
Spin-dependent Effects on the Hyperfine Structure in Heavy Hybrid Mesons

Author: Pol Molina Gŕıfols.
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Abstract: We study the hyperfine structure of a heavy hybrid meson, interesting because of the
non-trivial contribution of its gluon field on the heavy quak-antiquark pair. We will be able to work
on a non-relativistic frame, thanks to the meson being much heavier than the energy of the gluonic
field, and so use the Schrödinger equation to define the system. With the results from the hyperfine
structure — which come attenuated by a 1

mQ
factor — we will be able to draw the relationships

between the different possible masses of the system.

I. INTRODUCTION

A meson is a quark and an antiquark (q − q) system
bound by a gluon field. It is described by the orbital
angular momentum L, the coupled spin S and a time-
independent potential in line with the Strong Force sym-
metries — C, T, P and total angular momentum. The
states of such a system can be properly outlined with
JPC , where J , P and C are, respectively, the total an-
gular momentum, the parity and the charge conjugation.
This system can, however, be complicated if one takes
into account the contribution of the gluon field as it has
been theorised from the early days of Quantum Chromo-
dynamics (see [1]). To take this into account we need
to also define the state of the gluon field as JPCg . Fur-
thermore, given that the intrinsic parity of gluons is −1
and looking at the first non-trivial gluonic contribution
we can get the following compound states.

JPC
g L S JPC

1+− 0 0 1−−

1+− 1 1 (0, 1, 2, 3)+−

TABLE I: Possible states of the hybrid system when the
gluon field has an angular momentum equal to one.

To properly define the hybrid system, then, new vari-
ables will be needed, as we’ll be working with both L and
Jg. Therefore, it is interesting to define J = L+ Jg and
J = J + S, where S is the spin of the quark-antiquark
system.

Normally the description of these states would involve
using QCD and QFT, but as the mass of the heavy quarks
here studied mQ is much bigger than the gluonic en-
ergy contribution, we can safely work in a non-relativistic
frame, where the gluon field will react immediately to the
motion of the meson. In short, we will not need a propa-
gation speed or a reaction time. Moreover, as we will use
the Born-Oppenheimer approximation, we will be able
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to use the Schrödinger equation to describe the move-
ment of q − q. This will be achieved by associating a
stationary potential V (r) to each stationary state of the
gluon field. Finally, this work will only look at the low-
est non-trivial energy contributions from the gluon field.
Namely Jg = 1. The demonstration behind why such a
value represents the lowest energy can be seen in [2].

The first part of the work will consist on developing a
never-studied-before potential, so that its hyperfine ma-
trix can be found, i.e.: the matrix of values that tells us
the structure of the hyperfine energy levels. After that,
we will use perturbation theory on this matrix to find
the relations and differences between the masses of the
different meson states — basically those in the same spin
multiplet.

II. HYPERFINE SPLITTING

The main body of this project is to study the hyperfine
structures that arise in the system described in the in-
troduction. These structures have of course been studied
before, and so we know that they come attenuated by a
factor of 1

mQ
as shown in [3].

To properly define the system that we are working
with, we will need a mathematical object able to repre-
sent the spin of the quarks and their relative momentum
and the spin of the gluon field all at the same time. This
can be achieved by using the tensorial spherical harmon-
ics (defined in Appendix V A). Moreover we will need to
define the wave function, which will be:

Hj =
1√
2

(
Hj

0I + σiHji
1

)
Hij

1 =
∑

L,J,J ,M
PLJ1JM (r)Y ijLJJM (r̂)

(1)

Where the only new index isM, which refers to the third
component of the total angular momentum. From this
expression, Hi

0 corresponds to zero-spin QQ̄ and Hij
1 cor-

responds to spin-one QQ̄.
Given the discrete symmetries of P, C and T, the only

possible energy contributions to the Lagrangian density
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(again, attenuated by 1
mQ

) are (see [4]):

iεijkV S (r) tr
(
Hi† [σk, Hj

])
iriεijkṼ S (r) tr

(
~r ~H†

[
σk, Hj

])
+H.c.

(2)

It should be noted that, at leading order, the potential is
independent from mQ or the spin of the quarks, which is
the reason why we can write the Lagrangian in terms of
expression (1). Moreover, H.c. represents the Hermitic
conjugate from the second expression.

From the two expressions in (2), the first one has al-
ready been discussed in [3], so our job will be to work on
the second one.

By developing the potential using (1), and given that

by definition rH† = rp 1√
2

(
Hp†

0 I +Hpq†
1 σq

)
, we get:

iriεijkṼ S (r) tr
(
~r ~H†

[
σk, Hj

])
=

= 2Ṽ S (r) rirp
(
Hpi†

1 Hjj
1 −H

pj†
1 Hji

1

) (3)

Where the identity (4) for the Levi-Civita symbols has
also been used in an intermidiate step.

εijkεklr = −
(
δirδ

j
l − δ

j
rδ
i
l

)
(4)

The next step is to contract rirp such as:

rirp = rirp − δip

3
+
δip

3
= (T2)

ip
+
δip

3
(5)

From equation (5) it is apparent that our potential has

two separable contributions. The term δip

3 will be iden-

tical (with a factor of 1
3 ) to what has already been found

in previously cited works, so we will disregard it. On the

other hand, the term (T2)
ip

has not yet been looked into,
and so we will focus on it.

The part with which we will work is, then, outlined in
(6)

2Ṽ S (T2)
ip
(
Hpi†

1 Hjj
1 −H

pj†
1 Hji

1

)
(6)

These two elements turn into the following expressions
by reworking the wave functions Hij

1 into the eigenbasis
J , M, J2, L2:

(T2)
ip
Hpi†

1 Hjj
1 =

=
∑

L,J,J ,M
L′,J′,J ′,M′
µ,ν,µ′,ν′

C (J, 1,J ;M− ν, ν)C (L, 1, J ;M− µ− ν, µ) ·

·C (J ′, 1,J ′;M′ − ν′, ν′)C (L′, 1, J ′;M′ − µ′ − ν′, µ′) ·

·P∗L
′J′

1J ′M′P
LJ
1JMY∗M

′−µ′−ν′
L′ YM−µ−νL (T2)

ip
χ∗iν′χ

j
νχ
∗p
µ′χ

j
µ

(7)

(T2)
ip
Hpj†

1 Hji
1 =

=
∑

L,J,J ,M
L′,J′,J ′,M′
µ,ν,µ′,ν′

C (J, 1,J ;M− ν, ν)C (L, 1, J ;M− µ− ν, µ) ·

·C (J ′, 1,J ′;M′ − ν′, ν′)C (L′, 1, J ′;M′ − µ′ − ν′, µ′) ·

·P∗L
′J′

1J ′M′P
LJ
1JMY∗M

′−µ′−ν′
L′ YM−µ−νL (T2)

ip
χ∗jν′χ

i
νχ
∗p
µ′χ

j
µ

(8)

As we can see, both these expression must still be worked
on before we can integrate them. So, given the properties

of (T2)
ip

(outlined in Appendix V B) and the tensorial
spherical harmonics we finally get:∫

(T2)
ip
Hpi†

1 Hjj
1 d

3~r =

∫ ∑
L,J,J ,M,µ
L′,J′,ν′,µ′

(−1)
−µ+µ′+ν′

√
2π

15
·

· 2
|µ′+ν′|

2

(
2

3

)δ−µ′ν′
2δ−µ′0δν′0

√
5 (2L+ 1)

4π (2L′ + 1)
·

·C (L, 2, L′;M,−µ′ − ν′)C (L, 2, L′; 0, 0) ·
·C (J, 1,J ;M+ µ,−µ)C (L, 1, J ;M, µ) ·
·C (J ′, 1,J ;M− ν′, ν′)C (L′, 1, J ′;M− µ′ − ν′, µ′)

·P∗L
′J′

1JMPLJ1JMr
2dr

(9)

∫
(T2)

ip
Hpj†

1 Hji
1 d

3~r =

∫ ∑
L,J,J ,M

L′,J′,ν,ν′,µ′

(−1)
µ′
√

2π

15
·

· 2
|−µ′+ν|

2

(
2

3

)δ−µ′−ν
2δ−µ′0δ−ν0

√
5 (2L+ 1)

4π (2L′ + 1)
·

·C (L, 2, L′;M− ν − ν′,−µ′ + ν)C (L, 2, L′; 0, 0) ·
·C (J, 1,J ;M− ν, ν)C (L, 1, J ;M− ν − ν′, ν′) ·
·C (J ′, 1,J ;M− ν′, ν′)C (L′, 1, J ′;M− µ′ − ν′, µ′)

·P∗L
′J′

1JMPLJ1JMr
2dr

(10)

The calculation of these two terms is an extremely com-
plex one, so to get the result we had to compute them
with Mathematica.

The results of these calculations are presented in Table
II and III. Table II outlines the special cases of J =
0 and J = 1 (Tables IIa and IIb, respectively), as in
such cases there are some states that don’t exist (namely,
those states that would reach negative values in any of
the variables J , J ′, L or L′). The null symbol ∅ signifies
those cells which represent nonphysical states. On the
other hand, Table III shows the values for any greater-
than-one arbitrary J .

It should be noted that the terms in the aforemen-
tioned tables are all multiplied by the constant 2Ṽ S ,
which was left out to ease the reading.
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III. MASS PREDICTIONS

From the results derived from the hyperfine splitting
we can get still more information about our system. That
is because in particle physics, if one were to take two
mesons, they could still have different masses even if they
were constituted by the same particles. This is a result of
the strong force dependence on spin, as different states
on the same multiplet will present different masses. It
should also be noted that, as the coupling of the quark
spin is on J , the expressions will use this variable instead
of J . Thanks to [5] we know that L = J does not mix
with L = J ± 1. To find the relationships between these
masses we will apply perturbation theory on our potential
— so, practically speaking, on our hyperfine matrix. To
do so, we would left-multiply the hyperfine matrix by a
row vector of all possible P ij states and right-multiply
it by a column vector of all possible P i

′j′ states. Doing
such an operation on (7) and (8) results in:

M0i
1J−i −M0J = V 0i

0i (J − i) a+ Ṽ 0i
0i (J − i) b

M±i1J−i −M0J =
(
V +i
+i + V −i−i

)
(J − i) ã+ Ṽ +i

+i (J − i) b̃+

+
(
Ṽ +i
−i (J − i) + Ṽ −i+i (J − i)

)
c̃+

+ Ṽ −i−i (J − i) d̃
(11)

Where a, b, ã, b̃, c̃, d̃ are the structure constants and
V LJL′J′ (J), Ṽ LJL′J′ (J) are the elements from the hyperfine
splitting matrix (the first being from the matrix found in
[5] and [6] and the second being the one developed in this
work). The expression J − i refers to J ± 1, J for ∓, 0,
respectively. In our case, the expressions we get for the
case L = J and L = J ± 1 are shown in (12) and (13),
respectively.

M0−
1J+1 −M0J =

1

J + 1
a+

1

3

1

J
b

M00
1J −M0J = − 1

J (J + 1)
a− 1

3

1

J

1

J + 1
b

M0+
1J−1 −M0J = − 1

J
a− 1

3

1

J + 1
b

(12)

M±+1J−1 −M0J = − 1

J
ã− 1

3

2 + J

1 + 2J
b̃−

−
√
J + 1√

J (2J + 1)
c̃+

1

3

(J − 1) (J + 1)

J (1 + 2J)
d̃

M±−1J+1 −M0J =
1

J + 1
ã+

1

3

J (J + 2)

(J + 1) (1 + 2J)
b̃+

+

√
J√

J + 1 (2J + 1)
c̃+

1

3

1− J
1 + 2J

d̃

M±01J −M0J = − 1

J (J + 1)
ã− 1

3

2 + J

(J + 1) (2J + 1)
b̃−

− 1√
J (1 + J) (1 + 2J)

c̃+
1

3

J − 1

J (2J + 1)
d̃

(13)

The specific expressions from the different coefficients a,
b, ã, etc are shown in Appendix V C.

If these expressions are adequately manipulated then,
we can get the following relations, respectively:

M0+
1J−1 −M0J

M00
1J −M0J

= J + 1 (14)

M0−
1J+1 −M0J

M00
1J −M0J

= −J (15)

M±+1J−1 −M0J

M±01J −M0J

= J + 1

M±−1J+1 −M0J

M±01J −M0J

= −J
(16)

It should be noted that result (14) is specially interesting
as it reaffirms previous findings (in [5]). (16), on the other
hand, gives us a new insight on mass relations with an
analogous result.

IV. CONCLUSIONS

Firstly, we can conclude, from the results of the matrix
in III, that we have two groups, composed of different
parity terms. From this we can affirm that there is no
mixing between such parity-differing results. Another
conclusion is that, while the results obtained from [6]
presented more structure, our work has resulted in more
mixing between the terms. On the other hand, however,
as we will discuss in a moment, such mixing does not
contradict the previous findings insofar as mass relations
are regarded.

Secondly, related to the mass predictions, we can con-
clude that this new potential under scrutiny is consistent
with previous works (such as [6]) even though it’s quite
different and more complex, which is quite surprising. In
the case of L = J we have found that the results of the
mass predictions are exactly the same, and in the case
of L = J ± 1 we have found an analogous result for the
differing terms, which bodes really well for further inves-
tigations.
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V. APPENDIX

A. Tensor Spherical Harmonics

The main properties of the tensorial spherical harmon-
ics used throughout this report are as follows:

Y ijLJJM =

1∑
ν=−1

C (J, 1,J ;M− ν, ν)YLiJM−νχjν

YLiJM =

1∑
µ=−1

C (L, 1, J ;M− µ, µ) YM−µ
L χiµ

(17)

Where the coefficients C are the Clebsch-Gordan Coeffi-
cients C (J1, J2, J3;M1,M2).

B. Properties of (T2)ip

rirj =

(
rirj − δij

3

)
+
δij

3
= (T2)

ij
+
δij

3
(18)

χiν ∗ (T2)
ij
χjµ = rνrµ −

δij

3
= (T2)νµ

χiν (T2)
ij
χjµ = (−1)

ν
χi−ν ∗ (T2)

ij
χjµ = (−1)

ν
(T2)−νµ

χiν ∗ (T2)
ij
χjµ∗ = (−1)

µ
χiν ∗ (T2)

ij
χj−µ = (−1)

µ
(T2)ν−µ

(19)

(T2)µν =

√
2π

15
2
|µ−ν|

2

(
2

3

)δµν
2
δµ0δν0

2 (−1)
ν
Y2µ−ν (20)

Where YLM is the spherical harmonic for L = 2, M =
µ− ν.∫

dΩYL′M ′ ∗ Y2µ−νYLM =

√
5 (2L+ 1)

4π (2L′ + 1)
δM ′M+µ−ν ·

·C (L, 2, L′; 0, 0)C (L, 2, L′;M,µ− ν)

(21)

C. Structure Constants

The expressions for the constants shown in (12) and
(13) are as follows:

a =

∫
drr2

(
P 0
J

)2(−2V S +
1

3
Ṽ S
)

b =

∫
drr2

(
P 0
J

)2 (
2Ṽ S

) (22)

ã =

∫
drr2

((
P+
J

)2
+
(
P−J
)2)(−2V S +

1

3
Ṽ S
)

b̃ =

∫
drr2

(
P+
J

)2 (
2Ṽ S

)
c̃ =

∫
drr2

(
P+
J

) (
P−J
) (

2Ṽ S
)

d̃ =

∫
drr2

(
P−J
)2 (

2Ṽ S
)

(23)

The 1
3 Ṽ

S contribution in a and ã comes from the δip

3 and
it’s added to keep the potential numerically in line with
[6].
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