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Abstract: The relationship between physical infrastructure and economic growth has been 

investigated by many, with the direction and magnitude of the result depending on the data and the 

empirical model applied. This paper adds to the literature by addressing spatial heterogeneity and 

possible endogeneity in a panel of 32 Mexican states for the period 2005-2018, thus many limitations 

of earlier studies are overcome. First results indicate a U-shaped relationship with positive spillovers; 

however, robustness checks do not confirm these findings. Most evidence points towards 

infrastructure not having any significant impact on regional economic growth in Mexico.   
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1 Introduction 

Ever since Aschauer (1989) found a positive relationship between the stock of infrastructure capital 

and TFP, researchers, international organizations and policy makers alike have advocated for the 

allocation of larger shares of public funds to infrastructure.1 Maddison (2001) shows that transport 

infrastructure significantly contributed to the economic take-off in Western European countries. 

Agénor (2010) provides a theoretical foundation for infrastructure-led development and calls for 

governments to concentrate their investments on this area. Empirical studies reveal that infrastructure 

can promote welfare directly or indirectly (Donaldson, 2018), economic growth (Wang, Kim & Kim, 

2021), poverty reduction (Andrés, Biller & Herrera Dappe, 2013) and gender equality (Agénor & 

Canuto, 2015); leading to the conclusion that developing countries suffer from an insufficient supply 

of infrastructure (Andres et al., 2014, for Asia; Calderón & Servén, 2003, for Latin America; and Estache, 

Wodon & Lomas, 2014, for Sub-Saharan Africa). Doumbia & Lauridsen (2019; for the World Bank) state 

the infrastructure investment gap to be the largest among the financing requirements to achieve the  

2030 target for the global sustainable development goals (SDG). 

Mexico’s central audit institute (Auditoría Superior de la Federación; ASF; 2016) claims that 

infrastructure investments have contributed significantly to the nation’s economic growth since 1960. 

Certainly influenced by these arguments, some of the key policy proposals of Mexico’s current 

government are large transport infrastructure projects expected to increase welfare by mitigating 

regional income inequalities and stimulating growth (Gobierno de México, 2019).  

However, the academic literature is not quite clear on whether these expectations are realistic. 

Flyvberg (2007) points out the significant budget overruns of large infrastructure investments and their 

common failure to recover the expected revenues. Some researchers find little to no effect of transport 

infrastructure on macroeconomic variables (Crescenzi & Rodríguez-Pose, 2012; Banerjee, Duflo & 

Quian, 2012; Deng et al., 2014; Zhang & Ji, 2018). However, it is commonly assumed that a country’s 

income level determines the marginal effect of additional infrastructure, thus there is believed to be a 

threshold defining the significance and magnitude of the effect of infrastructure on economic growth 

(Hurlin, 2005; Crescenzi & Rodriguez-Pose, 2012). Precisely, Fuentes (2003) finds a significant positive 

correlation between physical infrastructure and economic output in Mexico only for the more 

developed regions.  

This paper aims at investigating the effect of physical transportation infrastructure on regional 

economic growth in a beta conversion framework in Mexico for the period 2005-2018. This period is 

particularly interesting because infrastructure investment volume was doubled between 2009 and 

2016 (Secretaría de Hacienda y Crédito Público, 2021). By using a panel of all 32 states, addressing 

spatial correlation, nonlinear effects and endogeneity, some of the limitations of earlier studies can be 

overcome. Considering the results of a meta-analysis of similar studies by Elburz, Nijkamp & Pels 

(2017), using a convergence growth-regression and a sub-national scope both increase the likelihood 

of observing a negative effect of infrastructure on growth; however, focusing on land transport, 

particularly roads, and measuring them in kilometres have been shown to be significantly correlated 

with positive outcomes. Hence, the expected sign of the result is ambiguous from both perspectives.  

 
1 Particularly, a similar analysis by the same author regarding Mexico finds public capital stock to have a larger, 
positive impact on per capita output and growth than private capital stock (Aschauer, 1998).  
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The panel structure of the data is analysed using a two-way fixed-effects (TWFE) model with clustered 

standard errors to account for heterogeneity between the states and autocorrelation across time. 

TWFE results indicate a U-shaped relationship between infrastructure and GDP per capita growth, as 

the linear term is assigned a negative, and the squared variable a positive coefficient. Split-sample 

analysis shows this effect to be increasing over time, and to be more significant for regions with lower 

average income levels. Following Arellano & Bover (1995), Blundell & Bond (1998) and Bond, Hoeffler 

& Temple (2001), Generalized Method of Moments (GMM) estimators are applied to address 

endogeneity. The Difference-GMM encounters similar results as the TWFE model, but is not consistent 

and the System-GMM estimators find the relevant variables to be non-significant, albeit lacking 

reliability. The Hansen test indicates this result might be caused by too many instruments. However, 

several approaches taken to reduce their number do not lead to different outcomes. 

Empirical studies have observed that generally, the measurable impact of infrastructure on regional 

economic growth is lower than on the national scope, which has been attested to be caused by ignoring 

spatial spillovers between regions (Yu et al., 2013; Elburz, Nijkamp & Pels, 2017). Similarly, Rey & 

Montouri (1999) argue that spatial effects are key determinants of the regional convergence 

phenomenon, leading to omitted variable bias if they are not accounted for. Consequently, a Spatial 

Durbin Model (SDM) and a Spatial Lag Model (SLX) are implemented, though a LR-test shows that SLX 

is to be preferred. Here, the direct effects are similar to the TWFE model, while the spillovers have the 

opposite signs. A total of six different specifications for the spatial weight matrix are compared, finding 

that the simple physical binary contiguity option yields consistent results that are very similar to the 

estimations conducted with an inverse-distance weight matrix that considers links up to a distance of 

400 kilometres, indicating that this is the space of influence for spatial spillovers of transport 

infrastructure in Mexico. However, robustness checks using alternative specifications to standardize 

the stock of infrastructure measure fail to confirm these findings. This warrants caution in the 

interpretation of the presented main results. 

A meta-analysis conducted by Elburz, Nijkamp & Pels (2017) shows that of 43 studies investigating the 

relationship between infrastructure and regional economic outcomes, only about 5 percent include 

spatial spillovers (i.e., a spatial regression model).2 Hence, this paper contributes to the current 

literature by providing new evidence of the spatial spillovers of infrastructure. To my knowledge, this 

is the first study on this topic accounting for spatial heterogeneity in Mexico. 

The results indicate that transport infrastructure appears to have no significant impact on output 

growth during the considered period when using an endogenous growth model, with some indication 

of a significant negative effect depending on the way the infrastructure variable is standardized.  

Chapter 2 revises the relevant literature regarding the impact of transportation infrastructure on 

economic growth. Chapter 3 explains the empirical approach and presents the identification strategies 

for both the direct and indirect effects. The dataset used in the empirical analysis is presented in 

chapter 4, along with an exploratory spatial data analysis to support the spatial specifications. 

Consequently, the main results are shown in chapter 5. Robustness checks can be found in chapter 6, 

while chapter 7 summarizes the main findings and concludes with a discussion on their implications 

and limitations.  

 
2 Other methodologies: production function (47 percent), growth regression (22 percent), total factor 
productivity (5 percent).  
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2 Literature Review 

There are several proposed mechanisms through which transportation infrastructure may affect 

economic growth: Traditionally, public infrastructure is assumed to increase private sector productivity 

(Aschauer, 1989; Barro, 1990). Endogenous growth theory proposes a reduction in trade costs and 

increased market integration, both of which push productivity (Hulten & Schwab, 2000; Agénor, 2010). 

Contributions from the New Economic Geography argue that factor mobility (labour, capital, 

technology) may be promoted by a higher degree of connectivity, leading to a more efficient location 

of firms and households (Krugman, 1991). Banerjee, Duflo & Quian (2012) argue that improved access 

to (higher quality) education and health may affect economic outcomes indirectly. Agénor & Moreno-

Dodson (2006) propose that infrastructure improves labour productivity by reducing time spent 

commuting and increasing the speed at which certain tasks can be delivered. 

Hansen’s (1965) hypothesis claims that the effect of public capital investments depends on the 

characteristics of the target region. Agénor’s (2010) theory of infrastructure-led development 

proposes that infrastructure investment promotes labour productivity and lowers consumer time 

preference, which is contrasted by otherwise unproductive government spending.  

Several authors have addressed the question of the long-term impact of infrastructure on economic 

growth empirically. Those studies applying monetary measures for infrastructure stock or investment 

yield mixed results, ranging from non-significance (Holtz-Eakin & Schwartz, 1995; Crihfield & 

Panggabean, 1995) to positive (Easterly & Rebelo, 1993; Gupta et al., 2005; Zou et al., 2008) and 

negative (Devarajan, Swaroop & Zou, 1996). On the other hand, physical indicators of infrastructure 

stock often lead to findings indicating a significantly positive correlation with economic output or 

growth (Sanchez-Robles, 1998; Calderón & Servén, 2004, 2010).  

Studies using cross-country panel data often find a significant effect of infrastructure stock on GDP or 

productivity (Canning & Pedroni, 1999; Calderón & Servén, 2003; Calderón, Moral-Benito & Servén, 

2014). Demetriades & Mamuneas (2000) and Cohen & Paul (2004) show that infrastructure reduces 

costs and increases profits using augmented cost and profit functions. A meta-analysis of 33 studies 

investigating the relationship between transport infrastructure and productivity shows that roads have 

a larger (positive) effect than other transport modes and indices (Melo, Graham & Brage-Ardao, 2013).  

Fisher (1997) and Shi, Guo & Sun (2017) note that studies seem to be sensitive to measurement 

approach, analytical technique, quality, institutions, non-linearities and regional heterogeneity. 

Gramlich (1994) and Estache & Fay (2009) point out econometric problems with many estimations, 

such as common trends, omitted variable bias, reverse causality, network effects, heterogeneity and 

poor data quality, that affect the reliability of reported results. 

Elburz, Nijkamp & Pels (2017) conduct a meta-analysis regarding the relationship between transport 

infrastructure and economic development between 1995 and 2014. The authors identify type of 

infrastructure, research methodology, time span, type of infrastructure measure, and geographical 

scale as relevant factors in determining the result of a study, whereas output measure and focusing on 

a particular sector does not seem to affect the outcome. The authors construct 6 different 

specifications to analyse the findings of 43 studies. Selected results are presented in Table A1. 

Calderón & Servén (2014) and Timilsina, Hochman & Song (2020) provide recent summaries of the 

existing literature regarding the effect of infrastructure development on economic variables. The 
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researchers point out that many – especially earlier – studies on the topic of infrastructure and 

economic variables do so in the context of investigating the effects of public investment in general, 

which has some important limitations:  

1) Infrastructure investment is not the only type of productive government spending in most 

countries (e.g. education, health, defence) 

2) Infrastructure need not be built only by public entities 

3) Often, the spending for new infrastructure and maintenance of the existing network cannot 

be differentiated; similarly, it is not possible to differentiate between quality and quantity 

Thus, by using a variable for the stock of infrastructure instead of the flow, the focus lies on measuring 

the effect of access to infrastructure services (e.g. road transport) rather than productive government 

spending, which is more relevant to the analysis of public investments. Similarly, Bröcker & Rietveld 

(2009) and Calderón, Moral-Benito & Servén (2015) conclude that using the physical stock of 

infrastructure is the most sensible approach, especially in developing countries where corruption and 

government inefficiencies are, on average, more common issues (Zhang & Ji, 2018). Moreover, 

geographic differences can cause differences in construction costs (Rodrigue, 2020).  

A potential issue are nonlinearities in the marginal effect (Fernald, 1999; Agénor & Moreno-Dodson, 

2006). These network effects are another reason to use the stock of infrastructure as an indicator, 

since Romp & De Haan (2005) note that the marginal productivity of a new link depends on the capacity 

and composition of the existing links. One limitation related to measuring infrastructure in terms of its 

stock is that unproductive structures, so-called “white elephants” for example, are included in the 

measure (Oosterhaven & Knaap, 2003).  

Nonetheless, the meta-analysis by Elburz, Nijkamp & Pels (2017) finds that out of 43 studies, only about 

10 percent measure infrastructure in physical units (kilometres).3 Calderón & Servén (2014) note that 

the literature investigating the relationship between physical infrastructure and economic growth is 

relatively recent (compared to studies on public investment), which might explain this observation. 

Banerjee, Duflo & Quian (2012) point out that factor mobility may affect the measurable benefits of 

infrastructure. They use a model with immobile labour and a cost associated with capital mobility 

consistent with the empirical evidence, showing that capital is less mobile than goods and different 

regions are involved in the production of exports. Hence, the differences in income levels between 

better and worse connected places may be small and there might be no differences associated to the 

growth rate. Both of their assumptions are confirmed with empirical data on Chinese provinces. 

Shi, Guo & Sun (2017) use a dynamic panel data approach with a vector error correction model (VECM) 

to investigate the relationship between infrastructure capital and China’s regional economic growth. 

They show that particularly for the road network, an inverse U-shaped relationship between 

infrastructure and growth is identified in some time periods. They assign this result to the theory of 

the crowding-out effect of private capital: when public investment in infrastructure is over 

proportionally high, the correlation is negative in some time periods, indicating overinvestment.  

 
3 Meanwhile, 38 percent use an index (combining different types of transport infrastructure) and 51 percent 
apply monetary terms.  
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Contrary to this result, Ren, Dan & Wang (2018) identify a U-shaped relationship between road density 

on income in rural areas of Western China. On the other hand, Simon & Natarajan (2017) find no 

significance of nonlinear estimates regarding infrastructure on economic growth in India. 

Regarding the research methodology (production function, total factor productivity, growth equation, 

spatial regression), Elburz, Nijkamp & Pels (2017) point out that most studies focus on a single 

approach, which makes it harder to compare results. A limitation of the production function approach 

is the direction of causality.  

To address the potential problem of endogeneity regarding infrastructure, academics have proposed 

using instrumental variables for actual highway or railway networks. For example, historical roads 

(Donaldson & Hornbeck, 2016; Baum-Snow et al., 2015), planned networks (Baum-Snow, 2007; 

Duranton & Turner, 2011; Duranton, Morrow & Turner, 2014), proximity to the connection between 

historic metropolitan areas (Banerjee, Duflo & Quian, 2012; Iimi, Humphreys & Melibaeva, 2015) and 

algorithm-generated networks (Faber, 2014) have been suggested. This approach relies on the 

assumption that the chosen instrument fulfils the exclusion restriction, that is, there is no correlation 

with unobservable factors directly affecting economic development.  

Fuentes (2003) conducts an analysis of the impact of physical infrastructure on regional GDP per capita 

levels in Mexico, clustering the states into intermediate development and delayed (see also Table A4). 

He finds that for 1998 cross-sectional data, a synthetic index of infrastructure stock (encompassing 

road, rail, airports and seaports) only has a significant (positive) effect on regions in the intermediate 

development cluster.  

Hernández-García et al. (2020) regress Mexico’s infrastructure investment (for all modes) on output 

between 1997-2018 and find a positive correlation at the national level and in five regional clusters.  

Fingleton & López-Bazo (2006) and Rey & Montouri (1999) emphasize the importance of considering 

spatial effects in the analysis of regional economic development. In more recent years, the study of 

subnational and/or spillover effects of infrastructure has become more common. For example, Roy et 

al. (2014) find that physical infrastructure only has a significant (positive) impact on the more 

industrialized districts within the Indian state of Jharkhand.   

The study by Crescenzi & Rodriguez-Pose (2012) examines the effect of road infrastructure on 

economic growth in NUTS2 regions of the European Union. Using panel data, accounting for spatial 

spillovers and applying Difference-GMM allows them to identify the lack of significance of the 

infrastructure variable. They find that its significance depends on the inclusion of an education 

variable. The researchers conclude that at the EU’s high income level, transport infrastructure has not 

been a significant determinant of growth between 1990 and 2004.  

Yu et al. (2013) investigate the indirect effects of transport infrastructure in Chinese provinces and 

classify these spillovers in two categories: either, they are derived from network expenditures 

promoted by neighbouring regions (Munnell, 1992), or arise from factor migration (Boarnet, 1998).  

Summarizing, there is conflicting evidence regarding the impact of transport infrastructure on 

economic growth and development. Results are sensitive to the specifications used in terms of 

measurement, the geographical level of analysis as well as regarding econometric techniques. Spatial 

spillovers, despite their acceptance in mainstream economics, have not received sufficient attention.  
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3 Empirical Approach 

3.1 Identification Strategy of the Direct Effects 

Compared to cross-section models, panel data has the advantages of a greater availability of degrees 

of freedom and less multicollinearity, leading to more efficient estimators (Hsiao, 2007; Amidi, Majidi 

& Javaheri, 2020). Additionally, by considering both the intertemporal dynamics and individuality of 

the units of observation, panel data can control for the impact of unobservable, time-invariant 

characteristics of the units of observation (Hsiao, 2007). Finkel (1995) adds that panel data corrects for 

a certain degree of measurement error, which can be the source of bias. The two-way fixed-effects 

estimator is the preferred approach to establish a causal effect of infrastructure on economic outcome 

(Crescenzi & Rodriguez-Pose, 2012; Imai & Kim, 2019). Its validity relies on two key assumptions: past 

values of the independent variables do not directly affect the current outcome, and past outcomes do 

not affect the current values of independent variables (Imai & Kim, 2019).4  

Reverse causality between the dependent variable and the infrastructure variable is a well-known 

source of endogeneity (Gramlich, 1994; Feng & Wu, 2018). The argumentation proposes that 

infrastructure promotes economic development, but that more is invested in regions with higher 

income, both due to stronger political influence of economically more successful states and because 

policy makers expect higher returns of additional transport services in economically dynamic locations. 

However, in the dataset applied here, there is a negative correlation between physical infrastructure 

and both, GDP per capita levels and growth (Table A3), which is contrary to the expected direction of 

the bias. A possible reason for this observation could be that in Mexico, investment in road 

infrastructure is decided by the states, thus considerations of effectiveness on the national level are 

less likely to affect them (CIEP, 2020). Nonetheless, the results have to be interpreted as the upper 

bound, since in case reverse causality was an issue, they might suffer from a positive bias. 

Zergawu, Walle & Giménez-Gómez (2020) claim that using a system Generalized Methods of Moments 

(GMM) estimator based on Arellano & Bover (1995), Blundell & Bond (1998) and Bond, Hoeffler & 

Temple (2001) provides more reliable results, as standard models may still suffer from endogeneity 

between the lagged variable and region-specific fixed effects. The method relies on applying internal 

instruments in the form of suitable lags of the variables (Arellano & Bond, 1991). According to Nickell 

(1981) and Anderson & Hsiao (1982), the source of this endogeneity bias cannot be mitigated with 

demeaning or first differences. Kukenova & Monteiro (2009) conduct a Monte-Carto investigation on 

this matter and find that the System-GMM approach outperforms static and dynamic spatial Maximum 

Likelihood Estimation (MLE), dynamic Quasi Maximum Likelihood Estimation (QMLE), Least Squares 

Dummy Variables (LSDV) and Difference-GMM in terms of Root Mean Square Error (RMSE) and bias. 

Nonetheless, Roodman (2007) points out that when the generated instrument count is higher than the 

number of observations, the results of System-GMM are less reliable. Further, Bivand, Millo & Piras 

(2021) claim that System-GMM is not suitable for spatial models, as the procedure assumes cross-

sectionally uncorrelated errors. Additionally, Esposti (2007) argues that System-GMM is not superior 

to Difference-GMM in terms of statistical significance or theoretical consistency.  

 
4 Lindgren, Pettersson-Lidbom & Tyrefors (2021) argue that using a traditional two-way fixed effects estimatior 
neglects heterogenous treatment effects and may bias the results when investigating the impact of infrastructure 
on economic outcomes. However, this discussion currently appears to be limited to Differences-in-Differences 
and event study approaches, thus it is not further considered in this study. 
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As proposed by Crescenzi & Rodriguez-Pose (2012) – based on similar arguments are presented here 

– the model is estimated with two-way fixed effects and Difference-GMM based on Blundell & Bond 

(2000) and Bond, Hoeffler & Temple (2001). This is implemented in STATA using xtabond2 (Roodman, 

2009) . This paper will follow Bond, Hoeffler & Temple’s (2001) advice on choosing between Difference-

GMM and System-GMM: for the former to provide consistent results, the coefficients must lie between 

the estimations provided by Pooled OLS (upper bound) and the fixed effects estimation (lower bound). 

If this condition does not hold, System-GMM is to be preferred. To minimize the instrument count, a 

time-invariant impact of the endogenized variable is assumed.5 In any case, in this analysis, as N (32) > 

T (14), non-stationarity is not a concern and will not affect the performance of the GMM-Diff approach 

(Binder, Hsiao & Pesaran, 2003; Baltagi, 2008; Wooldridge, 2010). 

Equation (1) denotes the common growth specification based on the original models by Solow (1956) 

and Swan (1956) and the seminal papers by Barro et al. (1991) and Mankiw, Romer and Weil (1992). 

The hypothesis is that a region’s economic growth (𝜸𝒊,𝒕) is inversely related to its initial per capita GDP 

(𝒚𝒊,𝒕−𝟏), while additional factors (𝑿𝒊,𝒕) determine differences in the steady state across regions 

(Fingleton & Lopez-Bazo, 2006). Parameter 𝜷 denotes the speed of convergence, hence the model is 

also known as beta convergence equation. If 𝜷 > 𝟎, convergence is taking place, conditional on the 

significance of 𝜹. 

𝜸𝒊,𝒕 = 𝒄 + (𝒆−𝜷𝑻 − 𝟏)𝒍𝒏𝒚𝒊,𝒕−𝟏 + 𝜹𝑿𝒊,𝒕 + 𝜺𝒊,𝒕         (1) 

The role of transport infrastructure in shaping regional economic growth in Mexico is investigated in a 

specification that includes a vector of control variables (X’), to account for relevant endogenous and 

external factors, as these condition the impact of any type of policy intervention (Ascani, Crescenzi & 

Iammarino, 2012). The linear and squared terms of the infrastructure variable Infra account for 

nonlinearities. Further, 𝜼 covers time-invariant state-fixed-effects; 𝝀 controls for year-fixed effects that 

affect the entire country and 𝜺 denotes a well-behaved error term that is clustered at the state-level. 

Subscripts i and t refer to region and year, respectively. This is applied in equation (2). 

𝒍𝒏𝒚𝒊,𝒕 = 𝒄 + 𝜶𝒍𝒏𝒚𝒊,𝒕−𝟏 + 𝜷𝟏𝑰𝒏𝒇𝒓𝒂𝒊,𝒕 + 𝜷𝟐𝑰𝒏𝒇𝒓𝒂𝒊,𝒕
𝟐 + 𝜹𝟏𝑿′𝒊,𝒕 + 𝜼𝒊 + 𝝀𝒕 + 𝜺𝒊,𝒕     (2) 

The growth rate is approximated by subtracting the lagged GDP per capita level from both sides of the 

equation, leading to the final specification (equation 3) (Crescenzi & Rodríguez-Pose, 2012): 

𝜸𝒊,𝒕 = 𝒍𝒏𝒚𝒊,𝒕 − 𝒍𝒏𝒚𝒊,𝒕−𝟏 

       = 𝒄 + (𝜶 − 𝟏)𝒍𝒏𝒚𝒊,𝒕−𝟏 + 𝜷𝟏𝑰𝒏𝒇𝒓𝒂𝒊,𝒕 + 𝜷𝟐𝑰𝒏𝒇𝒓𝒂𝒊,𝒕
𝟐 + 𝜹𝟏𝑿′𝒊,𝒕 + 𝜼𝒊 + 𝝀𝒕 + 𝜺𝒊,𝒕   (3) 

Where 𝜶 = 𝒆−𝜷𝑻 and (𝜶 − 𝟏) = 𝜽. 

3.3 Identification Strategy of the Spatial Spillovers 

Several authors suggest addressing spatial heterogeneity in regional analysis (Amstrong, 1995; Rey & 

Montouri, 1999; López-Bazo et al., 1999, Bivand & Brundstad, 2006). Besides data-driven motives, 

there is a theoretical foundation for including spatial externalities in neoclassical growth models 

(Fingleton & Lopez-Bazo, 2006; Ertur & Koch, 2007) and dynamic models with a regional perspective 

(Patacchini & Zenou, 2007). Not accounting for the significant spatial lag of a variable leads to omitted 

variable bias, while ignoring spatially correlated errors causes inconsistent estimators (Anselin & 

 
5 Instead of the default procedure of creating a unique instrument for each year of the panel.  
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Arribas-Bel, 2013). Here, the regional analysis is limited to a single country, thus people, goods and 

services enjoy unlimited mobility between states and the interstate borders are unlikely to have any 

impact on mobility decisions of individuals and firms.   

The main challenge in addressing spatial heterogeneity is selecting the adequate model and an 

appropriate spatial weight matrix. As shown in Figure 1, the general nesting spatial model (GNS) 

accounts for all kinds of potential spatial effects, from which all other specifications can be derived 

based on the significance of the relevant parameters. Researchers generally use theoretical reasons, 

statistical tests, or both, to determine the model of their choice. Theoretical assumptions drive the 

selection of the weight matrix. Both approaches have been criticized to lack scrutiny, thus a 

combination of the two is suggested (Corrado & Fingleton, 2012; Elhorst, 2017). 

Figure 1: The relationships between different spatial dependence models for cross-section data 

 
Note: GNS = general nesting spatial model, SAC = spatial autoregressive combined model, SDM = spatial Durbin 

model, SDEM = spatial Durbin error model, SAR = spatial autoregressive model (spatial lag model),  

SLX= spatial lag of X model, SEM = spatial error model, OLS = ordinary least squares model 

Source: Halleck Vega & Elhorst, 2012 

Particularly, the most popular models (SAR, SDM and SAC) all impose global spillover effects, that is, 

indirect effects affect all other regions, even if they are not connected via the spatial weight matrix 

(Halleck Vega & Elhorst, 2015). Additionally, the ratio between direct and indirect effects in the SAC 

and SAR models is the same for all variables (Elhorst, 2017). In the SEM specification, there are no 

spillovers at all, as only the errors are assumed to be correlated. The models that avoid these pitfalls 

are SDEM and SLX, as both limit the spatial effects to their local nature (only those regions connected 

via the spatial weight matrix influence each other) and indirect effects are not dependent upon direct 

effects (Gibbon & Overman, 2012; Halleck Vega & Elhorst, 2015; Elhorst, 2017).  

In addition to the theoretical arguments laid out earlier, the Exploratory Spatial Data Analysis (ESDA) 

in section 4.2 will show that spillovers appear to affect the model, while spatial errors do not appear 

to be relevant. Consequently, both SDM and SLX will be computed using xsmle in STATA (Belotti, 

Hughes & Mortari, 2017). Additionally, a spatial model selection process as proposed by Elhorst (2010), 

combining bottom-up (Florax, Folmer & Rey., 2003) and top-down (LeSage & Pace, 2009) approaches, 

is followed. However, due to lack of theoretical and statistical evidence in favour of SAR, SEM, SAC or 

SDEM, these models are not investigated in detail.  
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The SDM model is specified by equation (4), adding spatial lags of all explanatory variables and the 

dependent variable: 

𝜸𝒊,𝒕 = 𝝋 ∑ 𝑾𝒊𝒋
𝒏
𝒋=𝟏 𝜸𝒊,𝒕 + 𝜽𝟏𝒍𝒏𝒚𝒊,𝒕−𝟏 + 𝜽𝟐 ∑ 𝑾𝒊𝒋

𝒏
𝒋=𝟏 𝒍𝒏𝒚𝒊,𝒕−𝟏 + 𝜷𝟏𝑰𝒏𝒇𝒓𝒂𝒊,𝒕 + 𝜷𝟐𝑰𝒏𝒇𝒓𝒂𝒊,𝒕

𝟐 +

           𝜷𝟑 ∑ 𝑾𝒊𝒋
𝒏
𝒋=𝟏 𝑰𝒏𝒇𝒓𝒂𝒊,𝒕 + 𝜷𝟒 ∑ 𝑾𝒊𝒋

𝒏
𝒋=𝟏 𝑰𝒏𝒇𝒓𝒂𝒊,𝒕

𝟐 + 𝜹𝟏𝑿′𝒊,𝒕 + 𝜹𝟐 ∑ 𝑾𝒊𝒋
𝒏
𝒋=𝟏 𝑿𝒊,𝒕 + 𝜼𝒊 + 𝝀𝒕 + 𝜺𝒊,𝒕   (4) 

While the SLX model lacks the spatial lag of the dependent variable, as equation (5) shows: 

𝜸𝒊,𝒕 = 𝜽𝟏𝒍𝒏𝒚𝒊,𝒕−𝟏 + 𝜽𝟐 ∑ 𝑾𝒊𝒋
𝒏
𝒋=𝟏 𝒍𝒏𝒚𝒊,𝒕−𝟏 + 𝜷𝟏𝑰𝒏𝒇𝒓𝒂𝒊,𝒕 + 𝜷𝟐𝑰𝒏𝒇𝒓𝒂𝒊,𝒕

𝟐 + 𝜷𝟑 ∑ 𝑾𝒊𝒋
𝒏
𝒋=𝟏 𝑰𝒏𝒇𝒓𝒂𝒊,𝒕 +

            𝜷𝟒 ∑ 𝑾𝒊𝒋
𝒏
𝒋=𝟏 𝑰𝒏𝒇𝒓𝒂𝒊,𝒕

𝟐 + 𝜹𝟏𝑿𝒊,𝒕 + 𝜹𝟐 ∑ 𝑾𝒊𝒋
𝒏
𝒋=𝟏 𝑿′𝒊,𝒕 + 𝜼𝒊 + 𝝀𝒕 + 𝜺𝒊,𝒕       (5) 

In both cases, ∑ 𝑾𝒊𝒋
𝒏
𝒋=𝟏  denotes the multiplication of the specified variables with a spatial weight 

matrix. In line with Tobler’s (1970) first law of geography – “everything is related to everything else, 

but near things are more related than distant things” and particularly, related studies (e.g. Crescenzi 

& Rodriguez-Pose, 2012), different weight matrices accounting for proximity are constructed, as 

displayed in Table 1.  

Table 1: Spatial Weight Matrices 

Name C1 C2 ID1 ID2 ID3 ID4 

Type Contiguity Contiguity Inv.-Dist. Inv.-Dist. Inv.-Dist. Inv.-Dist. 

Limit 1st Border 2nd Border 300 km 400 km 555 km None 

Avg. Links 4.2 6.8 4.3 6.3 10.3 31 

Max. Links 8 12 10 15 20 31 

 

In the case of physical contiguity weight matrices (C1 and C2), the elements 𝑾𝒊𝒋 take the value of 1 

whenever state j (∀ 𝒋 ≠ 𝒊) shares a border with state i. Additionally, in the case of C2, they would take 

the value of 0.5 if j is a second-degree neighbour to i.  

Inverse-Distance weight matrices us the Euclidian distance between regions to determine the degree 

of impact one has on the other. ID4 denotes the unlimited case – all states’ characteristics influence 

the outcome in all other states. The closest proximity of regions is 54 kilometres while the largest 

distance amounts to over 2,965 kilometres. The average distance between states is 555 kilometres. 

Consequently, ID3 was constructed to only account for regions that are within the average distance of 

each other, while ID1 and ID2 are more restrictive and have a similar number of links to C1 and C2, 

respectively. This allows for a comparison between the two different approaches, as naturally the 

number of links will increase the variance captured by each weight matrix. 

One weakness of the inverse-distance weight matrices is that they will also consider states as 

neighbours when the shortest distance requires the crossing of water bodies, such as between Baja 

California Sur and Sinaloa (at 436 km, this is the case in ID3 and ID4). Further, it seems rather unlikely 

that spatial spillovers from one state affect the entire country (ID4). Also some of the other 

specifications (C2, ID2, ID3) lead to some states having a surprisingly high number of links. Nonetheless, 

all spatial weight matrices will be applied to investigate whether the assumptions hold (Table 10).  

To account for states having different numbers of neighbours – many in the central highlands, less in 

the coastal periphery – all weight matrices are row-standardized.  
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4 Data  

4.1 Dataset and Variables 

The dataset is compiled using indicators from the OECD regional database and the statistical and 

geographical yearbook, by state, published by the Mexican National Institute of Statistics and 

Geography (INEGI, for its acronym in Spanish). The strongly balanced panel has a size of 14 years (2005-

2018) and covers all 32 Mexican states. While neither the time nor the space dimension are large, both 

are very close to the average sample size of 15 years and 31 geographical regions observed by Elburz, 

Nijkamp & Pels (2017) in their meta-analysis of 43 studies on the same topic. Basic descriptive statistics 

of the variables can be found in Table A2. 

4.1.1 Regional GDP per capita (in levels) and growth rate  

The dependent variable, GDP per capita, is taken from the OECD regional database and measured in 

USD, with constant prices and PPP and base year 2015. This variable was then adjusted by excluding 

the share of GDP per capita that is obtained via the extraction of natural resources, as particularly 

income generated via petroleum distorts the observations in some states.6  The adjustment factor was 

computed using GDP values and their sources published by INEGI. Figure 2 visualizes this process. For 

a better distributional quality, the variable is expressed in natural logarithms. The growth rate, as 

described in section 3.1, is approximated by the log difference of GDP per capita levels. 

Figure 2: GDP per capita 2005-18 

 
Source: Author’s elaboration using STATA 17 with data from OECD and INEGI 

4.1.2 Transport Infrastructure 

As discussed in chapter 2, measuring infrastructure as a stock variable expressed in kilometres has a 

number of advantages, such as reduced endogeneity issues and a stronger relationship with the 

amount and quality of actually available mobility services. Empirical studies have shown that roads are 

the most popular dimension of transport infrastructure (excluding synthetic indices) with stronger and 

more robust impacts on economic variables (Elburz, Nijkamp & Pels, 2017). The data on road 

kilometres was taken from INEGI. There is no consensus on how to best standardize the stock of 

 
6 Nonetheless, the results are not significantly affected by this adjustment. 
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infrastructure to account for differences in size (Crescenzi & Rodriguez-Pose, 2012). For the main 

results, the variable is standardized by total regional GDP to account for economic activity, which is 

assumed to be the main beneficiary of transport infrastructure. Standardization by area (square 

kilometres) and population is applied in robustness checks in section 6. 

In Figure 3, the red lines indicate average values (horizontal: growth rate, vertical: infrastructure) and 

the circles position each state’s initial infrastructure endowment (2005) while their size denotes the 

increase of Road kilometres between 2005 and 2018. It shows that there is no distinct pattern between 

initial infrastructure endowment (2005) and subsequent growth. However, the circles positioned in 

the lower right quadrant indicate that most of those states with an above-average initial infrastructure 

endowment experienced below-average growth, while those in the upper left quadrant show that 

many states with above-average growth had below-average infrastructure endowments. 

Figure 3: Stock and growth of Infrastructure and GDP p.c. 2005-18 

 
Source: Author’s elaboration on OECD and INEGI data 

4.1.3 Innovation  

The effect of innovation, particularly research and development (R & D), on economic output is well 

established (Griliches, 1990; Nagaoka, Motohashi & Goto, 2010). Specifically, Torres-Preciado, 

Polanco-Gaytán & Tinoco-Zermeño (2014) confirm the positive effect – including spatial spillovers –  of 

patent applications on regional economic growth in Mexico. Patent applications as reported by INEGI 

have been selected as the indicator for this dimension as they are a reliable measure of research output 

that is expected to generate economic returns. The standardization per capita ensures comparability 

between states. However, there are two major shortcomings to this choice: the actual economic 

impact of each patent displays a large variance and not all innovations are patented. The assignment 

of a patent to each region based on the residence of the first author has been shown to be quite robust 

(Carlino, Chatterjee & Hunt, 2007), though to my knowledge this has not been studied for the specific 

Mexican data I am using.7  

 
7 For a thorough discussion on the use of patents as indicators, see Griliches (1990) and Nagaoka, Motohashi & 
Goto (2010). 
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4.1.4 Unemployment Rate  

Okun’s law, established in 1962, predicts a negative relationship between unemployment and 

economic output, in the short run (Okun, 1962; Prachowny, 1993). Empirical findings are mixed, 

nonetheless the hypothesis is generally assumed to hold for both, GDP and growth; also at the regional 

level (Kangasharju, Tavera & Nijkamp, 2012; Ball, Leigh & Loungani, 2013). As this relationship works 

in both directions, endogeneity is a serious concern (Huang et al., 2020). Additionally, unemployment 

captures inefficiencies in local labour markets and the potential stratification of inadequate skills 

(Gordon, 2001). The variable is obtained from the OECD regional database and refers to the share of 

unemployed persons aged 15-64 among the active labour force of a region. 

4.1.5 Share of labour in primary sector 

According to Caselli & Coleman (2001), employment in agriculture captures a certain degree of ‘hidden 

unemployment’ especially in rural areas. Further, the productivity in the primary sector is traditionally 

much lower than in other industries (Crescenzi & Rodriguez-Pose, 2012). The variable is sourced from 

INEGI and measured as the share of workers employed in agriculture, fishing, livestock, and hunting. 

4.1.6 Organized Crime 

Due to the strong presence of organized crime in Mexico, particularly related to drug trafficking, it is 

common practice to account for interregional differences in this regard (Bel & Holst, 2018). According 

to Brito, Corbacho and Osorio (2014), the homicide rate (per 100,000 inhabitants) is a good proxy for 

crime, as it suffers less from underreporting than other offenses (e.g. robbery). Nonetheless, the 

amount of underreporting can be assumed to be significant as about 80.000 people are considered 

‘missing’, many of whom are assumed to be dead, since occasionally some are identified in both public 

and clandestine mass graves (Arista & Flores, 2021). While the presence of drug cartels alone does not 

vary much in the relevant time period, the impact of their activities largely depends on government 

interventions and wars with rival gangs, (Robles, Calderon & Magaloni, 2014). Further, Díaz Cayeros et 

al. (2012) find that in Mexico, the homicide rate is a suitable indicator for the intensity of extorsion by 

organized crime on the local population. The homicide rate increases due to turf wars between 

competing gangs and violence spurred by government crackdowns on organized crime (Robles, 

Calderon & Magaloni, 2014). In these situations, Mexican drug cartels display predatory behaviour 

towards the local population, while in monopolistic settings without government intervention they 

often support local firms and are less violent to attract investment and a stable economic environment. 

The homicide rate is measured as the logarithm of homicides per 100,000 inhabitants and sourced 

from INEGI, since Bel & Holst (2018) argue that they provide the most reliable data on this topic. 

4.1.7 Human Capital 

There is an ample body of literature regarding the significant positive impact of education on economic 

development going back to Becker (1964) and confirmed by Arellano & Fullerton (2005) for regional 

income in Mexico. Since Solow (1956), human capital is commonly included in neoclassical growth 

models. Malecki (1997) argues that educational attainment affects a region’s reaction capabilities to 

change (such as increased connectivity, or new innovations). Here, the average years of schooling for 

persons 15 years and older (INEGI) serve as a proxy for this dimension, which is a common practice in 

research (Crescenzi & Rodriguez-Pose, 2012; Bel & Holst, 2018). Nonetheless, this variable naturally 

does not reflect quality, and may be downward biased for regions with an above-average share of 

people that obtain further education after the age of 15. 
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The correlation matrix of these variables is presented in Table A3. A relevant correlation exists between 

education and infrastructure, and education and share of labour force in the primary sector. For this 

reason, the exclusion of the education variable will be studied in section 5.  

4.2 Exploratory Spatial Data Analysis  

The motivation for an Exploratory Spatial Data Analysis (ESDA) is to diagnose spatial dependence in 

the data, which is crucial to choose the correct estimation strategy. Figure 4 displays the total and 

average GDP per capita growth between 2005 and 2018 per federal entity in Mexico, while Figure A1 

reports maps for all individual years. The growth rates do not seem to be randomly distributed across 

the country. This indicates the possible presence of spatial autocorrelation. 

Figure 4: GDP per capita, 2005-2018 

 

Proper testing of spatial autocorrelation can be conducted with the global Moran’s I (Anselin, 1995) 

and the G of Getis & Ord (1992). Both are global indices of spatial autocorrelation that express the 

overall degree of similarity between neighbouring regions (Pfeiffer et al., 2008). A contiguity weight 

matrix has been applied, which in the case of the Moran’s I test was row-standardized while the Getis 

& Ord G requires a binary weight matrix. Table 2 presents these results. 

Table 2: Spatial association tests  

Year Moran’s I E (I) Getis&Ord G E (G) 

2005 0.107* -0.032 -0.303 0.135 

2006 -0.023 -0.032 0.169 0.135 

2007 -0.183* -0.032 0.015 0.135 

2008 0.225*** -0.032 -0.851** 0.135 

2009 0.076 -0.032 0.126* 0.135 

2010 0.076 -0.032 0.171* 0.135 

2011 0.116* -0.032 0.282* 0.135 

2012 0.024 -0.032 0.181** 0.135 

2013 0.175** -0.032 -0.548** 0.135 

2014 0.146* -0.032 0.252*** 0.135 

2015 0.331*** -0.032 1.089*** 0.135 

2016 0.356*** -0.032 0.778*** 0.135 

2017 0.072 -0.032 0.216 0.135 

2018 0.217*** -0.032 -0.859*** 0.135 

Significance level: *** p<0.01, ** p<0.05, * p<0.1 
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Table 2 shows that the null hypothesis of the Moran’s I (random distribution of GDP per capita growth 

across space) is rejected in 8 of 14 years. Since the Moran’s I test statistic is larger than the expected 

value in 11 years, the result indicates a positive spatial autocorrelation: nearby regions tend to exhibit 

more similar growth rates.  A possible reason for the lack of significance of the Moran’s I test in some 

years is that it performs best in measuring spatial processes that are consistent across space, thus if 

there are different spatial dynamics at play, it may fail to detect their impact. Consequently, local 

spatial autocorrelation tests should be conducted. In the case of Geti & Ord’s G, the test statistic rejects 

in 10 years the null hypothesis of no spatial clustering of GDP per capita growth.  

The local Moran’s I is a local index of spatial autocorrelation that measure, for each individual region, 

the degree of similarity to its neighbours (Pfeiffer et al., 2008). Figure 5 shows that for the average 

yearly growth rate, most regions do not present significant local spatial correlation. However, there is 

a significant hot spot located in the centre of the country, where several states display relatively high 

average growth rates and are surrounded by similar regions. Additionally, the map reveals two outliers: 

Baja California Sur has much higher average growth rates than Baja California, and Chiapas grew less, 

on average, than its neighbours. The individual maps for all 14 years are shown by Figure A2.  

Figure 5: Cluster Map of average yearly growth rate of GDP per capita 

 

Lagrange-Multiplier tests are presented in Table 3 to determine whether the null hypotheses – 𝜌 = 0 

for the spatial lag, and  𝜆 = 0 for the spatial error – are found to hold. These results were obtained 

using Pooled OLS, effectively failing to reject either null hypothesis.8 Similarly, when the estimation is 

tested for each individual year, the spatial error null hypothesis and the spatial lag null hypothesis are 

never rejected by the Robust Lagrange Multipliers. 

Table 3: LM Tests 

  Test Statistic p-value 

Spatial error (H0: λ = 0)      

Lagrange multiplier 1.441  0.41  

Robust Lagrange multiplier 1.182  0.41  

      

Spatial lag (H0: ρ = 0)     

Lagrange multiplier 843  0.45  

Robust Lagrange multiplier 497  0.44  

 
8 The results of the Pooled OLS model are presented in section 5.1.  
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5 Results  

5.1 Results of the Direct Effect Model 

First, both a random and a fixed effects model were estimated to conduct a Hausman test. The null 

hypothesis of no systematic differences in the coefficients is rejected with p = 0.000. Consequently, 

the random effects model would be inconsistent. The results of the two-way fixed effects estimations 

are presented in Table 4. Variables were added one-by-one to observe changes in parameters and test 

statistics. It is evident that adding the squared term of the infrastructure variable increases the fit of 

the model. All other additions have a negligible impact on any of the reported parameters.  

Table 4: Results of Two-Way Fixed Effect Model  

Depvar: Delta Y (1) (2) (3) (4) (5) (6) (7) 

Control Variables - - 1 2 3 4 5 

Constant 4.22*** 5.32*** 5.62*** 5.65*** 5.67*** 5.78*** 5.78*** 

L1.ln(GDPpc) -0.41*** -0.50*** -0.53*** -0.53*** -0.53*** -0.54*** -0.54*** 

Roadkm (GDP) -0.86** -2.39*** -2.37*** -2.36*** -2.36*** -2.37*** -2.37*** 

Roadkm (GDP)^2   1.42*** 1.35*** 1.35*** 1.35*** 1.36*** 1.36*** 

Patents p.c.     0.00** 0.00** 0.00** 0.00** 0.00*** 

Unemployment       0.00 0.00 0.00 0.00 

Agriculture labour          0.00 0.00 0.00 

ln(Homicides)           -0.01 -0.01 

ln(Education)             0.00 

                

Observations 448 448 448 448 448 448 448 

Number of ID 32 32 32 32 32 32 32 

Log-Likelihood 777 827 844 844 844 846 846 

AIC -1,525 -1,622 -1,655 -1,653 -1,651 -1,652 -1,650 

BIC -1,463 -1,556 -1,585 -1,579 -1,573 -1,570 -1,563 

R-squared (overall) 0.03 0.02 0.02 0.02 0.02 0.02 0.02 

R-squared (within) 0.45 0.56 0.59 0.59 0.59 0.59 0.59 

Significance level: *** p<0.01, ** p<0.05, * p<0.1 
All specifications include state and year fixed effects and apply clustered standard errors. 

The coefficient of Roadkm is consistently negative, but positive for the squared term. Due to the 

variable being standardized by regional GDP, its values are below 1, which means that the combined 

effect is always dominated by the negative parameter. Regarding the control variables, all their 

coefficients are close to zero and only Patents is significant. 

To investigate whether these insignificant, null effects are consistent over space and time, split-sample 

analysis are conducted. Table 5 reports the estimation of the original model in column (1). Column (2) 

and (3) show the estimations based on a split of the Mexican states according to income: Group 1 

includes the lower income regions while Group 2 encompasses those with a higher average GDP per 

capita (see Table A4 for more details). This evaluation considers the possibility that the impact of 

infrastructure growth depends on regional income levels, as observed by Fuentes (2003). Columns (4) 

and (5) display the results obtained when splitting the sample period in two: the first period includes 

the seven years between 2005 and 2012, while the second denotes the years 2012-2018. This method 

sheds light on the question whether the relationship between infrastructure stock and economic 

growth has changed over time.  
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Table 5: Split Sample TWFE Results 

Depvar: Delta Y (1) (2) (3) (4) (5) 

Split - Group 1 Group 2 Period 1 Period 2 

Constant 5.78*** 6.52*** 7.22** 6.02*** 9.75*** 

L1.ln(GDPpc) -0.54*** -0.62*** -0.57*** -0.81*** -0.70*** 

Roadkm (GDP) -2.37*** -2.24*** -2.67 -2.12*** -3.24*** 

Roadkm (GDP)^2 1.36*** 1.37*** 1.20 1.12** 1.95*** 

Patents p.c. 0.00*** 0.00 0.00** 0.00 0.00** 

Unemployment 0.00 0.00 0.00 -0.01* 0.01 

Agriculture labour share 0.00 0.00 0.00 -0.00* 0.00 

ln(Homicides) -0.01 -0.03*** 0.01 0.00 -0.01 

ln(Education) 0.00 -0.06 -0.50 1.14 -1.03 

            

Observations 448 224 224 224 224 

Number of ID 32 16 16 32 32 

Log-Likelihood 846 477 427 505 470 

AIC -1,650 -922 -824 -982 -911 

BIC -1,563 -867 -773 -934 -863 

R-squared 0.59 0.63 0.70 0.75 0.71 

R-squared (within) 0.59 0.63 0.70 0.75 0.71 

Significance level: *** p<0.01, ** p<0.05, * p<0.1 
All specifications include state and year fixed effects and apply clustered standard errors. 

Table 5 shows that the infrastructure variables are highly significant (with a negative total impact) only 

among the lower-income states. While the significance is similar across time, the size of the coefficients 

is higher in the more recent time period (2012-18), thus the magnitude of the negative impact has 

increased over time. Regarding the control variables, R&D is only significant (with a very small 

coefficient) in higher-income regions and in more recent years, which is to be expected since patent 

applications are more common in these dimensions. Interestingly, homicides only have a significant 

(small, negative) impact on growth in the lagging regions. Unemployment and sector composition were 

slightly significant between 2005 and 2011. The education variable presents no significance. 

Table 6 reports the results of the GMM approach to control for endogeneity bias. Bond, Hoeffler & 

Temple (2001) propose using the Pooled OLS estimations as providing the upper bound, and the TWFE 

results as the lower bound to establish whether the Difference-GMM estimation is consistent. As 

reported in column 3, the significant coefficients do not fall within those limits. Thus, the Diff-GMM 

estimations are not consistent and System-GMM should be preferred. The System-GMM has been 

estimated in two ways: endogenizing only the lag of GDP per capita (column 4), or by endogenizing the 

infrastructure variables as well (column 5).  The control variables are assumed to be exogenous. 

Table 6 shows that most variables are not significant in the GMM specifications, including the time lag 

of GDP per capita value. Roadkm is negative and statistically significant in the Diff-GMM estimation. 

While not significant, the System-GMM approach that endogenizes Roadkm is the only model where 

it appears with a negative coefficient, while the squared term has a positive coefficient. It is also the 

only specification that finds education to have a significant effect, which is positive. The Sargan test for 

overidentifying restrictions rejects the null hypothesis that instruments are not weak in the second 

Sys-GMM specification. However, this test is not robust to heteroskedasticity, so that its outcome in 

this context is not relevant. Hansen’s J statistic on the other hand is weakened by many instruments, 

but robust otherwise. Its null hypothesis is not rejected.  
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However, Roodman (2009) suggests that a p-value above 0.25 for the Hansen test indicates it might 

be weakened by too many instruments. Further, there seems to be no second-order autocorrelation, 

but the System-GMM models reject the null hypothesis of no first-order autocorrelation, which is the 

desired context to specify relevant instruments via lags. All GMM-models have a larger number of 

instruments (33-99) than units of observations (32), which is associated with inconsistent results 

(Roodman, 2007). 

Table 6: Results of GMM  

Depvar: Delta Y (1) (2) (3) (4) (5) 

Model Pooled OLS TWFE Diff-GMM Sys-GMM Sys-GMM 

Constant 0.21 5.78***   0.32 0.50 

L1.ln(GDPpc) -0.02 -0.54*** -0.64*** -0.06 -0.09 

Roadkm (GDP) -0.01 -2.37*** -3.23*** -0.05 -0.07 

Roadkm (GDP)^2 -0.03 1.36*** 1.61* 0.02 -0.05 

Patents p.c. 0.00* 0.00*** 0.00 0.00 0.00 

Unemployment 0.00 0.00 0.00 0.00 0.00 

Agriculture labour share 0.00 0.00 0.00 0.00 0.00 

ln(Homicides) 0.00 -0.01 0.01 -0.01 0.00 

ln(Education) 0.02 0.00 0.37 0.14 0.19 

            

Observations 448 448 416 448 448 

Number of ID   32 32 32 32 

# of instruments     33 53 99 

AR(1) p-value     0.32 0.02 0.03 

AR(2) p-value     0.38 0.29 0.30 

Sargan Test (p-value)     0.00 0.00 0.00 

Hansen Test (p-value)     0.23 1.00 1.00 

Significance level: *** p<0.01, ** p<0.05, * p<0.1 
Specifications (2)-(5) include state and year fixed effects; all apply clustered standard errors. 

As these results indicate signs of overfitting (Roodman, 2009), additional analyses are conducted. Table 

7 reports the results for a specification that excludes all control variables except for patents.  

Table 7: Results of GMM for restricted model  

Depvar: Delta Y (1) (2) (3) (4) (5) 

Model Pooled OLS TWFE Diff-GMM Sys-GMM Sys-GMM 

Constant 0.22 5.62***   1.42 1.09 

L1.ln(GDPpc) -0.02 -0.53*** -0.62*** -0.14 -0.11 

Roadkm (GDP) -0.01 -2.37*** -3.21*** -0.16 -0.21 

Roadkm (GDP)^2 -0.02 1.35*** 1.55** 0.04 0.03 

Patents p.c. 0.00* 0.00** 0.00 0.00 0.00 

            

Observations 448 448 416 448 448 

Number of ID   32 32 32 32 

# of instruments     29 45 91 

AR(1) p-value     0.26 0.03 0.03 

AR(2) p-value     0.40 0.28 0.29 

Sargan Test (p-value)     0.01 0.00 0.00 

Hansen Test (p-value)     0.19 0.83 1.00 

Significance level: *** p<0.01, ** p<0.05, * p<0.1 
Specifications (2)-(5) include state and year fixed effects; all apply clustered standard errors. 



P a g e  | 18 

 

 
 

The results are the same as with the unrestricted model: the Diff-GMM estimated coefficients are not 

consistent, and the System-GMM are not reliable due to a high instrument count. However, a simple 

F-test on the Pooled OLS model shows that the restricted model is not valid, and the excluded variables 

should be accounted for. 

Another approach regards the split of the sample in two time periods, to minimize the number of 

instruments through a reduction of the time dimension. Table 8 shows the results, which are the same 

as with the original and the other restricted model. 

Table 8: Results of GMM for Split Model  

Depvar: Delta Y (1) (2) (3) (4) (5) (6) 

Model Diff-GMM Sys-GMM Sys-GMM Diff-GMM Sys-GMM Sys-GMM 

Split Period Period 1 Period 1 Period 1 Period 2 Period 2 Period 2 

Constant   -0.42** -0.23   0.59 0.38 

L1.ln(GDPpc) -1.20*** 0.06** 0.02 -1.13*** -0.05 -0.06 

Roadkm (GDP) -3.43*** -0.02 -0.18 -3.82*** -0.04 -0.34 

Roadkm (GDP)^2 1.84*** -0.01 0.09 2.22** 0.00 0.28 

Patents p.c. 0.00 0.00 0.00 0.00 0.00 0.00 

Unemployment -0.01 0.00 0.00 0.00 0.00 0.00 

Agriculture labour  0.00 0.00** 0.00 0.00 0.00 0.00 

ln(Homicides) 0.00 0.00 0.00 -0.01 0.00 -0.01 

ln(Education) 1.76 -0.08 0.01 -1.83* -0.03 0.16 

              

Observations 192 224 224 192 224 224 

Number of ID 32 32 32 32 32 32 

# of instruments 19 32 50 19 32 50 

Sargan Test (p-value) 0.68 0.00 0.00 0.86 0.00 0.00 

Hansen Test (p-value) 0.38 0.18 0.99 0.78 0.45 0.98 

AR(1) (p-value) 0.44 0.00 0.00 0.47 0.08 0.11 

AR(2) (p-value) 0.75 0.02 0.02 0.63 0.17 0.20 

Significance level: *** p<0.01, ** p<0.05, * p<0.1 
All specifications include state and year fixed effects and apply clustered standard errors. 

Ultimately, the low number of units of observations are the major cause of weakness in both, the 

Difference-GMM and the System-GMM approach to mitigate endogeneity by transformations and 

internal instruments. Further, Bellemare, Masaki & Pepinsky (2017) question the suitability of lags as 

instruments on both a theoretical and empirical basis. None of the exceptions, under which they 

conclude time lags would be valid, unbiased instruments, apply to this dataset. Indeed, the direct effect 

of the lagged infrastructure variable on contemporaneous growth is positive and highly significant, 

which is not consistent with the impact the contemporaneous infrastructure variable displays. 

5.2 Results of the Spatial Spillover Specifications 

As there is both theoretical and data-driven evidence for spatial heterogeneity in the model, the above 

reported results may be biased by the omission of spatially lagged variables. Table 9 displays the 

estimations of the Pooled OLS, the TWFE panel model, the Spatial Durbin Model (SDM) and the Spatial 

Lag Model (SLX). The latter two are repeated each without the education variable. Here, a binary, row-

standardized contiguity weight matrix (C1) was applied to estimate the spatial spillovers.  
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Table 9: Results of Spatial Spillover Specifications 

Depvar: Delta Y (1) (2) (3) (4) (5) 

Model TWFE SDM SLX SDM SLX 

Spatial Weight Matrix  - C1 C1 C1 C1 

Constant 5.78***         

L1.ln(GDPpc) -0.54*** -0.64*** -0.63*** -0.64*** -0.62*** 

Roadkm (GDP) -2.37*** -2.86*** -2.56*** -2.87*** -2.54*** 

Roadkm (GDP)^2 1.36*** 1.74*** 1.45*** 1.75*** 1.42*** 

Patents p.c. 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 

Unemployment 0.00 0.00 0.00 0.00 0.00 

Agriculture labour  0.00 0.00 0.00 0.00 0.00 

ln(Homicides) -0.01 -0.01 0.00 -0.01 0.00 

ln(Education) 0.00 -0.09 0.16     

            

W*Growth Rate   -0.03   -0.03   

W*L1.ln(GDPpc)   0.36*** 0.31*** 0.36*** 0.32*** 

W*Roadkm (GDP)   1.28** 1.39** 1.30** 1.37** 

W*Roadkm (GDP)^2   -1.20** -1.33** -1.23** -1.29** 

W*Patents p.c.   0.00* 0.00 0.00* 0.00 

W*Unemployment   0.00 -0.01 0.00 -0.01 

W*Agriculture labour   0.01* 0.01* 0.01* 0.01* 

W*ln(Homicides)   0.03** 0.03** 0.03** 0.03** 

W*ln(Education)   0.12 -0.16     

            

Observations 448 416 448 416 448 

Number of ID 32 32 32 32 32 

Log-Likelihood 846 855 898 855 898 

AIC -1,650 -1,671 -1,760 -1,675 -1,763 

BIC -1,563 -1,595 -1,686 -1,607 -1,698 

R-squared 0.59 0.02 0.02 0.02 0.02 

R2 (within) 0.59 0.41 0.45 0.43 0.44 

Significance Level: *** p<0.01, ** p<0.05, * p<0.1 
All specifications include state and year fixed effects and apply clustered standard errors. 

The results indicate that the direct effects estimated by both spatial models are similar in sign, 

significance, and magnitude to the coefficients of the two-way fixed-effects panel model. The lagged 

GDP per capita variable, the infrastructure variables and Patents are highly statistically significant at 

the 1% significance level. The other control variables are not. In all cases, Roadkm has a negative and 

relatively large coefficient, while its squared term has a positive sign and is smaller in size. Dropping 

the education variable leads to minimal adjustments in the coefficients of the other variables, while 

significance is not affected. Compared to the TWFE model, SDM and SLX assign a larger coefficient to 

education, albeit it remains non-significant. 

Regarding the spatial spillovers, there are significant spatial lags for the lagged GDP per capita variable, 

the infrastructure variables, agricultural labour and homicides. Dropping the education variable results 

in similarly small changes as with the direct effects. The parameters have similar signs and magnitudes 

in both models, although the SDM presents slightly larger coefficients for the infrastructure variables.  

Other spatial models such as SEM, SAR, SAC and GNS are not reported, as the ESDA indicates neither 

is appropriate, and the adequate statistical tests to compare these models to SDM and SLX also reject 

their suitability.  
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Furthermore, SDM and SXL are the preferred models for this case as argued in section 3.3. However, 

the results indicate that the spatial lag of the dependent variable (SDM) is not significant. Comparing 

Akaike’s Information Criterion (AIC) and the Bayesian Information Criterion (BIC) shows that SLX 

performs better than SDM. A LR-test confirms that the SLX model is to be preferred.  

In Table 10, the SLX model (including the education variable) is estimated with different specifications 

of the spatial weight matrix. C1 and C2 are binary contiguity weight matrices, with C1 accounting for 

direct neighbours and C2 also considering second degree neighbours. Inverse Distance matrices ID1-

ID3 use different distance limits, while ID4 has none and considers all states to influence each other, 

though the impact is greater the closer they are. 555km (radius of ID3) is the average distance between 

states, while ID1 (cut-off: 300 km) and ID2 (cut-off: 400 km) were specified so as to resemble C1 and 

C2 in terms of links. Table 1 presents the characteristics of the different weight matrices applied. All 

matrices were row-standardized to control for different amounts of neighbour states. 

Table 10: Parametrization of the Spatial Weight Matrix (SDM & SLX) 

epvar: growth rate (1) (2) (3) (4) (5) (6) 

Model SLX SLX SLX SLX SLX SLX 

Spat. Weight Matrix C1 C2 ID1 ID2 ID3 ID4 

Constant             

L1.ln(GDPpc) -0.63*** -0.64*** -0.62*** -0.61*** -0.63*** -0.59*** 

Roadkm (GDP) -2.56*** -2.54*** -2.62*** -2.67*** -2.62*** -2.40*** 

Roadkm (GDP)^2 1.45*** 1.39*** 1.49*** 1.55*** 1.56*** 1.35*** 

Patents p.c. 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 

Unemployment 0.00 0.00 0.00 0.00 0.00 0.00 

Agriculture labour 0.00 0.00 0.00 0.00 0.00 0.00 

ln(Homicides) 0.00 0.00 0.00 0.00 -0.01 0.00 

ln(Education) 0.16 -0.30 -0.11 0.05 0.53 0.51 

              

W*Growth Rate 
      

W*L1.ln(GDPpc) 0.31*** 0.32** 0.43*** 0.48*** 0.41*** 0.71*** 

W*Roadkm (GDP) 1.39** 0.81 1.43** 1.87*** 2.33*** 4.72** 

W*Roadkm (GDP)^2 -1.33** -1.57 -0.92** -1.27** -1.79*** -4.54* 

W*Patents p.c. 0.00 0.00 0.00** 0.00* 0.00 0.00* 

W*Unemployment -0.01 0.01 0.01* 0.01 -0.01 -0.02 

W*Agriculture labour 0.01* 0.02*** 0.01** 0.01*** 0.01*** 0.03** 

W*ln(Homicides) 0.03** 0.06** 0.02** 0.03** 0.00 0.04 

W*ln(Education) -0.16 0.26 0.08 -0.10 -1.23* -3.42 

              

Observations 448 448 448 448 448 448 

Number of ID 32 32 32 32 32 32 

Log-Likelihood 898 905 903 901 901 884 

AIC -1,760 -1,774 -1,771 -1,767 -1,765 -1,732 

BIC -1,686 -1,700 -1,697 -1,693 -1,692 -1,658 

R-squared 0.02 0.01 0.00 0.00 0.01 0.00 

R2 (within) 0.45 0.45 0.36 0.29 0.17 0.02 

Significance Level: *** p<0.01, ** p<0.05, * p<0.1 
State and year fixed effects and clustered standard errors. 

Table 10 reports the main effects and the spillovers. Direct, indirect and total marginal effects can be 

found in Table A5. The direct effects are very similar across the different weight matrices, with the 

notable exception of the education variable, which changes both sign and magnitude, however, 
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remains insignificant in all models. The coefficient of Roadkm is significant at the 1% level, and on 

average about -2.57. The squared term of Roadkm is similarly significant, but positive, and on average, 

takes the value of 1.47.  

Regarding the spatial spillovers, the lagged GDP per capita levels are found to have significant, positive 

spillovers. The coefficients of the infrastructure variables are significant in all models except the one 

applying the second-degree neighbour contiguity weight matrix (column 2). The coefficient of the 

linear Roadkm variable is positive, varying in values between 1.39 and 4.72, while spillovers associated 

with the squared term are estimated to be negative, ranging from -4.54 to -0.92. Evidently, the 

magnitude increases with the number of links considered by the spatial weight matrix.  

Regarding the marginal effects (Table A5), only the direct ones are highly statistically significant. The 

indirect effects’s significance and magnitude varies according to the spatial weight matrix used. The 

total marginal effect of the linear infrastructure variable is negative and significant (except for ID3 and 

ID4), while the squared term has no significant total marginal impact (except for ID1), which is evidently 

the result of the indirect effect’s lack of significance compared to the direct effects. This indicates that 

despite some evidence of positive spatial spillovers, additional infrastructure is more likely to have a 

total negative impact on regional economic growth. 

Considering the weight matrices, there is no reason to assume that all states affect each other to some 

degree, considering the distances of up to 2,965 kilometres. This makes ID4 an unlikely alternative 

from a theoretical perspective. Additionally, column (6) presents a considerably higher magnitude of 

spillovers than the other specifications and the worst results for AIC/BIC and Log Likelihood, compared 

to the other specifications. The unique results presented by spatial weight matrices C2 (first and 

second order neighbours; no significant infrastructure spillovers) and ID3 (cut-off at 555 kilometres; 

large, significant, negative spillovers of education) also warrant caution. Spillover of the squared 

Roadkm variable using ID1 is markedly lower (0.92) than in all other specifications (ranging from -4.54 

to -1.27), and it is the only model encountering significant total marginal effects of the squared 

infrastructure term. 

In related literature, C1 is the most commonly chosen specification for a spatial weight matrix in this 

context (Yu et al., 2013). Due to the very similar results using ID2, columns (1) and (4) present the 

preferred specifications of this section. These results point towards a U-shaped relationship between 

infrastructure stock (standardized by regional GDP) and economic growth, as well as spatial spillovers 

of infrastructure in both, neighbouring regions with direct borders (column 1) and regions located 

within 400 kilometres (column 4). The spillovers are positive for the linear and negative for the squared 

term, with a smaller magnitude than for the direct effects. This means that if a state is surrounded by 

neighbours with a sufficiently higher stock of infrastructure, the total effect experienced by that region 

from infrastructure on growth may be positive.  

Possibly, different characteristics of roads affect their impact on economic growth. Gonzalez-Navarro 

& Quintana Domeque (2016) show that paving streets has a positive effect on household income in a 

small Mexican town. Between 21 and 82 percent of roads are paved throughout Mexico’s regions, and 

100 percent in the capital. In this analysis, only paved roads are considered by the infrastructure 

variable Table 11 presents the main results. The marginal effects are shown in Table A6.  
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Table 11: Paved Roads Adjustment 

Depvar: Delta Y (1) (2) (3) (4) 

Road km Total Paved Total Paved 

Model SLX SLX SLX SLX 

Spatial Weight Matrix C1 C1 ID2 ID2 

Main Effects         

L1.ln(GDPpc) -0.63*** -0.52*** -0.61*** -0.51*** 

Roadkm (GDP) -2.56*** 0.01 -2.67*** -0.01 

Roadkm (GDP)^2 1.45*** -3.69* 1.55*** -3.78* 

Patents p.c. 0.00*** 0.00*** 0.00*** 0.00*** 

Unemployment 0.00 0.00 0.00 0.00 

Agriculture labour share 0.00 0.00 0.00 0.00 

ln(Homicides) 0.00 0.00 0.00 0.01 

ln(Education) 0.16 0.83** 0.05 1.02*** 

          

Spatial Spillovers         

W*L1.ln(GDPpc) 0.31*** 0.18** 0.48*** 0.23*** 

W*Roadkm (GDP) 1.39** -1.29 1.87*** -0.06 

W*Roadkm (GDP)^2 -1.33** 2.63 -1.27** 0.06 

W*Patents p.c. 0.00 0.00 0.00* 0.00* 

W*Unemployment -0.01 0.00 0.01 0.01 

W*Agriculture labour 0.01* 0.00 0.01*** 0.00 

W*ln(Homicides) 0.03** -0.01 0.03** 0.02* 

W*ln(Education) -0.16 -0.20 -0.10 -0.78*** 

          

Observations 448 448 448 448 

Number of ID 32 32 32 32 

Log-Likelihood 898 844 901 844 

AIC -1,760 -1,652 -1,767 -1,652 

BIC -1,686 -1,578 -1,693 -1,578 

R-squared 0.02 0.03 0.00 0.03 

R2 (within) 0.45 0.37 0.29 0.27 

Significance Level: *** p<0.01, ** p<0.05, * p<0.1 
State and year fixed effects and clustered standard errors. 

Excluding non-paved roads from the estimation leads to mostly insignificant estimators that do not 

present spillovers. Compared to the original model considering all road types (columns 1 and 3), the 

goodness of fit is slightly worse. The direct infrastructure term is positive, but not significant in either 

specification, and close to zero. The squared term is large, negative, and significant at the 10 percent 

level in both. Spillovers are not significant in either model, but of a relatively large magnitude in the 

case of the contiguity weight matrix C1 and close to zero with the inverse-distance weight matrix ID2. 

These results may indicate that among paved roads, the share of sections having a positive or non-

significant impact is larger than among all roads, where the negative effect is more significant. 

6 Robustness Tests 

This section will investigate the robustness of the main results obtained in section 5. As the support 

for the spatial specifications is strong, the preferred model is the SLX specification including all control 

variables. The binary contiguity weight matrix C1, accounting only for direct borders, and the inverse 

distance weight matrix ID2 that considers neighbours up to a distance of 400 kilometres, are applied.  
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For this purpose, the infrastructure variable is adjusted by changing its standardization either to 

population (per capita) or area (square kilometres) instead of regional GDP. Table 12 reports the main 

results, while Table A6 presents the marginal effects. Columns (1) and (4) display the results obtained 

in section 5. Out of the four new specifications, three find the squared infrastructure term to be not 

significant, while one shows a significant impact of the direct terms (column 5). The same applies to 

the spillovers: only the population-standardized model applying the inverse-distance weight matrix 

ID2 encounter significant spillovers at the 10 percent level, but of a low magnitude.  

Table 12: Testing Standardization Methods 

Depvar: Delta Y (1) (2) (3) (4) (5) (6) 

Standardization  GDP Pop Area GDP Pop Area 

Spatial Weight Matrix C1 C1 C1 ID2 ID2 ID2 

Main Effects             

L1.ln(GDPpc) -0.63*** -0.31*** -0.32*** -0.61*** -0.32*** 0.18** 

Roadkm -2.56*** -0.05 0.37 -2.67*** -0.05* 0.66 

Roadkm^2 1.45*** 0.00 -0.53 1.55*** 0.00** -0.11 

Patents p.c. 0.00*** 0.00** 0.00** 0.00*** 0.00*** 0.00 

Unemployment 0.00 0.00 -0.00* 0.00 -0.01** 0.00 

Agriculture labour share 0.00 0.00 0.00 0.00 0.00 0.01 

ln(Homicides) 0.00 -0.01 0.00 0.00 0.00 0.01 

ln(Education) 0.16 0.29 0.19 0.05 0.44* -0.66*** 

              

Spatial Spillovers             

W*L1.ln(GDPpc) 0.31*** 0.10 0.14* 0.48*** 0.16** -0.33*** 

W*Roadkm 1.39** -0.01 -0.26 1.87*** 0.22* 0.11 

W*Roadkm^2 -1.33** 0.00 0.23 -1.27** -0.02 -0.26 

W*Patents p.c. 0.00 0.00 0.00 0.00* 0.00* 0.00*** 

W*Unemployment -0.01 -0.01** -0.01** 0.01 0.00 -0.01** 

W*Agriculture labour 0.01* 0.01 0.01 0.01*** 0.01 0.00 

W*ln(Homicides) 0.03** -0.01 0.00 0.03** 0.01 0.00 

W*ln(Education) -0.16 -0.85 -0.53 -0.10 -0.58** 0.25 

              

Observations 448 448 448 448 448 448 

Number of ID 32 32 32 32 32 32 

Log-Likelihood 898 738 739 901 744 740 

AIC -1,760 -1,440 -1,441 -1,767 -1,452 -1,444 

BIC -1,686 -1,367 -1,367 -1,693 -1,378 -1,370 

R-squared 0.02 0.00 0.00 0.00 0.00 0.00 

R2 (within) 0.45 0.01 0.04 0.29 0.19 0.15 

Significance Level: *** p<0.01, ** p<0.05, * p<0.1 
All specifications include state and year fixed effects and apply clustered standard errors. 

While there is currently no preferred method to standardize infrastructure variables, each approach 

captures a different dimension. The suitable approach is related to the channel through which 

infrastructure is expected to affect the economy. For instance, the standardization by population is 

mostly relevant to measure the infrastructure capacity per person for commuting and accessing 

healthcare and education. However, the strongest evidence exists for infrastructure increasing private 

sector productivity by reducing trade costs and increasing market integration (Aschauer, 1989; Barro, 

1990, Hulten & Schwab, 2000; Agénor, 2010). Arguably, the available infrastructure capacity for each 

unit of economic activity (GDP) is the best measure to account for these effects. 
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7 Discussion and Conclusion  

This study focused on investigating the relationship between transport infrastructure and economic 

growth, using modern econometric techniques to overcome some of the limitations of earlier studies, 

contributing, to my knowledge, a first analysis of this topic on the level of Mexico’s federal entities 

using a spatial model. A major challenge of this type of analysis is simultaneity between the dependent 

and the explanatory variable. Hence, transport infrastructure stock was chosen as the key explanatory 

variable, as this decreases endogeneity issues, and evaluated in kilometres, which has been shown to 

have a more significant impact than other measures (Calderón, Moral-Benito & Servén, 2015; Elburz, 

Nijkamp & Pels, 2017). Nonlinearities due to network effects are measured by the squared term of the 

infrastructure variable (Agénor & Moreno-Dodson, 2006). A vector of control variables accounts for 

relevant endogenous and external factors (Ascani, Crescenzi & Iammarino, 2012; Crescenzi & 

Rodriguez-Pose, 2012). 

The two-way fixed effects model exhibits a significant, U-shaped relationship of infrastructure and 

economic growth on the regional level in Mexico for the period 2005-2018. A split-sample analysis 

using TWFE shows that the significant impact of infrastructure on economic growth is limited to those 

Mexican regions with lower income. Additionally, the magnitude of the coefficients has increased over 

time. There could be several reasons for these observations. For example, higher income regions may 

have reached the growth-maximizing infrastructure stock earlier, while lagging regions are still 

benefitting from additional investments. Also, economic growth above a certain threshold may not 

depend on transport infrastructure as much as for lower levels of development. Difference- and 

System-GMM were applied to further control endogeneity by using internal instruments. While the 

first displays similar results as the TWFE estimation, it lacks consistency. The latter suffers from too 

many weak instruments due to the moderate number of regions, rendering the results unreliable. 

Reducing the instrument count by either dropping the control variables, or splitting the dataset in two 

time periods does not mitigate these issues. 

A spatial specification of the endogenous growth model was set up to account for spillovers between 

regions. Due to both, theoretical and data-driven motives, SDM and SLX specifications were chosen 

along six different spatial weight matrices. Results indicate that the SLX model in combination with a 

spatial weight matrix considering either spillovers of direct neighbours only, or of all states located 

within 400 kilometres, is the preferred specification. As in the TWFE, both infrastructure variables 

present a highly significant direct effect, with the linear term having a negative and the squared term 

a positive coefficient. The spillovers are also significant, but have the opposite signs. Repeating the 

analysis considering only paved road sections, only the squared term of the variable is significant, and 

there are no significant spillovers; indicating that different characteristics of roads matter in terms of 

their impact on regional economic growth. 

Testing the robustness of the results by applying alternative specifications for the infrastructure 

variable (standardization by area and population instead of GDP) find a significant direct impact only 

in half of the tested specifications, while spatial spillovers were not detected. This means that the main 

results are highly sensitive to the way infrastructure endowment is measured. The correlation matrix 

(Table A3) shows that each standardization method causes significant differences in the variable, 

explaining the variation in results. Nonetheless, the chosen standardization by GDP to obtain the main 

results was motivated to account the density of economic activity in a state, which is better in capturing 

the potential channel through which transport infrastructure increases private sector productivity, as 
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proposed by many scholars such as Aschauer (1989), Barro (1990), Hulten & Schwab (2000) and Agénor 

(2010). Thus, the results may also indicate that in Mexico, infrastructure stock has a significant negative 

impact on productivity, while the other proposed channels (as presented in section 2) are not relevant. 

In any case, there are some important limitations to this study that have to be taken into account when 

considering its findings. While the scope of the data is around the average in observed by Elburz, 

Nijkamp & Pels (2017) in similar studies, the relatively small number of units of observations (32) 

makes the results of Difference-GMM and System-GMM methods inconsistent and unreliable. On the 

other hand, for measuring a long-term impact, a larger time scale would be required. Further, it would 

be interesting to include a reliable estimate of internal migration, as there are relevant theoretical 

arguments for factor mobility being a possible channel through which infrastructure affects economic 

growth (Banerjee, Duflo & Quian, 2012).9 Moreover, all roads have been considered regardless of their 

quality (e.g. number of lanes, condition, toll fee) and function (local or inter-regional network). It is to 

be expected that local streets create less spillovers to other states, thus the mixed approach may 

present a downward bias in the estimation of indirect effects. Possibly, different characteristics of 

roads also affect their relationship with economic growth, which may explain the lack of significance 

in many specifications. Last but not least, the infrastructure of neighbouring countries (USA and 

Guatemala) has not been taken into account by default: it is not Mexican, nor under their influence. 

However, the actual mobility options for the border states are better than these models assume. But 

due to limitations to the movement of people and goods between countries, they can also not be 

compared to national infrastructure that is equally accessible for all Mexicans.  

These findings are broadly in line with similar investigations in terms of data and methodology. For 

instance, even though their Difference-GMM approach provides consistent estimates, Crescenzi & 

Rodriguez-Pose (2012) find no significant impact of infrastructure (or their spillovers) on growth for EU 

regions (with neither standardization method). Banerjee, Duflo & Quian (2012) report similar results, 

while using a different specification. Regarding the effect of certain aspects of the analysis on the 

outcome as investigated by Elburz, Nijkamp & Pels (2017; see also Table A1), using a growth regression, 

a sub-national scope and having a more recent publication date may have contributed to encountering 

a negative relationship. On the other hand, measuring infrastructure in kilometres and focusing on 

land transport and roads may have lead to a more positive outcome than if another measure had been 

chosen. Relying on fixed effects, using contiguity and distance-based spatial weight matrices in a panel 

data setting may have increased the likelihood of not encountering significant estimators. 

Further research into the case of Mexico is required to determine whether these results can be 

confirmed using alternative macroeconomic modelling techniques such as VAR and VEC models, 

threshold regressions or instrumental variables. Also, applying a production function approach to 

measure the short-term impact of infrastructure on output rather than its growth rate may yield 

valuable insights. From a policy-perspective, it is also necessary to study the impact of other types of 

transport infrastructure, such as airports, train lines and seaports. Finally, more investigation is 

required to determine how to adequately choose a suitable standardization method for infrastructure 

variables.  

 
9 I have computed estimations for internal migration based on population, deaths and births (Puhani, 2001). 
However, the values were vastly different from the three years of data available at INEGI. This could be due to 
international migration, particularly to the US, affecting a significant number of movements. In any case, 
including the estimated variable did not alter the results.  
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Appendix 

Table A1: Selected Results of Meta-Analysis by Elburz, Nijkamp & Pels (2017) 

Approach Implication Significance 

Production Function Positive In 0 of 6 specifications 

TFP Positive In 2 of 6 specifications 

Growth regression Negative In 2 of 6 specifications 

Spatial regression Mostly negative In 0 of 6 specifications 

Fixed Effects Mostly negative In 0 of 6 specifications 

Random Effects Positive  In 1 of 6 specifications 

OLS Positive  In 3 of 6 specifications 

GMM Negative  In 0 of 6 specifications 

Length of infrastructure (km) Positive In 6 of 6 specifications 

GDP (as dependent) Positive In 0 of 6 specifications 

Non EU/US country10 Negative In 0 of 6 specifications 

Roads Positive In 3 of 3 specifications 

Land transport Positive In 3 of 3 specifications 

Sub-national scope11 Mostly negative In 17 of 18 specifications 

Distance weight matrix Negative In 1 of 6 specifications 

Contiguity weight matrix Positive In 0 of 6 specifications 

Economic weight matrix Negative In 4 of 6 specifications 

Panel Data Positive In 0 of 6 specifications 

Cross-Section Positive In 3 of 6 specifications 

Publication year12 Negative In 2 of 6 specifications 

 

Back to main text. 

  

 
10 Specifically, China, India or Turkey; which are middle income countries like Mexico (World Bank, 2021). 
11 Interstate, interprovincial and interregional  
12 Indicating a more recent publication is more likely to present smaller or more negative estimates than earlier 
results. 
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Table A2: Descriptive Statistics 

Variable   Mean Std. dev. Min Max Observations 

Growth rate overall 0.012 0.058 -0.442 0.414 N =     448 

  between   0.010 -0.006 0.030 n =      32 

  within   0.057 -0.429 0.427 T =      14 

L1.ln(GDP) overall 9.606 0.394 8.802 10.685 N =     448 

  between   0.390 8.842 10.564 n =      32 

  within   0.086 9.108 9.897 T =      14 

Roadkm (GDP)* overall 0.310 0.210 0.000 0.946 N =     448 

  between   0.209 0.000 0.758 n =      32 

  within   0.038 0.171 0.500 T =      14 

Patents p.c. overall 13.886 18.951 0.000 105.805 N =     448 

  between   13.345 1.173 58.230 n =      32 

  within   13.647 -24.184 68.121 T =      14 

Unemployment overall 4.116 1.544 0.900 8.600 N =     448 

  between   1.119 1.657 6.057 n =      32 

  within   1.082 1.208 7.473 T =      14 

Agriculture labour overall 14.672 9.174 0.147 40.690 N =     448 

share between   9.199 0.452 38.906 n =      32 

  within   1.414 9.238 21.381 T =      14 

ln(Homicides) overall 2.553 0.850 0.531 5.205 N =     448 

  between   0.682 0.850 3.984 n =      32 

  within   0.521 1.297 4.707 T =      14 

ln(Education) overall 2.164 0.110 1.803 2.414 N =     448 

  between   0.099 1.921 2.367 n =      32 

  within   0.051 2.047 2.273 T =      14 

Roadkm (GDP)* overall 0.123 0.076 0.000 0.409 N =     448 

Paved between   0.075 0.000 0.340 n =      32 

  within   0.019 0.042 0.268 T =      14 

Roadkm (Area) overall 0.279 0.169 0.052 0.752 N =     448 

  between   0.169 0.054 0.687 n =      32 

  within   0.028 0.148 0.415 T =      14 

Roadkm (Pop) overall 4.203 2.351 0.010 9.668 N =     448 

  between   2.367 0.015 9.057 n =      32 

  within   0.295 2.501 5.942 T =      14 

Source: Author’s elaboration based on data from INEGI & OECD 

*The lowest values are found in the capital district of Mexico City due to its small size (low stock of 

infrastructure) and high GDP levels. Excluding the federal district from the analysis does not alter the results. 

Back to main text. 

 



Table A3: Correlation Matrix 

  

Growth 
Rate 

Lagged 
Log of 
GDPpc 

Roadkm 
(GDP) 

Patents  
p.c. 

Unem-
ployment 

Agricultural 
labour 

Log of 
Homicides 

Log of 
Education 

Paved 
Roadkm 

(GDP) 

Roadkm 
(area) 

Roadkm 
(pop) 

Growth Rate 1.00                     

Lagged Log of GDPpc -0.02 1.00                   

Roadkm (GDP) -0.08 -0.62 1.00                 

Patents p.c. 0.12 0.53 -0.46 1.00               

Unemployment -0.02 0.35 -0.36 0.23 1.00             

Agricultural labour -0.02 -0.82 0.74 -0.45 -0.49 1.00           

Log of Homicides 0.02 0.08 -0.12 0.21 0.23 -0.04 1.00         

Log of Education 0.02 0.80 -0.58 0.52 0.51 -0.82 0.26 1.00       

Paved Roadkm (GDP) -0.11 -0.54 0.86 -0.40 -0.29 0.63 -0.13 -0.44 1.00     

Roadkm (area) -0.02 -0.49 -0.13 -0.06 0.01 0.12 0.20 -0.14 -0.10 1.00   

Roadkm (pop) -0.01 -0.19 0.80 -0.39 -0.23 0.36 -0.11 -0.18 0.72 -0.37 1.00 

Source: Author’s elaboration based on data from INEGI & OECD 

Back to section 3.1 (Identification Strategy). 

Back to section 4.2 (ESDA). 

Back to section 7 (Conclusion). 

 

 



Figure A1: Regional Growth Rates 2005-2018 

 
Source: Author’s elaboration using STATA 17, SPMAP by Pisati (2018) and Data from INEGI & OECD 

Back to main text. 
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Figure A2: Local Moran’s I Cluster Maps  

 

Source: Author’s elaboration using STATA 17, sg162 by Pisati (2001) and Data from INEGI & OECD 

Spatial Weight Matrix C1 was applied. 

Back to main text. 
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Table A4: Split Group Classification 

Group 1 
 

Group 2 

State Fuentes (2003)   State Fuentes (2003) 

Chiapas  Lagging    Aguascalientes  Intermediate  

Durango  Lagging    Baja California  Intermediate  

Guanajuato  Lagging    Baja California Sur  Intermediate  

Guerrero  Intermediate    Campeche  Lagging  

Hidalgo  Lagging    Chihuahua  Intermediate  

México  Intermediate    Ciudad de México  Intermediate  

Michoacán  Lagging    Coahuila  Intermediate  

Morelos  Lagging    Colima  Lagging  

Nayarit  Lagging    Jalisco  Intermediate  

Oaxaca  Lagging    Nuevo León  Intermediate  

Puebla  Lagging    Querétaro  Lagging  

Tabasco  Lagging    Quintana Roo  Lagging  

Tlaxcala  Lagging    San Luis Potosí  Intermediate  

Veracruz  Lagging    Sinaloa  Intermediate  

Yucatán  Lagging    Sonora  Intermediate  

Zacatecas  Lagging    Tamaulipas  Intermediate  

Source: Author’s elaboration using data by INEGI, OECD and Fuentes (2003) 

The classification for this analysis was obtained by calculating the average GDP per capita values for 

each state for the period of analysis, 2005-2018. The 16 regions with the lower income (on average, 

11.217 USD) were assigned to Group 1, while Group 2 is composed of the 16 states with a higher per 

capita income (on average, 21.390 USD). Additionally, the classification by Fuentes (2003) is displayed. 

It was computed using seven different indicators of development for the year 1998.  

Back to main text. 

 



Table A5: Marginal Effects of Spatial Models 

  (1) (2) (3) (4) (5) (6) 

Model SLX SLX SLX SLX SLX SLX 

Spat. Weight Matrix C1 C2 ID1 ID2 ID3 ID4 

DIRECT             

L1.ln(GDPpc) -0.61*** -0.63*** -0.59*** -0.59*** -0.61*** -0.58*** 

Roadkm (GDP) -2.49*** -2.53*** -2.56*** -2.57*** -2.51*** -2.29*** 

Roadkm (GDP)^2 1.38*** 1.37*** 1.46*** 1.49*** 1.48*** 1.27*** 

Patents p.c. 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 

Unemployment 0.00 0.00 0.00 0.00 0.00 0.00 

Agriculture labour  0.00 0.00 0.00 0.00 0.00 0.00 

ln(Homicides) 0.00 0.00 0.00 0.00 -0.01 0.00 

ln(Education) 0.18 -0.27 -0.07 0.06 0.48 0.46 

              

INDIRECT             

L1.ln(GDPpc) 0.14 0.18 0.24*** 0.31*** 0.27*** 0.78*** 

Roadkm (GDP) 0.76 0.19 0.47 1.11* 2.05** 5.96 

Roadkm (GDP)^2 -1.19* -1.39 -0.43 -0.92 -1.86** -6.25 

Patents p.c. 0.00** 0.00 0.00*** 0.00** 0.00 0.01* 

Unemployment -0.01 0.01 0.01 0.01 -0.01 -0.03 

Agriculture labour  0.01* 0.03** 0.01** 0.01** 0.02** 0.05** 

ln(Homicides) 0.04** 0.07** 0.03* 0.04** -0.01 0.06 

ln(Education) -0.22 0.11 0.06 -0.11 -1.55* -4.80 

              

TOTAL             

L1.ln(GDPpc) -0.47*** -0.45** -0.36*** -0.27** -0.35*** 0.20 

Roadkm (GDP) -1.74** -2.34* -2.09*** -1.46* -0.46 3.67 

Roadkm (GDP)^2 0.19 -0.02 1.03* 0.57 -0.39 -4.98 

Patents p.c. 0.00*** 0.00 0.00*** 0.00*** 0.00** 0.01** 

Unemployment -0.01 0.01 0.01 0.01 -0.01 -0.03 

Agriculture labour  0.01 0.03** 0.01* 0.01** 0.02** 0.05** 

ln(Homicides) 0.04* 0.07* 0.03 0.04* -0.01 0.06 

ln(Education) -0.04 -0.16 -0.02 -0.04 -1.07 -4.34 

Back to main text. 
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Table A6: Marginal Effects of Paved Roads Adjustment 

  (1) (4) (3) (4) 

Road km Total Paved Total Paved 

Model SLX SLX SLX SLX 

Spatial Weight Matrix C1 C1 ID2 ID2 

SR DIRECT         

L1.ln(GDPpc) -0.61*** -0.51*** -0.31*** -0.50*** 

Roadkm (GDP) -2.49*** -0.13 -0.04* -0.06 

Roadkm (GDP)^2 1.38*** -3.43 0.00* -3.68* 

Patents p.c. 0.00*** 0.00*** 0.00*** 0.00*** 

Unemployment 0.00 0.00 -0.01** 0.00 

Agriculture labour share 0.00 0.00 0.00 0.00 

ln(Homicides) 0.00 0.00 0.00 0.01 

ln(Education) 0.18 0.83*** 0.42* 0.99*** 

          

SR INDIRECT         

L1.ln(GDPpc) 0.14 0.05 0.11 0.13* 

Roadkm (GDP) 0.76 -1.64 0.23 -0.07 

Roadkm (GDP)^2 -1.19* 1.99 -0.02 -0.84 

Patents p.c. 0.00** 0.00 0.00* 0.00** 

Unemployment -0.01 -0.01 0.00 0.01 

Agriculture labour share 0.01* 0.00 0.01 0.00 

ln(Homicides) 0.04** -0.01 0.01 0.03* 

ln(Education) -0.22 0.02 -0.52* -0.58* 

          

SR TOTAL         

L1.ln(GDPpc) -0.47*** -0.46*** -0.21** -0.37*** 

Roadkm (GDP) -1.74** -1.77 0.19 -0.13 

Roadkm (GDP)^2 0.19 -1.44 -0.01 -4.51* 

Patents p.c. 0.00*** 0.00* 0.00*** 0.00*** 

Unemployment -0.01 -0.01 0.00 0.01 

Agriculture labour share 0.01 0.00 0.01 0.00 

ln(Homicides) 0.04* 0.00 0.01 0.03* 

ln(Education) -0.04 0.86 -0.09 0.40 

 

Back to main text. 
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Table A7: Marginal Effects of Standardization Methods Testing 

 (1) (2) (3) (5) (6) (7) 

Standardization GDP Pop Area GDP Pop Area 

Model SLX SLX SLX SLX SLX SLX 

Spatial Weight Matrix C1 C1 C1 ID2 ID2 ID2 

SR DIRECT             

L1.ln(GDPpc) -0.61*** -0.30*** -0.32*** -0.31*** -0.31*** 0.11* 

Roadkm (GDP) -2.49*** -0.05 0.33 -0.04* -0.04* 0.75 

Roadkm (GDP)^2 1.38*** 0.00 -0.49 0.00* 0.00* -0.19 

Patents p.c. 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00* 

Unemployment 0.00 -0.00* -0.01** -0.01** -0.01** 0.00 

Agriculture labour share 0.00 0.00 0.00 0.00 0.00 0.01 

ln(Homicides) 0.00 -0.01 0.00 0.00 0.00 0.01 

ln(Education) 0.18 0.22 0.15 0.42* 0.42* -0.65*** 

              

SR INDIRECT             

L1.ln(GDPpc) 0.14 0.02 0.07 0.11 0.11 -0.21*** 

Roadkm (GDP) 0.76 -0.03 -0.23 0.23 0.23 0.86 

Roadkm (GDP)^2 -1.19* 0.00 0.13 -0.02 -0.02 -0.45 

Patents p.c. 0.00** 0.00 0.00 0.00* 0.00* 0.00** 

Unemployment -0.01 -0.02** -0.02** 0.00 0.00 0.00 

Agriculture labour share 0.01* 0.01 0.01 0.01 0.01 0.00 

ln(Homicides) 0.04** -0.01 -0.01 0.01 0.01 0.00 

ln(Education) -0.22 -1.02 -0.60 -0.52* -0.52* -0.40 

              

SR TOTAL             

L1.ln(GDPpc) -0.47*** -0.28*** -0.24*** -0.21** -0.21** -0.51*** 

Roadkm (GDP) -1.74** -0.08 0.10 0.19 0.19 -0.01 

Roadkm (GDP)^2 0.19 0.01 -0.36 -0.01 -0.01 -3.78* 

Patents p.c. 0.00*** 0.00* 0.00** 0.00*** 0.00*** 0.00*** 

Unemployment -0.01 -0.02*** -0.02*** 0.00 0.00 0.00 

Agriculture labour share 0.01 0.01 0.01 0.01 0.01 0.00 

ln(Homicides) 0.04* -0.02 -0.01 0.01 0.01 0.01 

ln(Education) -0.04 -0.80 -0.45 -0.09 -0.09 1.02*** 

 

Back to main text. 

 


