditary diseases, where 

CNVs are relevant contributors (Zhang et al., 2019), the analysis of germline CNVs plays a key 

role. Recent improvements in next-generation sequencing (NGS) have resulted in the release 

of several tools for germline CNV detection on whole-genome sequencing (WGS), whole-exome 

sequencing, and panel data (Zhao et al., 2013; Roca et al., 2019; Mason-Suares et al., 2016). 
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Nevertheless, CNV detection in NGS is challenging due to aspects relative to the technology 

such as short read lengths or GC-content bias (Teo et al., 2012).  

Available benchmarks show that all germline CNV calling tools produce false positives (Zhang 

et al., 2019; Kim et al., 2017; Moreno-Cabrera et al., 2020), frequently reaching high false 

discovery rates (FDRs). These false-positive calls impact downstream analysis. In a clinical 

setting, where the use of an orthogonal method is necessary to validate a CNV, false-positive 

calls lead laboratories to make an important effort to validate them. A tool able to identify these 

false-positive calls could help in this regard.  

Most NGS CNV callers are based on one or more of these strategies: read-pair, split-read, read-

depth, and assembly-based (Pirooznia et al., 2015). However, information from single-

nucleotide variants (SNVs), usually available in NGS pipelines, is rarely used in CNV detection 

strategies although SNV allele frequency can provide evidence to confirm or discard CNV calls.  

Here we present CNVfilteR, an R/Bioconductor package that uses SNVs to identify false 

positives in the output of CNV calling tools.  

False-positive identification strategy  

CNVfilteR uses two different strategies to identify false-positives CNV calls in diploid genomes.  

Heterozygous deletions are loss-of-heterozygosity regions and cannot overlap with 

heterozygous SNVs, since only one allele remains. If a heterozygous SNV is detected within a 

deleted region, either the SNV or the deletion is a false positive (Figure 1a). To account for 

errors in SNV calling, a CNV deletion is identified as false positive if at least a percentage of the 

SNVs overlapping that CNV is heterozygous, 30% by default. On the other hand, CNV 

duplications are evaluated using a fuzzy-logic-inspired model which scores all heterozygous 

SNVs overlapping the CNV. If the duplication was a true-positive, the expected allele frequency 

of heterozygous SNVs would be either 33% or 66%, while it would be 50% if the duplication 

was a false positive (Figure 1b). Therefore, each SNV is scored with a value between -1 and 1 

depending on how close the allele frequency is to the nearest expected allele frequency (Figure 

1c). If the sum of the scores of all the SNVs in the CNV is greater than the duplication threshold 

value, the CNV duplication is identified as false positive. Further details of the scoring model 

can be found in Supplementary File 1. 
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Figure 1. (A) CNV deletion example, adapted from CNVfilteR output. (B) CNV duplication example, 
adapted from CNVfilteR output. (C) Scoring model for CNV duplications, plotted by CNVfilteR. (D-
F) F1-score differences before (light blue) and after (dark blue) removing the false-positive CNVs 
identified by CNVfilteR in the HuRef, AK1, and NA12878 WGS samples.  

Features 

Input formats  

VCF format is the most common output of SNV callers and its interpretation is challenging due 

to the flexibility provided by the format specification. CNVfilteR provides a function to interpret 

automatically VCFs produced by VarScan2, Strelka/Strelka2, freeBayes, HaplotypeCaller (GATK), 

and UnifiedGenotyper (GATK). Output from other tools can also be loaded if adequate 

parameters are provided.  

Visual output 

Results can be plotted and customized through plotting functions based on karyoploteR (Gel 

and Serra, 2017) and CopyNumberPlots (https://github.com/bernatgel/CopyNumberPlots) 

packages (Supplementary Figure 1).  

Performance evaluation 

CNVfilteR was evaluated on 3 WGS samples and 541 gene-panel samples. The default 

parameters were chosen based on their performance in a WGS sample (HuRef sample) and a 

gene-panel dataset (HiSeq-panel) (Supplementary File 1). 
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Evaluation on WGS data 

We evaluated CNVfilteR performance on three reference WGS samples: the HuRef/Venter 

genome (Zhou et al., 2018), the AK1 genome (Seo et al., 2016), and the NA12878 genome. The 

HuRef and AK1 samples were evaluated using a published reference CNV callset and the results 

of six CNV calling tools (Canvas, cn.MOPS, CNVnator, ERDS, Genome_STRiP, RDXplorer) (Trost 

et al., 2018). For these two samples, we also ran an additional CNV calling tool, LUMPY (Layer 

et al., 2014). On the other hand, we evaluated the NA12878 sample with a reference callset 

and the output of ten CNV calling tools (Canvas, cn.MOPS, CNVnator, RDXplorer, iCopyDAV, 

GROM-RD, Rsicnv, Control-FREEC, ReadDepth) from a previous work (Zhang et al., 2019; Parikh 

et al., 2016; MacDonald et al., 2014). For the three WGS samples, SNV calls were obtained using 

Strelka2 (Kim et al., 2018). Further details are available in Supplementary File 1.  

CNVfilteR identified between 15.3% and 44.8% of the false positives and the FDR decreased for 

all tool-sample evaluations (up to 10.4%). Additionally, F1-score was improved in 19 out of the 

24 tool-sample evaluations reaching up to 20.7% F1-score increase (Figure 1d-f). Sensitivity, 

however, decreased slightly: tool-sample evaluations had an absolute sensitivity decrease 

between 0.001 and 0.035. Metrics details are available in Supplementary File 2 and 

Supplementary Figures 2-7. Moreover, additional evaluations were performed to show 

CNVfilteR performance on different CNV size ranges, on different number of SNVs overlapping 

each CNV, and on different parameter values (Supplementary Figures 8-25 and Supplementary 

Files 5-7). 

Evaluation on gene-panel data 

We also evaluated CNVfilteR performance on two gene-panel targeted datasets: one containing 

411 samples from different Illumina HiSeq runs (HiSeq-panel dataset) and another with 130 

samples from different Illumina MiSeq runs (MiSeq-panel dataset). All samples were captured 

with a 135-gene panel (Castellanos et al., 2017). To evaluate CNVfilteR, previous MLPA results 

for a subset of genes were used as gold-standard, CNVs were called using DECoN (Fowler et al., 

2016), and SNVs were called using VarScan2 (Koboldt et al., 2012) (Supplementary Files 1, 3-4). 

In the HiSeq-panel and MiSeq-panel datasets, CNVfilteR identified 15% of the false-positive 

calls (3 out of 20 false positives) and 12.5% of the false-positive calls (2 out of 16), respectively. 

On both datasets, no true CNV was misidentified as false positive (Supplementary File 1), so 

sensitivity did not change. 
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Runtime 

Runtime was evaluated on a subset of 79 gene-panel samples and the HuRef WGS sample. The 

median runtime per sample was 0.85 seconds for the gene-panel samples and 3.53 minutes 

for the HuRef sample (Supplementary File 1). 

Conclusion 

We developed CNVfilteR, an R/Bioconductor package to identify false-positive calls generated 

by CNV calling tools from germline NGS data using SNVs’ allele frequency. CNVfilteR identified 

false-positive calls in all tested tools and datasets, from gene-panel to WGS, and F1-score was 

improved in most tool-sample combinations. CNVfilteR can be plugged in most existing CNV 

calling pipelines to improve calling performance at virtually no cost. 
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1.1  Pandora: technical tool description 

We developed Pandora to support the diagnostics routine of the ICO-IGTP Joint Program on 

Hereditary Cancer. Pandora is a web-based tool that automates multiple tasks during the 

diagnostics process such as FASTQs download or sample bioinformatic analysis. It supports the 

process of validation or classification of a variant, and allows flexible exploitation of the patient, 

sample, and variant data stored in Pandora. 

Pandora is a distributed system built on the Django framework, a PostgreSQL database (initially 

developed by Bernat Gel), and a number of Python and R cron jobs. Samples are analyzed using 

a custom pipeline developed by Bernat Gel (Castellanos et al., 2017). The whole architecture 

of Pandora is described below (Figure 11).  

 Web server. This is the server where Pandora is hosted. The web infrastructure has been 

implemented using the Django framework (v1.8.8), which offers a model-view-template 

design pattern. 

o The front-end layer is implemented in JavaScript, CSS, and HTML languages and 

makes use of the Django templates. 

o The back-end layer is implemented in Python (v3.4) and makes use of the Django 

database model to communicate with the PostgreSQL database.  

The Web server only communicates with the Database server; it reads and writes on 

the database. To keep the client-side updated in quasi-real time, a poll is performed 

every 3 seconds to get the latest database changes. 

 Database server. Uses PostgreSQL (v9.6.2) to manage the databases described below: 
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o A Django database (Users database) storing users, roles, and permissions. 

o A database (NGS database) compound of 64 tables to store, among others, 

variant and sample data. A trigger function was implemented to log data 

changes in the database to support client-side synchronization. 

 Crons server. Coordinates multiple processes associated with Pandora. Six cron jobs 

(five implemented in Python, one in R) perform different tasks: 

o BaseSpace Downloader (Python). It searches for FASTQs to be downloaded from 

the Illumina BaseSpace system and the FTP server. When found, it downloads 

them to the Network File System (NFS) server. 

o Analysis Launcher (Python). Launches the analysis pipeline to align FASTQs, call 

variants and generate reports.  

o Results Files Copier (Python). Copies files requested by the user from the NFS 

server to the Web server. 

o Results Files Remover (Python). Removes files from the Web server that are 

obsolete in order to free up space. 

o Manual variant inserter (R). Inserts in the database a variant defined manually 

by the user. 

o Maintainer. Carries out general maintenance tasks, like updating the in-house 

frequencies for each variant. 

 Computer cluster. The computer cluster environment where pipeline jobs are executed. 

 NFS server. Stores different purpose files, from FASTQs to pipeline results. It can be 

accessed by any machine except the Web server. 
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Figure 11. Pandora architecture is composed of Web server, Database server, Crons server, NFS 
server and computer cluster. 
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Abstract. The arrival of next-generation sequencing technologies has transformed genetic 

diagnostics by multiplying the sequencing capacity at a limited cost. The diagnostic activity in 

the laboratory covers multiple steps from the patient’s sample collection to the final report. A 

software tool to support the whole routine diagnostics has the potential to automate multiple 

tasks, avoid human errors and enhance data exploitation. However, building such a software 

tool requires careful design. We present here eleven tips to consider when designing and 

implementing a tool to support the genetic testing of a disease. Traceability, reproducibility, 

efficiency, usability and also an intensive dialog with your future users are some of the aspects 

that must be addressed to build a tool to enhance your genetic diagnostic workflow. 
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Introduction 

Over the last years, next-generation sequencing (NGS) technologies have thoroughly impacted 

the way genetic testing of diseases is performed (Knoppers et al., 2015; Xue et al., 2015; Yohe 

and Thyagarajan, 2017). The arrival of NGS has multiplied the sequencing capacity in a very 

cost-effective way (Goodwin et al., 2016; Pereira et al., 2020). Whole-genome and whole-

exome sequencing are used in diagnostic settings, although most laboratories use the smaller 

targeted gene-panels in their routine diagnostics. The latter allow for the cost-effective testing 

of up to hundreds of clinically relevant genes during the routine diagnostics, which has 

improved the final diagnostic yield (Teekakirikul et al., 2013; Kurian et al., 2014; Feliubadaló et 

al., 2017). 

The ICO-IGTP Joint Program on Hereditary Cancer focuses on the detection and interpretation 

of germline variants that increase the risk of developing cancer. The diagnostic activity covers 

all hereditary cancer syndromes, although it concentrates on hereditary colorectal cancer, 

hereditary breast and ovarian cancer, neurofibromatosis and other related disorders. To 

improve our diagnostic activity, we developed a custom gene panel: the I2HCP (Castellanos et 

al., 2017; Feliubadaló et al., 2017), a hereditary cancer gene-panel with 135 genes. To date, 

more than five thousand cases (1331 just in 2020) have been tested using this panel and our 

associated analysis pipeline. 

The diagnostic workflow typically comprises DNA extraction, library preparation, NGS 

sequencing, primary analysis pipeline, variant analysis, variant classification and, finally, 

preparation of the diagnostic report. To manage and orchestrate the diagnostic routine, we 

developed Pandora (PlAtform for NGS Data Organization Repository and Analysis), a web-based 

platform built on the Django framework and a PostgreSQL database. Pandora automates 

multiple tasks such as sequencing data download and primary analysis, supports the process 

of validation and classification of a variant and offers flexible data exploitation. Pandora is 

currently being used in the diagnostic routine of the ICO-IGTP program and some of the data 

has also been opened to external institutions to help other laboratories in their variant 

classification efforts. 

As a result of our experience designing, building and using Pandora, we present here eleven 

quick tips to consider when facing the development of a tool to support genetic testing of a 

disease. Eleven best practices or pieces of advice shared for computer scientists, biologists, 

bioinformaticians, clinicians and all the health care professionals involved in the process of 

designing and building a tool to support genetic diagnostic testing. 
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Tip 1: Traceability and reproducibility are essential 

The diagnostic workflow finishes with a report delivered to a patient. Hence, any future 

modification or result re-analysis needs to retrace all the steps that led to the report. Therefore, 

in genetic diagnostics, it is a must to know who and when did what in the system. Traceability 

is especially important when validating or classifying a variant. In our laboratory routine, the 

validation of a variant implies the labor of two independent curators that check whether the 

metrics of the variants (read depth and allele frequency among others) indicate that the variant 

call is reliable enough, and a third curator in case the initial curators do not agree. All that 

information is properly stored in the Pandora database. For the classification, Pandora does not 

just store who and when classified a variant and why it was classified, it also stores a history of 

all previous classifications (Supplementary Figure 1). 

Reproducibility is another matter of concern in a clinical context (Roy et al., 2018). It is 

necessary to identify unambiguously in which computational environment a sample was 

analyzed: software versions, fastq files used and other input parameters. When a new - and 

probably better - pipeline version is available, it may be interesting re-analyzing old samples to 

take advantage of the new improvements. For that purpose, it is necessary to store the original 

fastq files, without any modification, so that new versions of the pipeline could be executed 

starting from the same raw data. Also, each modification in the pipeline code should entail a 

new pipeline version: this way all versions can be clearly identified, so any result for any sample 

can be reproduced with the desired pipeline version. 

Tip 2: The more you automate tasks, the better 

One of the core reasons to implement a piece of software to support the diagnostic routine is 

to enhance productivity. In this regard, you should automate every task where a human 

decision is not necessary. For example, the input sample sheet for Illumina sequencing 

platforms is automatically generated by Pandora, with the exact required format, so manual 

errors are avoided. Also, downloading results from either the cloud (Illumina Basespace) or an 

FTP server is performed by a Pandora script which scans for new results every five minutes. 

When sample download is finished, the analysis pipeline is automatically launched and an email 

is sent to the user when the results are available. The automation of all these steps speeds up 

the diagnostic workflow while limiting the errors that typically occur when manual tasks are 

performed (Figure 1). 
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Figure 1. Pandora diagnostics workflow. 1: The user uploads sample information to Pandora using 
an excel file which is parsed by Pandora. 2: Pandora produces an Illumina sample sheet (.csv) to be 
downloaded. 3: Sequencing starts using the sample sheet provided by Pandora. 4: FASTQs are 
uploaded to BaseSpace or to an FTP server. 5: FASTQs are automatically downloaded by Pandora. 
Pipeline analysis starts in the computing cluster. 6: When finished, an email is sent to the curators: 
all results can be reviewed. Then, independent curators validate and classify sample variants and a 
report is sent to the clinician. 

The automation of some small and less visible tasks can also improve user productivity. This is 

the case of the search in Google or PubMed of several nomenclatures of a certain variant, to 

assist in its classification. For example, for the variant selected in Supplementary Figure 2, after 

clicking the PubMed button the chain "ATM" "8122G>A" OR "ATM" "8122G->A" OR "ATM" 

"8122G-->A" OR "ATM" "8122G/A" OR "ATM" "p.Asp2708Asn" OR "ATM" "Asp2708Asn" is 

searched in PubMed. The same behavior applies to the Google button. 

Tip 3: Listen to the user 

When designing the tool, it is important to define with precision its features and appearance. 

Moreover, you are going to design a tool for genetic diagnostics, a new field that has rarely 

been traveled; in other words, you are not designing a shoe store web-site for which hundreds 

of examples can be found. Of course, the process of capturing future features and appearance 
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is not easy and involves communication with future users. Apart from collecting them in a 

specifications document, in our experience, sketching was a useful way to explain to the user 

which tool we were imagining (Supplementary Figure 3) and a basis on which they could 

propose new ideas or modifications. The more you define and design the right tool to be 

developed, the fewer changes you will have to perform after the user starts using it. Also, try 

to develop your tool towards a functional prototype as quickly as possible, so your users will be 

able to give you very valuable feedback on something they can interact with. Listening to the 

user is not only a must when thinking and developing new software, it should also be done 

when the tool is finished (in production). At that point, users will start their real experience 

with the tool and multiple needs, previously unknown, may emerge.  

In our experience, one of those emerged needs was the use of tags to label certain elements. 

Our initial approach was to develop a systematic and rigid system emphasizing reproducibility. 

However, when the users started to use the tool in a real scenario, they began to report to us 

the need to register in the system unforeseen conditions of certain samples or analyses. For 

example, users wanted to register that a defective cartridge was used when sequencing a 

certain group of samples or that an analysis was considered failed for not having enough reads. 

As a result of this feedback, we implemented tags to allow users to flexibly label and register 

those special conditions (Supplementary Figure 4). Thanks to this feature, adding, editing, and 

removing tags to samples or analysis is a powerful way to organize the data. It is possible to 

label the samples that are part of a certain project or those that are used as internal controls, 

for example. If you implement tags, consider allowing filtering for one or more of them. 

Another feature requested by the users was a list of low-coverage genomic regions for each 

sample, also known as failed regions. For any set of samples, users can obtain the exact bases 

with low coverage (Supplementary Figure 5). This may be useful to decide, for example, 

whether some regions should be tested by Sanger sequencing or not. 

Tip 4: A relational database to manage complex data 

Access to and exploitation of data is determined by how data is stored. In research settings, 

data typically resides in the results files produced by the analysis pipelines. Exploiting these 

files is enough in most research contexts where the needs are very specific: usually, a single 

bioinformatician will process these files to generate some analyses, reports, or figures. 

However, using a relational database, instead of multiple files, provides multiple advantages in 

a diagnostic context. First, there are complex relationships underlying the data behind the 

diagnostic workflow that can be easily represented through a relational database. For instance, 
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a patient can have more than one sample, the targeted enrichment process can be performed 

multiple times on a single sample, and the enriched DNA can be sequenced on several 

sequencing runs. These one-to-many relations are difficult to represent efficiently in text-based 

file formats but are easily implemented in a database, which allows powerful data exploitation. 

Second, current database engines can fluently manage tables of up to millions of rows, 

especially when using table indexes. This is an advantage when thousands of variants with 

dozens of fields have to be retrieved to review multiple patient samples. Third, a database is a 

prerequisite to allow multiple users to modify the same data at the same time. It is needed 

when, for example, multiple geneticists are validating and classifying the variants found in an 

urgent sample. Fourth, a relational database is the best structure to store and manage the 

traceability information explained in Tip 1, by creating the appropriate tables or columns. It 

would be unfeasible to store, access, and modify all user actions in a single or multiple 

conventional files. 

In the Pandora database, the definition of the unique variants that have been found to the 

moment (what we called Variants Library) is separated from the definition of all the variants in 

patients with the quality metrics they were found. With this design, when a new run is analyzed, 

a big proportion of the variants automatically appear already classified to the user because 

they were previously found, classified, and stored in the Variants Library. For instance, in our 

last sequencing run in Pandora, 98.2% of a total of 2251 variants found across all samples 

appeared automatically classified to the user. This approach positively impacts the variant 

revision process, speeding up the reporting of variants to the patients. 

Tip 5: Take care of the usability of your tool 

Usability, a feature that encompasses effectiveness, efficiency, and user satisfaction, is a key 

factor in the success of any software tool (Yan and Guo, 2010). Some user interface (UI) design 

decisions can have an important impact on the user experience and the productivity of your 

genetic diagnostic tool. For example, chosen colors are important to facilitate human data read. 

To decrease the cognitive load (Wang et al., 2014), try to reach a color harmony avoiding color 

saturation overload, and use colors to differentiate or highlight useful information on certain 

fields. Supplementary Figure 6 illustrates the use of colors in Pandora. As an example of 

highlighting, the column “Classification Date” becomes yellow if the classification is older than 

six months. Another feature that can improve usability is to provide a universal search box to 

allow quick and easy search for any item of the related table (Supplementary Figure 7).  
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Usability should also consider a design focused on avoiding user errors. In this regard, show a 

confirmation message whenever an action is important or risky, and check comprehensively for 

any error in the form fields before registering them in the system. Also, it is a good practice to 

disable those fields that shouldn’t be modified. As an example, when a user downloads the 

sample sheet to send it to the Illumina platform, many sample fields that shouldn’t be modified 

anymore are disabled. 

For a real good user experience, an agile UI response is mandatory. If common user actions like 

modifying a field require seconds to be performed, the productivity and satisfaction of your 

users will be limited. So, emphasize the optimization of those processes that can result in time-

consuming bottlenecks. Consider also to preload the most common data when the software 

tool is launched, even if that means an initial load of multiple seconds. In our experience, users 

prefer a slow initial web load of multiple seconds instead of waiting some seconds per each 

common action. 

Tip 6: A powerful data table UI library to explore powerful data 

The analysis pipeline will produce from hundreds to millions of variants that have to be properly 

exploited. The user may be interested in exploring, for example, all the variants identified in a 

sequencing run. Using a table is a good choice to manage all this information, but it must be an 

efficient, flexible, and fully-featured data table implementation. In our case, we chose the 

DataTable implemented in Webix, https://webix.com/, which supports large datasets of up to 

a million rows. As an example, in our Variants Library (Supplementary Figure 8) the user can 

quickly explore all the variants that have been found at least once in our samples: currently 

65450 rows (variants) with 67 columns, that is, more than 4 million fields. Of course, it’s not 

only about quantity. The data table UI library should allow the user to quickly filter by any 

column, including multiple columns, as Pandora does. Also, sorting by any column or multiple 

columns is a requirement to empower the user when managing the data.  

Additionally, the table UI library should allow the representation of tree relationships. For 

instance, a patient can have multiple samples and a sample can have multiple sample captures. 

Note that this feature is not available in most table UI libraries. Users can also benefit from 

other features like fixing the position of the most useful table columns (Gene, cDNA, protein, 

and transcript NM in Pandora) or expanding the information shown for a certain row. The latest 

is a feature that we use to show the variant nomenclature for all the gene transcripts. By just 

clicking, the user can unfold a subview containing a list of the annotations of that variant for all 

the known transcripts in that gene (Supplementary Figure 9). 
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Tip 7: Screen is a scarce resource: optimize the information shown 

Screen is the limited space in which the user will work. Accordingly, it is important to optimize 

the space showing only the interface elements that are useful to the user depending on the 

task to be done. Irrelevant elements should be hidden and you should provide mechanisms to 

show extra content in case it is required by the user.  

Hence, consider showing customized views depending on the task. The validation and 

classification of a variant require some columns in common to be shown, such as the gene, the 

cDNA annotation, or the genomic position. However, other fields are exclusive to each task for 

providing the exact information useful to the user. For example, when validating a variant, the 

read depth, the allele frequency, and the Joint Quality Score (a custom metric to estimate the 

confidence of a variant call) are shown. For the classification of a variant, that information is 

hidden but show all the fields related to this task: classification reasoning, comments, and in-

silico predictors, among others. In Pandora, the user can select the columns to be shown 

depending on the task (Supplementary Figure 10). 

A minor but useful feature for the user is showing tooltips for any field or data, so the whole 

field content can be shown when the mouse is over. In fact, this feature can be extended to 

build complex tooltips that summarize a set of fields useful for the user (Supplementary Figure 

11). Moreover, making use of context buttons helps to optimize the screen space. The idea is 

to offer the user only options based on the item selected and its state. For instance, if the user 

selects an individual, provide only the buttons applicable to this item, like removing or editing 

the individual entry. 

Tip 8: Real-time synchronization to allow multiple users to work in parallel 

The review or classification of a variant is a process that may involve multiple users. If you work 

with shared local excel files to check the variants found in a sample, your curators will not be 

able to work at the same time in the same file because the excel file will remain locked when a 

user opens it. As explained in Tip 4, a database allows for simultaneous access or modification 

of data. However, users also need to work with the last version of the data in order to make 

appropriate decisions. Therefore, real-time synchronization should be requisite in your tool: 

the user interface should be updated as soon as it is modified in the database. 
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Tip 9: Analysis pipeline for diagnostics 

Diagnostics-oriented NGS data analysis pipelines have a number of specific characteristics and 

constraints that affect their design. Alterations found (or missed) by the data analysis pipeline 

will be reported back to patients and have a direct impact on their clinical management. 

Therefore, a clear and interpretable path from data to results might be required by the 

geneticists writing the patient’s reports. In addition, the balance between specificity and 

sensitivity must be evaluated taking into account the different costs associated with false 

positives and false negatives. For example, in germline diagnostic orthogonal validation of 

variants is frequent, which allows for a lower specificity at the data analysis pipeline with no 

impact on the final reports. On the contrary, this is not always the case on somatic genetic 

testing, where specificity will need to be higher since orthogonal validation is more challenging. 

As an example, the data analysis pipeline implemented in Pandora is essentially a standard 

germline small variant and copy number calling pipeline. It uses many standard bioinformatics 

tools as building blocks, such as bwa mem for mapping and Annovar for variant annotation. 

However, to improve interpretability and provide finer controls on sensitivity and specificity, 

Varscan2 (Koboldt et al., 2012) was chosen instead of more popular choices such as GATK 

(McKenna et al., 2010), Strelka (Kim et al., 2018) or Freebayes (Garrison and Marth, 2012), 

since Varscan does not use complex statistical models but a simple method based on hard 

filters. With that, we can clearly understand why a variant is called or missed and bias the 

variant calling towards better sensitivity at the cost of slightly lower specificity, given that the 

diagnostic strategy includes the validation by Sanger sequencing of all reported variants 

(Castellanos et al., 2017). Similarly, for CNV calling, DECoN (Fowler et al., 2016) with parameters 

adjusted for high sensitivity (Moreno-Cabrera et al., 2020) was chosen, since all reported 

alterations are validated by MLPA.  

Finally, it is important to give the users the possibility to complement or override the results 

from the analysis pipeline. For example, even though your pipeline might provide perfect 

naming for most variants, users must be able to change them because exceptions occur. Hence, 

consider having in your database a user-variant nomenclature field beside the original pipeline-

variant nomenclature field. Also, your tool should provide a mechanism, probably a form, to 

insert additional variants into the system because some patient variants might be found by 

other means. It is necessary to store them in the database to keep it fully updated, so data can 

be properly exploited. In summary, the analysis pipeline must be rigid and reproducible but the 

tool must provide users with sufficient flexibility to accommodate real-life complexity. 
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Tip 10: Your tool will be the center of everything, but it cannot be everything 

Although your tool will be the orchestrator of the elements involved in the genetic diagnostics 

workflow, it has to be designed considering that interoperation with other tools will happen. 

Very likely, your users are used to work with spreadsheets like Microsoft Excel or LibreOffice 

Calc, so allowing data export to excel files from any of the data tables shown in your application 

is a must. Even if you implement many functions to operate with the data tables, like filtering 

or sorting by multiple columns, allowing exportation to excel-like formats allows the user to 

make use of more sophisticated features that you will not implement. On the other hand, excel-

files will probably be the natural input for many steps in the diagnostic workflow, so prepare 

your code to parse them accordingly. In Pandora, the information of patients, samples, and 

desired analyses can be uploaded via an excel-like file, apart from adding them manually on 

the web tool. On the other hand, it is possible to export variants to a format compatible with 

Progeny, a genetic clinical software used in our laboratories. In short, prepare your tool to work 

harmoniously with other tools and systems that live around. 

Tip 11: Adequate security protections for genomic data 

The human genome has specific properties that make it sensitive information. The DNA 

sequence is unique for each individual, stores ethnic heritage information, allows for the 

identification of relatives, and provides information about the predisposition to several 

diseases (Naveed et al., 2015; Mohammed Yakubu and Chen, 2020). Therefore, human genome 

data are susceptible to privacy risk and security attacks. The software you are designing must 

emphasize security aspects to avoid vulnerabilities (Atashzar et al., 2011; Mouli and Jevitha, 

2016). Security requirements should be extended to all infrastructure parts, such as the 

database or the web server. Here, the role of your system administrator is key to establish 

proper security restrictions. In Pandora, the web server is the only part that interoperates with 

the “outside world” (demilitarized zone). In fact, the web server cannot communicate with any 

other system except the database server. In addition to username/password protection, the 

access to the web server is restricted to a list of predefined IPs, also known as IP whitelisting. 

This measure might hinder access from outside of usual networks, but enhances security; 

anyway, external access can be solved by using a virtual private network (VPN), for example. 
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Conclusion 

Developing a new software tool for supporting the genetic diagnostics of a disease is a 

challenging task that requires thinking carefully about its requirements. The tips presented in 

this work aim to be a useful checklist to contribute to the success of the tool you are planning. 

The eleven pieces of advice have the ultimate goal of providing an added value to go far beyond 

the excel files in which, probably, the information was previously stored. To succeed in this task, 

all of them should be considered to finally automate, and even enhance, the genetic diagnostic 

workflow of your laboratory. 
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Benchmark of NGS CNV calling tools in genetic diagnostics 

This study aimed to perform a benchmark of different bioinformatic tools to identify putative 

CNVs from NGS data. Tools were benchmarked using up to three metrics (per gene, per region-

of-interest (ROI), whole diagnostics strategy), against four datasets from different sources, and 

in three different contexts: using default parameters, using greedy-optimized parameters, and 

against the augmented datasets in the diagnostics scenario. Main results are summarized 

below. 

 After a literature search, we selected five tools showing good performance for 

evaluation: CoNVaDING v1.2.0, DECoN v1.0.1, panelcn.MOPS v1.0.0, ExomeDepth 

v1.1.10, and CODEX2 v1.2.0. 

 When performing the benchmark with default parameters: 

o Regarding the per ROI metric, most tools showed sensitivity and specificity 

values greater than 0.75, and sensitivity was generally over 0.9. However, tools' 

performance varied across datasets. Tools’ specificity remained over 0.98 and 

sensitivity over 0.94 when using the ICR96 and panelcnDataset datasets. In the 

in-house datasets, tools performed worse and only CoNVaDING obtained a 

sensitivity close to 1 at the expense of lower specificity. 

o Regarding the per gene metric, tools behaved slightly better compared to per 

ROI. At least one tool detected all CNVs in each dataset. 

 When performing the benchmark with sensitivity-optimized parameters: 

o In general, the optimization process improved sensitivity by slightly decreasing 

specificity, but the amount of improvement was different for the different 

datasets. For panelcnDataset, sensitivity was improved by a higher margin 

because of CODEX2, which increased its sensitivity by 58.6%. On the other hand, 

tools didn’t improve or showed small differences in the In-house MiSeq dataset. 

 When performing the benchmark in the diagnostics scenario: 

o For the In-house MiSeq dataset, two tools detected all CNVs. panelcn.MOPS 

reached 100% sensitivity with both optimized and default parameters, with a 

specificity of 67.8% and 80.7%, respectively. DECoN detected all CNVs only with 
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the optimized parameters achieving 91.3% specificity. CoNVaDING also 

detected all CNVs, but its high no-call rate led to very low specificity, 4.1%.  

o For the In-house HiSeq dataset, only panelcn.MOPS detected all CNVs with 

specificity over 80%: 81.5% with the default parameters and 83.2% with the 

optimized parameters. DECoN missed only one CNV (a mosaic sample), and its 

specificity remained high, 96.6% with the optimized parameters. 

 We developed an R framework, CNVbenchmarkeR, to perform the benchmark in an 

automatic and configurable way. Code and documentation are freely available at 

https://github.com/TranslationalBioinformaticsIGTP/CNVbenchmarkeR. 

Prospective and retrospective evaluation of DECoN as first-tier screening 

Based on the results of our previous benchmark (Article 1), we chose DECoN for CNV screening 

in our laboratory routine. Our NGS CNV detection strategy consisted of two steps: first, 

screening of all genes of clinical interest using DECoN with optimized parameters and second, 

MLPA-validation of putative CNV calls with sufficient statistical support (BF >= 2). We applied 

our NGS CNV detection strategy to test a retrospective and a prospective cohort. 

 CNV screening in the retrospective cohort (1860 patients): 

o For the 13687 genes analyzed by DECoN across all samples, six new true CNVs 

were identified and confirmed by MLPA (a 30% increase, from 20 previously 

known CNVs to 26 CNVs), while 128 FP calls were produced. The number of 

genes tested by MLPA after DECoN was 221, in contrast to the 2660 required 

with the previous MLPA- restricted strategy. Also, the average number of genes 

evaluated per sample with this new strategy was 7.35 compared with 1.43 using 

our previous MLPA-based strategy. 

 CNV screening in the prospective cohort (2041 patients): 

o For the 18836 genes analyzed by DECoN across all samples, DECoN produced 

139 FPs and 19 true positives confirmed by MLPA. Out of those true positives, 8 

would have not been identified using our previous MLPA-restricted approach (a 

72.7% increase, from 11 to 19 CNVs). Compared with our previous MLPA-

restricted strategy, the number of genes tested by MLPA across all samples 

decreased from 3442 to 240, representing a 93.0% decrease. Also, the average 

102



    

 

 

number of genes tested per sample increased from 1.69 to 9.22 with the new 

DECoN-MLPA strategy. 

R/Bioconductor package to identify false positives produced by NGS CNV calling 

tools 

 We developed an R/Bioconductor package, CNVfilteR, to identify false-positive calls 

generated by CNV calling tools from germline NGS data. CNVfilteR uses SNVs’ allele 

frequency to detect both false deletions and false duplications. A CNV deletion call is 

identified as a false positive if there is at least a certain percentage of heterozygous 

SNVs in the CNV. Also, a CNV duplication call is identified as a false positive using a fuzzy-

logic-inspired model which scores all heterozygous SNVs overlapping the CNV. 

o CNVfilteR provides a function to automatically interpret VCFs produced by 

VarScan2, Strelka/Strelka2, freeBayes, HaplotypeCaller (GATK), and 

UnifiedGenotyper (GATK). 

o Results can be plotted and customized via plotting functions based on 

karyoploteR (Gel and Serra, 2017) and CopyNumberPlots packages. 

 CNVfilteR was evaluated on callsets generated by 13 CNV calling tools on multiple 

samples: 

o For 3 reference WGS samples, CNVfilteR identified between 17.0% and 50.4% 

of the FPs and the FDR decreased for all tool-sample evaluations (up to 14.0%). 

F1-score was improved in 19 out of the 24 tool-sample evaluations (up to 20.8% 

increase). On the contrary, tool-sample evaluations had an absolute sensitivity 

decrease of between 0.001 and 0.035. 

o For the HiSeq-panel (411 samples) and MiSeq-panel datasets (130 samples), 

CNVfilteR identified 15% of the FP calls (3 out of 20) and 12.5% of the FP calls 

(2 out of 16). Sensitivity remained the same. 
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Web-based software tool to manage the diagnostics process in the laboratory 

routine 

We developed Pandora to support the diagnostics routine of the ICO-IGTP Joint Program on 

Hereditary Cancer. Pandora is a web-based tool built on the Django framework, a PostgreSQL 

database, and a number of Python and R cron jobs. It automates multiple tasks, ensures data 

traceability and reproducibility, supports the validation and classification of variants, and allows 

flexible data exploration.  

 Fruit of our experience designing and building Pandora, we described eleven tips to 

consider when facing the development of a tool to support the genetic diagnostic 

testing of a hereditary disease. 
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The overall goal of this PhD thesis was to improve the genetic diagnostics of hereditary cancer 

using multiple analytical and bioinformatic approaches. We carried out four studies to achieve 

this aim (Figure 12).  

 

Figure 12. Scheme showing the four studies of this thesis: the NGS CNV calling tools benchmark 
(1), the evaluation of an optimized NGS CNV calling tool as a screening step before MLPA 
validation (2), the development and implementation of a R package (CNVfilteR) to identify false 
positives produced by germline CNV callers (3), and the web-based tool to support the 
diagnostics routine, Pandora (4). 
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The first study aimed to fill the gap of existing NGS CNV calling-tool benchmarks on targeted 

gene panel data, focusing on genetic diagnostics. The second study took advantage of the 

benchmark results and evaluated the impact of using our selected tool as first-tier screening in 

our diagnostics routine. The third study focused on the identification of false positives 

produced by NGS CNV calling tools: an R/Bioconductor package was developed to identify 

them. The fourth subproject consisted of the design and implementation of a web-based tool 

to manage the diagnostics process during the laboratory routine, which allowed us to describe 

a set of recommendations to help other laboratories when building a software tool for genetic 

diagnostics. 

The discussion is divided into four sections corresponding to each work, along with a final 

section addressing the translational nature of all of them. 

1   Benchmark of NGS CNV calling tools in genetic diagnostics 

1.1  Background and motivation 

Although NGS performs well when calling germline SNVs and small INDELs, the detection of 

larger variants like CNVs is still challenging. The identification of such variants is a matter of 

interest since germline CNVs are the genetic cause of multiple hereditary diseases (Zhang et 

al., 2009). The gold standards for CNV testing in genetic diagnostics are MLPA and aCGH 

(Talevich et al., 2016; Kerkhof et al., 2017). Both methods are time-consuming and costly, which 

frequently leads laboratories to test only a subset of the genes of clinical interest.  

Many NGS CNV detection tools have been developed to date (Zhao et al., 2013; Abel and 

Duncavage, 2013; Mason-Suares et al., 2016). Most of them perform well on large CNVs (in the 

order of megabases) but are not able to reliably identify small CNVs that affect only one or a 

few exons. These small CNVs, however, are frequently involved in several genetic diseases 

(Truty et al., 2019). In addition, most published NGS CNV detection tools were designed to work 

from WGS and WES data and perform worse on the sparser data of targeted gene panels. 

In genetic diagnostics, using a testing method with low sensitivity leads to a higher number of 

misdiagnoses. In this context, NGS CNV calling tools have not been properly evaluated on NGS 

gene panel data. Although some benchmarks of CNV calling tools on targeted NGS panel data 

have been published, they suffer from some important limitations. They were performed by 

the authors of the tools and were executed against a single dataset (Johansson et al., 2016; 
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Fowler et al., 2016; Povysil et al., 2017; Kim et al., 2017; Chiang et al., 2019) or mostly used 

simulated data with a small number of validated CNVs (Roca et al., 2019). 

 

Figure 13. Benchmark design and the aim of applying the results in the diagnostics routine. 

The first study of this thesis aimed to perform an independent benchmark of multiple NGS CNV 

calling tools, optimizing and evaluating them against multiple non-simulated and validated 

datasets, to identify the most suitable tools to be used for genetic diagnostics (Figure 13). In 

this work, we selected 5 tools (Article 1, Table 2) that had shown promising results on panel 

data, and we measured their performance, with the default and sensitivity-optimized 

parameters, on 4 validated datasets from different sources (Article 1, Table 1). We also 

evaluated the NGS CNV calling tool performance in a genetic diagnostics scenario and showed 
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that some of the tools are suitable for using as screening methods before MLPA or aCGH 

confirmation. Apart from this, a framework for evaluating and optimizing CNV calling tool 

performance, CNVbenchmarkeR, was developed. Method details such as benchmark 

evaluation metrics or data processing are available in the original manuscript (Article 1, 

Methods). 

1.2  Benchmark with default parameters 

Most tools were highly sensitive and specific when using the default parameters in the 

evaluation, although the top performers depended on the specific dataset (Article 1, Figure 2). 

Tools performed better on the panelcnDataset dataset, where DECoN, ExomeDepth, and 

CoNVaDING reached almost 100% sensitivity and specificity when using the per ROI metric 

(Article 1, Methods). A possible explanation is that this dataset contains the lowest number of 

single-exon CNVs (n = 13), which are the most difficult type of CNVs to detect. On the other 

hand, DECoN was the best performer for ICR96, a dataset published by the same authors, 

although other tools obtained similar results in this dataset. Regarding our in-house datasets, 

CoNVaDING was the most sensitive tool. This tool, however, showed the lowest positive 

predictive value (PPV) in all datasets with the exception of the panelcnDataset. On the contrary, 

ExomeDepth showed the highest PPV in all datasets, making it one of the most balanced tools 

regarding sensitivity and specificity. Differences in tool performance depending on the dataset 

were also observed in previous works (Hong et al., 2016; Sadedin et al., 2018).  

In summary, benchmark results evidenced a very high and dataset-dependent performance of 

the tools. Even before any parameter modification, sensitivities were high and reached 100% 

for some tools and datasets in the per gene metric (Article 1, Supplementary File 11). These 

results showed the potential of some of these tools for using in a genetic diagnostics setting. 

1.3  Benchmark with optimized parameters 

Most CNV calling tools had been developed to be used in a research setting, so their parameters 

were optimized to meet a certain sensitivity-specificity balance. However, sensitivity is a priority 

in a genetic diagnostics setting. In this context, false negatives have to be avoided when using 

an NGS CNV calling tool as a screening step before orthogonal validation. Therefore, to optimize 

tools’ performance for using as screening tools in genetic diagnostics, we need to modify their 

default parameters. The aim was to maximize the sensitivity, even at the expense of lowering 

their specificity. This parameter optimization must be performed in a dataset-specific way since 
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tools perform differently depending on the dataset specificities: target region composition, 

technical differences, or sequencing characteristics.  

We performed a parameter optimization for each tool-dataset combination. The optimization 

algorithm followed a greedy approach: a local optimization at each step with the aim of 

obtaining a solution close enough to the global optimum (algorithm details in Article 1, 

Supplementary File 9 - Appendix B). Also, each dataset was split into two halves, a training set 

used to optimize tool parameters and a validation set to evaluate them.  

In general, the optimization process improved sensitivity and slightly decreased specificity 

(Article 1, Figure 3). For one dataset (panelcnDataset), sensitivity increased notably, although 

most of the improvement was driven by CODEX2, which increased its sensitivity by 58.6%. The 

optimization had a different impact on different tools: while CODEX2 showed a higher 

sensitivity in all four datasets, the rest of the tools showed modest improvements. On the other 

hand, tools were not able to improve or showed small differences in the In-house MiSeq 

dataset. 

One likely explanation for these improvement differences is that the tools had little room for 

improvement: sensitivity was over 0.9 for most dataset-tool combinations before the 

optimization, so the number of false negatives in each subset was very small (between 4 and 

8) in the per gene metric. Moreover, there is a limitation imposed by the size of the datasets. 

Each tool was optimized on a training set containing only a small number of samples: between 

48 and 80 samples. In an ideal scenario, having a larger dataset would allow the greedy 

algorithm to better train because the more samples in a dataset, the more information the 

algorithm has for training. Also, a larger dataset allows for better validation, which is also 

valuable. 

The final optimized parameters were dataset specific, so we do not recommend using them 

directly on other datasets where the data was obtained in a different manner (different capture 

protocol or sequencing technologies, for example). Based on our results, we would recommend 

optimizing the parameters for each specific dataset before adding any CNV calling tool to a 

genetic diagnostics pipeline to maximize its sensitivity and reduce the risk of misdiagnosis.  

1.4  Benchmark in the diagnostics scenario 

As previously mentioned, one of the aims of this study was to identify the most suitable tools 

for using in genetic diagnostics. An NGS calling tool with a very high sensitivity could be used 

as a screening step prior to MLPA or aCGH validation, decreasing the number of MLPA/aCGH 
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tests. Hence, in a real diagnostic setting, it is not only necessary to confirm, via an orthogonal 

method, all the CNVs detected in genes of interest, but also all regions where the screening 

tool was not able to produce a result (no call) should be tested via an orthogonal technique. To 

take this into account, we evaluated the performance of all tools using the whole diagnostics 

strategy metric which takes the no calls into account (Article 1, Methods). This evaluation was 

performed in a modified version of the in-house datasets, the augmented in-house datasets 

(Figure 13), which contained all the samples from the original sequencing runs instead of just 

a selection of them (Article 1, Methods). 

Results showed that DECoN and panelcn.MOPS obtained a performance high enough to be 

implemented as screening methods in our two in-house datasets (Article 1, Figure 4). While 

panelcn.MOPS detected all CNVs both with the default and the optimized parameters, DECoN 

reached almost perfect sensitivity and outperformed panelcn.MOPS specificity when using the 

optimized parameters, although the difference was not statistically significant. In fact, DECoN 

only missed a mosaic CNV affecting two exons of the NF2 gene. Since benchmarked tools use 

depth of coverage strategies, detecting a mosaic sample is very challenging due to the lower 

coverage impact of these mutations. On the other hand, CoNVaDING also detected all CNVs, 

but the high number of no-call regions reduced its specificity to values between 4.1 and 21.9%, 

which made it unsuitable as a screening tool. 

The parameter optimization process improved the sensitivity of most tools. For example, for 

the In-house MiSeq dataset, DECoN sensitivity increased from 98.4% (CI: 91.6–100%) to 100% 

(CI: 94.4–100%), and the specificity increased from 78.5% (CI: 71.6–84.4%) to 91.3% (CI: 86.0–

95.0%). This improvement highlights the importance of fine-tuning the tool parameters for 

each specific task and shows that the optimization process performed in this work has been 

key for the evaluation of the different tools. 

The high sensitivity achieved by DECoN and panelcn.MOPS in different datasets, where they 

identified all known CNVs, evidences that NGS data can be used as a CNV screening step in a 

genetic diagnostics setting. Of course, this screening step has the potential to improve genetic 

diagnostics routines. For example, the high specificity achieved by DECoN in the in-house 

MiSeq dataset with the optimized parameters means that around 91% of genes with no CNV 

would not need to be specifically tested for CNVs when using DECoN as a screening step. Hence, 

the lower number of necessary MLPA/aCGH tests could save resources or, potentially, could be 

used to expand the number of genes tested with the aim of increasing the final diagnostic yield. 

This hypothesis was addressed in the second study presented in this PhD thesis. 
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1.5  CNVbenchmarkeR 

Both the CNV benchmark and parameter optimization were performed using a custom R 

framework, CNVbenchmarkeR. The code provides a set of scripts and helpers to evaluate 

germline NGS CNV calling tools in different NGS datasets. The current version supports DECoN, 

CoNVaDING, panelcn.MOPS, ExomeDepth, and CODEX2 tools.  

CNVbenchmarkeR was developed to make the automation and configuration of the benchmark 

easier under different combinations of tested tools, tested datasets, and tool parameters. The 

code has an obvious limitation or prerequisite: NGS calling tools have to be properly installed 

before benchmark execution. Also, it is strict in processing the input parameters: only certain 

formats are allowed. Open-source code, how-to-use guide, and documentation are publicly 

available at https://github.com/TranslationalBioinformaticsIGTP/CNVbenchmarkeR to help 

other laboratories perform the testing and optimization process in any new dataset. 

2   Prospective and retrospective evaluation of DECoN as first-tier screening 

2.1  Background and motivation 

Germline CNVs are one of the genetic causes underlying hereditary diseases (Zhang et al., 

2009), so its testing is recommended in any comprehensive genetic testing strategy. For many 

years, MLPA has been the gold standard for CNV detection when testing one or a few genes 

(Kerkhof et al., 2017), but its turnaround time and costs lead diagnostic laboratories to limit 

CNV testing to a few key candidate genes instead of testing all genes of clinical interest. On the 

other hand, the use of NGS technologies in genetic diagnosis is a very cost-effective approach 

that allows for the analysis of multiple genes and samples at once. However, implementing 

sensitive and specific bioinformatic algorithms for CNV detection from NGS data has been more 

challenging than for other types of mutations, such SNVs or small INDELs. 

Some authors have argued against the use of an NGS CNV detection tool in a clinical setting 

due to performance limitations, (Mason-Suares et al., 2016; Yao et al., 2019) especially for 

single-exon CNVs. Nevertheless, our previous study (Article 1) evidenced that there are 

germline NGS CNV calling tools with sufficient sensitivity for using as a screening step prior to 

orthogonal validation, even for single-exon CNVs. In particular, DECoN (Fowler et al., 2016) 

detected all CNVs (except one in a mosaic sample) with a specificity of over 90% in our 
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diagnostic datasets. Once that benchmark was performed, it was of interest to evaluate the 

clinical impact of its implementation in the clinical routine, in terms of detection yield and costs.  

Therefore, we aimed to evaluate the impact of using DECoN as a screening method in a 

hereditary cancer genetic diagnostics setting, testing it in a retrospective and in a prospective 

cohort, and comparing it against our previous MLPA-restricted strategy (Figures 14-15). 

 

Figure 14. Previous MLPA-restricted strategy and new NGS CNV detection strategy. Our NGS CNV 
detection strategy consisted of two steps: first, screening of all genes of clinical interest using 
DECoN with optimized parameters (Article 2, Supplementary File - Appendix B), and second, 
validation of putative CNVs (those with Bayesian factor ≥2) and failed regions by MLPA.  

 

 

Figure 15. Retrospective and prospective studies. We used our NGS CNV detection strategy in a 
retrospective cohort of 1860 patients where a limited number of genes were previously analyzed 
by MLPA, and in a prospective cohort of 2041 patients, without MLPA analysis. 
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2.2  Retrospective and prospective studies 

We evaluated the use of DECoN with optimized parameters as a screening step before MLPA 

validation in our genetic diagnostics routine (Article 2, Methods). The evaluation included a 

retrospective cohort (1,860 patients), in which only a subset of genes of clinical interest had 

already been MLPA-tested, and a prospective cohort (2,041 patients) without previous MLPA 

analysis. 

Table 10. List of genes tested for each clinical suspicion by our previous MLPA-restricted approach 
compared with those studied in the current NGS approach. 

Clinical suspicion                                         Tested genes 

Purpose 
 

MLPA-restricted  
strategy: without DECoN 

New NGS CNV detection strategy:  
with DECoN 

Hereditary breast 
cancer 

BRCA1, BRCA2 
ATM, BRCA1, BRCA2, BRIP1, CHEK2, MLH1, 
MSH2, MSH6, PALB2, RAD51C, RAD51D 

Hereditary ovarian  
cancer 

BRCA1, BRCA2 
BRCA1, BRCA2, BRIP1, MLH1, MSH2, MSH6, 
RAD51C, RAD51D 

Hereditary breast and 
ovarian cancer 

BRCA1, BRCA2 
ATM, BRCA1, BRCA2, BRIP1, CHEK2, MLH1, 
MSH2, MSH6, PALB2, RAD51C, RAD51D 

Hereditary prostate 
cancer 

BRCA1, BRCA2 ATM, BRCA1, BRCA2, MLH1, MSH2, MSH6 

Early onset colorectal 
cancer 

None 
BRCA1, BRCA2, EPCAM, MLH1, MSH2, MSH6, 
MUTYH, TP53 

Hereditary non  
polyposis colon cancer 

One MMR gene depending 
on the MMR IHC pattern 

BRCA1, BRCA2, MUTYH, EPCAM, MLH1, 
MSH2, MSH6 

Familial malignant  
melanoma 

None 
BAP1, BRCA1, BRCA2, CDK4, CDKN2A, MLH1, 
MSH2, MSH6, POT1 

Hereditary gastric  
cancer 

None 
CDH1, BRCA1, BRCA2, CDH1, MLH1, MSH2, 
MSH6 

Hereditary renal  
cancer syndromes 

FH, FLCN and/or VHL 
BRCA1, BRCA2, FH, FLCN, MET, MLH1, MSH2, 
MSH6, SDHB, SDHC, SDHD, VHL 

Polyposis APC 
APC, BMPR1A, BRCA1, BRCA2, MLH1, MSH2, 
MSH6, MUTYH, NTHL1, POLD1, POLE, SMAD4 

Li-Fraumeni syndrome TP53 TP53 

MMR: Mismatch repair; IHC: immunohistochemistry 
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First of all, including this bioinformatic screening step in our diagnostics strategy allowed us to 

test for CNVs in all the genes of clinical interest instead of limiting them to a subset. Our new 

strategy expanded the number of tested genes from 0-2 to 6-12 genes (Table 10). Most genes 

had not been tested before because our previous MLPA-restricted strategy (Figure 14) did not 

include them: turnaround time and costs limited its use. It is worth pointing that using MLPA 

for testing many genes in a demanding clinical routine, which includes several samples to be 

tested on time, is almost an unachievable challenge in a universal public health system. In this 

regard, using an in-silico CNV calling tool offers the opportunity of expanding the number of 

tested genes at a low cost when NGS data is already available. 

Our screening strategy resulted in an improvement in terms of diagnostic yield. In the 

retrospective cohort, six new true CNVs were identified and subsequently confirmed by MLPA 

(Article 2, Table 1). This represents an important increase in CNV detection, from 20 to 26 CNVs 

(30%). Additionally, the total number of genes tested across all samples in the retrospective 

study was 13,687, a much higher value than the 2,660 covered with our previous MLPA-

restricted strategy. In the prospective study, DECoN identified 19 CNVs that were then 

confirmed by MLPA (Article 2, Table 1). Out of those, 8 would not have been identified using 

our previous MLPA-restricted approach: this represents an increase of 72.7% in CNV detection. 

Also, 18,836 genes were tested across all samples in the prospective study, instead of the 

estimated 3,442 that would have been tested with our previous MLPA-restricted strategy. Of 

course, this yield improvement had a clinical impact: it allowed us to discover the genetic cause 

of hereditary cancer in previously uninformative families. It is important to note that detecting 

pathogenic CNVs is key for individualized cancer risk assessment and the implementation of 

specific surveillance measures and therapeutic strategies for all the carriers. 

In this regard, DECoN did not only detected a valuable number of CNVs, but also showed a high 

sensitivity by detecting the 20 previously known CNVs in the retrospective cohort. In fact, this 

performance was already expected since DECoN, with optimized parameters, showed very high 

sensitivity in our previous study (Article 1). 

Besides the yield improvement, the use of an NGS CNV calling tool to screen CNVs resulted in 

a decrease in the resources required for CNV testing. In the prospective study, we observed a 

decrease of 93% in the number of genes requiring MLPA testing across all samples (Article 2, 

Table 2). This can be explained by two factors. First, DECoN has a high specificity in our clinical 

datasets, as validated in our previous study (Article 1). Second, the introduction of a BF cut-off 

led to an important reduction in the number of genes tested by MLPA. As an example, more 
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than half of the CNV (53.2%) called in our prospective study were discarded because they had 

a Bayesian factor below 2 (see Bayesian factor discussion below). 

Although some authors have argued against the use of NGS-based CNV detection tools in 

clinical settings for different reasons, (Mason-Suares et al., 2016; Yao et al., 2019) others have 

argued in favor of its use in this context  (Zhao et al., 2013; Fowler et al., 2016; Pugh et al., 

2016; Povysil et al., 2017; Ellingford et al., 2018; Chiang et al., 2019). This work, together with 

our previous study (Article 1), shows that bioinformatic NGS CNV screening is viable in a genetic 

diagnostics setting and contributes to decrease costs and turnaround times. In addition, NGS 

CNV screening allowed for an increase in the number of genes tested in our clinical setting and, 

consequently, of the diagnostic yield. 

2.3  Bayesian factor discussion 

DECoN, whose code is based on ExomeDepth, provides a Bayesian factor (BF) value to quantify 

the statistical support for each CNV call. Here, we briefly analyze the BF cut-off included in our 

NGS CNV detection strategy and how the BF value behaved in our previous study (Article 1).  

To discard DECoN CNV calls with low statistical support in our NGS CNV detection strategy, only 

those with a BF value ≥2 were validated by MLPA. We chose 2 as a reasonable cut-off after the 

analysis of the distribution of the BF values from our previous benchmark (Figure 16). We 

observed that all the true-positive CNV calls had a BF value >2, except for a case of mosaicism. 

Also, the fifth percentile and first quartile for the true-positive CNV calls were placed at 5.02 

and 13.67, respectively (median: 29.10). With this data, we expected that the BF values for the 

true-positive CNV calls would not be close to the BF cut-off. Using this threshold in our NGS 

CNV detection strategy allowed us to discard a large proportion of CNV calls that were not 

expected to be true positives. 53.2% of the CNV calls in the prospective study (Figure 16) 

obtained a BF <2 and, consequently, were discarded. The plot shows that most BF values of the 

CNV calls from the prospective study fell within the 1-3 range and there was a peak in the 1-2 

range.  
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Figure 16. Histogram of BF values for the CNV calls from the prospective study and the true-
positive CNV calls from the previous study (Article 1). Plot values are restricted to the 0-60 range. 

53.19% of the CNV calls in the prospective study had a BF value lower than 2. In the previous 
study (Article 1), only one CNV call had a BF value < 2: a mosaic sample (BF 1.04). 

Other factors affecting the BF value were also analyzed. Regarding the Illumina platform in 

which samples were sequenced, some differences were observed. Supplementary Figure 3 

(Article 2) shows that the median for the HiSeq sequencing BF values, and also the lower and 

upper quartiles, are greater than the MiSeq ones. This suggests that, in our laboratory routine, 

calling a CNV in a sample sequenced in the HiSeq platform is less challenging than calling it in 

the MiSeq platform. A likely explanation is that all samples in each HiSeq run were analyzed 

together (~96 samples) whereas each MiSeq run (~16 samples) was analyzed along with 51 

samples from other runs (Article 2, Supplementary File - Appendix B). Hence, each HiSeq run 

contained a high number of samples from a single run, so no multi-run-batch effect is expected 

and DECoN can find samples that correlate with each sample to analyze more easily. 

Additionally, the higher coverage obtained in the HiSeq samples might have positively 

influenced the BF values. 

BF value differences can be observed in Supplementary Figure 4 (Article 2): values are lower 

for the true-positive duplications than the true-positive deletions. This suggests that calling a 
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duplication CNV is more challenging than calling a deletion CNV. Differences can be observed 

in both MiSeq and HiSeq sequencing settings. 

Finally, another interesting question is to know whether calling CNVs is more challenging in 

certain genes than in others, such that BF values vary depending on the gene. Supplementary 

Figure 2 (Article 2) shows BF distribution across genes. Although BF value differences can be 

easily observed, most of them have a low number of true-positive calls. In this case, the results 

are not conclusive.  

3   R/Bioconductor package to identify false positives of NGS CNV calling tools 

3.1  Background and motivation 

As noted in previous sections, germline CNVs are relevant contributors to hereditary diseases. 

Recent NGS improvements have resulted in the release of several germline CNV calling tools 

for WGS, WES, and panel data (Zhao et al., 2013; Mason-Suares et al., 2016; Roca et al., 2019). 

However, available benchmarks show that all germline CNV calling tools produce false positives 

(Kim et al., 2017; Zhang et al., 2019; Moreno-Cabrera et al., 2020), frequently achieving high 

false discovery rates (FDRs). Of course, these false-positive calls negatively impact downstream 

analyses regardless of the context in which they were produced.  

In genetic diagnostics, NGS CNV callers should be used as a first-tier screening step prior to an 

orthogonal validation method, such as MLPA (Article 2). Therefore, genetic diagnostics 

laboratories incur a significant unnecessary cost and effort with each false positive. A tool able 

to identify these false-positive calls could help to mitigate the problem.  

NGS CNV callers perform their detection by using a paired-end, split-read, depth of coverage, 

assembly, or combined approach (Introduction, section 7). However, NGS CNV callers rarely use 

SNVs information to call CNVs (Introduction, Tables 5-9), even though SNVs are typically 

available in NGS pipelines. The allele frequency of the SNVs can provide valuable evidence to 

discard false-positive CNV calls. 

The aim of this part of the thesis was to develop a tool to identify false-positive calls in the 

results of any germline CNV caller using SNV allele frequency information. To this end, we 

developed CNVfilteR, an open-source R/Bioconductor package whose code and documentation 

are publicly available at https://bioconductor.org/packages/release/bioc/html/CNVfilteR.html. 

Method details are available in the original manuscript and Supplementary File 1 (Article 3). 
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3.2  CNVfilteR performance and features 

The performance was evaluated on callsets generated by a total of 13 CNV calling tools on 3 

reference WGS and 541 gene panel samples. On the 3 WGS samples, CNVfilteR produced a 

consistent false-positive decrease (between 15.3% and 44.8%) at the expense of a slight 

decrease in sensitivity. Interestingly, CNVfilteR did not only identify a number of false-positive 

calls but also increased the F1-score metric in 19 out of the 24 tool-sample evaluations (up to 

20.7% increase). The F1-score, defined as the harmonic mean of precision and sensitivity, is a 

common system to evaluate predictors. These F1-score improvements (Article 3, Figure 1d-f) 

evidence that CNVfilteR can improve the overall performance of CNV callers, although the 

effect is more notable in some tools than in others. 

On the other hand, CNVfilteR also improved DECoN performance on the HiSeq-panel and 

MiSeq-panel datasets. In particular, CNVfilteR identified 15% of the false-positive calls (3 out of 

20 false positives) and 12.5% of the false-positive calls (2 out of 16), respectively. In both 

datasets, no true CNV was misidentified as false positive, so sensitivity did not change. 

CNVfilteR performed well in these high-coverage gene panel samples, although the low 

number of the already known false positives prevents a more comprehensive evaluation. 

Regarding CNVfilteR runtime, the tool proved a fast identification of false-positive calls on both 

WGS and gene panel samples. The median runtime per sample was 0.85 seconds for the gene 

panel samples and 3.53 minutes for the HuRef WGS sample. Hence, CNVfilteR low runtime 

values make it suitable for using in demanding pipelines where several samples, often of large 

size, have to be analyzed. 

From the features that CNVfilteR offers, two should be highlighted. First, CNVfilteR provides a 

helper function to automatically interpret VCFs produced by some of the most used SNV callers, 

such as GATK or Strelka. VCF is a very flexible format and its interpretation is often challenging. 

The helper function provided by CNVfilteR pretends to save developers time and avoid errors 

when interpreting VCF fields. A second feature to highlight is the visual output produced by 

CNVfilteR: results can be easily plotted through customizable functions (Figure 17). Visual 

representation of data helps users better understand the results. CNVfilteR graphical output, 

which is based on karyoploteR (Gel and Serra, 2017) and CopyNumberPlots packages, help 

users understand which SNVs overlap a certain CNV and why that CNV call was identified as a 

false positive or not. 
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Figure 17: CNVfilteR output example for a CNV duplication. Five heterozygous SNVs overlapped 
the CNV duplication: three of them with an allele frequency very close to 0.5 and two near– but 
not close – to 0.33. In this second example, adding up the total scores provided by the CNVfilteR 
scoring model, the final score was higher than the duplication threshold score (0.5), so the CNV 
was identified as a false positive and could be discarded. 

CNVfilteR performance was proven on several of the most frequently used CNV calling tools 

and on very different datasets, from high-coverage gene-panels samples to a few WGS samples. 

CNVfilteR decreases the number of false-positive CNV calls at a low computational cost. The 

aim was not to replace the best performing CNV calling tools, but to complement them and 

help users improve their CNV calling pipelines. 

3.3  Limitations 

The strengths of CNVfilteR have been shown in the previous section. However, the tool also 

suffers from some limitations that should be discussed. 

First, CNVfilteR focuses on germline alterations in diploid organisms: SNV allele frequencies are 

expected to be close to certain theoretical values (Article 3, FP detection strategy). If a CNV 

duplication exists, all the overlapping SNVs are expected to have an allele frequency close to 

33% or 66%. Also, if a germline CNV deletion does not exist, all the overlapping SNVs are 

expected to be homozygous. These assumptions are not true when working on somatic data. 

121



    

 

 

In this context, both CNVs and SNVs have allele frequencies that vary in a very different manner. 

Therefore, CNVfilteR cannot be used on somatic data. 

Another limitation to note is that CNVfilteR performance depends on SNV call reliability. In 

other words, any aspect affecting SNV quality should be removed or minimized in order to 

provide CNVfilteR reliable information to work with. CNVfilteR provides methods to manage 

some of these aspects. For example, the min.total.depth parameter allows CNVfilteR to discard 

SNV calls with low coverage support. The default parameter value is 10, but it should be 

adapted to the experiment conditions. A threshold of 10 may be appropriate for many WGS 

samples, but high-coverage samples may require a higher limit in order to discard the noisy 

false-positive SNV calls. On the other hand, the regions.to.exclude parameter defines the 

regions where the variants should be excluded. This is a key parameter since SNV callers 

perform worse on low complexity and repetitive genomic regions. In any case, CNVfilteR cannot 

ensure all aspects related to the veracity of a variant. CNVfilteR users are responsible for 

providing a high-quality VCF file. Many SNV callers already provide methods and parameters to 

account for SNVs quality and to minimize the number of false-positive SNV calls. 

Lastly, CNVfilteR is not taking advantage of a potential source of information: the small INDELs. 

Variant callers frequently detect both SNVs and INDELs, so they are usually available in NGS 

pipelines. CNVfilteR provides an optional parameter to include INDELs as it does with SNVs. 

However, CNVfilteR does not consider INDELs by default. The reason is that calling an INDEL is 

more challenging than calling an SNV, so their allele frequency is usually noisier. However, we 

did not study how INDEL frequency actually behaved and whether very small INDELs could have 

allele frequencies similar to those of SNVs. Although using INDEL information might be more 

problematic to confirm or discard a CNV duplication, it could be still very useful to provide 

evidence in favor or against CNV deletions, for which the key is to determine whether a certain 

variant overlapping a CNV is heterozygous or homozygous. In short, although CNVfilteR allows 

the user to use INDEL information, we have not studied its potential and limitations in depth. 

4   Web-based tool to manage the diagnostics process in the laboratory routine 

4.1  Background and motivation 

The arrival of NGS has multiplied the sequencing capacity in a very cost-effective way (Goodwin 

et al., 2016; Pereira et al., 2020), a fact that has impacted the way genetic testing of diseases is 

performed (Knoppers et al., 2015; Xue and Wilcox, 2016; Yohe and Thyagarajan, 2017). Whole-
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genome sequencing, whole-exome sequencing, and targeted gene-panels are currently being 

used in diagnostics settings, but the latter, targeted gene-panels, is the technology used by 

most of genetic testing laboratories (Teekakirikul et al., 2013; Kurian et al., 2014; Feliubadaló 

et al., 2017). 

The ICO-IGTP Joint Program on Hereditary Cancer concentrates on the detection and 

interpretation of germline variants that increase the risk of developing cancer. Among other 

hereditary cancer syndromes, the diagnostic activity focuses on hereditary colorectal cancer, 

hereditary breast and ovarian cancer, neurofibromatosis and related disorders. The ICO-IGTP 

program developed a custom gene panel with 122-135 genes (depending on the version), 

called I2HCP (Castellanos et al., 2017; Feliubadaló et al., 2017), to improve its diagnostics 

activity.  

The diagnostics workflow typically comprises DNA extraction, library preparation, NGS 

sequencing, analysis pipeline, variant analysis, variant classification and, finally, reporting to the 

health care professional who requested the test. To manage the whole process during the 

diagnostics routine, we developed Pandora (PlaAtform for NGS Data Organization Repository 

and Analysis), a web-based tool built on the Django framework and a PostgreSQL database. As 

a result of our experience designing and building Pandora, we presented a set of quick tips to 

consider when developing a tool to support genetic testing (Article 4).  

4.2  Features of Pandora 

Pandora works as an orchestrator of the parts involved in the laboratory diagnostics workflow. 

One of the main features of Pandora is the automation of multiple tasks throughout the 

diagnostics process, such as sequencing data download, sample sheet generation for the 

Illumina sequencing platforms, and execution of the analysis pipeline, among others (Article 4, 

Figure 1). The automation of all these steps speeds up the diagnostics workflow while avoiding 

the errors that typically occur when manual tasks are performed.  

Another important feature of Pandora is the flexible data exploitation to ease both diagnostics 

and research tasks. This feature relies on two necessary technologies. First, the PostgreSQL 

relational database allows for easy representation of complex data relationships and efficient 

access to tables of up to millions of rows. Second, we use an efficient and fully-featured data 

table user-interface library (Webix) which supports large datasets with several built-in features. 

Also, Pandora supports the process of validation and classification of a variant, a key step in the 

diagnostics routine.  This process often requires the labor of two independent curators that can 
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work in parallel on the sample or group the samples; Pandora ensures traceability by registering 

who and when did what in the system. 

As observed in Figure 11, Pandora interoperates with multiple parts and systems. Hence, the 

main limitation of a custom and architecturally complex software tool is the maintenance it 

requires. For example, if a new sequencing platform is used, the code of Pandora has to be 

properly updated. Also, changes in the diagnostics workflow, new panel designs, or external 

software changes may require the update of Pandora. 

4.3  Eleven tips for building a tool to support the diagnostics routine 

The design of Pandora has been tailored to the specific needs of the ICO-IGTP diagnostics 

activity. However, many design aspects can be extrapolated to the development of any software 

tool for genetic diagnostics. As a product of our experience building Pandora, we wrote a set 

of tips or recommendations to consider when facing the development of a tool for genetic 

diagnostics. The development of a tool in this context requires an interdisciplinary approach: 

the set of recommendations pretended to be useful for computer scientists, biologists, 

bioinformaticians, clinicians, and other health care professionals involved in that process.  

Some of the tips can be considered a must in genetic diagnostics: traceability, reproducibility, 

data security, and custom analysis pipeline. First, it is necessary to know who and when did 

what in the system (Tip 1). Since a report will be delivered to a patient, any future result re-

analysis needs to retrace all the steps that led to the result. Second, the computational 

environment in which a sample was analyzed has to be unambiguously identified to ensure 

reproducibility (Tip 1) (Roy et al., 2018). Third, human genome data is sensitive information, so 

security requirements should be specially considered in this context (Tip 11). Finally, 

diagnostics-oriented NGS data analysis pipelines have specific characteristics (Tip 9) because 

any found or missed alteration will be reported back (or not) to patients, affecting their clinical 

management.  

Other tips referred to key aspects of the operation of Pandora: automation of tasks (Tip 2), use 

of a relational database (Tip 4), real-time synchronization (Tip 8), and interoperability (Tip 10). 

Specially, Pandora could not work without considering the first two: the automation of tasks 

enhances productivity while avoiding human errors and a relational database is a requisite to 

efficiently exploit complex and large amounts of data. 

The remaining tips were more specifically related to software engineering aspects; if 

overlooked, they can also undermine the success of the tool. Listening to the user (Tip 3) is the 
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only way to meet the correct specifications of a tool and avoid some bad design decisions. This 

cross-cutting tip is also related to other aspects that limit or expand what the user can do with 

the tool: usability (Tip 5), the data table UI library (Tip 6), and the optimization of screen space 

(Tip 7). 

5   Translational bioinformatics in the healthcare system 

Translational bioinformatics is an emerging field in the age of precision medicine. Citing Dr Russ 

Altman’s definition (Tenenbaum, 2016), translational bioinformatics consists of “informatics 

methods that link biological entities (genes, proteins, and small molecules) to clinical entities 

(diseases, symptoms, and drugs) or vice versa”. Multiple actions are performed in this area. To 

illustrate some, translational bioinformatics deals with pathogenicity estimation of human 

genetic variants, develops medical tools to be used by clinicians and scientists, or performs data 

mining from large biomedical databases. 

This PhD thesis addresses multiple bioinformatic approaches that aim to improve the genetic 

diagnostics of hereditary cancer. Hence, all of them have a translational dimension: the focus 

is on its applicability to improve the healthcare system. In fact, some research results derived 

from this PhD thesis already have a real impact on the genetic diagnostics activity: they have 

been implemented in the molecular diagnostics laboratory of the Hereditary Cancer Program 

at the Institut Català d’Oncologia (ICO). Among others, the results have allowed an 

improvement in cancer risk assessment or to guide treatment in real patients. 

The first study presented here consisted of a benchmark of NGS CNV detection tools for genetic 

diagnostics (Article 1). It was proven that some NGS CNV calling tools can achieve very high 

sensitivity and specificity on gene-panel datasets. The conclusions obtained led to the 

implementation of one of the tools in our diagnostics routine for hereditary cancer (Article 2). 

However, results are applicable beyond this. Both the performance demonstrated in the 

benchmark and the code provided (CNVbenchmarkeR) can be used by other laboratories for 

the genetic diagnostics of several hereditary diseases. For example, targeted gene panels are 

also used for the genetic diagnostics of cardiomyopathies (Teekakirikul et al., 2013), hereditary 

retinal dystrophies (Solebo et al., 2017), or deafness (Ji et al., 2014), among others. 

The second study presented in this thesis consisted of the implementation and evaluation of 

an NGS CNV calling tool as a screening step before MLPA validation. The performance was 

evaluated in a real diagnostics setting: our diagnostics routine at the ICO. We observed two 

valuable benefits in this translational work. On the one hand, the number of genes to be tested 
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by MLPA decreased, which drove costs and turnaround times down. Of course, available 

resources are an important issue in any healthcare system. They are not unlimited, a fact that 

has become especially evident during the current Covid-19 pandemic, which has produced 

enormous stress on, among others, the Spanish public healthcare system. On the other hand, 

including an NGS CNV calling tool for CNV screening allowed us to expand the total number of 

genes covered, so the final diagnostic yield was increased. New CNVs, up to 72.7% in the 

prospective study, were detected by DECoN in the screening step, validated via MLPA, and 

reported back to the clinicians and patients. This is an illustrative example of how the 

improvement of informatics or bioinformatic resources towards better diagnostics of 

hereditary cancer positively impacts the clinical management of the patient and family 

members. Detecting a pathogenic variant in a clinically actionable gene allows for multiple 

medical or healthcare improvements. All carriers can benefit from a proper cancer risk 

assessment, the establishment of specific surveillance measures, and the implementation of 

therapeutic strategies, such as prophylactic surgeries or genotype-based chemotherapeutic 

treatments (Pennington et al., 2014; Musella et al., 2015). In addition, non-carriers of variants 

in high-penetrance cancer predisposition variants can decrease surveillance measures 

according to their risk. 

The third study presented here resulted in an R package, CNVfilteR, to identify false positives 

produced by NGS CNV calling tools. The tool can be useful for both diagnostics and research 

purposes. In a genetic diagnostics setting, any false-positive NGS CNV call generates an extra 

effort to discard it using an orthogonal method, such as MLPA. CNVfilteR can be used to identify 

these false-positive CNV calls and avoid additional validation tests. The tool has been already 

implemented as part of our diagnostics routine for hereditary cancer at the ICO laboratory to 

reduce the number of MLA tests. Since the package and its documentation are publicly 

available at the Bioconductor site, other genetic diagnostics laboratories can benefit from its 

use. 

Finally, the fourth subproject consisted of the development of a web-based tool to manage the 

ICO-IGTP routine diagnostics workflow for hereditary cancer. Pandora is fully-operative in the 

diagnostics routine: to date, Pandora has managed the genetic testing of more than five 

thousand patients. Pandora has improved the diagnostics process in some aspects that were 

previously discussed, such as task automation, support to common tasks, and flexible data 

exploitation. As a result of our experience building Pandora, we also elaborated a set of 

recommendations to help the professionals involved in the design of a similar tool for genetic 

diagnostics. 
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As a result of all the work presented in this PhD thesis, we conclude that: 

 The CNV tools benchmark demonstrated that DECoN and panelcn.MOPS provided the 

highest performance for germline CNV detection. Although panelcn.MOPS showed a 

slightly higher sensitivity in one of the datasets, DECoN showed a much higher 

specificity in a diagnostics scenario. 

 The performance of the tested CNV tools depended on the dataset. Therefore, it is 

necessary a previous in-house validation of any CNV detection tool before using it in a 

clinical setting. 

 The CNV bioinformatic screening improved our genetic diagnostics strategy. It 

contributed to decrease turnaround times and costs while allowing for an increase of 

tested genes and, consequently, of the diagnostic yield. 

 We developed CNVfilteR, an R/Bioconductor package to identify false-positive calls 

generated by CNV calling tools from germline NGS data. CNVfilteR identified false-

positive calls in all tested tools and datasets, from gene panel to WGS. In addition, the 

F1-score, a common metric to measure binary classifier performance, was improved 

for most tool-sample combinations. CNVfilteR can be plugged in existing CNV calling 

pipelines to improve calling performance at virtually no computational cost. 

 We developed Pandora, a web-based tool to manage the diagnostics process in the 

laboratory routine. Multiple data procedures were automated while supporting 

common tasks and easing data exploitation. A software tool to manage genetic 

diagnostics should be designed considering key aspects including traceability, 

reproducibility, task automation, usability, interoperability, and data security. We 

described a set of recommendations including these, and a few more, to help genetic 

testing laboratories implement such systems. 
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1   Introduction 

The use of whole-exome sequencing (WES) and targeted gene panels have improved the cost-

effectiveness of the genetic diagnostics of hereditary diseases and increased their overall 

diagnostic yield (Goodwin et al., 2016; Kress et al., 2017; Feliubadaló et al., 2017). However, 

genetic diagnostics still suffers from a significant percentage of patients in which the genetic 

cause of the disease remains unknown. This fact can be explained by multiple causes. Among 

other reasons, there are many variants of unknown significance, whose impact on gene 

function is not known. The analysis of mRNA expression by RNA-seq can help determine the 

potential impact of these variants in the splicing of the mRNA. 

RNA-sequencing (RNA-seq) provides gene and transcript expression data that can improve the 

diagnostic yield provided by DNA-seq (Park et al., 2018; Gonorazky et al., 2019; Landrith et al., 

2020). RNA-seq allows for the identification and quantification of known and de novo 

transcripts; aberrant splicing events can be revealed, even those caused by intronic variants 

missed by DNA sequencing. RNA-seq expression profiles can reveal underexpressed or 

overexpressed clinically relevant genes due to multiple reasons, like epigenetic mutations, 

variants in regulatory regions, inversions, or DNA variants that cause aberrant transcripts that 

may be degraded by nonsense-mediated decay. Similarly, RNA-seq data allows for the detection 

of imbalances in allele expression when the alterations only affect a single allele (Smith et al., 

2013). RNA-seq also allows for the identification of fusion genes, usually caused by 

translocations (Heyer et al., 2019). Moreover, variant calling on RNA-seq data can be used to 

confirm that a certain DNA sample is the same as the RNA sample (therefore sample swap 

errors can be detected). Additionally, in some cases, RNA-seq could be useful to perform variant 

calling on regions where DNA sequencing obtained a very low coverage level. 

The aim of this part of the thesis was to design, implement, and evaluate an RNA-seq analysis 

pipeline to complement and improve the genetic diagnostics of hereditary cancer performed 

from DNA-seq. Although the RNA-seq pipeline covered multiple aspects, the main focus was 

the detection of known and de novo aberrant transcripts. 
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2   Methods 

2.1  Datasets 

A total of 47 samples (41 unique), distributed into five NGS runs, were analyzed using a custom-

developed NGS RNA-seq gene panel (Table 11). All 47 samples contained previously identified 

mutations that predispose to hereditary cancer. Of those, 31 contained a previously known 

mutation leading to an aberrant RNA transcript. Informed written consent for both diagnostics 

and research purposes was obtained from all individuals included in the study. 

2.2  Sample preparation and NGS panel 

RNA was extracted from cultured peripheral blood lymphocytes. Total RNA was isolated using 

either the TRIzol reagent or the High Pure RNA Isolation Kit (Roche Diagnostics, Manheim, 

Germany) after 4-6h of puromycin incubation in order to prevent the potential degradation of 

unstable transcripts by nonsense-mediated decay; only 6 samples from the P/NP run were not 

treated with puromycin (Table 11).  

Table 11. List of runs analyzed using a custom NGS panel and a custom RNA-seq pipeline. 

 NGF3 NGF4 NGF7 NGF8 P/NP 

Total samples 4 4 11 16 12 (only 6 were unique) 1 

Samples with a  
mutation that leads 
to an aberrant  
isoform 

2 2 9 12 12 (only 6 were unique) 1 

Sequencing  
platform 

MiSeq, 
2 × 300 bp 
reads 

MiSeq, 2 × 300 bp 
reads 

MiSeq, 
2 × 300 bp 
reads 

MiSeq, 
2 × 300 bp 
reads 

HiSeq, 2 × 250 bp reads 

Capture  
version 

2.0 (155 
genes) 

2.0 (155 genes) 
2.1 (168 
genes) 

2.1 (168 
genes) 

2.1 (168 genes) 

Use of  
puromycin 

Yes Yes Yes Yes 6 out of the 12 samples 1 

Comments 

Standard 
NimbleGen 
SeqCap  
Protocol. 

Fragmentation 
time was  
modified.  
Following runs 
maintained this  
modification. 

   

1 The same 6 samples were processed both using puromycin and without, resulting in a total of 12 
samples. 
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Samples were analyzed using a custom NGS panel with 155-168 hereditary cancer-associated 

genes (number of genes depending on the capture library version). Target enrichment was 

performed following the NimbleGen SeqCap RNA Target Enrichment protocol with minor 

modifications. Runs NGF3, NGF4, NGF7, and NGF8 were sequenced in an Illumina MiSeq 

platform, whereas run P/NP was sequenced in a HiSeq platform. 

2.3  Bioinformatic pipeline 

All samples were analyzed with a custom pipeline for RNA-seq data (Figure 18). FASTQ files 

were first filtered using fastp v0.20.0 (Chen et al., 2018) using the following parameters:  -w 10 

--length_required 50 --cut_right --cut_right_mean_quality 10. FASTQ quality reports were 

generated with fastqc v0.11.4. FASTQ files were then mapped against the GRCh37 human 

genome assembly (Ensembl release 75 including SNPs and transcripts data) using HISAT2 v2.1.0 

(Kim et al., 2015). Sorted bam files were created with samtools v0.1.19 (Li et al., 2009). 

Coverage metrics and alignment reports were generated using multiqc v1.7 (Ewels et al., 2016). 

Gene expressions were obtained with stringtie v1.3.4 (Pertea et al., 2015) and size-factor 

normalization was performed using DESeq2 package. The same stringtie version was used to 

identify and quantify known and de novo transcripts using the GRCh37 human genome 

assembly Ensembl release 75 as reference. DESeq2 package was used to perform size-factor 

normalization of the transcript expressions. RNA variant calling, including SNVs and INDELs, was 

performed using VarScan2 v.2.4.1 (Koboldt et al., 2012) with the following parameters: --min-

coverage 10 --strand-filter 0 --min-var-freq 5.  

2.4  Transcripts filtering strategy 

For each sample and gene, stringtie identified both de novo and already-defined Ensembl 75 

transcripts. Usually, aberrant transcripts are not included in Ensembl definitions, so they were 

identified de novo. However, stringtie de novo transcripts discovery produced several low-

support transcripts. Hence, we established a filtering transcripts strategy to discard very likely 

false positives. First, we removed low-support transcripts containing less than 20 reads 

supporting them. Second, we removed small transcripts that did not overlap any exon from any 

already-defined Ensembl transcript. Third, since each de novo transcript was quantified for all 

the samples, we established a 3 fold change threshold to discriminate against the rest of the 

noisy quantification. For each transcript, fold change (FC) was computed as the ratio between 

the most expressed sample and the second most expressed sample. 
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Figure 18. RNA-seq pipeline steps (blue) and applications derived from its results (green). 

3   Results 

3.1  Identification of aberrant transcripts 

RNA-seq pipeline was used to identify aberrant transcripts, including both de novo and the 

already-defined in Ensembl 75. Pipeline performance for aberrant transcripts discovery was 

analyzed at two levels (Table 12). First, we analyzed the ability of stringtie to correctly identify 

the expected aberrant transcripts. Second, we analyzed how easily the aberrant transcripts 

could be discriminated from the rest of the noisy transcripts by using the FC threshold (FC = 3). 
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Table 12. Pipeline transcript identification for the already known mutations. 

Sample Run cDNA change RNA effect 
Stringtie 
transcript 
identification 

FC ratio > 3 

S1 NGF3 APC c.423-3T>A Exon skipping Yes Yes 

S2 NGF3 
BRCA1 c.5243_5277+2788del 
5277+2916_5277+2946delinsGG 

Partial exon deletion 
and cryptic exon 

Yes Yes 

S3 NGF4 NF1 c.7908-321C>G Cryptic exon Yes Yes 

S4 NGF4 BRCA1 c.212+1G>A Intron retention Yes 
Known isoform, 
FC not estimated 

S5 NGF7 NF2 c.241-13T>A Intron retention Yes Yes 

S6 NGF7 TSC2 c.4823_4825delACT Partial exon deletion Yes No 

S7 NGF7 BRCA2 c.1763A>G Intron retention No No 

S8 NGF7 BRCA1 c.5074+3A>G Exon skipping Yes Yes 

S9 NGF7 
BRCA1 c.(441+1_442-1)_(547+1_548-
1)del 

Partial exon deletion Yes Yes 

S10 NGF7 APC c.1626+3A>G Exon skipping Yes Yes 

S11 NGF7 MSH2 c.269A>C 
Exon skipping and  
transposon insertion 

No No (FC 2.7) 

S12 NGF7 MSH6 c.3557-11_3557-4del Exon skipping No No 

S13 NGF7 NF1 c.6117_6118 Intron retention Yes Yes 

S14 NGF8 NF1 c.6365-2A>G Exon skipping No No 

S15 NGF8 NF1 c.733_835del Partial exon deletion Yes No (FC 1.5) 

S17 NGF8 NF1 c.1466A>G Exon skipping No No 

S18 NGF8 NF1 c.5205+2_5205+3dupTA Partial exon deletion Yes Yes 

S19 NGF8 BRCA1 c.4484+1G>T Exon skipping Yes No 

S20 NGF8 
BRCA1 c.5243_5277+2788del 
5277+2916_5277+2946delinsGG 

Partial exon deletion 
and cryptic exon 

No No 

S21 NGF8 RAD51C c.404G>A Intron retention Yes Yes 

S22 NGF8 CHEK2 c.792+2T>C Intron retention No No 

S23 NGF8 MSH2 c.2459-12A>G Intron retention Yes No (FC 2.4) 

S24 NGF8 BRIP1 c.1628+5G>A Exon skipping Yes Yes 

S25 NGF8 RAD51C c.965+5G>A Exon skipping Yes No (FC 2.2) 

S26 P 
P/NP CHEK2 c.1375G>C Exon skipping 

No No 

S26 NP No No 

S27 P 
P/NP BRCA1 c.213-12A>G Intron retention 

No No 

S27 NP Yes No 

S28 P 
P/NP BRCA2 c.-39_67del Exon skipping 

Yes Yes 

S28 NP No No 

S29 P 
P/NP BRCA2 c.9501+3A>T Partial exon deletion 

No No 

S29 NP No No 

S30 P 
P/NP MLH1 c.380G>A Exon skipping 

No No 

S30 NP Yes No (FC 2.1) 

S31 P 
P/NP CHEK2 c.792+2T>C Intron retention 

Yes Yes 

S31 NP Yes Yes 

FC: Fold change ratio; P: puromycin was used; NP: puromycin was not used. Mutation in sample S4 
produced an aberrant transcript already defined in Ensembl 75, so FC was not computed. 
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Stringtie identified 22 out of the 31 (71.0%) previously known aberrant transcripts (Table 12). 

All of them were identified as de novo transcripts, except for the transcript in sample S4 which 

was already defined in Ensembl 75. However, 14 out of the 31 transcripts (45.2%) achieved a 

transcript quantification in that sample sufficient to differentiate them from the rest of the 

samples through the FC ratio > 3. Also, 5 out of the 31 transcripts obtained an FC ratio between 

1.5 and 3.  

3.2  Variant calling 

SNVs and INDEL calling was analyzed on three RNA-seq samples (run NGF3) for which the 

corresponding DNA-seq sample was previously available. Between 148 and 163 variants were 

detected for each pair of RNA and DNA samples (Table 13). 86.5-89.6% of the exonic DNA-seq 

variants were also detected in the RNA-seq samples. The remaining variants, those found in 

DNA-seq but not in RNA-seq, were placed in very lowly expressed genes, except for 2 of them.  

On the other hand, all 93 variants detected only in RNA-seq data were considered likely false-

positive calls for having low supporting coverage, low allele frequency, or for being likely 

recurrent artifacts. 

Table 13. Variant calls comparison between DNA and RNA for samples S1, S2, and S32. 

 S1 S2 S32 

Variants called in DNA-seq and RNA-seq 148 160 163 

Variants called only in DNA-seq 
In a very-low expressed gene 23 18 18 

In an expressed gene 0 1 1 

Variants called only in RNA-seq 

Discarded for having low  
coverage or low allele frequency 

26 32 28 

Discarded for being recurrent 
(likely artifacts) 

2 3 2 

Probably true 0 0 0 

Percentage of DNA-seq variants confirmed in RNA-seq 86.5% 89.4% 89.6% 

 

4   Discussion 

The genetic causes of hereditary diseases remains unknown for an important percentage of 

patients. Although this can be explained by multiple causes, analysis of RNA expression can be 

useful to provide insight into the genetic cause of hereditary diseases. The arrival of NGS 
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methods reduced costs and turnaround times while increasing the number of samples 

sequenced at once. In this context, RNA-seq has the potential to improve the genetic 

diagnostics yield provided by DNA-seq (Park et al., 2018; Gonorazky et al., 2019; Landrith et al., 

2020).  

4.1  Identification of aberrant transcripts 

In this work, we implemented and evaluated a custom RNA-seq pipeline focusing on the 

identification of aberrant transcripts in genes of clinical interest. Our pipeline was able to 

identify 71.0% of the already-known aberrant transcripts, which highlights the potential of 

RNA-seq for the identification of these splicing products. However, the percentage dropped to 

45.2% when considering only transcripts whose quantification was high enough to be 

discriminated from the rest via the FC threshold. The need to differentiate a given transcript in 

a sample from the rest, together with the high number of likely false positives that our pipeline 

discarded (Methods: transcripts filtering strategy), highlights that detecting aberrant 

transcripts using short-read RNA-seq is challenging. In fact, a previous benchmark (Sahraeian 

et al., 2017) showed that the best aligner-assembler combination (HISAT2-stringtie) achieved 

sensitivities below 50% when reconstructing the transcriptome at a transcript level.  

 

Figure 19. RNA transcript identified by stringtie in sample S2 (BRCA1). Two events 
(c.5243_5277+2788del and 5277+2916_5277+2946delinsGG) produced the insertion of a cryptic 
exon between exons 20-21 and a partial exon deletion at exon 20. The track S2_L001.1300.3 refers 
to the de novo transcript identified by stringtie. The coverage track (bam file) also supports the 
existence of these two events. Image obtained using IGV (Thorvaldsdottir et al., 2013). 

Although transcript identification is still challenging, the percentage of transcripts successfully 

identified by our RNA-seq pipeline highlights the potential to improve the diagnostic yield of 

hereditary diseases. The identification of aberrant transcripts in clinically relevant genes 
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provides insight into the genetic cause of inherited diseases. As an example, Figure 19 illustrates 

the de novo aberrant transcript identified in sample S2. 

On the other hand, the low number of samples analyzed in this study prevents us from deriving 

any major conclusions regarding the factors that may affect the detection of aberrant 

transcripts, like the use of puromycin, the RNA effect type, or the capture version. For example, 

although all transcripts in runs NGF3 and NGF4 were successfully identified, no conclusions can 

be obtained from such a small number of samples (4).  

4.2  Variant calling 

Variant calling results showed that all DNA-seq variants were also called in the corresponding 

RNA-seq sample whenever the gene was expressed: this was the case for almost 90% of the 

DNA-seq variants. More DNA-RNA sample pairs should be analyzed to further confirm the 

results. However, results suggest that, if a gene is expressed, RNA-seq data could be used to 

call SNV/INDELs when DNA-seq data is not available because a region is failed for having a very 

low coverage level. 

Moreover, since most variants were common to both RNA-seq and DNA-seq sample pairs 

(between 148 and 163), variant calling could be used to confirm that both samples are actually 

the same. Most variants should match among sample pairs; otherwise, there might have been 

an error during sample preparation or processing. 

4.3  Other applications 

RNA-seq data can be used for other purposes. Gene expression quantification allows for the 

detection of underexpressed or overexpressed genes when compared with other samples. In 

this study, gene quantification was obtained for each sample, although we did not analyze them 

because a larger sample size is necessary to clearly identify values placed in the extremes of 

the distribution. Also, other RNA-seq features were not covered in this study, such as allele-

specific expression analysis and gene fusion discovery. 

In summary, the RNA-seq pipeline implemented and evaluated in this study has the potential 

to improve our genetic diagnostics routine for hereditary cancer. The identification of aberrant 

transcripts, along with the RNA-seq variant calling and the discrimination of underexpressed 

clinically relevant genes, can provide evidence into the genetic causes of individuals with clinical 

suspicion of hereditary cancer. 
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This chapter includes additional publications with the participation of the PhD candidate. In all 

of them, the contribution of the PhD candidate included bioinformatic support, NGS copy-

number variant analysis, and manuscript review.  
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Abstract: Fanconi anemia (FA) is caused by biallelic mutations in FA genes. Monoallelic mutations
in five of these genes (BRCA1, BRCA2, PALB2, BRIP1 and RAD51C) increase the susceptibility to
breast/ovarian cancer and are used in clinical diagnostics as bona-fide hereditary cancer genes.
Increasing evidence suggests that monoallelic mutations in other FA genes could predispose to tumor
development, especially breast cancer. The objective of this study is to assess the mutational spectrum
of 14 additional FA genes (FANCA, FANCB, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL,
FANCM, FANCP, FANCQ, FANCR and FANCU) in a cohort of hereditary cancer patients, to compare
with local cancer-free controls as well as GnomAD. A total of 1021 hereditary cancer patients and
194 controls were analyzed using our next generation custom sequencing panel. We identified 35
pathogenic variants in eight genes. A significant association with the risk of breast cancer/breast and
ovarian cancer was found for carriers of FANCA mutations (odds ratio (OR) = 3.14 95% confidence
interval (CI) 1.4–6.17, p = 0.003). Two patients with early-onset cancer showed a pathogenic FA variant
in addition to another germline mutation, suggesting a modifier role for FA variants. Our results
encourage a comprehensive analysis of FA genes in larger studies to better assess their role in cancer risk.

Keywords: Breast cancer risk; Breast and ovarian cancer risk; Fanconi Anemia; Hereditary Cancer;
NGS panel sequencing
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1. Introduction

Fanconi anemia (FA) is a rare genetic condition originated from a DNA repair deficiency that
causes a broad spectrum of clinical features of variable penetrance, mainly, progressive bone marrow
failure (depending on the affected gene), congenital defects and cancer predisposition [1]. FA is usually
inherited as an autosomal recessive genetic disease, although X-linked inheritance and dominant
inheritance have also been described.

Hitherto, 22 genes have been described as FA genes: FANCA, FANCB, FANCC, FANCD1/BRCA2,
FANCD2, FANCE, FANCF, FANCG/XRCC9, FANCI, FANCJ/BRIP1, FANCL/PHF9, FANCM, FANCN/PALB2,
FANCO/RAD51C, FANCP/SLX4, FANCQ/ERCC4, FANCR/RAD51, FANCS/BRCA1, FANCT/UBE2T,
FANCU/XRCC2, FANCV/REV7 and FANCW/RFWD3 [2]. The proteins encoded by these genes participate
in the FA pathway involving DNA repair and genome maintenance processes when cell DNA damage
occurs. These proteins are essential for inter-strand crosslink repair, and they also participate in
homologous recombination and non-homologous end joining [3]. The FANC-A, -B, -C, -E, -F, -G, -L and
-M genes encode the proteins that form the core complex, which monoubiquitinates the FANCI/FANCD
complex formed by the dimer of FANCD2 and FANCI. The remaining proteins are downstream
effectors in the FA pathway and their deficiency does not abolish the monoubiquitination of the I/D
complex [4]. However, a recent publication described that biallelic FANCM mutations do not cause
classical FA and therefore should not be considered a canonical FA gene [5], although these biallelic
carriers showed risk for breast cancer, chemotherapy toxicity and may display chromosome fragility.

Apart from conditions caused by biallelic mutations in FA genes, it is well known that monoallelic
mutations in certain FA genes (BRCA1, BRCA2, BRIP1, PALB2 and RAD51C) are clearly related with
hereditary breast and/or ovarian cancer predisposition [6], and these genes are bona-fide hereditary
breast and ovarian cancer (HBOC) predisposition genes. Hence, cancer risks have been estimated for
heterozygous mutations in these genes, and clinical management is also well established and accepted.
However, the role of monoallelic mutations in the remaining FA genes regarding cancer predisposition
is a matter of discussion. Over the last few years, several case-controls studies have indicated that
monoallelic FANCM [7–15] truncating mutations are breast cancer risk factors; in addition, there are
inconsistent results regarding FANCA [16–19], FANCC [20–24], SLX4 [25–27] and XRCC2 [28–30].

In the midst of these conflicting results, the use of comprehensive next generation sequencing
(NGS) gene panels could shed some light on the role of FA genes in the context of hereditary cancer in
general. For this reason, we analyzed these FA genes in our entire cohort of hereditary cancer patients,
not just breast and ovarian cancer. Our I2HCP panel [31] contains, besides the five bona-fide HBOC
genes, the following 14 FA genes: FANCA, FANCB, FANCC, FANCD2, FANCE, FANCF, FANCG/XRCC9,
FANCI, FANCL/PHF9, FANCM, FANCP/SLX4, FANCQ/ERCC4, FANCR/RAD51 and FANCU/XRCC2.
Here, we present the mutation profile of these 14 genes in our cohort of 1021 hereditary cancer
patients and compare it with the mutational spectrum found in a control population consisting of
194 cancer-free individuals from our region as well as the GnomAD (genome aggregation database)
non-cancer, European non-Finnish cohort.

2. Results

A prospective cohort of 1021 unrelated cancer cases with clinical suspicion of hereditary cancer
was screened for mutations in the following 14 FA genes: FANCA, FANCB, FANCC, FANCD2, FANCE,
FANCF, FANCG/XRCC9, FANCI, FANCL/PHF9, FANCM, FANCP/SLX4, FANCQ/ERCC4, FANCR/RAD51
and FANCU/XRCC2. The sequence of all coding regions and exon–intron boundaries (±20) was
obtained by NGS and was also used to determine putative copy number variations (CNVs), which were
validated by MLPA analysis. Other pathogenic variants identified in the clinical testing workflow,
according to the clinical cascades presented in Feliubadaló et al. [32], are depicted in Table S1.

Our study identified 35 heterozygous carriers of 22 pathogenic/likely pathogenic variants in the
patient cohort. The most frequently mutated genes were FANCA, FANCL and FANCM, whereas no
mutation was identified in FANCB, FANCD2, FANCF, FANCG, SLX4, ERCC4 and XRCC2 (Table 1).
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Six mutations were identified in our set of 194 healthy controls. Overall, a monoallelic mutation in a
FA gene was identified in 3.4% of patients in our hereditary cancer cohort, a percentage very similar
to that identified in the control cohort studied here (3.1%). However, distribution of mutations by
clinical phenotype evidenced that pathogenic variants were mainly present in patients with a history
of breast cancer, or breast and ovarian cancer. The percentage of pathogenic mutations increased to
4.6% (counting only women) in cases with breast cancer, being higher (5.5% counting only women) in
those with breast and ovarian cancer (Figure 1).
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Figure 1. The diagram represents the percentage of pathogenic variants in the 14 Fanconi anemia (FA)
genes analyzed per clinical suspicion group. HBC: Hereditary Breast Cancer Patients; HOC: Hereditary
Ovarian Cancer Patients; HBOC: Hereditary Breast and Ovarian Cancer Patients; HNPCC: Hereditary
non-polyposis colorectal cancer.

Details of all identified mutations and the clinical characteristics of the carriers are depicted in
Table S2. Intriguingly, in three cases, an additional mutation in a hereditary cancer gene was also
identified. Two of them were carriers of a deleterious variant in FANCA, one corresponds to a female
with breast cancer at age 35 (patient ID 19136 in Table S2), carrier of a pathogenic variant in ATM and
the other was diagnosed with ovarian cancer at age 49 and also harbors a mutation in SDHB (patient
ID 6988 in Table S2). The third case, with a deleterious mutation in FANCL, is a Lynch syndrome
patient with a mutation in MLH1 who suffered colorectal cancer at age 29 (patient ID 19012 in Table S2).
Interestingly, six of the mutations were identified in more than one individual, p.(Thr372Asnfs*13) in
FANCL was identified in 10 individuals and p.(Arg1931*) in FANCM in 3 individuals, the remaining
were identified in two cases each (Table S2).

DECoN (Detection of Exon Copy Number) analysis of NGS data identified 14 putative CNVs in
the patient cohort that were validated by MLPA. Two turned out to be true positives consisting of a
deletion of exons 6–13 in FANCL and a deletion of exons 11–37 in FANCA. Furthermore, 1605 variants
of unknown significance (VUS) were identified in both cohorts, 589 unique (Table S3). Some of these
VUS were predicted, by multiple in-silico tools, to alter correct splicing. Among them we were able
to obtain lymphocytes for RNA analysis in five patients harboring the following mutations: FANCA:
c.523-25_523-20delTTGTTT, c.576C > T, c.2217G > A and c.2602-9_2602-8delCT and FANCM: c.4222 +

5G > A. RNA analysis of these five variants did not identify any aberrant transcript (data not shown),
so they remained classified as VUS.
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Table 1. Summary of (Likely) Pathogenic Variants in 14 FA genes in the different clinical groups (only women are counted).

Clinical Suspicion GCAT
Women

Cohort (n
= 100)

GnomAD
European
>23,000

women β

Study Cohort Versus NFE γ, Non-Cancer GnomAD
(OR/95%CI/p-Value)

Genes Pathogenic
Variants

Breast
(HBC)

Ovary
(HOC)

Breast +
Ovary

(HBOC)

HNPCC
α Other All Patients HBC + HOC +

HBOC HBC + HBOC

FANCA 10 7 0 2 1 0 3 147 1.94/0.91–3.7/0.047 2.34/1.04–4.59/0.02 3.14/1.4–6.17/0.003*

FANCL 8 3 1 3 1 0 1 187 1.22/0.52–2.46/0.549 1.42/0.56–3/0.356 1.63/0.59–3.64/0.283

FANCM 6 2 3 0 1 0 0 159 1.07/0.38–2.39/0.828 1.19/0.38–2.85/0.618 0.63/0.08–2.34/0.774

FANCI 1 1 0 0 0 0 0 25 1.14/0.03–7/0.593 1.12/0,04–9.29/0.492 2.02/0.05–12.4/0.399

FANCE 2 1 0 0 1 0 0 17 1.14/0.03–6.97/0.593 1.52/0.04–9.3/0.492 2.03/0.05–12.4/0.399

FANCC 2 1 1 0 0 0 0 44 1.29/0.15–4.97/0.67 1.72/0.2–6.63/0.332 1.15/0.03–6.78/0.586

FANCF 1 1 0 0 0 0 0 26 1.09/0.02–6.6/0.608 1.45/0.04–8.88/0.506 1.94/0.05–11.87/0.412

RAD51 1 1 0 0 0 0 0 4 7.12/0.14–72/0.159 9.49/0.19–96/0.122 12.7/ 0.26–128/0.093

SLX4 0 0 0 0 0 0 1 36 NA NA NA

ERCC4 0 0 0 0 0 0 0 22 NA NA NA

FANCB 0 0 0 0 0 0 0 0 NA NA NA

FANCD2 0 0 0 0 0 0 0 21 NA NA NA

FANCG 0 0 0 0 0 0 0 43 NA NA NA

XRCC2 0 0 0 0 0 0 0 22 NA NA NA

TOTAL 31 17 5 5 4 0 5 753

α Hereditary non-polyposis colorectal cancer; β The number of GnomAD non-Finnish, non-cancer women is slightly variable per gene but in all cases was greater than 23,000 γ NFE:
non-Finnish European.
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Lastly, we compared the mutational profile of our cohort of patients with data from the European
(non-Finnish, non-cancer) GnomAD 2.1 population. After the first analysis, a possible association was
only found with breast and ovarian cancer, we stratified the different populations by gender, counting
only women (analysis without this stratification is shown in Table S4). By this means, only FANCA
mutations showed a statistically significant association with an increased cancer risk (Table 1) in the
combined group of hereditary breast cancer (HBC) and HBOC (odds ratio (OR) = 3.14 (95% confidence
interval (CI) 1.4–6.17) p = 0.003). However, this association must be taken with caution since 3% of our
in-house control cohort (from GCAT, Genomes for Life Cohort) carried deleterious FANCA mutations
compared with 0.6% of the European non-Finnish cohort, being 0.98% in our complete cohort of
hereditary cancer patients.

3. Discussion

In this study, we have evaluated the presence of deleterious mutations in 14 FA genes in a cohort
of 1021 patients in the context of hereditary cancer. In total, 3.4% of the patients have a pathogenic
variant in one of these genes. This percentage is higher in the group of women patients with breast
cancer (4.4%) and increases in the group of women patients with a history of breast and ovarian cancer
(5.4%). We analyzed these genes in two European populations, a general adult population cohort from
Spain (GCAT) and in the European non-Finnish GnomAD cohort, identifying pathogenic variants in
3.1% and 3.0% of control individuals, respectively. If only women are considered, the percentages
increase to 5% in GCAT and 3.2% in GnomAD. The NGS analysis performed allowed us not only to
detect single nucleotide variants but also to screen for CNVs. By this means, we identified two large
intragenic deletions in FANCL and FANCA, highlighting the importance of searching for this type of
variant when analyzing FA genes in patients with Fanconi anemia.

In general, the genes most frequently mutated in our cohort of patients were FANCA (n = 10),
FANCL (n = 10) and FANCM (n = 7). Few cases were identified with mutations in FANCI, FANCE,
FANCC (n = 2, in each gene) and FANCF and RAD51 (n = 1, in each gene). No mutations were
identified in FANCB, FANCD2, FANCF, FANCG, ERCC4 and XRCC2, and only one pathogenic variant
was identified in SLX4, but in a sample corresponding to a healthy control. Hence, it seems that most
of these 14 FA genes do not play a major role in hereditary cancer, although our data cannot discard
their relation with rare cancer syndromes or their role as modifier genes. To assess these possibilities,
larger cohorts of patients with different tumor types and the use of polygenic risk score methodologies
should be applied.

It is worth mentioning that one of the most frequently mutated genes in our series, as well as in
the European non-Finnish GnomAD cohort, is FANCL. This fact is due to the high number of patients
carrying the c.1111_1114dup mutation. This alteration, located in the last exon of the gene, produces a
frameshift that lengthens the protein by three amino acids more than wild-type. This mutation has
been described in a patient with FA, a compound heterozygote with another FANCL mutation [33].
Functional analysis of this mutation identified a partial correction of G2/M cell cycle arrest that results
in an intermediate phenotype compatible with a hypomorphic mutation. So, the contribution to cancer
risk of this variant in monoallelic carriers could be very limited but deserves further study. In our
series, we also detected an enrichment of the c.5791C > T variant in FANCM. This alteration is the
most common pathogenic FANCM variant in Southern Europe [34] and was associated with estrogen
receptorER-negative breast cancer risk (OR = 1.96; p = 0.006) in a large case-control study with more
than 50,000 cases and controls [15]. However, in the present study, we could not find a significant
association with breast cancer risk (odds ratio = 1.46 (95% confidence interval 0.3–4.8) p = 0.467).
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4. Materials and Methods

4.1. Patients and Controls

A total of 1021 hereditary cancer-suspected index cases, referred through our genetic counselling
units, that underwent NGS panel testing based on clinical suspicion [32], were included in this study
(Table 2). Genetic counselors followed international guidelines to request germline genetic tests under
the suspicion of a hereditary cancer syndrome. Informed written consent for both diagnostics and
research purposes was obtained from all patients included in the study and the study protocol was
approved by the Ethics Committee of IDIBELL (Bellvitge Biomedical Research Institute, PR278/19).

Table 2. Summary of the hereditary cancer cohort by clinical suspicion.

Clinical Suspicion Number of Patients (Women)

Hereditary breast cancer, HBC 385 (370)
Hereditary non-polyposis colon cancer, HNPCC 210 (130)

Hereditary ovarian cancer, HOC 154 (154)
Other hereditary cancer conditions 102 (55)

Hereditary breast and ovarian cancer, HBOC 93 (90)
Familial (attenuated) adenomatous polyposis, FAP/AFAP 77 (19)

Total 1021 (818)

A set of 194 cancer-free controls (100 women) from GCAT, Genomes for Life Cohort, was also analyzed.

GCAT (Cohort Study of the Genomes of Catalonia Study) is a biomedical research project designed
for the study of genetic, epigenetic and environmental factors that lead to the appearance of different
complex inheritance diseases in the general population [35]. Briefly, the subjects of the present study
are part of the GCAT project, a prospective study that includes a cohort of a total of 19,267 participants
recruited from the general population of Catalonia, a western Mediterranean region in the Northeast
of Spain. All are cancer-free general population volunteers between 40 and 65 years of age. All eligible
participants signed an informed consent agreement form. The GCAT study was approved by the local
ethics committee (IRB00002131) (Germans Trias University Hospital) in 2013.

4.2. DNA Isolation

Genomic DNA was extracted from peripheral blood lymphocytes using the FlexiGene DNA
Kit (Qiagen GmbH, Hilden, Germany) in the patient cohort and the ReliaPrep DNA Kit (Promega,
Wisconsin, USA) in the GCAT cohort.

4.3. NGS Panel Testing

All patients and controls were analyzed by our validated custom NGS panel I2HCP,
which comprises 122–135 hereditary cancer-associated genes, depending on the version used [31].
This panel includes the FANCA, FANCB, FANCC, FANCD2, FANCE, FANCF, FANCG/XRCC9, FANCI,
FANCL/PHF9, FANCM, FANCP/SLX4, FANCQ/ERCC4, FANCR/RAD51 and FANCU/XRCC2 genes.
Library preparation methods and bioinformatics pipeline were described previously [31]. The regions
of interest analyzed include all coding regions and ±20 nucleotides intron/exon boundaries. For this
study we considered as a pathogenic or likely pathogenic variant (pathogenic variant hereinafter)
mutations that originate a premature stop codon, missense variants described in the literature as clearly
pathogenic in FA patients and mutations affecting canonical splice site positions (+1, +2, −1,−2). All
pathogenic variants were confirmed by Sanger sequencing.

Copy number analysis was performed from NGS data using the DECoN [36] tool with parameter
optimization for our panel (Moreno et al., submitted manuscript). However, the FANCB gene was
not included in this analysis as it is located on the X chromosome, which greatly complicates the
identification of CNVs with our pipeline. Likewise, FANCD2 was also excluded from this analysis
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due to the presence of pseudogenes, which generate false positives in both directions (deletions and
duplications). For the rest of the genes, we used the Bayesian-factor value, which is a good predictor of
the reliability of the DECoN’s result to select the most likely true positive copy number alterations to
be confirmed. All samples with a suspicion of alteration were subsequently analyzed by MLPA using
custom probes according to the instructions provided by MRC-Holland in order to validate or discard
the presence of CNVs (https://support.mlpa.com/downloads/files/designing-synthetic-mlpa-probes).

4.4. RNA Analysis

Lymphocytes were isolated by centrifugation of peripheral blood samples from carriers and
controls. Cells were cultured in PB-Max medium for 5 to 7 days and treated with puromycin 4 to
6 h before RNA extraction in order to prevent the potential degradation of unstable transcripts by
nonsense-mediated decay (NMD). Total RNA was isolated using TRIzol reagent according to the
manufacturer’s instructions. One microgram of total RNA was reverse transcribed using the iScript
cDNA Synthesis kit (Bio-Rad Laboratories, Hercules, CA, USA). cDNA amplification was performed
with specific primers that encompassed the region of interest. Transcriptional profiles from carriers
were compared to those derived from control lymphocytes cultures, both by agarose gel analysis and
Sanger sequencing. Primer sequences and PCR conditions are available upon request.

4.5. GnomAD Analysis

The GnomAD non-Finnish European, non-cancer subpopulation (Genome Aggregation Database,
v2.1.1, http://gnomad.broadinstitute.org/) was used as a control population. Variants were exported
and filtered to identify predicted loss of function variants in FA genes.

4.6. Statistical Analysis

Differences in allele frequency between cases and controls were determined by the Fisher exact
test. Odds ratios (OR) and the corresponding 95% confidence intervals (CI) were determined for two
by two comparisons. Statistical tests were carried out using R v.3.5.1. (R Foundation for Statistical
Computing, Vienna, Austria).

5. Conclusions

Our study identified an increased number of pathogenic mutations in FANCA in the HBC/HBOC
group (p = 0.003). In addition, we observed a higher number of mutations in the remaining genes
(5.4% versus 3.2%) in the group of patients with a history of breast and ovarian cancer. Two out of the
three cases with additional mutations in other moderate/high-penetrance genes, had been diagnosed
with cancer at a very young age, suggesting a modifier role for FA mutations. Altogether, our results
encourage further studies in larger cohorts to assess the role and risks of deleterious variants in these
genes to determine their potential future use in clinical settings.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/4/829/s1:
Table S1: List of pathogenic variants in other hereditary cancer genes, Table S2: List of (likely) pathogenic variants
with clinical detail of the patients’ tumors and family cancer history, Table S3: List of VUS variants identified, Table
S4: Summary of (Likely) Pathogenic variants in 14 FA genes in the different groups without gender stratification.
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Abstract

CHEK2 variants are associated with intermediate breast cancer risk, among other

cancers. We aimed to comprehensively describe CHEK2 variants in a Spanish her-

editary cancer (HC) cohort and adjust the American College of Medical Genetics

and Genomics and the Association for Molecular Pathology (ACMG‐AMP) guide-

lines for their classification. First, three CHEK2 frequent variants were screened in a

retrospective Hereditary Breast and Ovarian Cancer cohort of 516 patients. After,

the whole CHEK2 coding region was analyzed by next‐generation sequencing in

1848 prospective patients with HC suspicion. We refined ACMG‐AMP criteria and

applied different combined rules to classify CHEK2 variants and define risk al-

leles. We identified 10 CHEK2 null variants, 6 missense variants with discordant

interpretation in ClinVar database, and 35 additional variants of unknown sig-

nificance. Twelve variants were classified as (likely)‐pathogenic; two can also be

considered “established risk‐alleles” and one as “likely risk‐allele.” The prevalence of

(likely)‐pathogenic variants in the HC cohort was 0.8% (1.3% in breast cancer pa-

tients and 1.0% in hereditary nonpolyposis colorectal cancer patients). Here, we

provide ACMG adjustment guidelines to classify CHEK2 variants. We hope that this

study would be useful for variant classification of other genes with low effect

variants.

K E YWORD S

CHEK2, hereditary cancer, low penetrance, molecular diagnosis, risk allele, variant
classification
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1 | INTRODUCTION

Extensive efforts to standardize variant classification criteria in highly

penetrant genes have been made by different groups, such as the

joint consensus of the American College of Medical Genetics and

Genomics and the Association for Molecular Pathology (ACMG‐AMP)

(C. S. Richards et al., 2008; S. Richards et al., 2015), ENIGMA con-

sortium for BRCA1/2 genes (Spurdle et al., 2012), or InSiGHT variant

interpretation group for MMR genes (Plon et al., 2008). However,

there is still important work to be done in moderate or low‐
penetrance genes (Katona et al., 2018) since multigene panels for

hereditary cancer (HC) include them. A recent publication proposed a

framework for classification of variants in low‐penetrance genes, in

which a variant could be classified as an established risk allele (ERA) if

it has been assessed in case–control studies of good design and data

quality, demonstrated to be cancer‐related and determined through

robust meta‐analysis (Senol‐Cosar et al., 2019).
In the present work, we have focused on CHEK2 (checkpoint

kinase 2; MIM# 604373), which is a tumor‐suppressor gene mainly

associated with breast cancer (BC) although it has also been asso-

ciated with other forms of HC, such as colorectal cancer (CRC) (Bell

et al., 1999; Meijers‐Heijboer et al., 2002). CHEK2 is included in most

of the in‐house and commercial HC panels (Easton et al., 2015).

CHEK2mRNA has a total length of 1844‐bp distributed in 15 exons, is

located at chromosome 22q12.1 and encodes for a human protein of

543‐aa, an analog of the yeast checkpoint kinases Cds1 and Rad53

(Matsuoka et al., 2000). CHK2 protein is a kinase involved in several

cellular processes, including the control of mitosis and meiosis pro-

gression, and plays an important role in the DNA‐damage signaling

network (Bartek, Falck, & Lukas, 2001; Zannini, Delia, & Buscemi,

2014). ATM activates CHK2 in response to DNA damage. Once ac-

tivated, CHK2 is capable of phosphorylating many substrates in-

volved in DNA repair, cell cycle regulation, p53 signaling, and

apoptosis (Zannini et al., 2014).

A few CHEK2 variants have been described as recurrent or

founder variants in some populations. The most well‐known CHEK2

variant is c.1100delC, and it is primarily present in individuals of

Northern and Eastern European descent; it results in a premature

stop codon within exon 10, impairing the kinase ability of the enzyme

(Wu, Webster, & Chen, 2001). A meta‐analysis of 44,777 patients and

42,997 controls established a BC odds ratio (OR) of 2.26 for CHEK2

c.1100delC carriers (Schmidt et al., 2016). Another frameshift foun-

der mutation, the deletion of exons 9 and 10, is considered to double

BC risk (Cybulski et al., 2007). The missense variant c.470T>C, p

(.Ile157Thr) is described to confer lower risk compared with the two

previous ones (OR of 1.58 and 1.67 for BC and CRC, respectively)

(Han, Guo, & Liu, 2013). According to a study of 13,087 BC cases and

5,488 controls, the OR for 73 CHEK2 rare missense variants was 1.36

(95% confidence interval [CI], 0.99–1.87) and 1.51 (95% CI,

1.02–2.24) if considering only variants in functional domains (Decker

et al., 2017; Han et al., 2013). Furthermore, in a recent study of 1355

BC cases, the OR for CHEK2 missense variants varied between 3.79

and 5.9 (95% CI, 1.86–7.12 and 2.38–14.78) when compared with

ExAC and FLOSSIES controls, respectively (Fostira et al., 2020).

The challenge of CHEK2 variant classification is reflected in numerous

discrepancies in ClinVar classification (Decker et al., 2017), to the point of

being recognized as the gene with more conflicting interpretations in HC

diagnosis (Balmaña et al., 2016). Moreover, there is a current controversy

about whether to use CHEK2 missense variants at a clinical level. For

instance, the National Comprehensive Cancer Network's BCmanagement

recommendations for CHEK2 carriers only apply to carriers of truncating

variants. In the same line, the UK Cancer Genetics Group decided not to

take into account nontruncating variants in the clinical routine until a

precise utility is stated for missense variants (Taylor et al., 2018).

Here, we present our effort to characterize the CHEK2 muta-

tional spectrum in Spanish HC patients, which has resulted in the

need to consider refining ACMG‐AMP guidelines for this gene.

2 | MATERIAL AND METHODS

2.1 | Patients and control cohort

A total of 2346 HC suspected patients were screened at two pha-

ses; first 516 cases were screened for c.1100delC, exon 9–10 dele-

tion, and c.470T>C recurrent variants, and later 1848 HC patients

and 194 healthy controls were analyzed by multigene panel testing

(see Figure 1 and Supporting Information). Written informed consent

was obtained from all patients, and the study protocol was approved

by the Ethics Committee of IDIBELL (PR278/19).

2.2 | CHEK2 variant annotation and collection
of variant information

Variant annotation was performed using NM_007194.3 for

the CHEK2 gene (coding region and ±20bp of the intronic region). All

variants identified were submitted to Alamut Software Suite v2.15.0

(Interactive Biosoftware) to retrieve population frequency and in si-

lico prediction data. Variant classification in ClinVar, as well as lit-

erature review were collected.

2.3 | Criteria used to assess pathogenicity

2.3.1 | Very strong evidence of pathogenicity
(PVS1) and PVS1_strong

Very strong evidence of pathogenicity (PVS1) and PVS1_strong were

considered met according to Tayoun decision tree criteria (Abou

Tayoun et al., 2018).

2.3.2 | Strong evidence of pathogenicity
(PS criteria)

PS3 was weighted when a functional defect was found in at least

two independent studies in the absence of discordant results. PS4
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was weighted for variants with an OR > 5.0 in case‐control studies,
PS4_moderate for low‐moderate penetrant genes if the OR was

between 1.5 and 5, with a p value < .01 as long as the phenotype was

in accordance with the described for the gene.

2.3.3 | Moderate evidence of pathogenicity
(PM criteria)

PM1, if the variant affected a highly conserved amino acid located in

the FHA and/or kinase domain. PM2 was weighted when the variant

was absent or in less than 1 out of 100,000 alleles in gnomAD v2.1.1

from “all” noncancer population data set; if present in ≥2 individuals

within any subpopulation, it should be present in <1 out of 50,000

alleles in that subpopulation. Since some CHEK2 variants in spite of

being frequent in the population, the associated risk is sig-

nificant; PM2_supporting was applied if the variant was present in ≤1

out of 20,000 alleles in the gnomAD v2.1.1 data set (Karczewski

et al., 2019).

2.3.4 | Supporting evidence of pathogenicity
(PP criteria)

PP3 was weighted if the in silico predictors suggested a splicing al-

teration (reduction of ≥20% in Alamut score) and/or protein function

alteration according to the Varsome genome interpreter (Kopanos

et al., 2018). The variant classification was performed using a different

combination of rules according to classical ACMG‐AMP guidelines

(Richards et al., 2015), ClinGen‐TP53 suggested modifications to

ACMG (https://www.clinicalgenome.org/affiliation/50013) and to

ACMG‐Bayesian modeling (Tavtigian et al., 2018) (Table 1).

Criteria for classification of benign and likely benign variants

were applied following recommendations from ACMG‐AMP guide-

lines (Richards et al., 2015).

Risk allele categorization was ascertained when possible, as

previously described (Senol‐Cosar et al., 2019) (Table S1). Accord-

ingly, ERA classification was given to variants reported in multiple

association studies or to those determined by robust meta‐analysis;
likely risk allele (LRA) was assigned if either the variant showed

association in at least two independent studies, had been reported in

a large study of high quality or in multiple studies with almost

complete concordance.

3 | RESULTS

3.1 | Nature and distribution of variants and
clinical classification

After CHEK2 mutational analysis of 2346 cases with suspicion of HC

and discarding benign variants, we identified 51 different variants.

Sixteen of which corresponded to variants expected to produce a

loss of function proteins or missense variants with conflicting in-

terpretation in the literature (Table 1 and Figure 2, pedigrees in

Figure 3). The remaining 35 variants were clearly variants of

F IGURE 1 Diagram of the study. BC,
breast cancer; CSCE, conformation‐sensitive
capillary electrophoresis; ERA, established
risk allele; HBOC, hereditary breast and
ovarian cancer; LP, likely pathogenic;
MLPA, multiplex, ligation‐dependent probe
amplification; NGS, next‐generation
sequencing; P, pathogenic; PBL, peripheral
blood lymphocytes; VUS, variant of unknown
significance
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unknown significance (VUS) (Table S2). The control group carried

one conflicting interpretation missense variant and one VUS

(Tables 1 and S2).

To apply ACMG‐AMP guidelines, we split them based on the

presence or absence of PVS1 (criterion for a predicted loss of

function variant; Table 2).

3.2 | Variants meeting PVS1 criterion

3.2.1 | Nonsense and frameshift variants

Only one patient was a carrier of the recurrent CHEK2

c.1100delC mutation, p.(Thr367Metfs*15) (1 out of 2346, 0.04%).

Given the great amount of data related to CHEK2 c.1100delC, this

variant meets PS3 (well‐established functional studies) and PS4

(higher prevalence in affected individuals vs. controls), besides

PVS1. However, PS4 was assigned with moderate strength

(PS4_moderate), since OR > 5.0 for a moderately penetrant gene

cannot be achieved. The combination of these rules classified this

variant as pathogenic (P) in any combination of rules framework,

and since it is well‐studied and frequent in some populations, it

was classified as an ERA within the Senol‐Cosar framework

(Tables 1 and Table S1). c.1368dupA, p.(Glu457Argfs*33) variant

meets PS3 and PM2_supporting, being classified as P in all fra-

meworks. c.715G>T, p.(Glu239*) variant meets PM2; therefore, it

was classified as likely pathogenic (LP) using ACMG and ClinGen‐
TP53 frameworks. According to Tavtigian's Bayes model

(Tavtigian et al., 2018), it gathers enough evidence to be classified

as P. Variants c.279G>A, p.(Trp93*) and c.591delA, p.(Val198-

Phefs*7) were weighted PM2_supporting. The sum of PVS1 and a

supporting criterion is not enough to classify a variant as LP/P

using ACMG guidelines (Richards et al., 2015). However, the ap-

plication of Bayesian modeling of this combination of rules gives a

posterior probability of 0.988, resulting in its classification as LP,

according to Tavtigian's (Richards et al., 2015; Tavtigian et al.,

2018) as well as following ClinGen‐TP53 modifications (ClinGen‐
TP53_Expert_Panel, 2019).

3.2.2 | Canonical splice site variants

PVS1 was weighted for splicing variants predicted to produce an

exon skipping with a subsequent frameshift. PM2 was weighted

for c.593‐1G>T and c.792+2T>C. Neither of them received PP3 to

avoid redundancy with PVS1, remaining as LP according to ACMG

and ClinGen‐TP53 frameworks. Notwithstanding, the combination

of these rules in the Bayes model gives a posterior probability of

0.994, allowing its classification as P (Tavtigian et al., 2018).

c.792+2T>C was reported in a previous study from our group

(Feliubadaló et al., 2017), it produces partial retention of intron 6,

decreasing the expression of wildtype. It is classified as LP by

ClinVar.

3.2.3 | Copy number variants

The whole CHEK2 deletion was weighted as PVS1 Stand‐alone, as
proposed for full gene deletions of known haploinsufficiency (Abou

Tayoun et al., 2018), being classified P by all frameworks. The

deletion of exons 3 and 4 occurs in‐frame and produces the loss of

the entire critical FHA domain; for this reason, PVS1 was weigh-

ted. Together with PM2_supporting, it would be a VUS with tra-

ditional ACMG combination rules but would be classified as LP

following ClinGen‐TP53 as well as using Tavtigian's calculations.

The deletion of exon 2 removes the first methionine and deletes

45 amino acids of the FHA domain, essential for CHK2 protein

function; therefore, PVS1 was applied as “strong.” Together with

PM2_supporting, it did not reach the LP/P classification in any

framework.

F IGURE 2 Schematic representation of CHEK2 variants found in our cohort. Color code—dark red: pathogenic; red: likely pathogenic; pink:
established risk allele; yellow: variant of uncertain significance. Shape code—diamond: nonsense variants; triangle: frameshift variants; square:
splicing variants; circle: missense variants; star: copy number variants. Solid horizontal lines correspond to a copy number variant, each found in
1 index case
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F IGURE 3 Pedigrees from families carrying 16 CHEK2 variants discussed. Filled symbol, cancer confirmed by pathologist report; partially

filled symbol, cancer referred by a relative; arrow, index case. Cosegregation results are indicated with the name of the variant if present and

WT for noncarriers. Current ages and ages at death, when available, are indicated on the top‐left corner of each individual's symbol. BC, breast

cancer; BlC, bladder cancer; BrC, brain cancer; CRC, colorectal cancer; EC, endometrial cancer GC, gastric cancer; HFN, head/face/neck cancer;

KC, kidney cancer; LC, lung cancer; Leu, leukemia; LiC, Liver cancer; Lym, Lymphoma; OC, ovarian cancer; PC, pancreas cancer; Para,

parathyroid cancer; PCC, pheochromocytoma; PrC,prostate cancer; SC, skin cancer; SA, sebaceous adenoma; SAR, sarcoma; T, thyroid cancer;

TeC, testicular cancer
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3.3 | Variants not meeting PVS1

We found six missense variants with discordant classifications of pa-

thogenicity in ClinVar (Table 1) in 13 unrelated patients. In addition, one

of the healthy (noncancer) controls carried the CHEK2 c.349A>G,

p.(Arg117Gly) variant. To better interpret missense variants, a compre-

hensive review of previous functional studies was done, the main results

are summarized in Tables S3 and S4. In a further effort to improve

variant classification, after classical ACMG, we also followed the allele

risk criteria reported recently (Senol‐Cosar et al., 2019). For this, we

searched for association studies of our CHEK2 variants (Table S1).

CHEK2 c.190G>A, p.(Glu64Lys) is located in a weakly conserved

amino acid in the SQ/TQ cluster domain (SCD). It is predicted deleter-

ious by in silico analysis. It shows a partially reduced phosphorylation by

ATM at the Thr68 residue, as well as partially reduced autopho-

sphorylation and Cdc25C phosphorylation. It affects KAP1 phosphor-

ylation and has discrepant results about DNA damage response

(Table S3). Furthermore, there are no high‐quality case–control studies.

Therefore, this variant only meets the PP3 criterion, remaining as VUS

(Table 1). Variant c.349A>G, p.(Arg117Gly) affects a highly conserved

amino acid (class C65 according to GVGD) in the FHA domain. It is

predicted deleterious by in silico analysis. It does not affect phosphor-

ylation by ATM nor oligomerization but affects all the rest of the studied

protein functions (Table S3). This variant accomplished PS3, PS4_mo-

derate, PM1, and PP3 criteria, being classified as LP by all frameworks. It

has been studied in a large high‐quality case–control study, reporting a

BC OR of 2.26 (95% CI, 1.29–3.95) (Table 1); therefore, it could be

considered as LRA within the Senol‐Cosar framework (Table S2). Variant

c.433C>T, p.(Arg145Trp) is located in a moderately conserved amino

acid of the FHA domain. It is predicted deleterious by in silico. It reduces

CHK2 expression and stability. In functional assays, it has been con-

sistently reported to impair kinase and DNA repair activity. Evidence for

classification includes PS3, PM1, and PP3, being classified as LP by all

frameworks. Variant c.470T>C, p.(Ile157Thr) lies in a weakly conserved

amino acid of the FHA domain. It is predicted deleterious by in silico

analysis. It has been widely studied, nevertheless, the functional assays

reported to date show discordant results (Table S3). The reported OR in

the biggest CHEK2 meta‐analysis was 1.58 (95% CI, 1.42–1.75); there-

fore, PS4_moderate was applied, but the application of PP3 was not

enough to classify this variant as LP/P. However, following re-

commendations from Senol‐Cosar et al. (2019), it would be an ERA due

to the existence of multiple case‐control studies. Variant c.499G>A,

p.(Gly167Arg) is located in a highly conserved amino acid of the FHA

domain. It is predicted deleterious by in silico analysis. Although there

are only two functional studies, they both reported an impaired DNA

repair activity in yeast assays (Table S3). PS3, PM1, PM2_supporting,

and PP3 were assigned, being classified as LP by all frameworks. Variant

c.1427C>T, p.(Thr476Met) lies in a moderately conserved amino acid of

the kinase domain. It is predicted deleterious by in silico analysis.

Functional assessment of KAP1 phosphorylation results in deleterious in

vitro and likely benign in vivo. Furthermore, SOX phosphorylation was

reported equal to that of the pathogenic c.1100delC variant. Assays on

DNA repair activity have found it damaging or with intermediate activity

(Table S3). Due to these discordant functional assay results, PS3 was not

weighted. Classification remained as VUS since c.1427C>T only ac-

complished PP3.

TABLE 2 Number of patients and other mutated genes by a clinical group of the hereditary cancer cohort

Clinical group

Number of

patients (%) Other mutated genes by the phenotypic cascade

Number of patients with

CHEK2 LP/P variants

Hereditary breast cancer 689 (37.3%) 68 LP/P (9.9%): 9 ATM, 18 BRCA1, 24 BRCA2, 3 BRIP1, 1 MLH1, 1

MSH6, 10 PALB2, 2 RAD51C

9 (1.3%)

Hereditary breast and ovarian

cancer

217 (11.7%) 38 LP/P (17.5%): 2 ATM, 19 BRCA1, 10 BRCA2, 4 BRIP1, 1 MLH1,

1 PALB2, 1 RAD51C

1 (0.5%)

Hereditary ovarian cancer 248 (13.4%) 29 LP/P (11.7%): 8 BRCA1, 14 BRCA2, 3 BRIP1, 2 MSH6, 1

RAD51C, 1 RAD51D

0

Hereditary nonpolyposis colon

cancer

302 (16.3%) 80 LP/P (26.5%): 18 MLH1, 19 MSH2, 41 MSH6, 2 POLE 3 (1%)

Familial (and attenuated)

adenomatous polyposis

178 (9.6%) 17 LP/P (9.5%): 8 APC, 1 BRCA2, 7 MUTYH (biallelic), 1 PTEN 0

Li‐Fraumeni suspected 22 (1.2%) 4 LP/P (18.2%): 1 BRCA2, 3 TP53 0

Other hereditary cancer

conditionsa
192 (10.5%) 34 LP/P (17.7%): 1 ATM, 1 BRCA1, 3 BRCA2, 1 CDH1, 4 CDKN2A,

3 FH, 8 FLCN, 2 MLH1, 2 MSH6, 3 PTEN, 1 SDHD, 1 SMAD4, 2

STK11, 2 TSC2

1 (0.5%)

Total 1848 270 (14.6%) 14 (0.8%)

Abbreviation: LP/P, (likely)pathogenic.
aOther hereditary conditions correspond to a group of patients with rare cancer syndromes, such as hereditary gastric cancer, hereditary melanoma,

hereditary prostate cancer, Cowden syndrome, Peutz–Jeghers syndrome, tuberous sclerosis, Von Hippel–Lindau disease, multiple endocrine neoplasias,

hereditary leiomyomatosis, renal cancer, juvenile polyposis, Birt–Hogg–Dubé syndrome among others.
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3.4 | Variants of unknown significance

Thirty‐five unique VUS (with less than 2 LP/P interpretations in Clin-

Var) were encountered in our cases (Table S1). We aimed to perform

RNA analysis in three of these, due to in silico prediction results (c.320‐
5T>A [NC_000022.10:g.29121360A>T] and c.1376‐8T>C
[NC_000022.10:g.29090113A>G]) or to the nature of the variant (du-

plication of exons 3 and 4). Lymphocytes for RNA analysis were avail-

able from one carrier of the duplication of exons 3 and 4, for several

samples with c.320‐5T>A and were unattainable from c.1376‐8T>C
carriers. RNA analysis showed that the duplication of exons 3 and 4

occurs in tandem and produces ∼30% of the aberrant transcript con-

taining an in‐frame insertion of 273 bp (Figure 4). This affects the region

that codifies for the FHA domain; unfortunately, there were no poly-

morphisms in the region to perform quantitative analysis. This variant

remains as VUS following all guidelines. Regarding c.320‐5T>A variant,

in silico programs, predicted a reduction in recognition of the splicing

acceptor site of exon 3. cDNA analysis in two carriers showed the

generation of an aberrant transcript, consisting in an in‐frame deletion

of exons 3 and 4 (Figure 5), as previously reported (Kraus et al., 2017).

The amount of abnormal transcript seemed greater than 20%, although

the absence of exonic polymorphisms prevented an accurate quantifi-

cation. Of note, the frequency of c.320‐5T>A is 0.12% in gnomAD (NFE)

and of 1.35% (25 out of 1848) in our HC cohort. To understand the

differences in frequency in our population with relation to international

databases, we screened 1501 control samples (see Supporting Mate-

rial). CHEK2 c.320‐5T>A had a frequency of 0.8% (12 out of 1501) in

our controls, not a statistically significant difference, preventing it

from being considered as a risk allele.

3.5 | CHEK2 variants in the different HC groups

Applying the Bayesian combination of rules by clinical suspicion

subgroups of the HC cohort, CHEK2 LP/P variants were identified in

1.3% of HBC cases (n = 9), in 0.5% HBOC cases (n = 1), 1% of the

hereditary nonpolyposis CRC patients (HNPCC, n = 3), and in one

patient from the minority cancer group (0.5%), who had two kidney

tumors, pheochromocytoma, and prostate cancer.

Among the 10 families with HBC/HBOC, 2 proband females

had two variants in CHEK2. One female, with BC at 42, was a

compound heterozygous of a whole CHEK2 deletion and variant

c.499G>A. The other patient with bilateral BC at 35 carried two

CHEK2 missense variants (c.433C>T and c.470T>C) in trans. Both

cases were previously reported by our group (Stradella et al., 2018).

In addition, a third proband diagnosed with BC at age 49 carried the

CHEK2 c.349A>G and a pathogenic variant in ERCC3. Interestingly,

the three HNPCC patients with CHEK2 LP/P variants developed

CRC at a young age (22, 25, and 44), and their tumors were MMR

proficient.

4 | DISCUSSION

We have made an effort to classify variants in the low‐moderate

penetrance CHEK2 gene. For that, we analyzed the whole coding

region of CHEK2 in a large HC cohort, performed an in‐depth lit-

erature review and have defined specific cutoffs for ACMG criteria

to allow classification of variants with low effect. Furthermore, we

applied different combinatorial rules that enabled us to compare

F IGURE 4 mRNA analysis of CHEK2 E3‐E4dup. Top, schematic representation of CHEK2 E3‐E4dup. cDNA amplification showed a double
band, one corresponding to the full‐length transcript (708 bp) and the other to the transcript carrying the duplication (981 bp), as shown in the
electropherogram on the bottom left. Bottom right, agarose gel of a carrier and two controls with (P+) and without puromycin (P−)
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classification rates—concluding that the Bayesian model is the most

optimal framework to classify variants to a greater extent.

From our experience in variant classification and after a com-

prehensive literature review, we propose two adaptations of the

ACMG criteria. Regarding PS4, we propose to score PS4_moderate

for low‐moderate penetrant genes if an OR is given between 1.5 and

5, with a p value of < .01, when the phenotype is in accordance with

the previously described. In relation to PM2 evidence, in our la-

boratory, we use an extremely conservative approach and assign

PM2 only if the variant is absent or present in less than 1 out of

100,000 alleles in gnomAD (0.001% of maximum frequency) for high

penetrant genes. However, we propose to assign PM2_supporting

when the variant is ≤1 out of 20,000 alleles.

Variants meeting the PVS1 criterion tend to be easier to classify

as LP/P. For instance, the founder mutation c.1100delC is the most

studied CHEK2mutation, and it has a prevalence of 0.26% in the NFE

population. CHEK2 c.1100delC has a moderate penetrance (Meijers‐
Heijboer et al., 2002; Oldenburg et al., 2003), conferring an increased

BC risk for the overall population (OR = 2.89, 95% CI, 2.63–3.16)

(Liang et al., 2018) and for carriers with familial BC (OR = 3.21, 95%

CI, 2.41‐4.29) (Liang et al., 2018). It has been reported absent in the

Spanish population (Bellosillo et al., 2005), or with frequencies of

0.93% in the Basque population, 0.36% in the Galician population,

and 0.3% in a study of BRCA‐negative HBC Basque and Catalan fa-

milies (Fachal, Santamariña, Blanco, Carracedo, & Vega, 2013;

Gutiérrez‐Enríquez, Balmaña, Baiget, & Díez, 2008; Martínez‐Bouzas

et al., 2007). In our larger cohort, only one case was identified

(0.08%, 1 out of 1251 BC affected cases), confirming its low pre-

valence in our population. Moreover, in a recent study analyzing

15 truncating CHEK2 variants in 213 patients and 29 control carriers,

the BC risk OR was 3.11 (95% CI, 2.15–4.69) (Decker et al., 2017).

Here, we identified ten proband carriers of truncating variants,

eight of which developed the first tumor before the age of 50, con-

sistent with previous findings of early cancer development in carriers

of truncated variants (Decker et al., 2017; Han et al., 2013). None-

theless, the median age at first cancer diagnosis in our study was not

very different amongst carriers of truncating and missense LP/P

variants, being 42 (range, 25–65) and 40 (range, 22–51) years, re-

spectively. Bilateral BC has been mainly reported in c.1100delC

carriers (M. Kriege et al., 2014), and truncating variants in this gene

have been associated to other nonbreast second primary tumor di-

agnosis in a study using multigene panel testing (Fostira et al., 2020).

In our cohort, four cases with two or multiple cancers were carriers

of truncating variants, and only one was a carrier of an LP missense,

confirming a higher aggressiveness of truncating variants over mis-

sense variants.

Conflicting results are common for missense hypomorphic var-

iants and represent one of the biggest challenges we faced for

CHEK2 variant classification due to the lack of more sensitive func-

tional assays and the use of different controls, complicating re-

plication and therefore bypassing PS3 application. The c.470T>C

founder mutation conveys a moderate susceptibility for overall

F IGURE 5 mRNA analysis of CHEK2 c.320‐5T>A. Top, schematic representation of CHEK2 c.320‐5T>A (NC_000022.10:g.29121360A>T)
splicing effect. cDNA amplification showed a double band, one corresponding to the full‐length transcript (860 bp) and the other to the
transcript lacking exons 3 and 4 (587 bp), as shown in the electropherogram on the bottom left. Bottom right, agarose gel of a carrier and
two controls with (P+) and without puromycin (P−)
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cancer (OR = 1.39; p < .00001) and for BC only (OR = 1.58;

p < .00001) in a large meta‐analysis (Han et al., 2013). Its patho-

genicity has been established for ovary cystadenomas in young

Polish carriers (OR = 2.6; p = .006) (Szymanska‐Pasternak et al.,

2006) and is associated with a twofold risk of non‐Hodgkin lym-

phoma, colon, kidney, thyroid, and prostate cancers (Cybulski et al.,

2004). We found it in a male patient diagnosed with testicular cancer

at 25 years. Interestingly, in a recent study of 448 Croatian testicular

cancer patients, it was found in 5.1% of them, resulting in an OR of

3.93 (95% CI, 1.53–9.95) even when its population frequency is of

1–2% (AlDubayan et al., 2019). Of note, c.470T>C remains as VUS

even applying PS4_moderate. To our knowledge, c.470T>C is the

most studied CHEK2 missense variant, but as shown in Table S3 it

has conflictive interpretations of pathogenicity at almost all func-

tional studies; therefore, PS3 was ruled out, remaining as VUS in the

ACMG context. However, we were able to classify it as ERA ac-

cording to the risk allele‐based classification (Senol‐Cosar et al.,

2019). Of note, this variant is classified as LP by GeneDx, and as P by

Ambry, Color and Invitae diagnostic laboratories (Table S3), which

could convey errors in clinical interpretation. PS3 was also not

possible to apply for two other missense variants: c.190G>A and

c.1427C>T. CHEK2 c.190G>A is a fairly frequent variant found in

0.03% of NFE by gnomAD, with partial reduction of Thr68 phos-

phorylation, autophosphorylation, and Cdc25C phosphorylation, but

DNA repair assays in yeast are discordant (Table S3). Variant

c.1427C>T is another relatively frequent variant present in 0.05% of

NFE (gnomAD). It has been reported to affect DNA damage response

in yeast at the intermediate‐high level. In addition, it shows reduced

SOX phosphorylation almost equally to c.1100delC. However, in vivo

and in vitro studies of KAP1 phosphorylation from the same group

showed discordant results of pathogenicity (Table S3). As noted in

Table S2, lack of robust association studies and meta‐analysis of

these variants hampered the possibility of applying risk allele‐based
classification. Both remained as VUS in any classification framework,

in spite of being classified as LP by at least two different reputable

sources (Table S3).

To summarize, we describe here a comprehensive CHEK2mutational

analysis in a large Spanish cohort of HC patients, providing full data of

the actual prevalence of CHEK2 pathogenic variants in our population.

The frequency of LP/P variants in the HBC suspected cases in the whole

gene analysis was 1.3% (9 out of 689), similar to the reported by Couch

et al. (2017) in a study of 58,798 BC patients, in which they found 1.41%

of truncating variants and 2.22% of LP/P CHEK2 missense variants. In-

terestingly, three young CRC cases carried an LP/P CHEK2 variant, and

none of them had any additional pathogenic variant in our NGS panel

analysis, although two of them have a nonpenetrant carrier father above

the age of 50. CHEK2 c.1100delC was reported in 6 out of 234 HNPCC

families from Poland (Meijers‐Heijboer et al., 2003). In their study,

three of them also carried germline MMR P variants. In addition,

c.470T>C has been found in familial CRC (Cybulski, Wokołorczyk, et al.,

2007; Kilpivaara, Alhopuro, Vahteristo, Aaltonen, & Nevanlinna, 2006)

and have been described to increase the risk of CRC among MMR‐
negative, HNPCC/HNPCC‐related families in Poland (Suchy et al., 2010).

To our knowledge, this is the largest Spanish data set presenting the

sequencing of the whole CHEK2 coding region together with the first

attempt to apply ACMG‐AMP guidelines for this gene. We detailed dif-

ferent strategies that can be helpful to classify VUS using different fra-

meworks with the aim of being of help not only for the curation of

CHEK2 variants but also for other genes. We hope our work serves as a

starting point to better tune ACMG criteria in the case of low‐penetrance
and low effect size variants associated with disease risk.
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Abstract: Only a small fraction of hereditary breast and/or ovarian cancer (HBOC) cases are caused
by germline variants in the high-penetrance breast cancer 1 and 2 genes (BRCA1 and BRCA2). BRCA1-
associated ring domain 1 (BARD1), nuclear partner of BRCA1, has been suggested as a potential
HBOC risk gene, although its prevalence and penetrance are variable according to populations
and type of tumor. We aimed to investigate the prevalence of BARD1 truncating variants in a
cohort of patients with clinical suspicion of HBOC. A comprehensive BARD1 screening by multigene
panel analysis was performed in 4015 unrelated patients according to our regional guidelines for
genetic testing in hereditary cancer. In addition, 51,202 Genome Aggregation Database (gnomAD)
non-Finnish, non-cancer European individuals were used as a control population. In our patient
cohort, we identified 19 patients with heterozygous BARD1 truncating variants (0.47%), whereas
the frequency observed in the gnomAD controls was 0.12%. We found a statistically significant
association of truncating BARD1 variants with overall risk (odds ratio (OR) = 3.78; CI = 2.10–6.48;
p = 1.16 × 10−5). This association remained significant in the hereditary breast cancer (HBC) group
(OR = 4.18; CI = 2.10–7.70; p = 5.45 × 10−5). Furthermore, deleterious BARD1 variants were enriched
among triple-negative BC patients (OR = 5.40; CI = 1.77–18.15; p = 0.001) compared to other BC
subtypes. Our results support the role of BARD1 as a moderate penetrance BC predisposing gene
and highlight a stronger association with triple-negative tumors.
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1. Introduction

Hereditary breast and ovarian cancer (HBOC) risk has been traditionally linked to
germline pathogenic variants (PVs) in breast cancer 1 and 2 genes (BRCA1 and BRCA2).
However, only 20–30% of high-risk families carry PVs in these genes [1]. Gradually, PVs
in various other genes with different degrees of penetrance have also been associated
with breast cancer (BC) and/or ovarian cancer (OC) risk [2]. Several genes that are either
interacting with BRCA1/2 or involved in DNA damage response pathways have also
emerged as potential candidates that may account for some of the missing heritability
of these so-called BRCAX families, although their associated risks have not been fully
established [2].

BRCA1-associated ring domain 1 (BARD1) was first discovered in 1996 as the nuclear
partner of BRCA1 and became one of the earliest candidates investigated [3]. It is localized
on chromosome 2 at position 2q35 and encodes a protein of 777 amino acids that contains
one N-terminal Really Interesting New Gene (RING)-finger domain, four Ankyrin (Ank)
repeats and two C-terminal tandem BRCA1 C Terminus (BRCT) domains [4,5]. BARD1
shows structural homology with BRCA1 and they directly interact through their RING
domains. The BARD1-BRCA1 obligate heterodimer functions as both an E3 ubiquitin ligase
and as a direct mediator of homologous recombination for the recruitment of RAD51 to the
sites of DNA double-strand break (DSB) [3,6,7]. Furthermore, BARD1 is also involved in
other BRCA1-independent functions, including p53-mediated apoptosis [8].

To date, the role of BARD1 in cancer predisposition remains inconclusive. Several
case-control studies have reported a higher prevalence of deleterious BARD1 variants
among BC patients, supporting its role as a moderate risk predisposing gene [9–11]. An
enrichment of BARD1 PVs among triple-negative breast cancer (TNBC) cases has also
been evidenced [12–14]. Contrarily, some studies have been unable to detect a significant
association of BARD1 with breast cancer risk [15,16]. Likewise, the association between
BARD1 and overall OC risk has shown controversial results [17–19]. Taken together, there
is still insufficient evidence to elucidate the role of BARD1 in breast and/or ovarian cancer
predisposition. In the present study, we have investigated the prevalence of deleterious
germline BARD1 variants in a cohort of 4015 patients with clinical suspicion of hereditary
breast and/or ovarian cancer, with the aim of elucidating the role of BARD1 in cancer
predisposition in the Spanish population.

2. Materials and Methods
2.1. Patients and Controls

A total of 4015 index patients with a personal or family history suggestive of hereditary
BC and/or OC referring at genetic counseling units of the Catalan Institute of Oncology
(ICO) and Vall d’Hebron (HVH) hospitals were included in the present study. Clinical
characteristics for all enrolled patients were the following: patients with BC before 40 years;
patients with TNBC before 60 years; male BC patients; patients with non-mucinous OC;
patients with a family history of two cases of BC before age 50; patients with three or more
cases of first-degree BC; patients with a case of bilateral BC associated with another case of
BC in the family. Informed written consent for both diagnostic and research purposes was
obtained from all patients, and the study protocol was approved by the ethics committee of
Bellvitge Biomedical Research Institute (IDIBELL; PR278/19) and Vall d’Hebron Hospital
(PRAG102-2016). A set of 194 Spanish cancer-free individuals from the Genomes For
Life—Cohort Study of the Genomes of Catalonia (GCAT) cohort [20] were screened with
the same cancer panel as ICO patients.
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2.2. NGS Panel Testing

In the ICO cohort, genetic testing was performed on genomic DNA using the next-
generation sequencing (NGS) custom panel I2HCP, which comprises 122–135 hereditary
cancer (HC)-associated genes, depending on the version used [21]. Copy number analy-
sis was performed from NGS data using DECoN [22] with parameter optimization [23].
Copy number variants (CNVs) in BARD1 were validated using custom multiplex ligation-
dependent probe amplification (MLPA) probes designed according to the instructions
provided by MRC-Holland. Likewise, 26 HC-associated genes were included in the HVH
NGS panel (BRCA Hereditary Cancer MASTR Plus kit, Agilent Technologies, Santa Clara,
CA, USA). Copy number analysis was performed from NGS data using MASTR Reporter
(Agilent Technologies, Santa Clara, CA, USA) and putative CNVs were validated by RT-
PCR analysis [24]. For this study, we considered any variant that originates a premature
stop codon or affects canonical splice site positions (+1,+2,−1,−2) as a pathogenic or likely
pathogenic variant (pathogenic variant hereinafter); all of them were classified as (likely)
pathogenic following the American College of Medical Genetics and Genomics and the
Association for Molecular Pathology (ACMG/AMP) guidelines [25] and were confirmed
by Sanger sequencing.

2.3. Variant Nomenclature

Human Genome Variation Society (HGVS)-approved guidelines [26] were used for
BARD1 variant nomenclature using NM_000465.2 (LRG_297). For variant numbering,
nucleotide 1 is the A of the ATG translation initiation codon.

2.4. Co-Segregation Analysis and Loss of Heterozygosity (LOH)

Both analyses were performed by Sanger sequencing when samples from relatives or
tumor DNA were available.

2.5. gnomAD Analysis

The Genome Aggregation Database (gnomAD) non-Finnish European population,
non-cancer dataset (v2.1.1) [27] was used as a control population. Variants were down-
loaded and filtered to identify predicted loss-of-function variants in BARD1. CNV screening
was performed in the gnomAD SVs v2.1 dataset.

2.6. Statistical Analysis

Differences in allele frequency between cases and controls were determined by the
Fisher exact test. Odds ratios (OR) and the corresponding 95% confidence intervals (CI)
were determined for two-by-two comparisons. Statistical tests were carried out using R
v.3.5.1.

3. Results

In our study cohort of 4015 unrelated patients with hereditary breast and/or ovarian
cancer, 476 PVs were identified as per clinical gene panel analysis (Table 1), representing
11.86% patients harboring PVs in high- to moderate-penetrance BC/OC-associated genes.
In addition, with the aim of investigating the role of PVs in the BARD1 gene, we performed
an exhaustive analysis of truncating, splicing and CNVs in this gene. Nineteen patients
carried heterozygous germline PVs in BARD1, resulting in a carrier frequency of 0.47%.
Among them, one patient additionally carried a PV in the HBOC-predisposing gene BRCA2
(patient 10; BRCA2 c.3264dupT; p.(Gln1089Serfs*10)) (Table 2). The remaining 18 BARD1-
mutated index patients tested negative for PVs in other BC/OC genes (for more details
of the genes analyzed according to the phenotype, refer to Feliubadaló et al., 2019 [24]).
Thus, after excluding carriers of other HBOC PVs, the global BARD1 carrier frequency
throughout our cohort of patients was 0.45%. The percentage of deleterious BARD1
variants in the subset of patients with hereditary breast cancer (HBC) was 0.50%, 0.42%
in hereditary ovarian cancer (HOC) cases and 0.33% in patients with HBOC (Table 1). No
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BARD1 PVs were identified in our set of 194 cancer-free individuals. In order to increase
the control cohort, loss-of-function BARD1 variants were screened in the non-Finnish
European gnomAD 2.1.1 (non-cancer) population, identifying a total of 61 heterozygous
carriers out of 51,202 individuals (0.12%). The comparison of carrier frequencies between
the patient and control cohorts revealed an overall significant association of BARD1 PVs
(OR = 3.78; CI = 2.10–6.48; p = 1.16 × 10−5). This association was also significant in the
HBC group (OR = 4.18; CI = 2.10–7.70; p = 5.45 × 10−5). Moreover, deleterious BARD1
variants demonstrated an increased risk in the HOC and HBOC groups, although the
differences did not reach statistical significance (OR = 3.53, CI = 0.71–10.86, p = 0.06 and
OR = 2.77, CI = 0.33–10.47, p = 0.17, respectively) (Table 1).

The clinical phenotype of BARD1-mutated patients is depicted in Table 2. Sixteen devel-
oped BC at a median age of 41 years (27–63), younger than the general population (median
age at diagnosis 62 years old in females, according to NCI’s SEER 21 2013–2017 Program). Of
these, 10 were diagnosed with at least one TNBC. We compared the prevalence of deleterious
BARD1 variants between women diagnosed with TNBC and other BC subtypes and found
significant differences according to the triple-negative status of carriers. deleterious BARD1
variants were enriched in HBC families where the index case developed TNBC (OR = 5.40;
CI = 1.77–18.15; p = 0.001) (Table 3). Regarding OC cases, three patients were diagnosed
at a median age of 62 years (59–62)—two were diagnosed with high-grade ovarian serous
carcinoma (HGOSC) and one with endometrioid carcinoma (EC).
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Table 1. Summary of the next-generation sequencing (NGS) panel results in our hereditary breast and/or ovarian cancer (HBOC) cohort and in the control populations.

Clinical Indication Number of Patients (%) Genes Tested by Phenotype Number of PVs (%) BARD1 (%) BARD1 Excluding Patients
with Other PVs (%)

Only Hereditary Breast
Cancer, HBC 2622 (65.31%) ATM, BRCA1, BRCA2, CHEK2,

MLH1, MSH2, MSH6, PALB2, TP53

270 PVs (10.30%): ATM (34),
BRCA1 (71), BRCA2 (90),

CHEK2 (27), MLH1 (3), MSH2
(1), MSH6 (2), PALB2 (37),

TP53 (5)

13 (0.50%)
OR = 4.18 (2.10–7.70) **

p = 5.45 × 10−5

13 (0.50%)
OR = 4.18 (2.10–7.70) **

p = 5.45 × 10−5

Only Hereditary Ovarian
Cancer, HOC 715 (17.81%) BRCA1, BRCA2, BRIP1, MLH1,

MSH2, MSH6, RAD51C, RAD51D

93 PVs (13.01%): BRCA1 (39),
BRCA2 (35), BRIP1 (6), MLH1

(1), MSH6 (4), RAD51C (4),
RAD51D (4)

3 (0.42%)
OR = 3.53 (0.71–10.86)

p = 0.06

3 (0.42%)
OR = 3.53 (0.71–10.86)

p = 0.06

Hereditary Breast and
Ovarian Cancer, HBOC 608 (15.14%)

ATM, BRCA1, BRCA2, BRIP1,
CHEK2, MLH1, MSH2, MSH6,

PALB2, RAD51C, RAD51D, TP53

104 PVs (17.11%): ATM (7),
BRCA1 (45), BRCA2 (32),

BRIP1 (7), CHEK2 (6), MSH2
(1), PALB2 (3), RAD51C (1),

RAD51D (1), TP53 (1)

3 (0.49%)
OR = 4.16 (0.83–12.79) *

p = 0.04

2 (0.33%)
OR = 2.77 (0.33–10.47)

p = 0.17

HBC/HOC/HBOC + Other
clinical indications 70 (1.74%) Details in Ref: [24]

9 PVs (12.86%): ATM (2),
BRCA1 (2), BRCA2 (1), MSH6

(2), PTEN (1), RAD51C (1)
0 (0%) 0 (0%)

Total 4015 476 (11.86%)
19 (0.47%)

OR = 3.99 (2.25–6.77) **
p = 3.48 × 10−6

18 (0.45%)
OR = 3.78 (2.10–6.48) **

p = 1.16 × 10−5

Controls studied
Spanish population cohort (n = 194) 0 (0%)

gnomAD non-Finnish European, non-cancer cohort
(n = 51,202) 61 (0.12%)

PV: pathogenic variant; OR: odds ratio. * α < 0.05. ** α < 0.01.

Table 2. Genotype and phenotype data of index patients carrying heterozygous germline pathogenic variants in the BRCA1-associated ring domain 1 (BARD1) gene.

Family Clinical Indication Cancer Type (Age at dx) Tumor Phenotype Family History (Age at dx) BARD1 PV (c.) BARD1 PV (p.) Additional PVs

1 HBC Breast (40,58) ILC ER+ Her2-; TNBC Cousin: PC (73)
c.157del p.(Cys53Valfs*5)

2 HBOC Breast (30) IDC ER+ Her2-

3 HOC Ovary (59) HGOSC c.176_177del p.(Glu59Alafs*8)

4 † HBC Breast (27,42) ER+ BC; TNBC Mother: Breast (44,44) c.580_581del p.(Arg194Glyfs*2)
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Table 2. Cont.

Family Clinical Indication Cancer Type (Age at dx) Tumor Phenotype Family History (Age at dx) BARD1 PV (c.) BARD1 PV (p.) Additional PVs

5 HBC Breast (38) IDC ER+ Her2- Aunt: Breast (37) ‡, Aunt:
Breast (36)

c.1061C > A p.(Ser354*)

6 HOC Ovary (62) EC c.1314+1G > A p.?

7 HBC Breast (49) TNBC c.1349dup p.(Asn450Lysfs*4)

8 HBC Breast (31) TNBC Aunt: Breast (64) ‡, Aunt:
Breast (64) ‡ c.1652C > G p.(Ser551*)

9 HBC Breast (56) TNBC

c.1921C > T p.(Arg641*)

10 HBOC Breast (54) IDC ER+ Her2- Mother: Ovary (63) BRCA2 c.3264dupT;
p.(Gln1089Serfs*10)

11 HBC Breast (63) TNBC Aunt: Breast (60) ‡, Cousin:
Breast (54) ‡

12 HBC Breast (40) IDC ER+ Her2+ Mother: EC (62), Breast (64)
13 HBC Breast (49) TNBC
14 HBC Breast (30) TNBC
15 HBC Breast (46,56,56) IDBC; bilateral IDBC Mother: Breast (78)

16 ˆ HBC Breast (40,47) TNBC; TNBC
Sister: Breast (46); Sister:

Breast (48); Mother: Breast
(48); Cousin: Breast (46)

17 HBOC Breast (42) IDC ER+ Her2- Uncle: Breast (71); Aunt:
Ovary (62) c.2129_2132del p.(Asp710Valfs*3)

18 HOC Ovary (62) HGOSC
c.(1568+1_1569-

1)_(1810+1_1811-1)del
Exons 7–8 deletion

19 HBC Breast (44) TNBC Mother: Breast (69); Aunt:
Breast (60)

g.(?_215617227)_(215593730_?)
Exons 7–11 deletion

HBC: hereditary breast cancer; HBOC: hereditary breast and ovarian cancer; HOC: hereditary ovarian cancer; Dx: diagnosis; PV: pathogenic variant; HGOSC: high-grade ovarian serous carcinoma; PC: peritoneal
carcinoma; EC: endometrioid carcinoma; BC: breast cancer; ILC: invasive lobular carcinoma of the breast; IDC: invasive ductal carcinoma of the breast; IDBC: intraductal breast carcinoma; TNBC: triple-negative
breast cancer; ER: estrogen receptor status; Her2: human epidermal growth factor receptor 2 status. ‡ Cancer diagnosis unconfirmed. † Results previously reported in Ref [28]; ˆ Results previously reported in
Ref [29].
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Two recurrent variants were identified in our set of samples. BARD1 c.1921C > T;
p.(Arg641*) was found in eight unrelated patients, thus representing the most frequent
variant in our cohort. Besides, two unrelated patients harbored the BARD1 c.157del;
p.(Cys53Valfs*5) variant. The nine remaining variants were identified in one index case each
(Figure 1). It is worth mentioning that we performed RT-PCR analysis of the splicing variant
c.1314+1G > A, which causes skipping of exons 3 and 4 (r.216_1314del; p.(Ser72Argfs*37))
(data not shown). Interestingly, we identified two copy number variants (CNVs) (Table 2).
One consisted in the deletion of exons 7 and 8, which was experimentally validated by
RT-PCR analysis in the proband’s cDNA (data not shown). This variant causes an out-of-
frame deletion predicted to generate a truncated protein. The other CNV involved the
loss of exons 7 to 11 and was validated using an MLPA custom probe. This deletion would
presumably result in a BARD1 protein lacking both BRCT domains and the C-terminal region
of the Ank domain. The screening of CNVs in the Genome Aggregation Database (gnomAD)
splicing variants (SVs) dataset did not identify any CNV in the control population.

1 

 

 

Figure 1. Spectrum of BARD1 germline pathogenic variants found in our cohort. Locations of variants are displayed by
lollipop structures with the following color code: orange for nonsense variants, yellow for frameshift variants and green for
splicing variants. Horizontal lines correspond to copy number variants, each found in one index case. The different BARD1
protein domains are shown in dark blue boxes with an amino acid numbered scale.

Table 3. Summary of the triple-negative status of the hereditary breast cancer cohort.

Group Number of Patients BARD1-Mutated

TNBC patients 680
10 (0.88%)

OR = 5.40 (1.77–18.15)
p = 0.001 **

Non-TNBC patients 2179 6 (0.28%)

Total 2859 16
TNBC: triple-negative breast cancer; OR: odds ratio. ** α < 0.01.

Regarding co-segregation and LOH studies, in a previous publication by our group,
we reported the results of the co-segregation of family 16 [29]: the proband’s mother,
diagnosed with BC, as well as the sister and the maternal cousin, both affected by BC,
had the same BARD1 variant; the variant was also found in the proband’s 39-year-old
daughter, although she was asymptomatic. In the rest of the families, the co-segregation
study was scarcely informative. In family 1, the proband’s cousin was diagnosed with
peritoneal carcinoma (PC) at age 73 and harbored the same BARD1 PV. In families 4 and 15,
the probands inherited the BARD1 PV from their respective mothers, also affected by BC.
However, in families 13 and 14, the probands inherited the BARD1 PV from asymptomatic
mothers. LOH analysis could only be performed in a tumor sample from the proband in
family 14, but there was no evidence of LOH.
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4. Discussion

In the present study, we performed a comprehensive analysis of the BARD1 gene in
a cohort of 4015 hereditary BC/OC patients. The screening for germline PVs evidenced
that BARD1 heterozygous carriers have an overall increased risk (OR = 3.78; CI = 2.10–6.48;
p = 1.16 × 10−5). When stratified by clinical suspicion, the estimated risk for HBC patients
resulted in a significant OR = 4.18 (CI = 2.1–7.7; p = 5.45 × 10−5). These results are compa-
rable to those previously reported by several case–control studies. The largest analysis to
date was performed by Couch et al. in a cohort of 28,536 BC patients, proposing BARD1
as a moderate-risk gene with an OR = 2.16 (CI = 1.31–3.63; p = 2.26 × 10−3) [9]. Similarly,
Slavin et al. reported an OR = 3.18 (CI = 1.34–7.36; p = 0.012) [10] and Weber-Lassalle et al.
reported an OR = 5.35 (CI = 3.17–9.04; p < 0.00001) [11] in 2134 and 4469 familial BC patients,
respectively. Besides, a recent meta-analysis by Suszynska and Kozlowski collected data
from a total of 123 published studies and consistently reported an OR = 2.90 (CI = 2.25–3.75;
p < 0.0001) over a cumulative cohort of ~48,700 BC patients [30]. However, there are some
studies that failed to identify a significant association with BC risk, such as those published
by Castéra et al. and Lu et al. [15,16].

An increase in the prevalence of PVs in BARD1 among TNBC patients has been repeat-
edly suggested [12,13,31,32]. In agreement with this hypothesis, we identified ten BARD1
PV carriers from 680 TNBC cases (carrier frequency = 0.9%), resulting in an OR = 5.40
(CI = 1.77–18.15; p = 0.001). Our results are comparable to the analysis of 4090 TNBC cases
performed by Shimelis et al., who identified 25 individuals harboring BARD1 PVs (0.61%)
and obtained an OR = 5.92 (CI = 3.36–10.27; p = 2.20 × 10−9) [14], whereas a surprisingly
high OR = 11.27 (CI = 3.37–25.01) was reported by Castéra et al. [15]. Despite the reduced
sample size of our subset of TNBC patients, our results support that deleterious BARD1
variants were enriched in TNBC cases. Further studies in larger cohorts will be necessary
to more precisely assess the BARD1-associated risk with this tumor phenotype.

Our results also showed a trend, although non-significant, for HOC patients (OR = 3.53).
Previous studies focusing on BARD1 as an OC-predisposing gene have shown inconsistent
results. Only Norquist et al. revealed a significant OR = 4.2 (CI = 1.4–12.5; p = 0.02) in
1915 OC cases [18], similar to that reported in our set of samples. Contrarily, the analysis
of 3261 epithelial OC cases by Ramus et al. and 6294 OC cases by Lilyquist et al. resulted
in non-significant associations of deleterious BARD1 variants with OC risk [17,19]. The
meta-analysis by Suszynska and Kozlowski could not detect an association of BARD1 with
OC risk in a cumulative set of ~20,800 OC cases either [30].

Unraveling the contribution of moderate-penetrance genes to HC predisposition is
challenging, as the low incidence of PVs detected in these genes results in inaccurate esti-
mates of their associated risks. Due to the limited number of carriers identified, increasing
the study size is mandatory to improve the statistical power. Besides, case–control studies
usually rely on controls from publicly available databases to reach statistical power instead
of using geographically matched controls (GMCs), potentially causing an overestimation
of the calculated ORs [9]. Multi-centric international studies could potentially reduce
this heterogeneity by defining common inclusion criteria for patients and harmonizing
the methodological features. It is also very likely that the true prevalence of BARD1 PVs
has been underrated. As a consequence of the lack of functional assays, we have not
contemplated missense, synonymous and intronic variants in the risk calculations, as we
cannot be certain of their pathogenicity.

It is worth emphasizing that we have performed a screening of CNVs in our cohort
of HC patients, resulting in the identification of two large deletions (exons 7 to 8 and
exons 7 to 11), accounting for 10.5% of the PVs. To our knowledge, only a small fraction
of published studies have also performed this analysis and only seven CNVs have been
identified so far: exon 1 deletion [33], exon 2 deletion [34], exon 1 to 6 deletion [35], exon 5
to 7 deletion [36], exon 8 to 11 deletion [37] and two whole-gene deletions [37,38]. While
no CNVs were identified in the gnomAD SV control population dataset, analysis of BARD1
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CNVs in HC cohorts is strongly recommended considering the significant contribution in
our series of this kind of variant.

BARD1 has been included in multi-gene panels since it was regarded as a potential
cancer-predisposing gene [39], despite the lack of robust risk estimates. The identification
of BARD1 PV carriers should be taken with caution, as inherited PVs in moderate- to
low-penetrance genes may not necessarily be responsible for all the cancer diagnoses in
a family. Nevertheless, although the clinical evidence available to date is still insufficient
to impact risk management, continued testing of BARD1 will permit access to the carrier
status once recommendations for BARD1 PV carriers become available in the future.

Taken together, our results confirm BARD1 as a BC susceptibility gene and highlight a
stronger association with triple-negative tumors. Future studies aimed at screening larger
cohorts and refining the classification of BARD1 variants will help to elucidate its role as a
breast and/or ovarian cancer gene as well as define medical recommendations for BARD1
PV carriers.
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Optimization algorithm 
 

A greedy approach was used to optimize the parameters of the algorithms to maximize 

sensitivity while limiting specificity loss, or improving it when possible. For each dataset, we 

randomly select samples to define a training set with 50% of the samples to optimize algorithm 

parameters and a validation set with the other 50% to evaluate them. 

The default parameter, D, is used as reference. For each numeric parameter, 22 values between 

D0.25 and D1.75 are considered (exponent values evaluated were 0.25, 0.4, 0.5, 0.6, 0.7, 0.8, 

0.9, 0.92, 0.94, 0.96, 0.98, 1, 1.02, 1.04, 1.06, 1.08, 1.1, 1.2, 1.3, 1.4, 1.5, 1.75). For CODEX2, 

only 9 values were considered due to its high CPU requirement (exponent values evaluated 

were 0.6, 0.85, 0.92, 0.97, 1, 1.03, 1.08, 1.15, 1.4). For categorical parameters, all options are 

considered. Initially, the best solution is the execution with the default parameters. Some 

numeric parameters were also restricted to a subset of options. Additionally, a min and max 

threshold was stablished for the numerical parameters. See “Tools parameters” section below. 

The greedy algorithm behaves as follows. Optimization starts from the first parameter: the 

algorithm is executed evaluating the whole values range for this parameter and keeping other 

parameters with default values. Solution with highest whole diagnostics strategy sensitivity is 

chosen if specificity decreases less than 30% in comparison to the previous best solution. If the 

whole diagnostics strategy sensitivity cannot be improved, then the highest per gene sensitivity 

is chosen if specificity decreases less than 25%. Finally, if per gene sensitivity cannot be 

improved, the highest per ROI sensitivity is chosen if specificity decreases less than 20%. In case 

of a tie at any level, the solution with the best specificity is considered. The best parameter 

value is therefore fixed. Optimization continues from a second parameter randomly chosen. 

The algorithm is executed evaluating the whole values range for this parameter and keeping 

other parameters with default values or fixed values. The process is repeated until the last 

parameter is reached. 

To overcome the dependence of greedy algorithms on the order of parameter selection, the 

whole optimization process was repeated starting from each different parameter. 

Below is shown the pseudocode describing the main steps for the optimization algorithm. 
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Main steps of optimization algorithm 

 

best_solution = execution with default parameters 

for each parameter p 

D = default parameter value 

if p is numerical: 

values_range = 22 values from [D0.25, D1.75] 

else if p is categorical: 

 values_range = all categorical values 

 

executions = ∅ 

for each v ∈ values_range: 

 v_previous = fixed values for already optimized parameters 

 v_next = default values for not optimized parameters 

 algorithm_parameters = v ∪ v_previous ∪ v_next 

 executions = executions ∪ execute_algorithm(algorith_parameters) 

 

 metrics = {whole strategy sensitivity, per gene, per ROI} 

 for each m ∈ metrics and while !success: 

 local_best = highest_sensitivity(executions, m) 

 coeff = 0.7 if (m = whole strategy sensitivity) 

 coeff = 0.75 if (m = per gene) 

 coeff = 0.8 if (m = per ROI) 

 

if sensitivity(local_best, m) > sensitivity(best_solution, m) 

 and specificity(local_best, m) > coeff * specificity(best_solution, m): 

 best_solution = local_best 

 success = true 

 p is fixed with value from local_best 
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panelcn.MOPS 
        

Parameter default Min Max Options 

CN0 0.025 0 1  

CN1 0.57 0.1 2  

CN3 1.46 1 2  

CN4 2 1 3  

sizeFactor quant   mean, median, quant, mode 

norm 1   0, 1, 2 

normType quant   mean, median, quant, poisson, mode 

qu 0.25 0 1  

quSizeFactor 0.75 0 1  

priorImpact 1   0, 0.5, 1, 1.5, 2, 4, 6, 8, 10, 15, 20, 30, 50, 100 

minMedianRC 30 0 200  

maxControls    20, 25, 30 

readLength 200 30 1000  

 
 
DECoN 
 

Parameter default Min Max Options 

mincorr 0.98   0.5, 0.75, 0.85, 0.9, 0.92, 0.94, 0.95, 0.96, 0.97, 
0.975, 0.98, 0.985, 0.99, 1 

mincov 100 0 1000  

transProb 0.01 0 1  

 

CoNVaDING 
 

Parameter default Min Max Options 

regionThreshold 20 0 100  

ratioCutOffLow 0.65 0 2  
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ratioCutOffHigh 1.4 0 2  

zScoreCutOffLow -3 -10 0  

zScoreCutOffHigh 3 0 10  

sampleRatioScore 0.09 0 1  

percentageLessReliableTargets 20 0 100  

 

ExomeDepth 
 

Parameter default Min Max Options 

phi.bins 1   1, 2, 3 

transition.probability 0.0001 0 1  

expected.CNV.length 1000 0 1000000  

readLength 200 30 30000  

 

CODEX2 
 

Parameter default Min Max Options 

length_thresh_down 20 10 100  

length_thresh_up 2000 500 5000  

mapp_thresh 0.9   0.8, 0.85, 0.9, 0.95, 1 

gc_thresh_down 20 5 40  

gc_thresh_up 80 60 95  

sample_reads_median_limit 50 20 100  

cn_del_factor 1.7 1 2  

cn_dup_factor 2.3 2 3  
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Supplementary File  - Article 2 

DECoN execution 

DECoN v1.0.1 was executed with customized parameters for both MiSeq and HiSeq samples, 

focusing on improving the sensitivity. 

Parameter DECoN Default MiSeq samples HiSeq samples 

Minimum correlation (mincorr) 0.98 0.95 0.98 

Minimum coverage (mincov) 100 60 80 

Transition probability (transprob) 0.01  0.1585  0.1585 

For the HiSeq sequencing runs, all samples (~96) of each run were analyzed together. For the 

MiSeq sequencing runs, all samples of each run (10 to 16 samples) were analyzed along with 

51 samples from other MiSeq runs with no known CNVs. This set of 51 samples was added 

because read-depth based CNV calling tools work better with a higher number of samples. 

Additional N.comp discussion 

For each sample, the N.comp value provided by DECoN quantifies the number of samples used 

as a reference set. In our study, this value ranged from 1 to 20. When plotting the N.comp value 

for the true-positive and false-positive calls of the prospective study (Supplementary Figure 5), 

we observed that most frequent values were low and the median was 5. If only the true-positive 

calls are plotted (Supplementary Figure 5), the N.comp value ranged from 3 to 17, although 

this value ranged from 1 to 20 in the true-positive CNV calls of our previous benchmark. 

These results suggest that, in our datasets, there is not a minimum number of samples below 

which all CNV calls are expected to be false. In our study, DECoN was capable of detecting the 

true CNV calls even selecting a few samples as a reference set from the whole run where they 

were analyzed. 
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Supplementary Figure 2. BF distribution of true-positive CNV calls from our previous 
benchmark: gene comparison. Upper panel: Per gene HiSeq BF values restricted to the (0.75) 
range.  Lower panel: Per gene MiSeq BF values restricted to the (0-75) range. Only one call (a 
mosaic sample) obtained a BF lower than 2. 

204



    

 

 

 

Supplementary Figure 3. BF distribution of true-positive CNV calls from our previous 
benchmark: MiSeq vs HiSeq comparison. Values restricted to the (0-75 range). The MiSeq and 
HiSeq datasets contained different samples.  

 

 

Supplementary Figure 4 - BF distribution of true-positive CNV calls from our previous 
benchmark: deletions vs. duplications comparison. Values restricted to the (0-75 range). 
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Supplementary Figure 5 – N.comp distribution of the CNV calls in the prospective study. Upper 
panel: false-positive and true-positive CNV calls are included. Lower panel: only true-positive 
CNV calls are included. 
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Supplementary File 1  - Article 3 

Scoring model for CNV duplications 

CNVfilteR identifies a certain CNV duplication as a false positive using the allele frequency of 

the heterozygous SNVs in that CNV. Each SNV is scored using a scoring model, and if the sum of 

the scores of all the SNVs in the CNV is greater than the duplication threshold score (defaults 

to 0.5), the CNV is identified as false positive. The scoring model is based on fuzzy logic, where 

elements can have any value between 1 (True) and 0 (False). A common way of applying fuzzy 

logic is using the sigmoid function. CNVfilteR uses the sigmoid function implemented in the 

pracma package, which is defined as y = 1 / (1 + e ^ (−c1(x − c2))). The scoring model is built on 

6 sigmoids defined on 6 different intervals. The c1 parameter is 2 by default, and the c2 

parameter is defined for the 6 sigmoids: 

 First sigmoid: interval [20, 33.3], c2=28 

 Second sigmoid: interval [33.3, 41.65], c2=38.3 

 Third sigmoid: interval [41.65, 50], c2=44.7 

 Fourth sigmoid: interval [50, 58.3], c2=55.3 

 Fifth sigmoid: interval [58.3, 66.6], c2=61.3 

 Sixth sigmoid: interval [66.6, 80], c2=71.3 
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All parameter values are customizable. Code examples of how to plot and modify the scoring 

model are available at Bioconductor site. 

Evaluation on HuRef, AK1 and NA12878 samples 

Data, tools and evaluation metrics 

CNVfilteR was evaluated on the HuRef, AK1 and NA12878 genomes. Reference callsets and CNV 

calls from different tools were obtained from different sources (see table below). 

To obtain the SNV calls for each sample, they were downloaded and aligned to the hs37d5 

human genome assembly using BWA mem v0.7.13. SAMtools v0.1.8 was used to sort and index 

BAM files and duplicates were marked using Picard v2.18.4. Point mutations were called with 

Strelka v2.9.3. To enrich the CNV tools results for the HuRef and AK1 genomes, LUMPY v0.2.13 

(via smoove v0.2.3) was also executed to call CNVs. Details are summarized in the following 

table. 

 

 Reference call set CNV tools results SRA accession 
number 

HuRef Obtained from Trost et al. 
2018 (file S1). Contains 
deletions and duplications ≥1 
kb. 

Obtained from Trost et al. 2018 
(file S5). LUMPY results were 
obtained from our own 
pipeline as explained above. 
Only calls ≥ 500 bp were 
retained. 

SRR7097859 

AK1 Obtained from Trost et al. 
2018, (file S4), which used 
Seo et al. 2016 as source. 
Contains only deletions ≥1 kb. 

Same as the HuRef sample. 
Only deletions ≥ 500 bp were 
retained. 

SRR3602759 

NA12878 Provided by Zhang et al. 2019 
authors, which used Parikh et 
al 2016 and MacDonald et al. 
2014 as sources. Contains 
deletions and duplications > 1 
kb. A similar version without 
the CNV type is also available 
at Zhang et al. 2019 
publication.  

Provided by Zhang et al. 2019. 
Only calls ≥ 500 bp were 
retained. A similar version 
without the CNV type is also 
available at Zhang et al. 2019 
publication.  

SRR622457 

SRA: Sequence Read Archive from NCBI 
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Evaluation metrics 

A tool call was defined as true positive (TP) if it had a 50% reciprocal overlap with any reference 

call, false positive (FP) otherwise. If a certain reference call had no reciprocal overlap with any 

tool call, it was counted as false negative (FN). Sensitivity was defined as TP / (TP + FN), false 

discovery rate as FP / (FP + TP) and F1-score as 2TP / (2TP + FP + FN). 

Evaluation on HiSeq-panel and MiSeq-panel datasets 

Datasets and tools 

CNVfilteR was evaluated on 541 gene-panel samples (411 HiSeq and 130 MiSeq samples, see 

table below), which are a superset of the samples used in a previous work (Moreno-Cabrera et 

al. 2020). Both HiSeq and MiSeq datasets contained data from a hybridization-based target 

capture NGS panel, called I2HCP, designed for hereditary cancer diagnostics (Castellanos et al., 

2017). Both datasets were generated in real diagnostics settings and contained single and 

multi-exon CNVs, all of them validated by MLPA. Negative MLPA data, meaning no detection of 

any CNV, was also available for a subset of genes. Detailed information on MLPA-detected CNVs 

for each dataset can be found in Supplementary File 3. Samples were generated at the ICO-

IGTP Joint Program for Hereditary Cancer. All MiSeq samples and a subset of HiSeq samples are 

available at the EGA under the accession number EGAS00001004316. All samples were aligned 

to the GRCh37 human genome assembly using BWA mem v0.7.12. SAMtools v0.1.19 was used 

to sort and index BAM files. No additional processing or filtering was applied to the BAM files. 

Varscan v2.4.1 was used to call point mutations and DECoN v1.0.1 was chosen for calling CNVs. 

 
 

Samples 

Validated 
genes 
with CNV 

Single-exon 
CNVs 

Multi-exon 
CNVs 

Deletion 
CNVs 

Duplication 
CNVs 

Validated 
genes with no 
CNV 

MiSeq 
dataset 130 64 19 45 56 8 

 
167 

HiSeq 
dataset 411 62 19 43 52 10 

 
1076 

 

Regions of interest 

We generated a target bed file containing all coding exons from all protein-coding transcripts 

of genes in the I2HCP panel v2.1 (Supplementary File 4). This data was retrieved from Ensembl 

Biomart version 67 may2012.archive.ensembl.org). All genes tested by MLPA and used in the 

benchmark were common to all I2HCP versions (v2.0-2.2). 
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Evaluation metrics 

Performance metrics were performed per gene given that most MLPA kits cover a whole gene 

and so the true CNVs would be detected by MLPA when confirming any CNV call in any region 

of interest (ROI) of the affected gene. Therefore, a CNV tool call was defined as TP if one of its 

ROIs was a TP; FN if MLPA detected a CNV in at least one of its ROIs and none of them were 

detected by the tool; FP if the tool called a CNV in at least one ROI and none of them were 

detected by MLPA; TN if neither MLPA or the tool detected a CNV in any of its ROIs.  

Runtime 

Runtime was calculated by executing CNVfilteR five times on a dataset of 79 gene-panel 

samples and on the HuRef WGS sample. The runtime calculations were performed on an Intel 

i5-2450M CPU (4 cores, 2.50 GHz) with 8 GB of RAM and an SSD disk. The median runtime per 

sample was 0.84 seconds for the gene-panel samples, and 3.60 minutes for the HuRef sample. 

See the table below for more details. 

 
 Gene-panel samples HuRef WGS sample 

Number of samples evaluated 79 samples evaluated at once 1 

Number of variants per sample 1554.3 (From VarScan) 4602440 (From Strelka) 

Number of CNVs per sample 0.55 (From DECoN) 1362 (From LUMPY) 

Total runtime (median value) 66.57 seconds 3.53 minutes 

Runtime per sample (median value) 0.84 seconds 3.53 minutes 

 

 

Summary of CNVfilteR parameters 

 

Parameter Description Value used on WGS 
evaluation (default 
values) 

Value used 
on gene-
panel data 
evaluation 

ht.deletions.threshold Minimum percentage of heterozygous SNVs 
in a CNV deletion to filter that CNV 

30 = 

min.total.depth SNV minimum total depth 10 30 

dup.threshold.score A CNV duplication is identified as false 
positive if the sum of the scores of all the 
heterozygous SNVs in the CNV is equal or 
greater than the dup.threshold.score limit. 

0.5 = 
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margin.pct Percentage of CNV length, from each CNV 
limit, where SNVs will be ignored 

10 0 

homozygous.range Allele frequency interval at which SNVs are 
considered homozygous. 

[90-100] = 

heterozygous.range Allele frequency interval at which SNVs are 
considered heterozygous 

[28-72] = 

expected.ht.mean Expected heterozygous SNV allele 
frequency 

50 = 

expected.dup.ht.mean1 Expected heterozygous SNV allele 
frequency when the variant IS NOT in the 
same allele as the CNV duplication 

33.3 = 

expected.dup.ht.mean2 Expected heterozygous SNV allele 
frequency when the variant IS in the same 
allele as the CNV duplication 

66.6 = 

sigmoid.c1 Sigmoid c1 parameter 2 = 

sigmoid.c2.vector Vector containing sigmoid c2 parameters for 
the six sigmoid functions 

(28, 38.3, 44.7, 
55.3, 61.3, 71.3) 

= 

 

Two parameter values were slightly modified for the gene-panel data evaluation. We used a 

min.total.depth value of 10 to fit better the sample coverage and the SNV caller used (VarScan), 

and a margin.pct of 0 because of the small windows (regions of interest) used in gene-panel 

data. 

CNVfilteR use recommendations 

CNVfilteR uses SNVs to identify false-positive CNV calls. Therefore, its performance depends on 

the SNV calls quality. Some considerations can be followed in order to provide reliable SNVs to 

CNVfilteR: 

Low complexity and repetitive regions are genome areas where SNV callers (also CNV callers) 

perform poorly. If possible, ignore these regions when using CNVfilteR. 

Use the min.depth parameter to discard SNVs with low depth coverage. The default value is 10, 

which may be appropriate in many WGS samples, but this value should be adapted to your 

experiment conditions.  

Many CNV callers produce inaccurate CNV calls. These inaccurate CNV calls are more likely to 

be true (to overlap the real CNV) in the middle of the CNV than in the extremes. So, the 

margin.pct parameter defines the percentage of CNV (from each CNV limit) where SNVs will be 
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ignored. By default, only 10% of SNVs from each CNV extreme will be ignored. This margin.pct 

parameter can be modified to better adapt it to your CNV caller. For example, we observed that 

DECoN produced very accurate CNV calls in our genes panel dataset, so margin.pct value was 

updated to 0 in this context. 

A single reliable SNV can be enough to properly identify false-positive CNV calls, so there is no 

hard low limit on the number of SNVs required by CNVfilteR. Anyway, CNVs with a bigger 

number of overlapping SNVs are more likely to be correctly identified.  

For other use recommendations and how-to-use guide, visit CNVfilteR vignette at 

https://bioconductor.org/packages/release/bioc/vignettes/CNVfilteR/inst/doc/CNVfilteR.html.   
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Supplementary Figures  - Article 4 

 

 
Supplementary Figure 1 History of variant classifications. 1: The user selects a variant that becomes highlighted (green box). 
2: The user clicks on the History button. 3: A subview appears at the bottom of the window containing the classification 
history. 
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Supplementary Figure 2. Automatic variant search when clicking on the PubMed button. 1: The user selects a variant that 
becomes highlighted (green box). 2: The user clicks on the PubMed button. 3: A new tab appears containing a PubMed 
search including several variant nomenclatures. 
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Supplementary Figure 3. Pandora development from the sketch (top) to the current implementation (bottom). 
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Supplementary Figure 4. Use of tags in Pandora. 1: Tags are optional and can be enabled or disabled using a checkbox. 2: 
Tags are shown in a column using its user-defined color. 3: Rows can be filtered by tags. Also, tags can be modified, 
removed, or created. 
 
 
 
 

 
Supplementary Figure 5. Low-coverage genomic regions view. In the image, low-coverage bases are reported for each 
sample in the run HS35. 
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Supplementary Figure 6. Use of colors in Pandora. Freq column: blue for homozygous variants (90-100%), brown for 
heterozygous variants (35-65%), and red for heterozygous variants with unexpected allele frequency (< 35% and 65-90%). 
Cl. (Classification) column: green for benign variants (pol), soft blue for likely benign (ppol), yellow for variants of unknown 
significance (vsd), orange for likely pathogenic variants (ppat), and red for pathogenic variants (pat). A. (Additional risk 
information) column: red if any risk note exists for this variant, white otherwise. Cl. (Classification) Date column: yellow if the 
last classification was more than six months ago, white otherwise. 
 
 
 
 
 

 
Supplementary Figure 7. Search box allows easy search for any field in the table. 
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Supplementary Figure 8. Variants Library shows all the variants that have been found in Pandora. The user can quickly 
explore 4.39 million fields, sorting and filtering by several columns.  
 
 
 
 

 
Supplementary Figure 9. For each variant, a subview can be unfolded to show the variant nomenclature for all the gene 
transcripts. 
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Supplementary Figure 10. The set of columns shown can be selected depending on the task to be done.  
 
 
 
 
 

 
Supplementary Figure 11. Complex tooltip that includes large relevant fields (Reasoning and Comments) when the mouse is 
over the Cl. (Classification) column. 
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