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Abstract 
 

Signal and data processing are essential elements in electronic noses as well as in most 

chemical sensing instruments. The multivariate responses obtained by chemical sensor arrays 

require signal and data processing to carry out the fundamental tasks of odor identification 

(classification), concentration estimation (regression) and grouping of similar odors 

(clustering). In the last decade, important advances have shown that proper processing can 

improve the robustness of the instruments against diverse perturbations, namely, 

environmental variables, background changes, drift, etc. This article reviews the advances 

made in recent years in signal and data processing for machine olfaction and chemical sensing. 

 

1. Introduction 
 

Since the original definition of electronic nose by Prof. J.W. Gardner in 1994 [1], it is clear that 

pattern recognition or, more generally, signal and data processing, is an essential component 

of Artificial Olfaction instruments. In this regard, every particular implementation of an 

electronic nose includes a data analysis and interpretation module to obtain the final 

prediction based on the sensor responses. Data processing can be carried out off-line, after the 

measurement has been carried out, using a desktop computer with dedicated software, or it 

can be integrated directly into the instrument for on-line evaluation [2].  

Ten years ago, Gutierrez-Osuna [3] reviewed the building blocks of pattern recognition systems 

for machine olfaction. Since then, the basic methodology for building the data processing 

component of the instruments is firmly established and some of the terminology used in this 

paper can be traced to this reference. There have been recent reviews on particular aspects of 

the data processing methodology [4], [5], [6]. The present paper has the objective of 

complementing and updating these previous revisions with a focus on proposals made in the 

last decade. Additionally, it will emphasize the potential of signal and data processing to 

ameliorate the performance of chemical sensing systems.  



 

It is usually recognized that Artificial Olfaction Systems have not achieved the market 

penetration that was expected in the mid-90s. We firmly believe that a contributing factor to 

this issue has been a lack of a rigorous analysis of the underlying pitfalls. While electronic 

noses are still considered in many application sectors as unreliable instruments, many of the 

problems that plague e-noses are also present in a variety of spectroscopic techniques (e.g. 

but not only, Near Infrared Spectroscopy). It is well known that routine application of state of 

the art chemometric techniques has greatly improved the usability and predictive power of 

these techniques.  

This paper does not intend to review every single paper covering the last decade of research in 

Machine Olfaction. In particular, the tremendous work devoted to sensor amelioration from 

the material viewpoint is outside the scope of this work. The last decade has been very fruitful 

in gaining insight into the various aspects that affect the sensing performance, namely: the 

effect of microstructure, the size feature of the material, the advantages of nanostructured 

materials (e.g. nanowires, nanorods, and nanoribbons) and the possibility of functionalizing 

sensing materials by adding catalysts. Further information on the progress of sensor 

technology from a materials point of view can be obtained elsewhere [7,8,9,10]. 

Instead, we will focus on those principled proposals that provide signal and data processing 

solutions to particular issues in Machine Olfaction. We have structured the contents into two 

sections: first we shall review the latest trends regarding the main building blocks of a general 

data processing unit; second we shall select the specific proposals aiming to improve the 

robustness of machine olfaction systems. 

Due to size restrictions, this paper does not cover algorithmic developments regarding odor 

localization (see instead reviews [11,12]), and the very exciting topic of biologically inspired 

computation for chemical sensing (see reviews [13,14] and book [15]). Finally, it is not the 

objective of this paper to provide a tutorial on pattern recognition or chemometrics. For an 

introduction to some the methods and techniques, as well as the basic terminology that 

appears throughout this review, there are excellent references for general pattern recognition, 

chemometrics and learning systems [16,17,18]. 

 

2. Basic building blocks  
 

Qualitative and quantitative predictive models in chemical instrumentation include a number 

of conventional building blocks. Chemical sensor signals have to be preprocessed, informative 

features have to be extracted and/or selected and finally a classifier is built for label prediction 

or a regressor for quantitative prediction.  

Before addressing the latest proposals for the different building blocks, it is worth reviewing 

the main characteristics of chemical sensor signals. It is clear that different sensor operational 

modes will provide diverse signals types. For space reasons, we cannot illustrate all of them 

here. We will, however, revise those routinely encountered in the literature.  



In its simplest configuration, the sensor array is continuously exposed to the target 

atmosphere and the sensors are not enclosed in any chamber but directly embedded in the 

gas. In this case, sensor signals follow the time-varying gas composition of the monitored area. 

For instance, this is a typical configuration in low-cost safety alarms. Alternatively, there could 

be an active sampling system that switches from a reference condition (typically pure or 

filtered air) to the gas under analysis. This has been a typical configuration in most commercial 

and lab-made instruments. In this second configuration, the exposure of the sensor array to a 

reference condition provides a valuable way to check the stability of the system by observing 

the time evolution of the sensors baseline. It is well-known that simple baseline correction 

techniques are an effective way to remove system drift (see section 3). Additionally, and 

particularly in headspace sampling cases, the sensor transients while the chamber is filled, and 

curiously enough the transients, when purging the chamber with pure air, provide additional 

information about the sample analyzed [19]. Figure 1 displays the typical sampling transients 

from a conductive polymer sensor when exposed to three different vapors. Observe how the 

waveform is slightly different. The search for the discriminant features in such waveforms has 

been the focus of intense research in the last decade. 

 

Figure 1. Sampling transients for a conductive polymer sensor when exposed to three different vapors.  

 

On the other hand, if we just take the steady state response we obtain a feature vector with as 

many dimensions as the cardinality of the sensor array. Figure 2 shows the patterns for a 17 

elements sensor array. Observe the high correlation among sensors.  

 



 

Figure 2. Steady-state patterns for three different vapors in a 17 element sensor array for three different 

analytes. 

 

In addition to sensor sampling transients, the potential for sensor tuning using temperature 

modulation in metal oxide sensors has received a great deal of attention. For instance, figure 3 

illustrates a FIS SB-31 response under temperature modulation (a sawtooth voltage was 

applied to the heater element) while monitoring a mixture of CO and CH4 in air. It is very clear 

how the changes in the composition over time produce a different pattern of response. 



 

Figure 3. Evolution of the pattern of response of a SB31 sensor from FIS Japan when the heated voltage is 

scanned due to changes in the gas composition (mixture of CO and CH4). 

 

One of the problems that affect sensor array instruments is the lack of reproducibility in the 

sensor signals when technologically identical devices are exposed to a chemical under the 

exact same conditions. Figure 4 shows the voltage waveforms of 11 temperature modulated 

Metal Oxide Sensors. It is obvious that the pattern of response is slightly different for both 

analytes, but the waveform scatter is also remarkable, which poses problems during sensor 

replacement and calibration transfer scenarios (see section 3). 



 

Figure 4. Response of 11 identical Metal-Oxide Sensors in a half-bridge configuration when the heater 
temperature is scanned. Note the different waveform shape for acetone and ethanol, as well as the waveform 
scatter in different sensor copies. 

 

2.1  Dimensionality Reduction 

 

2.1.1 Feature extraction  

 

 

Working with raw, time-sampled sensor responses leads to high dimensional patterns. To 

avoid the curse of dimensionality, an explicit or implicit feature extraction block is needed. The 

aim of feature extraction is to obtain informative features from mathematical transformations 

of the multivariate time responses of chemical sensor arrays. These transformations reduce 

the dimensionality of the input space, and aim to keep the information relating to the target 

problem. Beyond the straightforward use of steady state sensor responses, there is no 

consensus on the best techniques for feature extraction.  

Nevertheless, there is convincing evidence that scanning internal sensor operation parameters 

(such as temperature in Metal-Oxide [20,21] sensor, voltage in voltammetric sensors [22] or 

mirror position in Fabry-Perot Interferometers [23]), provides a first order response (that is, a 

vector instead of a scalar) from a single sensor and additional discriminative information. It is 
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also well-known that the use of headspace sampling transients provides richer sensor 

responses improving their information content [19,24].  

The analysis of first order sensor signals originating from the operational modes above 

requires a feature extraction stage. Several approaches can be found in the literature: (1) 

direct use of subspace projection methods such as PCA (Principal Component Analysis), LDA 

(Linear Discriminant Analysis), FFT (Fast Fourier Transform), DWT (Discrete Wavelet 

Transform), etc., (2) curve fitting methods, (3) waveform descriptors, (4) non-linear subspaces 

projection (SOM (Self-Organizing Maps), Sammons mapping, etc), (5) clustering in feature 

space, etc. It is also common practice to concatenate several feature extraction methods. For 

instance, a typical implementation could extract a feature vector based on waveform 

descriptors, then PCA to reduce dimensionality and avoid overfitting in a final LDA step- 

While PLS (Partial Least Squares) was not originally designed for discrimination purposes, PLS 

in conjunction with a binary class-coding for the Y block leads to PLS-DA (Partial Least Squares-

Discriminant Analysis) that is often found in the sensor feature extraction literature. In 

addition to the direct use of the class prediction technique, PLS-DA can be thought of as a 

subspace feature extraction technique, projecting X data onto the subspace spanned by the 

latent variables. The relationship between PLS-DA and LDA has been explored from a 

geometrical point of view [25]. 

Subspace methods have a solid mathematical grounding and are favored by many researchers. 

With PCA and LDA the most popular techniques, they have their own drawbacks. PCA aims to 

capture maximum variance in few dimensions, ignoring discriminant information. On the other 

hand, LDA is a supervised method but assumes unimodal Gaussian classes with different mean 

and equal class-covariance. Additionally, it is well-known that LDA is prone to overfitting, 

providing false class separability on the training set for small sample number to dimensionality 

ratio. LDA has the additional limitation of having a maximum dimensionality given by C-1, with 

C the number of classes. PLS-DA overcomes this limitation, but focuses more on maximizing 

mean class distances without counterbalancing within class variance.  

Lindgren et al. [26] presents a linear feature extraction technique called Asymmetric Class 

Projection (ACP) that is especially thought to deal with asymmetric distributions of data. ACP 

aims at obtaining discriminant features between the classes involved, in a similar way to the 

LDA. However, ACP is able to find better discriminant features than LDA when the class 

distributions are concentric and have different variance distributions, but in the absence of a 

symmetry plane. The technique is successfully tested with synthetic data but provides 

comparable results to LDA for an experimental data set.  

A subspace projection method with biomimetic inspiration was proposed by Perera et al. [27]. 

They presented a dimensionality reduction technique inspired by the receptor convergence 

present in the olfactory system. To achieve this goal, a projection of the initial features onto 

the class space is made, keeping the initial sensor variance. Authors suggest their usefulness 

for those specific cases in which only a small number of high dimensionality samples is 

available. The method is tested with a set of experimental data coming from temperature 

modulated gas sensors stimulated with a sinusoidal profile. 



In the last ten years the focus has been on analysis of dynamic sensor signals. While the Fast 

Fourier Transform was already being used by several authors (e.g. Heilig et al. [28]) in the 90s, 

the trend has been towards exploring more powerful multi-resolution techniques for transient 

signals analysis. Among them, the Discrete Wavelet Transform for feature extraction has been 

frequently used since the late 90s [29,30]. When using DWT, usually a posterior analysis is 

needed to find out at which decomposition level class separability is maximum. It has been 

frequently found that DWT outperforms FFT [31]. DWT has been used for processing sampling 

transients, temperature-modulated MOX sensor signals, but also voltammetric sensors [32]. In 

this last work the authors propose an ANOVA based feature selection method to find the most 

discriminate wavelet coefficients. In its particular application DWT outperforms PCA.  

Acevedo et al. [33] compares classical statistical methods as PCA and LDA to DWT using a 

probabilistic Support Vector Machine (SVM) as classifier. They conclude that PCA and LDA 

provide the best results, delivering projection subspaces with lower dimensionalities than 

those delivered by DWT to obtain similar performances. On the other hand, the authors have 

commented that the projection matrices for DWT do not require training data.  

 

While orthogonal basis functions such as sinusoidals and wavelets have been used extensively, 

there has been recently proposed to investigate the use of other orthogonal basis such as 

Bessel Functions. In a recent paper, Vergara et al. [34] use this orthogonal basis to model 

signal transients. They claim that these functions are better suited to capture the transient 

characteristics of the sensor response. They compare the performance with Exponential 

Moving Average (EMA) [35] feature extractors and steady state responses, resulting in better 

results in classification. They also test these features to build predictive models using PLS.  

 

When trying to represent sensor signals using basis functions, there can be multiple choices. 

However, the question remains as to how to select the most appropriate basis for processing a 

particular class of signals. Different basis functions will highlight different properties of the 

signals under analysis. Using a purely signal representation criterion, Leone et al. [36] propose 

an automatic method to select the best signals for the expansion. The proposal is based on the 

use of overcomplete dictionaries and then the matching pursuit method in order to select the 

optimal atom of the dictionary. While the procedure provides extremely compact signal 

representations and then quasi-optimal compression (in fact, optimal compression is given by 

PCA), this is not a guarantee for informative features.  

 

Some authors have explored the analysis of transients using multi-way methods, taking 

advantage of the data structure (transient time x samples x sensors). Skov and Bro introduced 

sensor array trilinear modeling for the first time using PARAFAC2 [37]. This technique is able to 

handle small time shifts that may appear in sensor waveforms due to instabilities in sampling 

flows. Padilla et al. [38] used PARAFAC to model sampling transients of headspace analysis of 

potato chips with different odorant levels. They found that one of the loadings was correlated 

to the odorant quantity enabling an easy linear calibration model.  

 

Martinelli et al. [39] proposed a feature extraction method for sensor waveforms. Lending 

inspiration from the canonical variables of analytical mechanics, they use phase space to 



represent the dynamics of the sensor responses and extract features for odor discrimination 

and concentration estimation. The phase space includes, as dimensions, the response of the 

sensors along with their first time derivatives. The authors propose to use the area spanned by 

a phase space trajectory as a feature during the sensor adsorption and desorption processes. 

The classification and concentration results estimations obtained with the phase-space area 

outperform those obtained with the simple steady state as feature in androstenone and apple 

ripening detection problems. This feature extraction technique was used later by Falasconi et 

al. [40] to evaluate coffee ripening. After comparing against R/R0 and the sensor response 

integral, the phase-space integral provided the best performance. Martinelli et al. [41] and 

later on Vergara et al. [42], also exploited the representation potential of the phase space to 

propose dynamic moments as new features. Dynamic moments are morphological descriptors 

of phase trajectories previously proposed to describe chaotic system dynamics. This approach 

was applied to the analysis of transient responses due to changes in concentration and/or 

thermal modulation of metal oxide gas sensors. To test its performance, two sets of data are 

prepared. The first consists of samples of headspace of potato crisps. These samples are sorted 

according to their rancidity state. After data analysis, the use of the proposed approach leads 

to an improvement of the classification. The second dataset contains the response of 

temperature-modulated micro-hotplate sensors. In this case, phase-space methods give the 

opportunity to use novel features that describe sensor trajectories, while adsorption and 

reaction kinetics are altered by the temperature modulation. The new set of features is used 

to build a supervised pattern recognition model based on Partial Least Squares (PLS-DA). The 

results obtained provide an increase in the gas identification rate and also a great reduction in 

the time needed to do the measurements. Working also in phase space, Zhang et al. [43] 

propose a new set of heuristic features to describe the trajectory. Their results overcome the 

use of the phase-space integral. They do not compare with dynamic moments. 

To extract features from sensor waveforms in temperature modulated micro-hotplate gas 

sensor arrays, Vergara et al. [44] introduced the so called energy vector (EV) approach for 

feature extraction. In this proposal, the feature vector is formed by the N·(N-1) cross-energies 

between all the sensor waveforms (N being the number of sensors). Cross-energies can be 

seen as correlations between the sensor waveforms. The rationale behind this proposal is that 

these correlations are dependent on the sensed gas. In their study, the cross-energy feature 

vector compares favorably to features extracted by Fast Fourier Transform, but they do not 

compare with previous proposals by the same authors. The classifier used was PLS-DA. 

When working with fast time-varying concentration inputs, either of random nature or step-

like, sensors exhibit dynamic responses [45]. In those cases, the predictive power of the sensor 

array is enhanced, using time-delayed inputs as features. This was explored by Pardo et al. [46] 

when trying to predict the concentrations of binary mixtures of toluene and octane from using 

a QMB sensor array. This idea has been further explored by Pardo et al. [47], Zanchettin [48] 

and De Vito [49]. With a different approach, Yamanaka et al. [50] used linear state-variable 

dynamic models to increase the speed of the analysis for fast-varying inputs.  

For step like concentration inputs, and in order to accelerate the computation of the extracted 

features, Muezzinoglu et al. [35] proposed the use of an exponential moving average feature 

that is readily available at the beginning of the sensor transient. They show that is not 



necessary to wait for the steady state in order to obtain good results in quantification and 

identification problems. This confirms earlier results by other groups [51]. 

Some authors have found that the MOX sensor response dynamics to a heater temperature 

change depend on the target gas and its concentrations. To estimate the dynamics, linear 

system identification techniques (e.g. ARMAX) are used [52]. The estimated parameters 

become the input features for later gas identification and concentration estimation.  

Curve fitting has been in use since the early 90s: examples are multi-exponential [24,53,54] 

and multi-Gaussians models [55]. The fitted model parameters become the extracted features. 

Carmel et al. [56] presented the use of a Lorentzian model for the sensor responses with good 

results. Later, Haddad et al. [57] presented a generalization of the Lorentzian model for signals 

exhibiting more than a single peak. Curve fitting can result in extremely compact features if the 

selected basis suits the shape of the sensor waveform. However, on many occasions, curve 

fitting requires non-linear parameter optimization techniques. It is well-known that on many 

occasions, the feasible parameter space is nonconvex and therefore leads to multiple local 

minima. If the optimization algorithm gets trapped in diverse local minima due to small 

changes in the sensor waveform, this could produce a large variability on the selected features 

and ultimately it could produce unreliable results. This is mostly the case when the basis 

functions stay highly correlated despite changes in the inner parameters.  

 

E. Llobet et al [58] proposed to use self-organizing maps as feature compressors in a problem 

of quantitative analysis of binary mixtures using FT-NIR spectrophotometry. He proposes to 

project the input data (spectra) in the subspace generated by the neurons of a previously 

trained self-organizing map. From 777 initial wavelengths provided by the spectrometer, they 

reduce the dimensionality to 40. They found that the linear regression models built in the 

reduced space provide lower error than in the original space.  

 

During the last ten years, feature extraction proposals have been mostly focused on extracting 

information from sensor waveforms generated by sampling transients or by external 

modulation of a tuning parameter. There is a large number of evidence that transient signals in 

fact carry additional information beyond the steady-state response. In a similar way, 

temperature modulated metal oxide sensors provide richer signals than isothermal response. 

Obviously there are infinite ways to describe a sensor transient signal and a large number of 

descriptive features can be extracted. However, it is important to mention that in the context 

of chemical sensing, signal representation is not the ultimate goal. In other words, while some 

sets of features can adequately describe the signal shape, this does not guarantee that those 

features are especially informative about the predictive task. In any case, any compact 

representation of the signal dynamics can provide adequate dimensionality reduction and 

reject noise, and in this way, they can reduce the problems associated with the curse of 

dimensionality. Other proposals, like the energy vector approach by Vergara, do not describe 

the signal shape directly but try to extract features that could be affected by changes in the 

sample composition. Since most of the approaches presented do not optimize any particular 

figure of merit, a posterior step of Linear Discriminant Analysis, PLS-DA is used in order to find 

the proper weight to the different extracted features. Alternatively, the option is to optimize a 

subset of features by feature selection. 



 

2.1.2 Feature Selection and Sensor optimization 

 

Feature selection is a dimensionality reduction approach that consists of selecting a certain 

number features from all the available ones for subsequent use by a learning algorithm. In 

instrumental development, feature selection techniques are closely related to system 

optimization. For instance, when features are grouped by sensor, feature selection or better 

feature-group selection algorithms can be used to finally choose the final subset of sensors to 

be included in the instrument. For tunable sensors (e.g. Spectral filter locations in optical 

sensors, voltages in voltammetric sensors or temperatures in Metal Oxide Sensors), when the 

features correspond to the sensor responses for specific values of the tuning parameter, the 

optimization of the instrument operation can also be posed as a feature selection problem. It 

is important to note that in this formulation the sensor/instrument response is available for 

every possible feature subset selection during the optimization process. This optimization is 

usually carried during the design phase. The reader can read more about this topic in the 

recent review by Vergara and Llobet [59].  

 

 

Feature selection is a combinatorial problem and an exhaustive search can only be performed 

in some cases. If all potential combinations are allowed 2N-1 possible configurations exist, N 

being the number of features. However, on many occasions the desired number of features 

(occasionally this is just the number of considered sensors) is decided a priori to be M<N, with 

 the number of potential configurations to explore. 

 

At this point it is important to note that when the number of sensors is limited, exhaustive 

search is an option [60], and computational methods only serve to speed up the search for the 

optimum configuration. In an example by Pardo et al. [61] from an initial set of 30 features 

from 6 chemical sensors, they selected the best subset with cardinality 1-5 using exhaustive 

search. Among the selected features, those based on phase space were selected among the 

best. The authors found that selecting only 2 features gave better results than the initial set of 

30.  

 

An early example of sensor selection in an array of 12 MOX sensors for a discrimination 

problem was presented by Pardo et al. [62] Sequential Backward Selection (SBS), Sequential 

Forward Selection (SFS) and Genetic Algorithms (GA) where compared with techniques based 

on the PCA or LDA scores. The global optimum with just 5 sensors was achieved only by 

Genetic Algorithms.  

 

Sensor selection techniques, when applied to hybrid sensor arrays, provide further insight into 

the performances of the different technologies. Pardo et al, [60] after an exhaustive search, 

found that hybrid sensor arrays (in the sense of arrays comprising sensors of different 

technologies) gave better performance than homogeneous arrays. The importance of hybrid 

sensor arrays was already pointed out by Ulmer et al. to reduce sensor correlation [63].  

 



In a recent work, B. Raman [64,65] applied sensor selection techniques to an array of metal 

oxide microhotplates under temperature modulation. The motivation problem was that of 

recognizing hazards in the presence of interferences and different levels of relative humidity. 

While the microhotplates are temperature modulated, their array optimization problem refers 

to the selection of metal-oxide materials and the number of replicas for every material type. 

To select the best subset they use a measure of cluster separability derived from Fisher’s 

Linear Discriminant Analysis. 

 

      (1) 

 

Where SW and SB are the within-cluster and between-cluster scatter matrices. The paper does 

not mention any search strategy, but the figure of merit is used to compare different subset 

options. Curiously enough, the best configuration found uses just two materials but four 

replicas of every material. The use of redundancy provides a better limit of detection, and 

allows discrimination of several analytes from the variability of the background. The best 

combination is tested for classification performance with leave-one-out, with very good 

results. 

 

Similarly, in a recent paper Muezzinoglu et al. [66] optimized the active layer temperatures of 

two metal-oxide sensors TGS26000 and TGS2610 (Figaro, Japan). As a figure of merit to select 

the best working temperature, they proposed to use the squared Mahalanobis distance among 

the class means using a weighted average of the two covariance matrices. 

 

    (2) 

 

Where µi is the i-class center and S12 is the weighted average of the two covariance matrices S1 

and S2. This approach is generalized to multi-class problems using as a figure of merit: 

 

     (3) 

 

This approach is conceptually very similar to the previous one by Raman et al. in the sense that 

both are based on Gaussian classes and try to compare the distance among classes with the 

sample scatter for the classes. Although no comparison has been made, results should not 

differ much. In this paper, the authors do not propose any particular search strategy and they 

just scan the temperatures with both sensors working at the same temperature. The results of 

the prediction by this figure of merit are then compared with the classification rate of three 

classifiers: a kernelized support vector machine, a linear support vector machine and a nearest 

neighbor classifier, with good agreement 

 

In a series of papers, Vergara [67,68,69] explores the optimization of the operating 

temperature modulation of metal oxide gas sensors. The basic idea is to excite the sensor with 

a multisinusoidal signal. The frequencies of the individual sinusoids are optimized for 



maximum discrimination among the target odors. In this proposal, sensors are considered as 

linear systems where the input is the modulation voltage and the output is the sensor 

response. While the system is strictly non-linear, it can always be approximated in first order 

by a linear dynamic system in the sense of Volterra series expansion for dynamic non-linear 

systems [70]. The dynamic response of such a system depends on the sensed gas. It is then 

possible to estimate the impulse response of the system for every target gas. This is done by 

the use of white noise inputs and by computing the output-input cross-correlation. The 

frequency response is then calculated by the Fourier Transform of the impulse response. At 

this point, frequencies are ranked depending on a figure of merit named resolution power and 

defined as the between-group variance divided by the intra-group variance. The higher ranking 

frequencies are selected. Note that this approach does not consider interactions among the 

selected sinusoidal frequencies and it can be sensitive to spectral variance due to non-

parametric spectral estimation proposed. The proposed approach outperforms the 

identification success with isothermal responses, but it is not compared to other simple 

modulation schemes (e.g. saw-tooth signals). 

 

 
Figure 5. Study of the sensor/gas system using MLPRS (multi-level-pseudo-random-signals). The MLPRS voltage 
signal x[n] is the input and the transient sensor conductance is the output. An estimate of the impulse response 
can be calculated by cross-correlation [69] (with permission of Elsevier Science). 

 

Vergara et al. [71] approached the temperature optimization problem from an information 

theoretic perspective. They studied the use of the Kullback-Leibler divergence as a tool to find 

an optimum operating temperature for an odor discrimination problem. A symmetrized 

version of the divergence is used to compute the distance between the probability density 

distributions of the sensor responses for different odors. The maximum distance of the 

distributions across temperatures yields the optimum operating temperature. The method is 

applied to a multi-odor classification problem with 4 sensors that are optimized 

independently. 

 

A more challenging approach to optimize the operation temperature of the sensors was 

followed by Gosangi and Gutierrez-Osuna [72]. They proposed a method based on active 

sensing to determine in real time the optimum sensor temperature profile for a discrimination 

problem. The method is based on Partially Observable Markov Decision Processes providing an 

optimized temperature profile that balances the risk of classifying the odorant against the 

power consumption cost of increasing the sensor temperature. The optimization method is 



experimentally validated exposing Metal Oxide Semiconductor sensors to three analytes.  

 

While the bulk of work on sensor optimization has been devoted to temperature selection in 

Metal-Oxide Sensors, some examples can be found, for instance, in optical sensors. Calaza et 

al. [23] explored the best sequence of mirror positions in a Fabry-Perot Interferometer using 

Genetic Algorithms. They conclude that it is not necessary to scan the full set of positions but it 

is possible to concentrate on the most discriminant ones. Fonollosa et al. [73]. When analyzing 

the performance of a four-channel non-dispersive infrared micro-spectrometer (NDIR) based 

on MEMS technology aiming to detect ethylene, ethanol and ammonia (plus a reference 

channel) they faced the problem of the optimum wavelength window for the spectrometer 

filters. They analyzed the angular distance between the sensitivity vectors for different optical 

window central wavelengths in order to avoid overly correlated channels and as a 

consequence, correlated feature vectors. However, in this paper, the authors do not introduce 

any automatic procedure for selection, or any specific goal function that combines sensitivity 

and specificity. 

Among the different techniques for feature/sensor selection, Genetic Algorithms (GA) have 

been the preferred option because of their resilience to get trapped in local optima by many 

researchers [74,75]. J.W. Gardner et al. [76] specifically propose the enhancement of the 

performance of electronic noses through the use of genetic algorithms for sensor selection. 

They propose a GA technique in which the number of features is fixed from the beginning, 

instead of exploring the entire combinatorial space. Phaisangittisagul and Nagle [77] reported 

a sensor selection technique based on genetic algorithms to generate sensor subsets and a 

classifier as subset evaluation criteria (wrapper approach). They applied the optimization to 

features extracted with discrete wavelet transform (DWT) from the sampling transient 

response of the sensors. The technique was validated with MOX sensor responses to different 

types of coffee and soda. In a posterior paper [78], the same authors propose to speed up the 

technique, selecting the initial state for the genetic algorithm with the maximum margin 

criterion.  

 

A different approach to speeding up the sensor selection process is to use sensor clustering to 

constrain the search space of sensor subsets [79,80]. It is usually the case that the sensors 

provide correlated responses. The principle behind this approach is that it is better to select 

sensors that are more orthogonal or diverse. Cluster analysis is used to detect groups of 

correlated sensors. An easy way to reduce the number of sensors is to select a single sensor 

per cluster, since neighboring sensors in feature space will provide only correlated 

information. Greater sensor diversity is found by selecting sensors from different clusters. To 

find the final configuration of the array, a genetic algorithm generates these constrained 

subsets that are evaluated based on a resolution factor proposed by the authors, based on 

averaging a Fisher ratio for all the input dimensions.   

 

Llobet et al. [81] have proposed a feature selection method combining genetic algorithms and 

classification with fuzzy ARTMAP. This method addresses the problem of irrelevant feature 

selection of the Genetic algorithms by concatenating two GA based search stages. The 

resulting features of the first search stage are fed to the second GA search stage to further 

reduce the number of features and discard the irrelevant ones. The method is tested on the 



classification of three volatile organic compounds.  

 

Gualdron et al. [82] compared five feature selection techniques (SFS, SBS, GA, Simulated 

Annealing, stepwise selection) coupled with two neural based classifiers (Fuzzy ARTMAP and 

Probabilistic Neural Networks). The performance of the method is evaluated on the basis of 

three figures of merit: classification rate, number of selected features and computational 

efficiency. Their results show that with any of the two classifiers, SFS is faster, provides a 

parsimonious model and good classification rates. 

 

Mass spectrometry based e-noses results in high dimensional features vectors. Specifically for 

these instruments, Llobet et al. [83] propose a three-step feature selection methodology. In 

the first step, they remove noisy features evaluated using a univariate Fisher ratio. In the 

second step, collinear features are identified and redundant features removed. In the last step, 

they apply GA or SA for fine tuning.  

 

A different approach to sensor selection is based on the sensitivity of predictor models 

towards the different features. Szecówka et al. [84] approached sensor selection using a 

classical two-layer back-propagation MLP and sensitivity analysis to determine the more 

relevant sensors. They follow a backward subset selection with the removal of one sensor per 

iteration to find sensors that provided redundant information. The method was validated with 

data from MOX sensors estimating the concentration of organic compounds. 

 

A method based on the evaluation of the margin vector in an SVM classifier was proposed by 

Gualdron et al. [85]. The authors first sorted the features according to the square value of the 

weights in the margin vector in decreasing value. They select the features with the largest 

weight and the optimum number of features in cross-validation. They validate the method 

with a dataset of chemical sensor responses and another of mass spectrometry based e-nose.  
 

Current state of the art regarding feature selection makes heavy use of genetic algorithms, 

while some papers propose that sequential searches can provide similar performance with 

lower computational cost. Regarding the objective function, measures based on Fisher ratios 

and similar formulations (Mahalanobis distance) have been proposed by several groups. Other 

teams prefer to use a direct wrapper approach and introduce a classifier directly in the 

optimization loop. 

These techniques are of special interest for their application to system optimization. Among 

the different proposals, we would like to highlight the adaptive optimization proposed by 

Gutierrez-Osuna as a significant step towards more intelligent chemical sensor machines. 

2.2 Classification 

 

Classification of chemical sensor data is, in many cases, plagued with problems. It is quite usual 

to encounter highly correlated features, scattering due to concentration [86] or drift, 

multimodality and non-Gaussian data distribution per class. Additionally, and due to high 

calibration costs, the number of training data is limited. For all these reasons, it is important to 



select classifiers that are robust to the problems above. In the past, Multilayer Perceptrons 

[87] or Self-Organizing Maps [88] have been used to cope with these difficulties. In recent 

years, there is a trend to use statistical learning based methods. Among them the most 

widespread technique is Support Vector Machines. Other explored methods are Mixture 

Models, Bayesian Networks, Random Forests and Shrunken Centroids. Obviously, any 

published classifier can be tested against sensor array data. However, on many occasions the 

gain is only marginal compared to classical solutions. An effort is needed to explain the 

advantages of the latest machine- learning classifiers to the artificial olfaction practitioner.  

Support vector machines have been one of the preferred methods for classification in the last 

years within the chemical sensing community [89] due to its good generalization properties 

and its robustness against the curse of dimensionality. Pardo & Sberveglieri [90] studied the 

use of support vector machines (SVMs) to classify electronic nose data, specifically exploring 

the occurrence of under-fitting and over-fitting effects during this classification. Two binary 

classification problems of different difficulties were studied. The problems were super-class 

constructs assembled from measurements made on seven different blends of espresso coffee. 

They studied the test error in terms of three parameters: 1) the number of principal 

components of the raw data that are introduced as input to the SVMs; 2) the parameter value 

for polynomial and radial basis function kernels; 3) the regularization parameter. The authors 

concluded from this study that the parameter controlling the trade-off between margin size 

and classification rate of the training data is critical to reduce the test error. They also found 

that the principal components with small variance (on the easy problem) have an impact on 

the result. This result is often found in artificial olfaction. On many occasions, first principal 

components are dominated by unwanted source of variance like drift, environmental 

perturbations or sampling errors. While this may be interpreted as a lack of robustness, it does 

not mean that the classifier cannot succeed. On some occasions, the implemented data 

processing system can effectively reject that unwanted variance and focus on smaller 

components of variance that have the discriminant information. 

 

Brudzewski et al. used SVMs to classify blends of gasoline [91] and milk [92]. They proposed an 

extension of the SVM classifier to account for classes not present at the training stage of the 

SVM. The extension is a classification procedure in two stages. In the first stage, ordinary SVM 

classifiers (one against all or one against one) are applied and a preliminary winner class is 

assigned to the observation. In the second stage the Mahalanobis distance d(x,m) between the 

observation x and the mean vector of the winning class m is computed. If the computed 

distance exceeds some threshold value, typically determined from the distribution of samples 

from the particular class, the observation is classified as unknown. This procedure prevents 

SVM predicting for samples far away from the training data and it will increase system 

robustness. 

 

Bicego [93] proposed a method with similarity-based representations as a preprocessing stage 

combined with a SVM classification stage. In the similarity-based paradigm, objects are not 

described and classified on behalf of explicit features, but by using measures of similarity 

between pairs of objects. Non-metric similarity measures can very well be used allowing 

formulation of generic algorithms independent of actual data representations and uniform 



feature spaces. In this paper, the author reported that similarity based representations of data 

often render similarity spaces with very high dimensions. To circumvent this major drawback a 

new dimensionality reduction approach based on clustering is presented. Data gathered from 

an electronic nose is used to demonstrate that a similarity-based approach with the suggested 

dimensionality reduction technique outperforms standard classification approaches, including 

regular SVMs. 

 

While Support Vector Machines are used for classification purposes, Muezzinoglu et al. [94] 

proposes a maximum margin formulation for minimizing the empirical regression error and the 

classification error jointly. The solution yields a pool of support vectors that achieves both 

goals simultaneously. 

 

Other techniques from the machine learning domain have been also tested with e-nose data. 

Relevance Vector Machines were proposed to overcome some of the limitations of SVM. They 

provide a probabilistic output and typically require fewer support vectors. They were tested in 

e-nose data by Wang et al. [95].  

 

Brahim-Belhouari et al. [96] evaluates the performance of different probability density models 

for the identification of combustion gases from sensor array data. The compared models were 

Gaussian mixture models (GMM), probabilistic PCA mixtures and generative topographic 

mapping classifiers. The results of this study show that GMM outperforms the other two 

mixture models provided that PCA is used for pre-processing. Probably this is related to the 

fact that GMM are very sensitive to the course of dimensionality. It was also found that the 

use of mixture models and GMM yielded more accurate classification performance when 

compared to other classification techniques including K-NN, MLP, and RBF. 

 

Phaisangittisagul et al. [97] presented a classification algorithm to speed up the classification 

of multiple dataset samples. The algorithm has a different classifier for each dataset and a 

classifier selection stage that directs each new sample to its corresponding classifier. This is to 

say that they select the dataset each new sample belongs to. Therefore, only one classifier 

needs to be computed each time, reducing the computation time. The classifier selection is 

performed comparing the concatenated response of 15 chemical sensors of a new odor, what 

they call signature, with the maximum and minimum sensor response values obtained with the 

training set data. They obtain a maximum and minimum curve for each dataset. The new 

sample is assigned to the dataset for which the sensor response of the new odor lies within 

this curve or the distance to them is minimal. The authors validated this algorithm exposing 15 

MOX sensors to four different sets of odors: Coffee, Soda, Bacteria, and Rice.  

Bayesian Networks were used to combine the classification results for two chemical sensing 

instruments. Li et al. [98] discriminated between damaged and healthy apples using two 

instruments: Cyranonose 320 equipped with 32 thin film carbon black polymer sensors and 

zNose containing one surface acoustic wave sensor. After a PCA feature extraction stage, the 

sensor responses of both instruments are classified independently by two multi-layer 

perceptrons with 3 layers. The output layer contains one neuron per class: damaged, healthy. 

Considering the output value as the probability of a sample belonging to each class, a Bayesian 



Network is fed with them to combine the classification of the two MLPs. This stage is only of 

any use when the classification of both MLPs is different. The results show that error rate 

decreases from a 20% zNose – 13% Cyranonose to an 11% due to the Bayesian network. 

Cho et al [99] uses a Classification and Regression Tree (CART) algorithm [100] to classify 

Acetone, Nitrotoluene, Nitrobenzene and Octane using a four-component nanosensor array. 

They obtain very good results (94% classification accuracy) despite the patterns appearing to 

be highly correlated from the inspection of the scores plot. There is no discussion about the 

use of CART compared with other pattern classification methods. 

Matteo Pardo [101] proposed the use of Random forest and Nearest Shrunken Centroids for 

the classification of sensor array data. Random forests are ensembles of classification trees. 

Every tree is constructed using a different bootstrap sample of the data and, in addition, 

random forests change how the trees are constructed. In standard trees, each node is split 

using the best split among all variables. In a Random Forest, each node is split using the best 

among a subset of predictors (features) randomly chosen at that node. Random Forest has 

only two hyperparameters (the number of variables in the random subset at each node and 

the number of trees in the forests), and it is usually not very sensitive to their values. On the 

other hand, Nearest Shrunken Centroids is a modification of the standard Nearest Centroid 

Classification. The modification consists of shrinking the class centroids toward the overall 

centroid of the data by an amount called the threshold. It has two advantages, 1) it can make 

the classifier more accurate by reducing the effect of noisy features and 2) it does automatic 

feature selection. In particular, if a feature is shrunk to zero for all classes, then it is eliminated 

from the prediction rule. The paper applies these methods to two datasets originating from 

food applications. One of them investigates the detection of toxigenic strains in corn and the 

second the presence of defects in olive oil. The datasets were originated by the commercial 

EOS-835 e-nose by Sacmi s.c.a.r.l. The system is equipped with five sensors featuring different 

types of metal oxide sensors. The paper concludes that the performance of Random Forests is 

similar to that of Support Vector Machines, while the Nearest Shrunken Centroid performs 

worse. The authors highlight the capabilities of both methods to rank input features, and in 

fact, results are basically consistent with both techniques.  

In the last decade, multilayer perceptrons, simple k-NN classifiers and Linear Discriminants are 

still used by many teams. There is a shift of thinking towards SVM as the gold standard method 

for classification purposes. On most occasions, the differences between the different methods 

are minor. Since in most cases the authors do not report the confidence intervals for the 

reported classification rates, on many occasions it is not clear if the reported differences are 

statistically significant. 

 

2.3 Regression 

 

Regression or quantitative prediction models, together with classification, are some of the 

main final goals of signal processing for chemical sensing. We can define a regressor as a 

continuous mapping between the sensor response and a certain continuous parameter of the 



chemical sample. This parameter is usually concentration, but it could also be another physico-

chemical characteristic of the sample. The most common methods to address regression 

problems are: artificial neural networks (ANN [87]), support vector regression (SVR), and 

partial least squares regression (PLS). 

A number of papers have followed the ANN approach to solve the regression problem. Gulbag 

& Temuras [102] have compared the performance of artificial feed forward neural networks 

(FFNNs) with the performance of adaptive neuro-fuzzy inference systems from measurements 

made on binary gas mixtures with an array of QCM sensors. Six different and well-recognized 

training algorithms were used to train the FFNNs while the neuro-fuzzy system was trained 

with a hybrid training method combining back-propagation algorithms with least squares. This 

comparative study showed that the fastest convergence rates were achieved for FFNNs trained 

with Quasi-Newton, FFNNs trained with Levenberg-Marquardt, and ANFIS. The mean square 

error (MSE) was not as good for the ANFIS as it was for the two FFNN approaches considering 

training data. However, the MSE for the three networks was comparable considering test-data 

and one of the conclusions were that the generalization performance of the ANFIS structure 

was better than those of the neural network structures. 

 

B. Mumyakmaz et al. [103] proposed a hybrid algorithm consisting of two neural networks 

running in parallel. They analyzed sensor responses to ternary mixtures (acetone, chloroform 

and methanol) from a gas sensor array composed by 6 QCM. One of the neural networks is 

specifically devoted to the quantification of the chemicals present in the mixture, while the 

second network identifies the mixture components. The output of this second neural network 

is a three bits number that codes the components of the mixture. This network provides a kind 

of filter for the predictions of the first neural network, in the sense that if the second ANN 

does not detect the presence of a particular chemical in the network, then its predicted 

concentration is automatically reset to zero. In this way, they correct small residual 

concentrations always predicted by the first ANN even when the components are not present. 

This algorithm however is trained only with a number of discrete points in the space of 3D 

ternary mixtures and it is not clear where validation takes place.  

 

The machine learning formalism known as support vector regression (SVR) was applied in soft 

sensor applications by Desai et al. [104]. Their paper serves as a good introduction to SVR, 

emphasizing advantages like strong statistical basis, convergence to global optimum, improved 

generalization performance and interpretability. It has shown that SVR is an attractive 

alternative to artificial neural networks for the development of soft sensors. 

 

Some authors used SVR to approach the regression problem. De Vito et al. [49] studied in 

detail the possibility of using a Time Delay Neural Network and a Time Delay Support Vector 

Regressor for a scenario of continuous analysis. According to the authors, real time analysis is a 

very important scenario that has not received proper attention. In real time, rapid variations 

may occur and responsiveness of control actions is decisive. The regressor system must be 

capable of correctly taking into account sensor dynamics in order to forecast the real 

instantaneous concentration, thus enhancing the overall system responsiveness. They explore 

a scenario with mixtures of NH3, NO2 and humidity. The sensor’s response appears to be slow 



in following the rapid changes in concentration. They use a time delay of 5 minutes, much 

smaller than the sensor (or system response). For the Neural Network they explored 5 to 30 

hidden neurons, and for the SVR they optimized the C and the hyper-parameter of the kernel 

function (Gaussian kernels) with a grid procedure. While SVR slightly outperformed the best 

TD-MLP, the interesting point is that with only a 5 min time window, the system was able to 

compensate very low system dynamics and give very acceptable predictions even with the 

presence of a slow drift.  

 

The calibration of a sensor array system is an expensive process requiring access to accurate 

gas measurement systems. On top of this shortcoming, many chemical sensor techniques 

suffer from manufacturing variability, making frequent calibration sessions necessary; e.g. for 

each assembled single sensor array or for each batch of assemblies. To alleviate the trouble 

and expenses caused by frequent calibrations there is an interest in finding regression 

techniques that require a minimal number of calibration points while retaining sufficient 

accuracy. In light of these considerations, Shmilovici et al. [105] compared a special type of 

support vector regression technique, ν-SVR, with PLSR. The ν-SVR has an explicit ν  parameter 

for controlling the sparseness of the solution and thereby also the number of calibration points 

needed. By studying data from ternary mixtures of CO, CH4, C2H5OH measured with 12 metal 

oxide sensors the authors found that ν-SVR indeed generated a smaller mean square error 

with a smaller number of parameters as compared with PLS. It was however recognized that a 

current deficiency with the ν-SVR formulation is that each gas requires its own dedicated 

model. There is absolutely no guarantee that the individual models would pick the same set of 

support vectors making the number of parameters, and hence the needed calibration point 

number, to increase with the number of gases to be predicted 

 

Lozano et al. [106] addressed the prediction of wine sensorial descriptors with PLS. They used 

an array of 16 MOX sensors to analyze 28 wines from different regions, varieties and 

elaboration processes. All the sensor signals were referenced to the signal from a mixture of 

ethanol (12% v. and distilled water). Results were good and the validation was made by leave-

one-out.  

 

Cho et al. [99] built a zero order Sugeno Fuzzy Inference System on the basis of rules 

previously learnt by a CART. The tree obtained can be assimilated to the asset of crisp rules. To 

convert the hard decision rules to fuzzy rules an extended sigmoidal membership function 

(MF) is defined. This MF has two inner parameters but no clue is given on their optimization. 

Finally a defuzzication step is carried out to interpolate between the predicted values. As 

expected, the system interpolates correctly, but unfortunately it seems that the test 

concentration values are the same ones used for building the tree. Since the algorithm is highly 

non-linear, it is not clear how it will perform in the presence of mixtures or other interferents. 

 

PLS is still the most commonly used technique for quantitative analysis in chemical sensor 

arrays, and in most cases is the gold standard to compare other techniques. If the sensors 

show only mild non-linearities, PLS is usually able to model the relationship by adding 

additional latent variables. Non-linear PLS (namely, Poly-PLS, Kernel PLS) are also options that 

have been seldom used for chemical sensors. MLP and SVR are also used in many applications 



with good results. Other options, while possible, are not mainstream choices. 

 

 

3. Robustness of Multivariate Data Processing Models 
 

From our point of view, a more demanding instrumentation technique validation is needed in 

the field of artificial olfaction for an effective translation of laboratory results to industrial or 

clinical applications. Technique validation must be made through a robustness study of all 

aspects of the measurement: sampling, instrumental (sensors, flows) and environmental 

characteristics.  

For a definition of robustness (or ruggedness) we can refer to the definition given by the WHO 

(World Health Organization) when referring to analytical techniques in the pharma industry: 

“Robustness (or ruggedness) is the ability of the procedure to provide analytical results of 

acceptable accuracy and precision under a variety of conditions. The results from separate 

samples are influenced by changes in the operational or environmental conditions. Robustness 

should be considered during the development phase, and should show the reliability of an 

analysis when deliberate variations are made in the method parameters” [107] 

A number of inconveniences plague a wider adoption of e-noses for practical uses and are 

causes of the alleged unreliability, or lack of robustness, of artificial olfaction instruments. 

Most of the problems arise because, in practical applications, the conditions in which we use 

the instruments differ from the conditions in which the multivariate calibration model was 

built. Let us illustrate this point by a number of hypothetical examples: 

(i) Drift: While the instruments provide good initial results for many different 

applications (and this is supported by an enormous number of scientific 

evidences), these results rapidly deteriorate in time requiring frequent 

recalibrations. Since calibration of electronic noses is typically time consuming and 

costly, full recalibrations are not an option. The possible reasons for this fast 

degradation are numerous, namely: (i) sensors may age due to thermomechanical 

fatigue, heater drift, or active surface alteration due to high temperature 

operation, (ii) sensors may get poisoned due to exposure to aggressive chemicals 

or silicone vapors, (iii) absorption and desorption on tubing and sensor chambers 

may lead to memory effects, etc [108].  

(ii) Change in environmental/sampling conditions: The instrument has been 

calibrated in laboratory conditions, but in field operation humidity and operation 

temperature have a large range of variation beyond the calibration range. Changes 

in the sampling flow will also introduce shifts in dynamic features [109]. The 

predictions will degrade. 

(iii) Background change: The instrument is able to differentiate between two different 

fungi growing in a variety of cardboard materials. However, in operation, the same 

instrument is used to differentiate the fungi growing in wallpaper. Predictions 



again degrade. Also in this group, we may encounter applications that include a 

variation of the process (samples) the instrument is monitoring. For instance, in 

the process a new, previously unknown chemical appears. However, it may be the 

case that the chemical is already present in the matrix but the mean value changes 

over time. In general, any change in the mutual statistical distribution of 

background analytes could produce a degradation of the instrument predictions. 

(iv) Sensor replacement: For some unknown reason, one sensor starts providing 

erratic results and needs replacement. Due to the inherent technological 

tolerances in the fabrication of chemical sensors of diverse technologies, the new 

sensor will be different from the initial one. There will be changes in baseline and 

in sensor profile sensitivity to the compounds of interest. This will lead to a 

distortion of the original multivariate pdfs (probability density functions) in the 

feature space dimensions that depend on the response of the replaced sensor. 

(v) Calibration transfer (a): In this case, an e-nose company has developed a pattern 

recognition system for an instrument (the master) but wants to sell it for use in the 

whole series of apparently identical instruments. Without individual calibration, 

direct application of the master model to the remaining instruments causes 

degraded performance. Obviously, and again due to the differences between the 

instruments, the secondary instruments test set cannot be considered to be 

extracted from the same probability density function that characterized the 

master instrument.  

(vi) Calibration transfer (b): A Spanish Company develops an application to 

automatically detect the onset of ripening in apples “Verde Doncella” when stored 

in climacteric chambers using an electronic nose from a certain vendor. The 

Spanish company has a delegation in Portugal and wants to transfer the 

instrument and its calibration model to the local production of Apples in Portugal. 

Direct application of the model originally developed with Spanish apples caused 

degraded performance in Portuguese apples of the same variety.  

(vii) Prior probabilities change: An e-nose instrument has been trained to differentiate 

lung cancer subjects from healthy subjects in a certain clinical study where the 

training set was balanced for both conditions. However, in practical applications 

the prior probability of the patient’s condition is unknown or has seasonal 

changes.  

From a data processing perspective, all these examples can be summarized as a shift in the 

statistics of the test set compared to the original training set. It is important to realize that this 

simple statement captures many different problems that appear in the practical application of 

e-nose instruments, as we have seen in the examples above. 

When applying a prediction model, either quantitative or qualitative, it is always prudent to 

ensure that the new data does not fall outside the statistics of the training data. In some cases, 

users have a kind of blind faith that the prediction model will magically extrapolate outside the 

range of the training data. This could be argued for the class of linear instruments modeled 



with linear models, but it cannot be assumed in general. It is less known that multivariate data 

processing predictive models embed other variance onto the characteristics of the 

background, the instrument and the environmental conditions. Those are implicitly calibrated 

effects, even if the model does not provide any explicit output for them. Then models could 

fail or degrade if they are applied in conditions that depart from the implicitly calibrated 

conditions [110]. Far from the calibration conditions, predictions will be biased. In summary, 

sources of variation for the new data that did not appear in calibration conditions will 

invalidate the calibration model. 

Despite those important issues that hinder e-nose usability, pattern recognition and 

chemometrics textbooks usually present the different techniques by ignoring these issues. It is 

always presumed that the test set and the training set match. In other words, they assume 

both sets have been extracted i.i.d (independent identically distributed) from the same 

generative probability density function. In real world conditions, this is not the case. 

Additionally, these kinds of problems are not usually addressed by the bulk of e-nose 

literature. While we found a large number of successful applications reported, in the great 

majority of cases the validation procedure chosen is based in cross-validation (leave-one-out, 

k-fold, bootstrap, etc). These validation procedures implicitly assume the i.i.d. hypothesis and 

totally neglect the fact that, in most practical applications, we cannot assume that the training 

set and the test set have been drawn from the same joint probability distribution. 

In fact, a more rigorous validation technique will certainly give more confidence on the 

robustness of the proposed methods. Due to costly measurement procedures, training 

samples are usually scarce. Small sample size and high feature vector dimensionality can lead 

to overfitting in many learning algorithms. Additionally, in most occasions algorithms have free 

parameters that control the complexity of the learning machines. Those free parameters 

(number of Principal Components in PCA, latent variables in PLS regression, number of hidden 

neurons in a Multilayer Perceptron) are typically adjusted in an inner cross-validation loop. We 

advocate here for the use of a fully independent test set, free of any parameter optimization 

task. Due to time-varying statistics, it is much better if the test set is future to the training set.  

At this point we would like to point out some methodological errors that mostly appear in 

leave-one-out (LOO) cross-validation procedures. The interpretation of this method depends 

on what instance is left-out. This instance left out should reflect the expected operational 

scenario for the instrument and the expected generalization characteristics of the system. For 

instance, if the LOO procedure leaves out a single measurement, and keeps in the training set 

replicate measurements of the same sample, we should only expect that the system will 

generalize if it has replicate measurements in the training set and this is a very limiting 

condition. In a similar case, if the LOO procedure leaves out a particular wine, but leaves in the 

training set samples from the same wine variety, we cannot expect that the learning system 

generalizes well for other varietal wines.  

While the test set statistics may be different from the training set, it is clear that there is 

preservation in the data structure. That is, even if shifted, the test set somehow resembles the 

training set. To avoid full re-calibration, methods to improve stability should model this 

distortion in the data structure with a minimum of, and eventually no, additional 



measurements. This can be framed under the general concept of transfer learning, that is, how 

to transfer information from the particular conditions under which a calibration model was 

built to do prediction in new conditions [111]. 

As we will see later, many methods rely on dedicated experiments to correct the observed 

data shift (so-called explicit or extrinsic methods). Ultimately, the use of a calibrant or set of 

calibrants to retrain the data processing unit may be the most robust method for correcting 

the degradation of the prediction model. Obviously, a minimum set of calibrants is desired for 

cost and time reasons, and a number of techniques with diverse levels of complexity are at our 

disposal to update the calibration model on the basis of the new calibrants. Other techniques 

try to model undesired variance directly from the calibration set. For this later approach to be 

successful, it is essential that the calibration conditions contain all the expected sources of 

variability to be found in the posterior instrument operation phase.  

Data shift correction and model update can be carried out using very diverse strategies that we 

will present in the following subsections. The instruments can be made more robust by signal 

pre-processing, by selecting robust features, by univariate recalibration, by multivariate 

strategies or by adaptive methods. 

3.1 Sensor array linear response model  

 

To introduce the rationale of these methods, we will present a linearized model of the array 

response in a quantitative multi-component analysis scenario adapted from Gujral et al. [112]. 

Let x be the feature vector of dimension ns and c the nc dimensional concentration vector, 

where nc is the number of species in the sample the sensors respond to. On many occasions nc 

could be very large and unknown. The linearized sensor array response model is: 

     (4)  

Where  is the ncxns pure component response matrix and n is a noise term (typically 

assumed to be zero mean). It is important to understand that in most cases, the objective is to 

determine only nk analytes of interest, where nk<<nc. In addition we may have an additive drift 

term  (including here also environmental perturbations). We assume that the random 

vector  lies in a low-rank subspace. In this sense we can write: 

   (5) 

Where cint is the concentration vector of the interferent substances and Sint their pure 

responses. It is a typical scenario that the analytes of interest are systematically controlled 

during the calibration phase but the values of the interferent concentrations remain largely 

unknown. It is also commonplace that in test phase there could appear interferent substances 

that were absent during the calibration phase. In this simple model, the uncontrolled variation 

of interferent substances will produce drift-like responses.  

If linear additive drift is present during calibration, inverse calibration models already provide 

drift compensation [113]. However, it can easily be the case that the drift term in operation 



has components in subspaces orthogonal to the drift subspace seen in calibration phase. Those 

components will not be compensated by the inverse calibration model. 

In order to clarify the purpose of the different techniques for robustness improvement, let us 

now consider the inverse prediction model using a linear multivariate model (a regression 

problem)  

      (6) 

Where  are the predicted variables (typically analyte concentrations, but they could be other 

sample characteristics), X are the feature vector,  is the regression vector and E is the matrix 

of residuals. This matrix of residuals will have at least three components: (i) errors due to noise 

in operation phase, (ii) modeling errors related to the estimation of the regression vector b 

(e.g. due to model inadequacy or noise-drift during calibration), (iii) errors due to unseen drift 

in calibration phase.  

 can be found by ordinary least squares (OLS): 

    (7) 

Where Xcal are the sensor features in calibration phase and Ccal are the reference analyte 

concentrations in calibration. At this point, is worthwhile to mention that in the presence of 

collinearities among the sensor features the matrix  could be ill-conditioned. This is 

easily checked by computing the condition number. Ill-conditioning in general provides 

regression vectors with large modules. Solutions for ill-conditioned regression problems can be 

based on projection methods like PLS or PCR, or shrinkage methods like Ridge Regression. 

However, ill-conditioning is not always present, and in those cases the OLS solution may be 

enough. 

The changes referred above in its various forms, produce a shift in the test set when compared 

to the training (calibration) set. Those changes can be thought of as a perturbation δx. This 

perturbation produces also an error in the predicted values [114]. 

 )     (8) 

  
 

Therefore we can conclude that to minimize the error in prediction, one or more of the three 

terms in the right hand of equation must be minimized. We will say that a feature vector is 

robust when the different perturbations described above produce minimum changes in the 

feature vector δx. A second strategy is to minimize the norm of the regression vector. In this 

sense, regularized solution like Ridge Regression (RR) will provide in general more robust 

solutions than plain ordinary least square (OLS). Finally, we can try to build models that are 

particularly robust against perturbations. In the simple model above those models will provide 

regression vectors that are orthogonal to the perturbations. 



3.2 Examples of dataset shift handling in the chemical sensing literature 

 

An obvious strategy to make models more robust is to design calibration experiments in such a 

way as to include all expected sources of variance trying to obtain a truly global model (in 

contrast to models local to particular calibration conditions). For instance, by including 

changes in operating temperature and humidity [115] under the calibration conditions, or 

changing backgrounds.  

For example, M. Kuske et al. [116], when trying to detect moulds growing indoors, used a 

variety of building materials to make the model more robust to changes in the background. B. 

Raman [64,117] uses different background interferents to test for the robustness of the hazard 

identification despite the presence of varying backgrounds (bleach, house paint and window 

cleaner). The same group tested the capability of their system to detect traces of acetone in a 

varying background that simulated inhaled and exhaled breath. The simulated breath was 

however clean of other impurities beyond acetone [118]. Mumyakmaz et al. [119] when trying 

to predict toluene with a QMB sensor array, included measurements of toluene in a full range 

of relative humidity values. Similarly, it is possible to build a sensor model depending on 

analyte concentration but also on temperature and humidity if sufficient training data is 

available to cover the full range. For many sensor technologies, this extended model becomes 

highly non-linear. To cope with this, Aliaghasarghamish et al. [120] proposes to use a Recursive 

Least Squares Method to train a Fuzzy Inference System that outputs a compensated 

resistance value that is then inverted to predict the concentration of a single analyte 

(methanol in this case). Instead of producing a direct model and then inversion, 

Hajmirzaheydarali [121] builds an inverse model to predict methanol concentration, using a 

multilayer perceptron that uses temperature, humidity and sensor resistance as inputs. With a 

similar strategy, one option is to train the classifier/regressor with data that already contains 

substantial drift [122]. While drifted data remains within the range seen in calibration this 

could be a good option. However, if the sensors readings depart from this explored area in the 

input space the generalization capabilities of the pattern recognition system remain unclear. 

A very interesting approach is to calibrate the system directly in field conditions. This approach 

has been followed by De Vito et al. [123,124] when trying to predict atmospheric pollutants in 

urban scenarios. The presented work leads to very interesting conclusions relevant to dataset 

shift problems in chemical sensing. In particular, the study aimed at the prediction of Benzene, 

CO, NO2 and NOx. The reference measurements were obtained by a certified pollution test 

station based on the state-of-the-art spectrometers. The testing campaign lasted for one year 

(March 2004 to April 2005). The sensor array consisted of 5 MOX sensors plus temperature 

and humidity sensors. The predictor was based on a Multilayer perceptron with regularization 

based on Automatic Bayesian Regularization [125]. The scenario was characterized by very 

high correlations among the target species. De Vito showed that typically a 15 days calibration 

(360 hourly averaged measurements) was enough to have satisfactory performance for about 

6 months. From that time on, prediction quality degraded. Calibration learned during spring 

time was not good for predicting pollutant levels in winter time. In fact, De Vito interprets that 

the performance achieved in spring-summer is due to an intrinsic correlation between the 

pollutant levels. However, the arrival of winter changes the pollutants correlation and 



calibration models learned in spring become obsolete. In fact, recalibration at that time greatly 

improves performance. This is a very nice example of how models could be local to apparently 

hidden conditions (correlations among the pollutants), and on the other hand, it shows that 

the path is to calibrate the system in the exact conditions it is expected to operate. In this 

sense, De Vito raises doubts about the direct application of learned models in other Italian 

cities.  

Pollution monitoring, and other large area monitoring applications, will benefit from advances 

in MEMS technology and wireless communications. Today, environmental test stations based 

in spectrometers provide accurate concentration readings for a very limited set of compounds. 

However, due to their high costs their placement is very sparse. Due to local variations and 

canyon effects, especially within urban scenarios, pollution levels can vary drastically over 

short distances. To have a better representation of the spatial distribution of pollutants, low 

cost mobile chemical sensors will be desirable. Since their readings lack the required stability, 

Tsujita [126,127] proposed an auto-calibration method where each sensor is recalibrated 

when in proximity to the reference test stations, or within proximity to a second mobile 

sensor. Through a simulation study they show that this mechanism can propagate the stability 

of the reference stations through the network.  

In a few selected cases, the physico-chemical origin of the drift is known. For instance, for 

micro hotplates with polysilicon resistors, it is known that the resistance value and even the 

temperature coefficient of resistance can drift in time. If the device is operated in constant 

current or voltage conditions, heater drift will change the operation temperature and in 

consequence this will be a cause of sensor drift. Rogers and Semancik show how a constant 

power operation of the micro-heater improves the stability of metal-oxide microhotplate 

chemical sensors [128]. 

 

3.3 Robustness Improvement by Pre-processing 

 

An option to overcome the stability problems mentioned initially is to apply some data pre-

processing or feature extraction/selection strategy, to minimize those effects in the ulterior 

classification or regression models. An example is the use of rank features [129]. Obviously 

perturbations that do not produce a change in the ordering of the sensor responses do not 

change the pattern. These methods provide robustness at the expense of reducing the 

resolution of the system. 

There are a number of techniques that provide some robustness improvement and that are 

routinely used by most researchers: among them, normalization and autoscaling.  

Normalization is mostly used for rejection of common mode perturbations and multiplicative 

effects, typically pattern scattering due to changes in concentration, but also instabilities in 

sampling and changes in environmental parameters. A variety of normalization rules have 

been proposed: 



(i) normalization to unit norm:  

(ii) normalization to unit area:  

(iii) Standard Normal Variate (SNV): Each pattern is centered and then scaled by its 

standard deviation. Similarly, Robust Normal Variate (RNV), proposed by Guo et al. 

[130] is a robust version of SNV less sensitive to extreme values in the pattern. 

Solid-State Sensors are very prone to suffer from baseline shifts. Periodic presentation of a 

reference substance, typically zero-air, allows the evolution of the baseline to be estimated. 

Baseline variations can be corrected by SNV, or baseline models can be directly subtracted 

from the sensor response.  

B. Raman et al. [117] propose an interesting approach to the automatic detection of the 

onset/offset of gas presentation. They use temperature programmed metal-oxide 

microhotplates. They computed the correlation between sensor responses at different 

temperatures using a moving window approach and they found that the correlation is maximal 

when there is a fast variation of the gas composition in the sensor chamber. Once this onset 

has been detected, the sensors are referenced in a univariate manner to the most recently 

tagged baseline.  

A number of authors have proposed the use of linear or exponential models for the evolution 

of the baseline in time. A more elaborated estimation of the baseline in chemical sensing is 

proposed by Wenzel et al. [131]. Their proposal uses the Kalman Filter formalism for an on-line 

estimation of the baseline evolution. In their approach, they use a first order model for the 

sensor dynamics. Since a number of parameters are unknown they propose a five dimensional 

state vector that contains: 1) the analyte concentration, 2) the baseline value, 3) the baseline 

drift rate, 4) the sensor steady-state response and 5) the sensor time-constant. The final state-

variable model results in a non-linear model with non-Gaussian variables. To estimate the 

state-vector they propose to use a bank of Extended Kalman Filters that are linearly combined 

using a Gaussian Sum Filter. They test this approach with synthetic signals and a limited 

number of experimental responses from a SAW sensor. It is important to note that the model 

assumes the periodic presentation of an analyte of unknown concentration and a 

flush/reference gas. It is very interesting that the model allows the baseline to be estimated 

even when short flush times prevent the baseline from fully recovering. This is a common 

problem in chemical gas sensor systems, as in many occasions the baseline recovery is 

extremely slow, greatly reducing the system throughput. While the approach seems very 

interesting, more extensive testing is needed to prove its validity.  

Pre-processing steps based on filtering can also provide more stable responses. Since drift is 

typically low frequency, Zuppa [132] et al. and previously Llobet [133] proposed filtering 

sensor responses using a Discrete Wavelet Transform (DWT). Elimination of the low frequency 

terms rejects drift and improves class separability. The use of the DWT for de-noising using 

soft-thresholding initially proposed by Donoho [134] has shown to be very effective in sensor 

signals by Huang and Leung [135]. 



If response shifts are caused by a known interferent, one possibility is to measure it with a 

dedicated sensor and compensate the responses of the main unit. If the responses to the 

analyte of interest and the measurement of the interferent have different time dynamics, then 

it may be necessary to estimate a dynamic model due to the effect of the interferent on the 

main sensor signals. In [2], an adaptive linear filter based on the LMS algorithm (least mean 

squares) was used to compensate the variations in humidity when a chemical sensor array was 

working inside an industrial fridge. It is important to remark that in many scenarios the 

interferents are too many, mostly unknown, or there is not a readily available sensor to 

measure them. 

3.4 Univariate approaches for Stability Improvement 

 

Many researchers advocate the use of univariate approaches [136] to datashift correction for 

simplicity reasons. In some cases, the stability improvement is directly aimed at compensating 

environmental factors, namely temperature and humidity. In this sense, Hossein and 

Ghafarinia [137] explore the dependence of a tin dioxide sensor to measure methanol in a 

range of temperatures (23-43 oC) and humidities (10-80 r.h.). They propose to use an Artificial 

Neural Network that uses a time-delay input on the sensor resistance but also on independent 

measurements of the temperature and humidity, to predict the analyte concentration.  

 

Figure 6. Illustration of additive and multiplicative drifts on a sensor transient response (courtesy of R. Gutierrez-
Osuna). 

Directed to drift compensation, Sisk and Lewis [138] explore the use of preprocessing steps like 

baseline correction and normalization, followed by univariate multiplicative recalibration using 

a single calibrant. In the framework of their experiment, this was enough to retain 

classification accuracy. The paper from Sisk and Lewis provides a drift analysis based on the 



study of a dataset of 15 compositionally distinct carbon black-polymer composite 

chemoresistors. The analytes under study were five hydrocarbons (cyclohexane, n-hexane, n-

heptane, n-octane and isooctane) and three other analytes (tetrahydrofuran, ethanol and 

ethyl acetate). The dataset contains five runs. In each run, the eight analytes are presented to 

the sensor array in random order. The dataset contains a number of time discontinuities (from 

7 days to 70 days), that is; periods of time where the measurement activities stopped. It was 

observed that those measurement discontinuities in data collection are a major source of drift 

and shifts. For instance, sensor responses were clearly affected by a 2-month break, while 

some sensors showed transient spikes after shorter breaks before attaining a new stable 

region of responses. An interesting conclusion of their study is that the best correction 

performance is obtained when the calibrant is chemically similar to problem substances. 

Additionally, their paper investigates a number of things of practical importance such as the 

optimum calibration frequency or the trade-off between the sizes of the recalibration set and 

the test (real use) set. A recommendation of their work is to implement an adaptive re-

calibration scheme based on the departure of the actual sensor readings from the ranges 

observed in the calibration phase, instead of fixed calibration periodicity.  

 

Figure 7. Example of sensor drift: erratic sensor readings in identical measurement conditions (Manchester 
dataset).  



 

Figure 8. Principal Component Analysis of long term measurements with a conducting polymer sensor array 
(Manchester dataset). The arrows indicate the direction of the pattern shift for every class. 

Similar approaches to univariate shift correction have been proposed by Romain and Nicolas 

[136] and Tomic et al. [139]. In all those cases, it seems that the drift can be decomposed in an 

additive term that is compensated by the baseline correction, and a gain drift that is 

compensated in a multiplicative manner, taking into account the response to the calibrant. 

Frank et al. [140] use a set of 8 calibrants every day and calculate the average sensor value. 

The sensor signals to unknown samples are referenced in a multiplicative manner to this 

average value to the calibrants. Tomic et al. also propose a multiplicative correction method. 

However, they additionally propose that this correction factor may be fitted with a straight 

regression line to interpolate the correction factor between calibration factors. Sisk and Lewis 

[138] note that this procedure does not work properly in extrapolation mode. 

An interesting approach to univariate drift correction has been proposed by Huang and Leung 

[135]. They combine an initial pre-processing step of de-noising using DWT, followed by drift 

estimation and correction using the Papoulis-Gerchberg Method. At the core of the engine we 

found the hypothesis that the sensor signals can be adequately described by a Lorentzian 

model as originally proposed by Carmel et al. [56]. The method uses non-linear model fitting to 

estimate drift that is additionally forced to be a low-pass signal.  

 

3.5 Multivariate Orthogonal Projection Methods 

 



Orthogonal Projection Methods intend to estimate the subspace that contains the undesired 

variance. There are many different flavors of the basic idea: Net Analyte Signal (NAS) [141], 

Orthogonal Signal Correction (OSC) [142], Direct OSC [143], Direct Orthogonaliztion (DO) [144], 

orthogonal projection to latent structures (OPLS [145] and O2PLS [146]), Kernel OPLS [147], 

Projected OSC, Piecewise OSC [148], external parameter orthogonalization (EPO) [149], error 

removal by orthogonal substraction (EROS) [150], Orthogonal Discriminant Projection (ODP) 

[151], Dynamic Orthogonal Projection (DOP) [152], etc. In the field of Artificial Olfaction, 

proposals by Artursson: Component Correction [153] and R. Gutierrez-Osuna [154], belong to 

this family of techniques.  

The main action of OP methods is a reduction of the data dimensionality. OP techniques 

search for dimensions of the subspace that describe maximum variance related or unrelated to 

the information of interest. As mentioned before, the intention is to make the posterior 

prediction of the model independent of the influence of these non-desired variations in the 

data and thus improving data and model interpretation. They are maximally effective when 

the dataset shift occurs in a subspace of small dimensionality. Problems arise when this 

subspace contains also the discriminant information. In those cases, an optimum trade-off has 

to be found.  

In general, these methods are based on extracting from the multivariate measurement space 

D, the subspace not related to the components of interest Y. For this purpose, different 

approaches have been developed and there are review works comparing them [155], [156], 

[157]. Orthogonal projection methods identify an orthonormal basis P- capturing the maximum 

of systematic variations of the drift-like term: 

     (9) 

 and then project X onto the subspace orthogonal to P-. 

     (10) 

Alternatively, Generalized Least Square Methods (GLS) [158] estimate the drift subspace and 

the shrink the regression vector in the direction of the drift subspace.  

Different algorithms identify P- with different principles. Extrinsic, also named explicit, 

methods use dedicated experiments to identify P-. Those dedicated experiments may contain 

time delayed experiments to estimate time-drift, variations of the environmental variables, 

changes in the chemical background, sensor replacement, calibration transfer, etc. Extrinsic 

methods are for instance CC, EPO, EROS or IIR [159] (Independent Interference reduction). 

Extrinsic methods have the advantage of not requiring the Y information but the disadvantage 

of requiring dedicated experiments. On the other hand, intrinsic methods identify P- directly 

from X. For instance doing a PCA analysis of X and then orthogonalizing the scores to Y. 

Component Correction originally proposed by Artursson [153] has been the most popular OP 

method in the Artificial Olfaction Community. In fact, it can be considered as a popular 

benchmark for multivariate drift correction methods.  



Tomic et al. [160] explore drift correction in a commercial electronic nose NST3320 

(AppliedSensor, Sweden) for measurements of milk separated in time 2 years. They aimed at 

using the old model with the new data. They use of uncorrected data produced drastic failure 

with classification rates extremely low. In the paper, they explore the performance of 

Multiplicative Drift Correction (MDC), Component Correction (CC) and combinations of both 

methods. The results reported there-in showed that the results greatly improved with all the 

methods. 

 

Figure 9. Principal Component Plot of the long term Manchester dataset corrected by Artursson’s Component 
Correction. Calibration set (solid symbols), last test set (non-solid symbols) The reference class (n-butanol 1%) 
appears extremely compact, while the drift correction is less effective for the other classes.  

 OSC has been applied as a drift counteraction method by Padilla et al. [161]. In her work 

Padilla uses a dataset provided by the University of Manchester: 17 Conductive Polymers 

operating during 10 months for a total of 3415 measurements for three analytes at different 

concentration levels. Padilla calibrates the system for a classification task at the beginning and 

performs a validation in the future with a moving window for testing. Without treatment 

classification performance degrades in time due to uncontrolled random variation in the 

sensor readings. OSC boost classification performance for about 15% (average). This is clearly 

seen in the scatter plot where raw class clusters become elongated in the drift direction, while 

after treatment clusters become more compact with a better class separability (see figure 9). 

Padilla’s studies also show dependence on training set size. Results improve with the size of 

the training set size but they stabilize after 10 days. 



 

Figure 10. Principal Component scores of the calibration set (solid symbols) and the last set (non-solid symbols) 
after orthogonal signal correction in the Manchester dataset. 

An improved CC method has been presented recently by Zityadinov et al. [162]. In the 

traditional version of CC, a single reference class is used to find P-. This extrinsic method has 

the advantage of simplicity but it has a certain dependence on the chosen class for 

counteraction (see figure 10CC assumes that all classes shift in the same direction in the input 

multivariable space. However, on many occasions it has been found that different classes shift 

in different directions. For maximum performance, the reference class should present a shift in 

a subspace that contains, as much as possible, shifts of other classes. Instead, Zityadinov 

proposes to use Common Principal Component Analysis to use all classes simultaneously to 

determine the subspace that contains shift directions. The technique is maximally efficient if 

the experimental design automatically provides data for all classes in the perturbed condition. 



 

Figure 11. Classification rate vs. the time distance between the training set and the test set in the Manchester 
dataset: Comparison of Artursson Component Correction (CC) using three different reference classes and Joint 
Diagonalization using Common Principal Component Analysis. For some classes, CC even degrades the instrument 
performance. In this example, common PCA outperforms CC.  

3.6 Robustness Improvement by Feature Selection 

 

A robust model can be built if we identify features that are more stable in time, or less 

sensitive to variations in the instrumental or environmental conditions. A rich literature has 

been developed over the years on Feature Selection for Artificial Olfaction (see section 2.1). 

Feature Selection selects a subsets of features based on a certain objective function. Proper 

definition of this objective function can lead to select features which are particularly stable and 

keep prediction accuracy over time. This application is straightforward if the training data 

already contains a substantial amount of shift. An example of this approach is the contribution 

by Lazzerini et al. [163]. In their paper they propose to use a partially supervised Fuzzy 

clustering algorithm [164] followed by a Fuzzy k-NN classifier. However, instead of using a plain 

Euclidean distance, they introduce a diagonal distance metric, that is a weighted distance, and 

in the clustering step they optimize not only the cluster prototypes but also the weights. Their 

hypothesis is that features that degrade the cluster quality will be discarded, resulting in more 

compact clusters and better classification results.  

3.7 Adaptive Correction Methods 

 

Most Adaptive Correction Methods are based in the intuitive idea of trying to follow clusters as 

they shift in feature space. They are particularly interesting when the dimensionality of the 

drift space is large or when the drift occurs in the same subspace that contains the 

discriminant information. 



Adaptive Correction based on Self-Organizing Maps was advocated in the late 90s by Holmberg 

[165] and Marco [166]. Later, Distante proposed a modification based on multiple SOMs: each 

one specializing in a single class or cluster [167].  

While the proposals above adapt the classifier to track the drifting patterns, recently Di Carlo 

et al. [168] have proposed a method to adaptively correct the input patterns to make them 

closer to the class centroid in the training set. The correction is linear and the coefficients of 

the matrix adapt automatically using an optimization method: covariance matrix adaptation 

evolution strategy (CMA-ES). The goal function in this optimization is to minimize the 

cumulative distance between the patterns and training set centroids over a moving time 

window. The paper explores several distance metrics. The authors explore the methodology in 

synthetic and real data with very good results. 

Kim et al. have proposed a scheme for drift correction based on Radial Basis Functions (RBF). 

The network is fully trained using a stochastic optimization algorithm: centers, widths and 

weights are optimized with calibration data. For datashift correction a dedicated set of 

experiments is needed. They claim that simple adaptation of the network weights keeping 

centers and widths constants could be enough. For weight adaptation two schemes are 

proposed in the framework of the Information Learning Theory (ILT) proposed by Principe 

[169]. The first one maximizes the similarity between the pdfs in output space using a 

Euclidean norm [170]. In a second paper they propose a similar idea but using correntropy as 

an optimization goal [171].  

An interesting proposal in adaptive drift correction was introduced by Hui et al. [172]. As in the 

previous work, they use an adaptive PCA model for event detection. However, the event is 

defined as a sensor drift onset. As a consequence the feature vector slowly departs from the 

PCA model. In the field of failure detection [173], it is known that sensor drift is one of the 

most difficult failure detection problems. This is basically due to the fact that the event shows 

up slowly in the sensor signals. In fact, their approach is very similar to the multi-scale PCA 

fault diagnosis methodology of Misra et al. [174], where the event detection is carried out 

based on PCA models computed on the coefficients of the DWT. The proposed methodology 

not only detects the onset of drift but also allows identification of which sensor is drifting. At 

this point, Hui proposed to correct the wavelet coefficient that departs from the PCA model 

with a model linear in time, and then reconstruct the sensor signals. Their study shows that 

this approach is much more sensitive than applying an adaptive PCA model directly on the 

time signals. This improvement is clearly due to the previous multiresolution analysis. In their 

experimental dataset, they prove that the strategy is able to detect and correct the sequential 

onset of two drifting sensors.  

In the more general context of process monitoring, Angelov et al. [175] proposes the use of 

Evolving Fuzzy Takagi-Sugeno systems in the presence of drift when the calibration samples 

are available periodically in batches. In his proposed technique, not only can the parameters of 

the system be tuned during re-calibration, but the model structure can also evolve: rules may 

appear and disappear automatically to tune the inference system to the new conditions. His 

proposal consists more of adapting an existing model, instead of fully recalibrating the model 

with the newer training samples. For details of the technique the reader is referred to [176]. 



3.8 Background Suppression 

 

An adaptive approach to event detection, also named novelty detection, was proposed by A. 

Perera et al. [177]. In their problem application, an oil leakage had to be detected while the 

sensors suffered severe drift. Their approach is based in Recursive Dynamic Principal 

Component Analysis using a moving window. In this way, the PCA subspace model captures 

the normal variability of the sensor signals due to time-varying perturbances and drift. The 

moving DPCA model is used to calculate the Q2 statistics for the next sample. This approach 

provides more sensitivity and faster detection of changes than the related approach based on 

Evolving Window Factor Analysis (EWFA) [178].  

One possible way of approaching the problem of mixture analysis is by removing the effect of 

the interferent gases to focus on the target analyte. This approach is referred to in the 

literature as background suppression. Gutierrez-Osuna et al. [179] proposed two signal-

processing methods to perform background suppression in the multivariate response of a 

chemical sensor array. The first method is based on a committee machine of linear 

discriminant functions, each trained to discriminate a single analyte. The elimination of the 

background is achieved by reducing the weight of those linear discriminant functions that 

show high sensitivity to previously detected odors. The second method is based on the 

proposed approach of TP-LDA (topology preserving linear discriminant functions) that 

performs an LDA-based projection, ensuring that the natural topological ordering of analytes 

and mixtures is preserved. Background suppression is then obtained considering the 

background odor as belonging to the same class as the neutral odor (water) when computing 

the LDA projection. The same authors proposed [180] a generalization of the second method 

where the adaptation is not only to single but also to mixed backgrounds.  

Following a biologically inspired approach, Gutierrez-Osuna et al. [181] used the KIII, a neural 

population model of the olfactory system, to remove background odors from sensor array 

signals. They mimicked odor habituation by depressing the mitral connections to other neural 

populations within the KIII model. This depression mechanism is triggered locally in each mitral 

cell and mediates the adaptation of the system to background odors previously presented. 

Since the performance of the habituation method was hindered by sensor correlation, 

Gutierrez-Galvez et al. [182] combined habituation with a contrast enhancement mechanism 

to reduce sensor correlation. Both mechanisms where implemented in the KIII model 

improving the ability of the system to remove background odors (Figure 12).  

 



 

Figure 12. Habituation scenario with gas sensor response patterns. Odor A is introduced at t = 1 ms. Following 
habituation of odor A, the KIII is presented with a 50/50 mixture of odors A and B. (a) KIII model trained with the 
hebbian/anti-hebbian rule: The system response to mixture A + B is a contrast-enhanced version of pattern B 
alone. (Time axes are mirrored to help visualize the time evolution of the channels.) 

More recently, Feng et al. [183] proposed a method based on wavelet transform to remove 

the effect of the natural odor of mice in order to detect wound infection. Using the first order 

Daubechies (db1) wavelet and the thirteen decomposition level, the authors decompose the 

sensor signals corresponding to healthy and wounded mice. Computing the correlation at each 

different scale between both signals, they detect and eliminate the components of the 

background (healthy mice) that are present in the target signal (wounded mice). 

3.9 Robustness Improvement by Regularization 

It was already mentioned that Ridge-Regression will generally produce solutions which are 

more robust than ordinary least squares. It is well-known that Ridge Regression [184] provides 

a regularized solution to ill-conditioned linear prediction problems.  

   (11) 

An evolution of this idea is the covariance matrix transforms (CMT) and counter-balanced 

distortion (CBD) methods proposed by DiFoggio [185]. In CMT, the intention is model 

desensitization by augmenting the covariance matrix in the direction of the expected artifacts. 

His solution is: 

   (12) 

where W has the same number of columns as X and k rows. Every row contains a potential 

artifact vector. In this way the regression vector becomes less sensible to changes in X in the 

directions modeled by the artifact vectors. Those directions of undesired variance can be 

determined by dedicated experiments. For those cases (for instance due to non-linearity), 

where the solution cannot be set in the form of a generalized linear regression problem, 

DiFoggio proposes to add random variations to the training data in the directions of the 



expected perturbations or artifacts. This proposal resembles the original proposal by Bishop 

[186] when he proved that training with noise was equivalent to Tikhonov regularization. 

3.10 Robustness Improvement by Blind Source Separation 

 

On many occasions a bilinear model is used to represent the data matrix. 

    (13) 

Blind Source Separation (BSS) techniques aim at identifying the set of sources (C: analyte 

signals, but also environmental perturbations or drift), that contribute after linear mixing to 

the observed signals X, in an unsupervised manner. To do so, some hypothesis about the 

sources has to be made first. The most well-known method for BSS is Independent Component 

Analysis (ICA). ICA assumes that the sources are mutually independent in statistical terms. 

Other techniques assume that the signals are non-negative, which is the case in Non-Negative 

Matrix Factorization (NMF) [187] and in Multi-Curve Resolution alternating least squares 

(MCR-ALS) [188], [189]. 

Di Natale et al. [190] proposed to use ICA to identify which part of the observed signal was due 

to environmental disturbances. In their experiment, a particular Independent Component was 

well correlated to temperature and humidity variations. Removal of that component improved 

the separability of the classes. With a similar idea Kermit and Tomic [191] applied ICA and 

found that a particular independent component was capturing mostly sensor drift. Removal of 

that component and ulterior signal reconstruction improved results.  

BSS methods can also be used to automatically detect the presence of varying interferences 

than pollute the signal of interest without prior knowledge of them. In Pomareda et al. [192], 

when optimizing a luggage scanner based on an Ion Mobility Spectrometer, the application of 

MCR permitted the detection of the presence of an unknown interferent that was attributed 

to contaminants in the compressed air used to blow the luggage. In the same work, MCR 

allows memory effects in the system to be identified, that is, the presence of interferents in 

the analysis of the luggage under test due to analytes hidden in previously analyzed luggage. In 

a simulation study Bedoya et al. [193] propose to use blind source separation techniques in an 

array of two ISFETs measuring Ammonia, in the presence of an unknown concentration of 

potassium ions. The proposed technique is able to deal with the non-linear mixing effect 

present in ISFETs.  

3. 11 Calibration transfer / Instrument Standardization 

 

As mentioned above, a practical limitation of the use of multivariate data processing models 

occurs when an existing model developed with a comprehensive set of training samples is 

applied to a separate instrument. This secondary instrument may be a new instrument, or just 

the primary instrument used in different conditions, under the effects of aging and drift or 

because the prediction model has to be updated due to sensor replacement [160].  



While some of the methods described above can also be used for calibration transfer [194]. On 

occasions, researchers into electronic noses have produced dedicated literature on this topic 

[195], [196].  

Calibration transfer can be accomplished in three ways: (i) by transforming the secondary 

instrument readings to resemble the primary instrument, (ii) by updating the calibration model 

of the primary instrument, taking into account a reduced set of measurements taken with the 

secondary instrument, and (iii) by transforming the target values or labels used in the 

calibration. 

In the electronic nose literature the most common approach is the first one. Researchers have 

been using univariate and multivariate approaches. The univariate approach was originally 

proposed by Shenk et al. [197]. The multivariate approach is known as Direct Standarization 

(DS) at it was originally proposed by Wang [198]. 

Simple univariate calibration transfer methods based in additive corrections or multiplicative 

corrections have been proposed in mass spectrometry-based e-noses and also in chemical 

sensor arrays [160]. Multivariate calibration transfer techniques applied to chemical sensor 

arrays were pioneered by Balaban et al. [199]. They attempted to build a mapping between 

two instruments with identical sensors: 12 Conducting Polymers. This paper tested univariate 

regression, multilinear regression and multilayer perceptrons. Best results were obtained my 

multilinear regression. 

Tomic et al [160] describe two approaches to map the responses of the second instrument to 

the primary instrument. They report on calibration transfer between a master and four slave 

QMB instruments with 8 sensors. The first approach is just a linear regression of individual 

sensor responses between both instruments. The second approach is to implement a mapping 

using multivariate calibration models, in particular Partial Least Squares (PLS). In their 

application based on QMB sensors, they found both approaches equivalent in terms of 

performance. Mappings were built using 72 common training samples. While the readings 

become similar after the standardization, authors do not compare the performance with the 

direct individual calibration of each instrument on its own.  

A similar idea was explored by L. Carmel [200]. In his paper, he builds mappings from e-noses 

of different technologies: (i) the cyranose 320, (ii) a QMB model of the MOSES and (iii) and a 

32 Conductive Polymer Sensor Array. The dataset consisted of 23 pure chemicals. He tested 

linear regression (PLS), Neural Networks and Tesselation based Linear Interpolation. Reported 

results showed that the mapping direction was key. For instance, mapping the CP into the 

QMB model provided better results than the reverse mapping. Neural Networks were found to 

provide slightly better results than the other techniques. An interesting question posed by 

Carmel was the ability of the mapping to correctly classify odors not used in the construction 

of the calibration transfer. In this challenging scenario the results were worse but still 

remarkable. 

Direct Standarization is limited in the sense that the transfer mapping has to be estimated 

from few transfer standards, and consequently can have problems to span all the variance 



describing instrumental differences. As far as we know, those limitations have not been 

explored yet in the e-nose literature. 

3.12 Sensor failure and replacement 

 

Long time operation of chemical sensor arrays in field conditions could produce the failure of 

one or more sensors. This failure has to be detected and eventually the sensor has to be 

replaced. Chemical sensor failure detection has received little attention in the artificial 

olfaction community, even if this is very present in the process control literature.  

A first approach to failure detection is based in outlier detection [201]. A clustering model of 

the training data is built. New readings have to be close to the previously identified clusters; 

otherwise a fault alarm is given. This approach is however not robust. New values for the 

analyte concentration not seen in calibration can be considered as fault indicators. A more 

principled approach has been suggested by Padilla et al. [202]. In a first contribution they 

explore sensor failure detection, sensor identification and correction. At this point, it is 

important to note that they explore the detection of changes in sensor sensitivity. In other 

words, the sensor keeps responding but with a different gain. Those faults are difficult to 

detect since the sensor signal keeps within the normal range, and the sensor waveform looks 

normal. However, those faults make the sensor depart from the previous covariance model. 

Padilla uses the norm of the residuals to the PCA subspace of normal operation, followed by an 

indicator function that provides the identity of the faulty sensor. Additionally projection to the 

PCA plane permits correction of the sensor signal and keeps the system in operation without 

degradation of instrument performance. If two sensors fail simultaneously, the use of 

structured residuals still allow the faulty sensors to be identified. 

In a second paper, Padilla et al. [203] explores the problem of faulty sensor detection in the 

presence of drift. In this case, the PCA model obtained in the training phase becomes obsolete 

in time and degrades the ability of the data processing unit to detect sensor failure. In such a 

scenario, Padilla proposes to use the Multi-Scale PCA procedure of Misra et al. [174]. The 

analysis shows that the multi-resolution approach easily permits the separation of the abrupt 

faults from the slow drift and the sensor failure performance remains unaltered despite the 

presence of drift. 

Even if those procedures permit sensor signal reconstruction on the basis of the correlation 

from other sensors, it is obvious that this faulty sensor eventually has to be replaced. At this 

time, it is absolutely impractical to fully recalibrate the system. Calibration transfer strategies 

can be used to avoid extensive recalibration (section 3.11).   



 

4. Discussion and Future Perspectives 
 

Signal and data processing are essential components for machine olfaction. Early proposals on 

processing chemical sensor signals date back to the late 80s. During the last 20 years of 

research we have seen this field mature and develop. Initially the main interest was to prove 

that multivariate signal and data processing could in fact improve the selectivity of, otherwise, 

rather broadly tuned sensors. Simple baseline corrections, feature extraction based typically 

on steady state values, and display plots based on PCA projections were the dominant 

approach 15 years ago. In some cases, computational intelligence solutions based on 

multilayer perceptrons (MLP), radial basis functions (RBF) or Self-Organizing Maps (SOM) were 

used.  

In the last decade, we have seen several research trends: (i) Focus on feature extraction 

techniques in particular for sensor waveforms originated from sampling transients or 

temperature modulation (the use of only steady-state features is only seen in particular 

instrument configurations), (ii) Focus on array optimization, either by sensor selection, or by 

excitation optimization and (iii) Focus on robustness improvement. In the last decade research 

approach to signal and data processing has matured by focusing more on the distinct problems 

of chemical sensor signals and less on the straight-forward application of computational 

intelligence classifiers and regressors. The fact is that in most applications the advantage of 

using a simple (k-NN) classifier compared to a sophisticated one is marginal, while the largest 

gain can come from proper feature extraction and array optimization. 

While ten years ago feature extraction was either purely heuristic or an alternatively direct 

application of PCA, today we have a rather exhaustive toolbox of techniques for feature 

extraction from sensor signals (see 2.1.1). On the other hand, we believe that in this work we 

have made an effort to systematically group current proposals aiming to improve the 

robustness of chemical sensor arrays through computational techniques (section 3). From the 

original proposals for drift compensation using either component correction or adaptive SOMs, 

this field has flourished and again a full set of techniques and methods have been described.  

However, a critical word here is in order. While many valuable proposals have been reported 

in the last ten years of research, it is also true that they are largely unknown to the practitioner 

of machine olfaction techniques, unless he/she has a special interest in signal and data 

processing. There are several reasons behind this fact. Our community has not made those 

solutions available for the community in terms of code availability. In most cases, the use of 

the reported techniques requires direct coding of the algorithmic proposal. In most cases, this 

is just not done. Practitioners obviously prefer to use available code from commercial vendors. 

However, these commercial vendors (e.g. Eigenvector Research, CAMO and others) do serve 

the larger chemometric community that is focused on conventional analytical instrumentation 

by virtue of its much larger market presence. In consequence, the practitioner is biased to use 

techniques coded in available packages. From our point of view, the only way to revert this 

trend is by making the code available with proper documentation, a practice that is well 



established in other domains such as bioinformatics (see e.g. the R-based Bioconductor 

package: http://www.bioconductor.org). 

In a similar line of thought, in the near future we will see datasets made public by diverse labs. 

If those datasets are properly documented, objective tools intercomparison will be possible 

(this has long been a dream of many researchers in the community). The trend towards data 

sharing has already occurred in other related fields and it is also encouraged by some archival 

publications.  

Although, due to size restrictions, it has not been covered in this review, a very promising and 

sound research line is that of biologically inspired computation for chemical sensing 

(sometimes also referred as neuromorphic olfaction)[13,14,15]. The basic idea behind it is to 

get inspiration from the biological sense of olfaction, its peculiar architecture and associated 

neural circuitry to extract the computational principles biology uses to process information 

provided by the full set of olfactory sensory neurons. The tremendous progress made in the 

understanding of the operational architecture of biological olfaction promises neuromorphic 

olfaction a long and hopefully fruitful path of research. Obviously, current knowledge of the 

olfactory sense is incomplete and many computational mechanisms are either unknown or 

poorly understood. However, examination of biological olfaction from a computational 

perspective can lead to breakthroughs in Machine Olfaction. For instance, slowly but steadily 

the immense Cartesian map (Receptors x Ligands) is being filled [204] and by examination of 

this empirical data our knowledge of odor coding by biological systems starts to develop. Its 

comparison with odor coding in machine olfaction [205] is a very interesting path of research 

and can reduce the difficulties machine olfaction has, to mimic human perception.  

Concerning topics reviewed in this paper, we foresee that sensor selection and tuning 

optimization will keep high interest, and in particular recent proposals regarding automatic 

adaptation deserve further exploration [5]. Additionally, emphasis on robustness 

improvements in its various flavors will remain high since those techniques are a must to leave 

the lab bench and go to field applications.  

From an application point of view, integration of chemical sensors into RFID tags [206] or small 

sensor motes [207] forming part of self-organizing sensor networks will enlarge the potential 

applications of chemical sensor arrays. Quite probably those deployments will have its own 

needs regarding signal and data processing.  

5. Conclusion 
 

Signal and data Processing is a main component of artificial olfaction systems. While the basic 

methodology to build qualitative or quantitative prediction models is firmly established, there 

are still limited literature regarding the use of signal and data processing to improve the 

robustness of the systems. Despite the limited activity, this review reports a toolbox of 

techniques that have shown their ability to improve the performance of the instruments. Only 

better dissemination of the available techniques and their application in different scenarios 

may prove that they are general solutions in AO systems.  

http://www.bioconductor.org/
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