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Abstract

I investigate the impact of the implementation of stay-at-home orders on the

incidence of mental health conditions in the US during the first year of the coro-

navirus pandemic. I use a novel dataset that maps search queries to thirty men-

tal health symptoms. Exploiting the staggered implementation of lockdowns, I

document that the enaction of the stay-at-home orders increased mental health

searches related to various anxiety disorders, severe forms of depression, sleep

disorders, attention deficit, and epilepsy. Treated states are estimated to have

experienced two mental distress waves in April-May and November-December.

JEL classification : I10, I14, I18, I30.

Keywords. mental health, coronavirus pandemic, COVID-19 Search Trends

symptoms dataset, US, stay-at-home orders.
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1 Introduction

The outbreak of the COVID-19 pandemic has profoundly disrupted people’s lives.

Since the virus can easily spread unnoticed, many governments early introduced lock-

downs in an attempt to ‘flatten the curve’. How these social isolation measures have

affected people’s mental health is a major public health concern. With that concern

in mind, I study the effect of the implementation of stay-at-home orders on the in-

cidence of mental health conditions in the US. Using a novel high-quality dataset of

search-based symptoms, I exploit the roll-out of these orders through an event study

design that leverages the generated large temporal variation across states in the adop-

tion of lockdowns. My results suggest that the implementation of lockdowns increased

search-based mental distress.

People can experience mental distress in different forms, including anxiety, mood,

sleep, personality, eating, or psychotic disorders, all of which might affect people’s

feelings, thinking, and behavior. Poor mental health is a severe problem in many

developed countries. In the US, mental illnesses are among the most common health

conditions, affecting one in five Americans (CBHSQ, 2020). Mental health is a key

dimension of overall well-being at every stage of life (Chisholm et al., 2016; Patel

et al., 2018), as well as a predictor of future overall health and longevity (Chida and

Steptoe, 2008; Keyes and Simoes, 2012). Exposure to the risk factors that trigger

lasting mental health distress is thus particularly problematic, leading to sustained

suffering for people affected and their families.

The lasting nature of mental distress makes its associated costs high. The US

devotes more than $200 billion per year to mental disorders, which has been estimated

to be the largest source of health care spending (Roehrig, 2016). Notwithstanding

these direct costs, most of the economic burden of poor mental health conditions

develops from indirect sources (Gustavsson et al., 2011; Hewlett and Moran, 2014).

These include higher care costs in other areas of health, lower employment rates, lower

earnings and tax revenues, and increased crime rates.1 For the EU, Gustavsson et al.

(2011) estimate aggregated costs of about €798 billion per year, and another study

predicts that the direct and indirect costs of mental will double by 2030 (Bloom et al.,

2012). These figures illustrate that it is in society’s best interest to eliminate — or at

least reduce — the incidence of mental distress.

1See Naylor et al. (2012) for evidence on cost spillovers on physical health care. In terms of
unemployment costs, Hoedeman (2012) for instance estimates that were people with mental health
conditions ready to work full-time, total employment would rise by 4 p.p. For crime-related costs,
conduct disorders has been associated with increasing the risk of offending (Mordre et al., 2011;
Mohr-Jensen et al., 2019; Gottfried and Christopher, 2017). See OECD (2018) and Trautmann et al.
(2016) for a review of the direct and indirect costs of mental distress.
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Cost-effective interventions that focus on preventing mental illness have been called

to be one key area of policy action to tackle this burden, as they can help to reduce

exposure to the risk factors associated with severe mental disorders (McDaid et al.,

2019). Existing evidence suggests that certain targeted, intensive, promotion-focused

interventions such as evidence-based cognitive behavioral therapy can be particularly

successful (Karyotaki et al., 2017; Rakovshik and McManus, 2010).

While effective in containing the spread of coronavirus in the US (Fowler et al.,

2020), lockdown measures implemented throughout 2020 might have however been

counter-productive from a mental health prevention standpoint. In addition to the

mental distress associated with the evolution of the pandemic itself, the literature

suggests that social distancing and reduced mobility are stressors that can severely

hamper mental health (Holt-Lunstad et al., 2015; Taliaferro et al., 2009; Paluska and

Schwenk, 2000). For example, studies from previous pandemics estimate that imposing

lockdowns points to a greater prevalence of symptoms of anxiety, depression, insomnia,

stress, avoidance behavior, and detachment from others (Bai et al., 2004; Marjanovic

et al., 2007). Part of this literature has even found pervasive mental health effects even

three years after quarantine, in the form of major depressive and post-traumatic stress

disorders (Liu et al., 2012; Wu et al., 2009). Accordingly, several studies have called

for rapid and effective policy interventions to deal with the expected mental health

effects of the implementation of this and previous lockdowns (Rubin and Wessely,

2020; Caleo et al., 2018; Bai et al., 2004) as well as to take into account the evolution

of mental health for managing lockdown lifts (Layard et al., 2020).

This study investigates the effects of the implementation of lockdowns on the

evolution throughout 2020 of a wide range of search-based mental health symptoms.

Such indicators come from a novel high-quality dataset from Google that maps search

queries to the medical symptom at hand. For identification, I use the staggered

implementation of lockdowns, which generated temporal variation across states. I then

apply an event study design to explore mental distress dynamics up to December, when

the COVID-19 vaccination campaign started in the US. The identifying assumption

is that conditional on fixed-effects and the set of epidemiological controls included,

in the absence of treatment, the evolution of mental health symptoms in lockdown

adopters would have evolved as the one from non-treated states. To properly estimate

the causal effect of interest, I use Borusyak et al. (2021)’s estimator, dealing with

problems present at the traditional difference-in-differences estimation procedure that

would otherwise bias the results.

Results from this paper show that lockdowns fostered search-based mental distress

in treated states in the form of various anxiety disorders, severe forms of depres-
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sion, sleep disorders, attention deficit, and epilepsy. Such mental health deterioration

generally evolved following a two-wave pattern. First, many conditions worsened in

April-May, suggesting a mental health burden during the lockdown. Mental health

conditions then improved during the summer — in the context of many states lifting

their lockdown orders in May and July. A second mental health wave reached treated

states in November-December. This would imply that the effects of stay-at-home or-

ders on mental health conditions went beyond their length and had a more permanent

effect that materialized by the end of 2020. I report that countries with different lock-

down adoption trajectories follow parallel trends in mental symptom searches before

the policy change. These findings suggest that real-time data can help to detect the

immediate and long-term implications of policy interventions for mental health.

This paper contributes to three strands of the literature. First, it expands previ-

ous findings on the effect of economic downturns on mental disorders (Chang et al.,

2013; Frasquilho et al., 2015). Second, it enriches the growing research on the effect

of the pandemic on mental health and overall well-being (Adams-Prassl et al., 2021;

Armbruster and Klotzbücher, 2020; Brodeur et al., 2021; Brulhart and Lalive, 2021;

Silverio-Murillo et al., 2021). This paper is the first to document how stay-at-home

orders have both short and long-term effects on specific areas of mental health. Fi-

nally, this paper also contributes to a recent body of research that has applied recent

advances in difference-in-differences estimation to overcome the problems of the tradi-

tional OLS-based two-way fixed effect estimator — see for instance Ang (2021), Bartik

et al. (2020), Bismarck-Osten et al. (2021), and Karaivanov et al. (2021).

Because this investigation includes also the analysis of long-term effects, it might

help to better understand what can we learn from the management of the pandemic.

My findings suggest that the implementation of lockdowns may exacerbate mental

health distress while they are in place, as well as trigger mental deterioration even

months after the lift of stay-at-home orders. Still, there is much uncertainty sur-

rounding how social distancing measures affected the second mental health wave.

Further empirical evidence in this direction is needed to validate the overall mental

health costs of lockdown measures, so that future cost-benefit analysis can help to

guide better policy.

The rest of this paper is organized as follows. Section 2 reviews the literature on

the impact of stay-at-home on mental health, covering both descriptive and quasi-

experimental work. Section 3 presents the data used, its strengths, and limitations.

Section 4 discusses in detail the identification strategy. Section 5 presents the main

findings of the study. Section 6 discusses how results relate to prior evidence. Finally,

section 7 concludes.
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2 Literature review

This section gives an overview of the literature on the effects of lockdowns on mental

health, discussing in the first place some relevant general findings from descriptive

studies. I then review empirical evidence from quasi-experimental studies. For both

bodies of research, I combine insights from surveys and search data.

For the US, several descriptive studies have estimated the prevalence of mental

distress among US adults during the coronavirus outbreak. One worth mentioning is

the Household Pulse Survey (HPS) from the US National Center for Health Statistics

and the US Census Bureau. This project makes use of clinically validated instruments

to weekly track the prevalence of anxiety and depression symptoms from April 23,

2020 to July 5, 2021.2 Prevalence estimates from HPS during the weeks at which

stay-at-home orders were in place for anxiety and depression are around 30% and

25%, respectively. By contrast, estimated prevalence rates among US adults in 2019

were 8.1% and 6.5%, respectively (Terlizzi and Schiller, 2021). HPS data thus suggests

a huge increase in mental distress during the lockdown.3 Finally, in the long run, the

HPS study estimates that the prevalence of anxiety and depression raised again by

the end of 2020 up to 36.5% and 29.6%, respectively.

Part of the descriptive literature has employed Google Trends to explore search

patterns in mental health topics as a proxy for mental distress. US studies point to

an increase in mental health search topics related to mental health during the stay-

at-home period. Knipe et al. (2020) find that “anxiety” and “suicide” raised during

March. By contrast, “depression”, “fear”, and “loneliness”, either remained stable or

went down. Similarly, Hoerger et al. (2020) find sudden changes in searches related to

“anxiety” that eventually converged to pre-lockdown levels at the end of the analysis

period (mid-April). They find no systematic changes in “depression”, “loneliness”,

“suicide”, or “abuse”.

While informative, descriptive before-and-after comparisons of the evolution of

mental distress do not offer a proper counterfactual of how mental health levels would

have evolved had the stay-at-home orders not been implemented. Another strand of

the literature has hence exploited quasi-experimental evidence in the social distancing

response to the pandemic to identify the causal effect of interest. The most relevant of

these studies is Adams-Prassl et al. (2021), which examines the impact of lockdowns

on mental health for the US economically active population exploiting variation in

2Data is available at https://www.cdc.gov/nchs/covid19/pulse/mental-health.html. See also
(Vahratian et al., 2021).

3Studies using other surveys with validated scales find similar short-term patterns as well (Czeisler
et al., 2020; Ettman et al., 2020)
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treatment timing across states. They make use of three waves of survey data collected

on March, April, and May, and estimate through a difference-in-differences (DiD)

design that the clinically validated mental health scores of individuals living in states

that had implemented stay-at-home orders were 0.083 standard deviations lower. In a

similar vein, Yamamura and Tsutsui (2020) explore the effect of stay-at-home orders

across prefectures in Japan. The orders were issued during the sampling period,

which allows them to use DiD to estimate changes in a (non-validated) self-reported

measure for anxiety. They find a deterioration in their proxy for anxiety symptoms

in the weeks that immediately followed the lockdown. Armbruster and Klotzbücher

(2020) use helpline data from Germany and find that calls increased by around 20%

one week after the stay-at-home order was issued. An analysis of the content of the

calls reveals that this increase was driven by loneliness, anxiety, and suicidal ideation.

They also report larger effects in those states that imposed stricter social distancing

orders. In Switzerland, which issued only social distancing recommendations, Brulhart

and Lalive (2021) find no effect on mental health worry from helpline data. The former

is suggestive of the effect of mandatory stay-at-home orders.

Finally, two quasi-experimental studies have relied on Google Trends data to es-

timate the causal effect of stay-at-home orders on mental health. Looking at the

three weeks after the lockdown in Europe and the US, Brodeur et al. (2021) provide

significant event study estimates for the evolution of “sadness”, “worry”, and “loneli-

ness” in treated regions. No (short-term) effect is found in terms of “sleep problems”,

“stress”, and “suicide”. Finally, Silverio-Murillo et al. (2021) pool data from 11 Latin

American countries from January to June 2020 to estimate the relationship between

the implementation of the lockdown and search patterns in mental health. Exploiting

cross-country differences in treatment timing, their event study results suggest that

searches related to “anxiety” and “stress” remained high in treated regions for the

lockdown period. For “insomnia”, they document a sharp increase during the first

five weeks after the introduction of the orders, which then declined and converged

to the non-significance region in the weeks that followed. Finally, they do not find

supportive evidence of changes in “depression” or “suicide” searches among treated

countries.

Overall, despite differences in sample design, data source, and empirical strat-

egy, the deterioration of mental health conditions during the weeks that followed the

implementation of lockdowns is a consistent finding. Existing studies suggest that

this burden is mainly materialized in terms of anxiety, insomnia, and stress. Greater

uncertainty exists for long-term effects, as all the evidence comes from descriptive

studies.
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3 Data

I use weekly data from the novel COVID-19 Search Trends symptoms dataset (here-

inafter, the symptoms dataset).4 Released on Sept. 2, 2020, this dataset was launched

to help researchers better understand the impact of COVID-19 on health. The project

shows the volume of Google searches for more than 400 health symptoms, signs, and

conditions, such as anxiety, fever, or iron deficiency.5 The resulting dataset is a daily

or weekly real-time panel that tracks the evolution of the covered health symptoms

for several countries since January 2017. In what follows, I first introduce surveys as

the main alternative data source to search engine data, reviewing their own limita-

tions. I then comment on search data, putting special emphasis on discussing how the

symptoms dataset departs from its main alternative, Google Trends data. I close this

section by explaining some details of the symptoms dataset.

Scholars have repeatedly relied on surveys for studying how the coronavirus out-

break has affected the prevalence of mental distress. Data from surveys promise to

bring a more in-depth understanding of mental distress, and it is also more easily

adapted into more systematic and internationally comparable metrics (Kessler et al.,

2004; Pez et al., 2010). However, survey instruments have been shown to face various

problems, such as selection, recall, survivor, and non-response biases. For instance,

there is an ongoing concern about long-run trends in non-response rates in traditional

surveys.6 The pandemic seems to have exacerbated this issue (Rothbaum and Bee,

2021). One final aspect that puts the validity of survey data into question is stigma,

which might make the respondent reluctant to report her symptoms or her use of

mental health services. In a recent systematic review for serious mental health condi-

tions, Dubreucq et al. (2021) find strong evidence of self-stigma across all geographical

areas at all stages of such conditions. Stuart (2008) and Stuart et al. (2014) provide

evidence on fear of stigma from health professionals and society.7

Search engine data has emerged as a powerful alternative to track changes in

health and health behaviors in real-time. In ten years, its use in health research

has experienced an about 25-fold increase — see Figure S1 in the Supplementary

4Google LLC ”Google COVID-19 Search Trends symptoms dataset”.
http://goo.gle/covid19symptomdataset. Accessed: May 18, 2021.
5Following Google’s approach, I will refer to all of these collectively as symptoms.
6Luiten et al. (2020) present trend data for the 1998–2015 period and finds systematic response

declines across an array of instruments of 25 National Statistical Institutes from developed countries
(see also Leeuw et al. (2018)). In the US, a similar picture emerges over different surveys from recent
studies (Heffetz and Reeves, 2019; Gummer, 2019; Rosenberg et al., 2019).

7Studies using health administrative data to tackle the question at hand are much scarce. The
strengths and limitations of this source are hence not reviewed here. See Davis et al. (2016) for a
systematic review exploring the accuracy of this data tool.
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Material; see Arora et al. (2019) for a systematic review of studies using Google

Trends in health and health policy research. While having its own issues, search data

promise to tackle some of the limitations of surveys. In what follows, I first review the

main methodological characteristics of search data sources. I then discuss how Google

Trends and the symptoms dataset differ.

Google Trends data has several advantages that make it valuable for doing em-

pirical work. In my application, one main advantage is that it might help to provide

insights into a topic that is difficult to capture through surveys, as stressed earlier.

Search data is not affected by stigma and more easily reaches groups underrepresented

in surveys e.g. the youth. Google Trends data also has its caveats, in terms of repre-

sentativeness (excluding those with no internet access or more difficulties on accessing

e.g. the elderly, or those living in areas with low search intensities) and context, as it

is difficult to know from raw queries why a specific term was searched. In addition,

efforts to made search data anonymous prevent exploring heterogeneity.

While still having some of these shortcomings, Google’s new symptoms dataset is

superior to Google Trends data in some crucial aspects. First and foremost, it does

not use raw search queries but maps instead search queries to the medical symptom

at hand. A given search query can be thus linked to several symptoms. For instance,

Google states that they “mapped the search query ‘acid reflux and coughing up mu-

cus’ to three symptoms: ‘cough’, ‘gastroesophageal reflux disease’, and ‘heartburn’”

(Google Health, 2021)[p.1]. Moreover, the symptoms dataset allows the researcher

to discern between related yet distinct symptoms. For example, using this data one

can separately evaluate the evolution of insomnia, sleep deprivation, sleep disorder,

or hypersomnia, a task which would have been quite challenging if implemented with

Google Trends. Another strength of the employed dataset is that all symptoms are

handled as search topics, rather than search queries. This implies that the volume

of searches of all symptoms of the dataset accounts for the relevant related queries,

including, for example, searches in other languages. For the US, for instance, for a

given symptom, both searches in Spanish and English are included. Overall, while

limitations on representativeness and heterogeneity analysis posed earlier remain, the

employed dataset is much richer than raw search queries from Google Trends data.

The examination of search-based symptoms is thus expected to better enlighten how

lockdowns have affected mental health conditions.

One noticeable difference between Google Trends and the symptoms dataset is how

search intensity is operationalized in each source. In Google Trends, search intensity

is a measure that ranges from 0 to 100, where 0 denotes the smallest proportion of

searches in a given area and time frame and 100 represents the highest proportion. By
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contrast, in the symptoms dataset, the search intensity of each symptom is expressed

relative to that of other symptoms. In particular, for a given geographical area, Google

first counts for the volume of each symptom’s searches in that day or week. Google

then expresses this count as a ratio, over the volume of searches in that area. The

symptom that then reaches the highest relative ratio of volume searches over the five-

year time window is scaled to 100.8 For that area, the remaining week-values of that

and the rest of the symptoms are assigned a proportional value between 0 and 100.9

For this study, I use weekly symptoms data for all the states in the US for the

period Jan. 7, 2019 to Dec. 28, 2020. Using this time window, I explore mental

distress dynamics up to the beginning of the COVID-19 vaccination campaign in the

US, using 2019 data to test for pre-trends. In terms of outcomes covered, I focus on

thirty symptoms related to different dimensions of mental health distress. The first

dimension encompasses anxiety disorders and covers “anxiety”, “generalized anxiety

disorder (GAD)”, “panic attack”, “hyperventilation”, “palpitations”, “tachycardia”,

and “tachypnea”. One second set of symptoms clusters mood disorders in terms of

“mood-swing”, “mood disorder”, “depression”, “major depressive disorder (MDD)”,

“self-harm”, and “suicidal ideation”. The symptoms dataset also makes it possi-

ble to explore dynamics of sleep disorders, which are captured based on symptoms

of “insomnia”, “sleep deprivation”, “sleep disorder”, “hypersomnia”, and “excessive

daytime sleepiness”, which conforms the third dimension considered in this study.

The fourth encompasses personality and dissociative disorders. For the former, the

dataset allows me to track patterns in internet searches related to four conditions:

“avoidant personality disorder”, “paranoia”, “compulsive hoarding”, and “compulsive

behavior”. Disruptions in dissociative disorders are captured by “depersonalization”.

Finally, I group one last set of symptoms in a residual cluster that considers sexual

disorders (“sexual dysfunction”, and “erectile dysfunction”), eating disorders (“binge

eating”), neurodevelopmental disorders (“attention deficit hyperactivity disorder”),

psychotic disorders (“psychosis” and “auditory hallucination”), and neurological dis-

orders (“epilepsy”).

Table 1 lists each symptom and its summary statistics, grouped by dimension.

The mean value of a given symptom is taken as a rough summary of the popularity

of each symptom vis-á-vis others. Notice that there is considerable variation in this

regard: within each dimension, it is usually the case that one or two symptoms present

8For example, for the state of Maryland, the symptom “infection” reaches the value 100 on March
9, 2020. In Oregon, the value 100 is also reached for “infection” but on March 16, 2020.

9For instance, for the state of Maryland, the value of the relative popularity of “infection” the
following week (March 16, 2020) is 81.46. In that same week, “depression” for instance reached a
4.74 value.
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Table 1: Summary statistics

Mean S.D. Min. Max.

Anxiety disorders
“Anxiety” 9.72 1.01 6.15 17.66
“Generalized Anxiety Disorder (GAD)” 1.36 0.17 0.74 2.08
“Panic attack” 1.93 0.21 1.20 2.73
“Hyperventilation” 0.13 0.03 0.04 0.72
“Palpitations” 0.54 0.08 0.26 0.90
“Tachycardia” 1.04 0.15 0.55 1.64
“Tachypnea” 0.13 0.03 0.04 0.31
Mood disorders
“Mood swing” 0.29 0.04 0.13 0.62
“Mood disorder” 1.37 0.19 0.78 2.22
“Depression” 5.95 0.76 3.29 12.05
“Major depressive disorder (MDD)” 4.98 0.65 2.80 6.95
“Self-harm” 0.36 0.06 0.12 0.75
“Suicidal ideation” 0.59 0.11 0.32 1.34
Sleep disorders
“Insomnia” 3.83 0.45 2.28 5.67
“Sleep deprivation” 0.47 0.08 0.22 1.00
“Sleep disorder” 2.88 0.34 1.64 4.53
“Hypersomnia” 0.12 0.02 0.04 0.23
“Excessive daytime sleepiness” 0.38 0.07 0.13 0.73
Personality and dissociative disorders
“Avoidant personality disorder” 0.23 0.06 0.06 0.55
“Paranoia” 0.20 0.03 0.06 0.43
“Compulsive hoarding” 0.17 0.05 0.06 1.05
“Compulsive behavior” 0.81 0.12 0.47 2.46
“Depersonalization” 0.11 0.03 0.03 0.25
Other: sexual, eating, neurodevelopmental,
and psychotic disorders
“Sexual dysfunction” 0.77 0.10 0.41 1.26
“Erectile dysfunction” 3.13 0.47 1.74 4.44
“Binge eating” 0.32 0.06 0.17 0.68
“Attention deficit/hyperactivity disorder” 4.00 0.65 2.15 5.97
“Psychosis” 2.09 0.26 1.26 3.78
“Auditory hallucination” 0.12 0.02 0.04 0.23
“Epilepsy” 2.84 0.70 1.42 8.82

Source: Google’s symptoms dataset.

the largest relative popularity, on average. For instance, “depression”, and “MDD”

emerge as the two most common mood disorders. At this exploratory stage, another

interesting pattern comes from the maximum value of each symptoms. Large positive

10



departures from the mean might be suggestive of the worsening of the mental health

condition at hand during the weeks that followed the enaction of stay-at-home orders.

This is for instance the case for “anxiety” or “epilepsy”. Of course, any conclusions

at this point are very tentative. In the next section, I review the empirical strategy

employed to estimate the causal effect of lockdowns on the different areas of mental

health.

4 Empirical approach

For identification, I exploit temporal variation across US states on the adoption of

stay-at-home orders. I then apply an event study design, regressing mental health

search-based symptoms on a treatment indicator, controlling for week, month, and

state fixed-effects. Since this specification controls for state fixed-effects, the roll-out

of stay-at-home orders does not need to be orthogonal to time-invariant state charac-

teristics. I however include a set of time-variant state controls that track the evolution

of the pandemic, which might correlate with both the adoption of stay-at-home or-

ders and the evolution of mental health outcomes. The identifying assumption is that

conditional on fixed-effects and the set of time-varying state factors, in the absence

of treatment, the evolution of mental health symptoms in lockdown adopters would

have mimic the one from non-treated states. To properly estimate the causal effect

of interest, I will use Borusyak et al. (2021)’s estimator, which will allow me to ac-

count for problems present at the traditional estimation procedure of DiD models that

would otherwise bias the results.10 In what follows, I discuss in detail the implemented

empirical strategy.

Let i denote each of the states in our panel and t each of its time periods. We

observe some outcomes Yt,i, denoting each of the 30 search-based mental health symp-

toms. Let Dt,i be a binary treatment indicator, which is one if in a given period a

given state issues the stay-at-home order. Under the canonical 2*2 DiD model, one

would compare the evolution of potential outcomes in the treated units versus never

treated units to obtain the estimated effect of receiving treatment, τ̂ :

τ̂ ≡ E [(Y 1
1 − Y 1

0 | D = 1)− (Y 0
1 − Y 0

0 | D = 1)] =

E [(Y 1
1 − Y 1

0 | D = 1)− (Y 0
1 − Y 0

0 | D = 0)]
(1)

where (Y 0
1 −Y 0

0 | D = 1) is the missing counterfactual: among treated units, one never

observes the difference in untreated outcomes. In the canonical setup, one recovers

the later component by invoking the parallel trend assumption (Y 0
1 − Y 0

0 | D = 0),

10See Bismarck-Osten et al. (2021) for an example of recent empirical work using this estimator.
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which states that, in the absence of treatment, treatment units D = 1 would have

experienced the evolution of the outcome of not treated units D = 0. If the parallel

trend assumption holds, τ̂ is an unbiased estimate of the ATT. In practice, researchers

often estimate this ATT from the two-way fixed effect (2WFE) regression:

Yit = αi + βt + τDit + εit (2)

where Yit is regressed on units and time fixed-effects and the effect of the treatment

indicator on the outcome, τ . Until quite recently, common practice has been to deal

with situations with staggered treatment adoption by extending the 2WFE model to

an event study specification:

Yit = α̃i + β̃t +
b−1∑
h=−a
h 6=−1

τh1 [t = Ei + h] + τb+1 [t ≥ Ei + b] + εit (3)

where the outcome is now regressed on the fixed-effects and then some leads (pre-

treatment) and lags (post-treatment) event indicators to allow for dynamics. However,

traditional estimation practice through OLS has been shown to be subject to bias

under treatment effect heterogeneity (Goodman-Bacon, 2021). As Borusyak et al.

(2021) show, such problems can be intuitively illustrated by considering a static version

of the event study design:

Yit = α̃i + β̃t +Ditτ + εit (4)

where τ is meant to summarize overall treatment effects — without worrying about

exact dynamics. This static specification will help us to detect the three implicit

assumptions of the event study model. First, notice that τ implies homogeneous

treatment effects. Under heterogeneous treatment effects, the OLS-based traditional

estimation approach to 2WFE will be biased. For instance, this would include bias

in situations such as dynamic treatment effects that are either constant or unequal

across states (Baker et al., 2021), which are reasonable scenarios for the evolution

of the effect of lockdowns on mental health symptoms.11 Second, the authors also

notice that α̃i + β̃t imply how parallel trends is imposed: differences in outcomes of

different units that can be attributed to differences across units and periods, are, in

expectation, equal across units. This is the main assumption of the model. One last

11For example, the prevalence of symptoms might grow from the introduction of the stay-at-home
orders (dynamic treatment effects that are constant across states). Alternatively, it might be the case
that early adopters experience different outcome trajectories than late adopters (dynamic treatment
effects that are unequal across states) — because of time-to-adjust mechanisms, or social unrest, for
instance.
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implicit assumption of the OLS 2WFE estimator is the lack of anticipation effects.

For the former, notice that by imposing that only when a given unit is treated there

is some treatment effect the researcher is implicitly assuming no anticipation — when

Dit = 0 τ is zero as well.

Borusyak et al. (2021) propose an alternative estimator, built in the following

fashion. Let Ω1 denote the set of treated observations. Conversely, let Ω0 denote the

set of untreated observations, encompassing both not-yet-treated and never-treated

observations. The estimation parameter of interest is τw =
∑

it∈Ω1
witτit, which just

generalizes the estimator to allow for weighing treatment effects in some sensical way

e.g. dynamic treatment effects weighted by state population. τit denotes for treated

observations the group of outcome differences between the observed outcome Y 1
it and

the potential outcome Y 0
it . To identify the parameter of interest, Borusyak et al. (2021)

impose the following assumptions on the model below, which will slightly modify those

of the traditional OLS-based 2WFE estimator:

Yit = αi + βt +Ditτit + εit (5)

First, their estimator allows for heterogeneous treatment effects — notice that in τit

that now τ varies across units and time. Second, they also impose parallel trends,

where the untreated potential outcome for all units has again a unit and time fixed-

effects structure. This assumption can be then relaxed to invoke a more flexible

parallel trend assumption i.e. to allow for unit-specific trends or time-varying controls.

Finally, they impose a no-anticipation type of assumption, which follows the same logic

explained above for Equation 4. Their estimator nonetheless also allows to relax the

former, where the researcher would then redefine treatment from the period where

anticipation effects started e.g. if one thinks there could be anticipation effects for

two periods before treatment she will redefine treatment as two periods early.

For estimation, Borusyak et al. (2021) show that the model in Equation 5 can be

obtained as an imputation estimator, in three steps. First, for each untreated obser-

vation, the state and week fixed-effects αi and βt are estimated using OLS. Second, an

unbiased estimate Ŷ 0
it is then obtained for each treated observation by extrapolating

from untreated units. The estimator of interest is then obtained as the evolution of

outcomes for each treated observation vis-á-vis its imputed counterfactual: Yit − Ŷ 0
it .

Borusyak et al. (2021) warn that treatment effects for each week and state cannot be

consistently estimated. The last step is thus to aggregate the individual effects into a

more general parameter that better helps to answer the research question of interest.

For my application, the presented aggregated dynamic parameter is the weekly average

treatment effect across states, weighted by state population. That is, I estimate the

13



impact of implementing the lockdown on the weekly evolution of a given web-based

symptom. This approach allows me to explore treatment effect dynamics.

As Borusyak et al. (2021) show, providing empirical support for the parallel trends

assumption requires to regress, on the set of untreated observations, the following

specification:

Yit = αi + βt +
−1∑

p=−P

γp1 [t = Ei + p] + εit (6)

where 1 [t = Ei + p] is a set of dummies for the pre-intervention periods. From the test,

it is expected that conditional on the parallel trend structure invoked e.g. αi+βt, there

should be no pre-intervention difference in outcomes between treated and non-treated

units–and thus the group of the pre-intervention dummies should be non-significant.

As Borusyak et al. (2021) recommend, I perform this test on the pool of untreated

states as a pre-imputation step, hence separating testing from estimation. The validity

of this test can then be visually examined via an event study plot.

5 Results

In this section, I provide the most important findings of this study. I begin by dis-

cussing a heatmap that will allow me to explore in a concise manner the dynamic

effects of stay-at-home orders in the large set of mental health outcomes covered. Us-

ing this tool, we will learn at a glance which conditions were mostly affected by the

intervention of interest and whether any common pattern across symptoms emerges.

Afterwards, I focus on a selection of those symptoms that either present the largest

or the most sustained effects. All results presented control for the evolution of the

pandemic i.e. the evolution of confirmed cases and deaths and include time (week

and month) and state fixed-effects.12 Results are also clustered at the state level and

are weighted by population. For all symptoms, there is no evidence of major viola-

tions of the common trend assumption through pre-trends and hence the former is not

discussed for the shake of brevity — see Tables S1-S5 of the Supplementary Material.

Figure 1 provides the results of the event study estimations for the intervention of

interest, the declaration of the stay-at-home orders. Dynamics are explored up until

December 2020, when the vaccination campaign started in the US. Each row shows

the event study results from one specific mental health symptom. Time is represented

in the horizontal axis, and thus each cell is the dynamic ATT of one given symptom

12Month fixed-effects help the researcher to get rid of seasonality in mental health instruments and
symptoms — see Banks and Xu (2020) for evidence on the former.
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Figure 1: Event study results summary. Source: Google’s symptoms dataset.

in any given week. For instance, the first cell provides the effect of the lockdown on

“anxiety” the first week after the stay-at-home order is passed. The intensity of the

effect is represented by a diverging color palette centered at zero. In the palette, the red

hue represents positive effects and the dark grey negative effects, while the light grey

in the middle of the palette indicates no statistically significant effect. Accordingly,

the weeks at which one specific symptom peaked high in treated states relative to

not-yet-treated states are shown in darker shades of red.

At the top of the figure, I first provide results from symptoms related to anxiety

disorders. One clearly sees that, in treated states, searches related to “anxiety”

and “GAD” first peaked in April-May. Treated states then experienced a second

peak in those conditions in November-December. For “anxiety”, immediate effects

and long-term effects are quite large, while searches related to “GAD” experience

relatively smaller peaks in treated states. Notice however that “GAD” symptoms

deteriorate over time, showing larger effects in November-December. Other symptoms

related to anxiety disorders match this two-wave pattern. Smaller effects are found for

“panic attack” and “tachycardia” in the weeks that followed the implementation of the

lockdowns. Treated states also experienced higher search-based prevalence of “panic

attack”, “hyperventilation”, “palpitations”, and “tachypnea” during the second wave.

The results for mood disorders are then provided. For “depression”, no immedi-

ate or long-term effect is found. Instead, the symptoms dataset reveals a substantial

15



worsening in terms of “major depressive disorders”, thus suggesting a severe deterio-

ration in mood disorders during and after the lockdown. For “self-harm” and “suicidal

ideation”, effects are quite small, although generally match the two wave pattern. I

estimate small immediate effects for both conditions. While searches related to “self-

harm” remained slightly higher in treated states than in non-treated states during the

second wave, no long-term effect is found for “suicidal ideation”.

Event study estimates of sleep disorders are then reported. Except for some

small effects in terms of “excessive daytime sleepiness” in May-June, effects on sleep

disorders mostly appeared in the long run. Figure 1 reveals a quite strong disruption

in terms of “insomnia” and “sleep disorder” in the last three months of 2020. The

next dimension shown is personality and dissociative disorders. For personal-

ity disorders, relatively small effects are found in later April and May — in terms

of searches related to “avoidant personality disorder”, “paranoia”, and “compulsive

behavior”. None of these conditions does however show a long-term effect. In terms

of “depersonalization”, I do not find evidence of any disruption in states that im-

plemented stay-at-home orders. Finally, the figure shows the results for a residual

cluster of other disorders. I report strong effects in terms of “attention deficit” in

both waves. Non-negligible effects are found for “psychosis” in both waves. Searches

related to “epilepsy” in treated states also increase to some extent in late April-May,

and then followed a distinct path, showing a much prolonged second wave that started

in September with quite sustained strong effects. I do not find any evidence of dete-

rioration in terms of sexual disorders and eating disorders.

All together, event study estimates for this large set of symptoms reveal that the

stay-at-home orders fostered mental distress in treated states in the form of various

anxiety disorders, severe forms of depression, sleep disorders, attention deficit, and

epilepsy. Treated states experienced two mental distress waves, occurring in April-

May and November-December, respectively. As stressed, the former implies that the

lockdowns had both immediate and long-term costs for the US population.

Once overall changes have been explored through the heatmap, I take a closer look

at the evolution of those symptoms showing more significant patterns through event

plots. Figure 2 shows the event study results for the main anxiety and mood disorder

symptoms. In Panel a), for “anxiety”, one clearly sees the two found waves. During

the five weeks after the implementation of the stay-at-home orders, treated states

reported search-based anxiety symptoms around 0.5 higher. Thirty weeks after the

implementation of the stay-at-home order, that is, around the first weeks of October

up until December, treated states show anxiety levels that are about 0.72 higher —

for some weeks, “anxiety” levels rose up to around 1 search intensity point. The event
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(a) Anxiety (b) Generalized anxiety disorder

(c) Depression (d) Major depressive disorder

Figure 2: Event study results from anxiety and depression.
Source: Google’s symptoms dataset.

study results for “anxiety” thus show relatively large effects during the weeks that

immediately followed the onset of the lockdown and more severe permanent effects at

the beginning of the period. In Panel b), I explore the dynamics of “GAD”. In treated

states, searches associated with “GAD” show relatively smaller increments during the

first eight weeks of about 0.10 points. From around late October to December, search-

based GAD slightly increased to about 0.25 points, still below anxiety levels. With

regards to mood disorders, no effect is found for “depression”. Noticeable effects are

however found for “MDD” during both the first and second waves. Specifically, search-

based MDD remained around 0.43 points higher in treated states during the 7 weeks

that followed the intervention. During November and December, “MDD” searches

were around 0.55 points higher in treated states. Overall, this suggests that lockdown

measures affected the whole spectrum of anxiety disorders, especially in the long run,

although more clearly to less severe forms of such disorders. Lockdown measures

only affected more severe forms of depression, while the latter was less prevalent than
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(a) Insomnia (b) Sleep disorder

Figure 3: Event study results from sleep disorders.
Source: Google’s symptoms dataset.

anxiety, though.

Figure 3 shows the event study results for the selected sleep disorders. In gen-

eral, effects found for this cluster of symptoms tend to be in the form of long-run

permanent effects. The strongest deterioration is found for “insomnia”, as shown in

Panel a): from October until December treated US states had systematically higher

search-based insomnia symptoms. This is one of the most sustained effects on men-

tal health from this study. Effects are not only quite permanent but substantive in

magnitude. From October to the beginning of November, the average event study

effect for “insomnia” in treated regions is about 0.4 points. From late November to

December, “insomnia” becomes even more prevalent, rising by about 0.75 points on

average. “Sleep disorder” also remained relatively high since late November — around

0.4 points. These findings suggest a quite sustained long term impact in terms of sleep

disorders, where “insomnia” plays a more central role.

Finally, Figure 4 shows the event study results for two selected symptoms of the

residual category. In Panel a), I provide the event study estimates for “attention

deficit”, while Panel b) brings the estimates for “epilepsy”. Both conditions show a

more-delayed first wave, which coincides with late April-May. In terms of long-term

dynamics, “attention deficit” is found to have been deteriorated during December,

where those states that implemented stay-at-home orders experienced “attention”

deficit levels that were, on average, around 0.5 points higher. By contrast, “epilepsy”

shows the largest second wave of all symptoms explored, with effects already material-

izing by the beginning of September. During this more spread second wave, “epilepsy”

in treated states remained about 0.5 points higher relative to non-treated states.
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(a) Attention-deficit (b) Epilepsy

Figure 4: Event study results from attention deficit and epilepsy.
Source: Google’s symptoms dataset.

6 Discussion

This section provides a discussion of the main findings of this study, exploring whether

results confirm previous evidence from other studies. This exercise has its own lim-

itations, as for some dimensions the evolution of mental health conditions is better

documented than for others. Importantly, I have not found any empirical studies

that have explored the mental health implications of stay-at-home orders during the

end of 2020. For this purpose, I leverage descriptive evidence, whenever possible.

These shorts of evidence gaps nonetheless help me to evaluate the uncertainty around

estimates.

For forms of anxiety and depression, results seem to be relatively safely validated

by other sources of evidence, at least in terms of their dynamics. Estimated effect sizes

are admittedly harder to evaluate because of differences in the operationalization of

outcomes. As the present study, prior empirical work has also found evidence of

very immediate effects on anxiety in treated regions (Yamamura and Tsutsui, 2020;

Armbruster and Klotzbücher, 2020), that in some settings remained high up to the

beginning of summer (Silverio-Murillo et al., 2021). Existing evidence on depression is

also in line with this study, reporting no supportive evidence of (immediate) changes

in the former (Hoerger et al., 2020; Silverio-Murillo et al., 2021). These studies are

nonetheless silent about more severe forms of depression, for which this study estimates

a non-negligible deterioration in treated regions. For the dynamics experienced during

the second wave, one must necessarily rely on descriptive sources. Those studies that

make use of validated scales generally map the evolution reported here for search-based

anxiety and depression, showing two waves of increasing intensity as well (Fisher et

al., 2020; Garcia-Priego et al., 2020; González-Sanguino et al., 2020; Jenkins et al.,
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2021; Lee et al., 2021; Marmot, 2021; McCracken et al., 2020; National Statistics, 2020;

Parlapani et al., 2020; Pieh et al., 2020; Rossi et al., 2020; Ueda et al., 2020; Vahratian

et al., 2021; Winkler et al., 2020). It should be however stressed that these studies

while having their own flaws because of their reliance on pre- and post- comparisons

that are not empirically linked to the effect of the implementation of stay-at-home

orders point to much more substantive deterioration of anxiety and depression.13

The validity of the rest of the findings is arguably less clear, as prior evidence for

these symptoms is based on descriptive studies or inconclusive empirical work. For in-

somnia and other sleep disorders, a blurred picture emerges when comparing obtained

results with existing evidence. On the one hand, one study with a quasi-experimental

design has found no immediate effect of lockdown on search-based insomnia in treated

US states (Brodeur et al., 2021). Other study has however pointed to the opposite

picture (Silverio-Murillo et al., 2021). In terms of second wave dynamics, Dale et

al. (2021) descriptively document further deterioration in terms of a clinically vali-

dated instrument for sleep quality. For attention-deficit hyperactivity disorder, Daly

and Robinson (2021) also finds that distress increased on average at the onset of the

state-at-home orders–for US people diagnosed with such condition. Other studies have

confirmed the worsening of such symptoms on children during the lockdown (Zhang et

al., 2020). For epilepsy, existing evidence relies on pre- and post- comparisons around

the implementation of the stay-at-home orders. For patients with epilepsy, descriptive

studies have associated the former with an increase in seizures (Conde Blanco et al.,

2021; Zeng et al., 2021). To the best of my knowledge, no prior evidence exists on the

effect of stay-at-home orders on epilepsy in the general population.

7 Conclusion

The present study provides evidence on the role of stay-at-home orders on the de-

velopment of a mental health crisis in the US during the first year of the COVID-19

pandemic. Event study estimates based on high-quality search data reveal that this

policy provoked a surge in anxiety disorders, severe forms of depression, sleep dis-

orders, attention deficit, and epilepsy. The effect of the lockdowns goes beyond its

duration, as most of these conditions deteriorated in treated states at the end of 2020.

Given evidence gaps, the latter finding is an important contribution of this study. Be-

cause of these gaps, the results of this study should nonetheless be taken with caution,

13The HPS project for instance estimates that anxiety disorders experience an about 20 p.p. in-
crease during the first mental health wave. During the second wave, they estimate that these disorders
experience an about 26 p.p. increase. For depression disorders, HPS data suggests an about 17 p.p.
(22 p.p.) increase for the first (second) wave.
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especially for symptoms other than anxiety and depression.

It should be acknowledge that measuring mental distress is a difficult task. Survey

instruments face worrying non-response rates that might even worsen in the future

as a result of the pandemic. Different forms of stigma also challenge their validity.

Because of these shortcomings, surveys might offer a distorted, lower bound picture of

the problem. Real-time search data comes as a complementary tool that is less severely

affected by these two gaps. By using a recently developed search data source that

maps search queries to medical symptoms, I also tackle some of the own limitations

of traditional search data sources. Caveats on representativeness and the ability to

explore heterogeneity still apply. Moreover, despite its richness, the first version of

the symptoms dataset better tracks certain mental health areas than others (eating

disorders is one prominent area not sufficiently well captured).

Significant uncertainty remains on the impact of stay-at-home orders on mental

distress, especially for long-term dynamics. Accordingly, further research is needed to

properly guide the policy response to the pandemic. Indeed, this is the sole urgent

recommendation of the 2020 report of the Lancet’s COVID-19 Commission Mental

Health Task Force (Aknin et al., 2021). Other areas of promising research include

the re-assessment of the societal cost per patient of the different dimensions of mental

distress so that it better reflects the current scenario or the more ambitious evaluation

of the psychological costs of these policies by considering mental health as a facet of

the broader more complex phenomena of well-being. It is also still unclear how the

roll-out of the vaccination campaign might have alleviated the mental health burden

of social distancing policies.

In the meanwhile, several institutions have already called for emergency policy ac-

tion. The Lancet’s COVID-19 Commission Mental Health Task Force has first stressed

the importance of a more systematic screening protocol of mental health conditions at

health care centers, so that distress conditions are early-detected, monitor appropri-

ately, and treated when necessary. It also calls for making of safe access to childcare

and schooling a priority, so that kids’ learning and socialization do not suffer fur-

ther disruptions and parents (especially young women) improve their altered family

responsibilities and reduce their psychological distress. The OECD has proposed a

plan of action based on three pillars that complements some of the recommendations

already raised (OECD, 2021). The first of these pillars is governments’ need to provide

quality mental health services, ensuring that the increasing demand for mental health

care is sufficiently covered. Secondly, the OECD calls for safeguarding mental health

at work, taking an integrated, more ambitious approach than mere health care inter-

ventions — through unemployment plans and better protection schemes, for example.
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Finally, the OECD recommends developing better governance of teleworking so that

characteristics traditionally attributed to the former such as longer workloads or more

irregular work shifts do not become the new norm.

References

Adams-Prassl, Abi, Teodora Boneva, Marta Golin, and Christopher Rauh (2021).

“The Impact of the Coronavirus Lockdown on Mental Health: Evidence from the

US”. Forthcoming: Economic Policy.

Aknin, Lara, Jan-Emmanuel De Neve, Elizabeth Dunn, Daisy Fancourt, Elkhonon

Goldberg, JF Helliwell, Sarah P Jones, Elie Karam, Richard Layard, Sonja Lyubomirsky,

et al. (2021). “Mental health during the first year of the COVID-19 pandemic: a

review and recommendations for moving forward”. Forthcoming: Perspectives on

Psychological Science.

Ang, Desmond (2021). “The effects of police violence on inner-city students”. The

Quarterly Journal of Economics, 136(1), 115–168.

Armbruster, Stephanie and Valentin Klotzbücher (2020). “Lost in lockdown? Covid-
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Event study results: pre-trend tests

Table S1. Anxiety disorders

Anxiety GAD Panic attack Hyperventilation Palpitations Tachycardia Tachypnea

pre1 -0.082 -0.014 0.035 0.015** -0.020* -0.019 0.000

(0.107) (0.023) (0.034) (0.005) (0.008) (0.017) (0.007)

pre2 -0.086 -0.025 0.019 0.005 -0.021* -0.034* -0.001

(0.073) (0.020) (0.028) (0.005) (0.010) (0.016) (0.007)

pre3 -0.122* -0.028 -0.023 -0.002 -0.013 -0.046** 0.000

(0.060) (0.018) (0.022) (0.006) (0.009) (0.017) (0.007)

pre4 -0.167** -0.025 -0.042* 0.004 -0.008 -0.034* -0.002

(0.065) (0.015) (0.020) (0.005) (0.008) (0.014) (0.006)

pre5 -0.123 -0.017 -0.018 0.002 -0.002 -0.016 -0.001

(0.069) (0.015) (0.020) (0.004) (0.008) (0.016) (0.006)

pre6 -0.092 0.001 -0.005 -0.000 -0.001 -0.019 0.001

(0.073) (0.016) (0.019) (0.004) (0.006) (0.016) (0.005)

pre7 -0.068 0.009 0.011 -0.002 -0.010 -0.011 0.002

(0.090) (0.020) (0.019) (0.004) (0.008) (0.017) (0.005)

pre8 -0.091 0.001 -0.011 -0.003 -0.010 -0.019 -0.008

(0.076) (0.018) (0.019) (0.005) (0.006) (0.019) (0.005)

pre9 -0.089 0.000 -0.016 0.007 -0.019* -0.014 -0.008

(0.068) (0.018) (0.017) (0.007) (0.009) (0.018) (0.004)

pre10 -0.086 0.000 -0.008 0.010 -0.021 -0.007 -0.005

(0.057) (0.014) (0.015) (0.006) (0.013) (0.017) (0.006)

pre11 -0.043 0.008 0.021 0.012** -0.020 -0.005 -0.012

(0.061) (0.015) (0.016) (0.005) (0.012) (0.018) (0.007)

pre12 -0.134* -0.008 0.013 0.010* -0.023 -0.017 -0.011

(0.064) (0.015) (0.015) (0.004) (0.012) (0.018) (0.009)

pre13 -0.290*** -0.046* -0.016 0.003 -0.035** -0.022 -0.019*

(0.087) (0.021) (0.021) (0.004) (0.013) (0.020) (0.009)

pre14 -0.352*** -0.053* -0.028 0.001 -0.032* -0.049* -0.009

(0.095) (0.023) (0.025) (0.004) (0.014) (0.019) (0.009)

pre15 -0.402*** -0.059* -0.021 -0.006 -0.033* -0.039* -0.013

(0.107) (0.026) (0.027) (0.005) (0.013) (0.018) (0.009)

pre16 -0.511*** -0.080** -0.042 -0.009 -0.032* -0.024 -0.008

(0.115) (0.026) (0.029) (0.006) (0.013) (0.020) (0.008)

pre17 -0.451*** -0.072** -0.022 -0.002 -0.024 -0.004 0.000

(0.119) (0.026) (0.035) (0.006) (0.014) (0.021) (0.009)

pre18 -0.444*** -0.073* -0.025 -0.003 -0.022 -0.012 0.003

(0.132) (0.031) (0.039) (0.007) (0.013) (0.021) (0.008)

pre19 -0.421** -0.067* -0.012 -0.001 -0.028 -0.018 -0.001

(0.139) (0.031) (0.042) (0.008) (0.015) (0.021) (0.007)

pre20 -0.395** -0.052 -0.026 -0.001 -0.027* -0.007 0.002

(0.131) (0.031) (0.037) (0.008) (0.014) (0.021) (0.007)

pre21 -0.350** -0.047 -0.031 0.002 -0.021 0.008 0.006

(0.134) (0.031) (0.036) (0.009) (0.013) (0.024) (0.007)

pre22 -0.337* -0.060 -0.027 -0.000 -0.025* -0.015 -0.001

(0.141) (0.031) (0.036) (0.009) (0.012) (0.021) (0.007)

pre23 -0.351** -0.060 -0.003 -0.002 -0.025 -0.020 0.008

(0.135) (0.031) (0.040) (0.009) (0.014) (0.021) (0.007)
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Table S1. Anxiety disorders

Anxiety GAD Panic attack Hyperventilation Palpitations Tachycardia Tachypnea

pre24 -0.410** -0.062 -0.027 -0.002 -0.022 -0.019 0.006

(0.126) (0.032) (0.038) (0.007) (0.012) (0.019) (0.007)

pre25 -0.336** -0.055 -0.003 -0.001 -0.012 -0.018 0.005

(0.121) (0.029) (0.038) (0.007) (0.017) (0.018) (0.006)

pre26 -0.305* -0.033 0.009 -0.001 -0.006 0.003 0.003

(0.125) (0.027) (0.037) (0.007) (0.015) (0.016) (0.007)

pre27 -0.287* -0.024 0.027 -0.002 -0.009 0.013 0.000

(0.126) (0.030) (0.036) (0.006) (0.015) (0.019) (0.007)

pre28 -0.293* -0.030 0.024 -0.001 -0.010 0.002 -0.003

(0.126) (0.032) (0.039) (0.006) (0.012) (0.019) (0.005)

pre29 -0.240 -0.003 0.030 -0.004 -0.016 -0.012 0.001

(0.126) (0.029) (0.037) (0.006) (0.011) (0.019) (0.005)

pre30 -0.291* -0.018 0.017 -0.000 -0.019 -0.008 0.006

(0.126) (0.031) (0.038) (0.006) (0.011) (0.018) (0.005)

pre31 -0.350** -0.043 0.018 0.004 -0.012 0.000 0.006

(0.135) (0.032) (0.038) (0.007) (0.012) (0.020) (0.005)

pre32 -0.322* -0.034 0.016 0.004 -0.018 -0.017 0.005

(0.148) (0.032) (0.039) (0.008) (0.012) (0.020) (0.004)

pre33 -0.289 -0.034 0.011 0.001 -0.025 -0.008 0.006

(0.162) (0.031) (0.044) (0.007) (0.014) (0.021) (0.005)

pre34 -0.242 -0.032 0.020 0.002 -0.022 -0.021 0.002

(0.169) (0.029) (0.046) (0.006) (0.014) (0.020) (0.005)

pre35 -0.242 -0.034 0.001 0.004 -0.022 -0.018 0.008

(0.170) (0.028) (0.041) (0.005) (0.016) (0.021) (0.004)

pre36 -0.235 -0.050 -0.001 0.004 -0.021 -0.022 0.004

(0.169) (0.026) (0.039) (0.006) (0.017) (0.021) (0.004)

pre37 -0.239 -0.045 -0.003 0.006 -0.008 -0.019 0.003

(0.158) (0.024) (0.034) (0.006) (0.024) (0.022) (0.004)

pre38 -0.141 -0.036 -0.011 0.010 -0.003 -0.001 0.009*

(0.156) (0.026) (0.031) (0.007) (0.022) (0.022) (0.004)

pre39 -0.152 -0.021 -0.006 0.009 -0.008 0.001 0.007

(0.150) (0.023) (0.029) (0.007) (0.019) (0.020) (0.004)

pre40 -0.071 -0.000 0.011 0.010 -0.000 -0.004 0.001

(0.124) (0.022) (0.026) (0.006) (0.017) (0.020) (0.005)

Observations 5199 5199 5199 5154 5199 5151 5199
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Table S2. Mood disorders, self-harm, and sucidial ideation

Mood swing Mood disorder Depression Major dep. disorder Self-harm Suicidal ideation

pre1 -0.013* 0.004 -0.138 -0.090 -0.002 -0.024*

(0.007) (0.023) (0.077) (0.065) (0.011) (0.012)

pre2 -0.011 -0.015 -0.117* -0.071 0.005 -0.032***

(0.006) (0.021) (0.055) (0.048) (0.010) (0.008)

pre3 -0.007 -0.010 -0.125** -0.056 0.002 -0.038***

(0.005) (0.021) (0.047) (0.041) (0.008) (0.008)

pre4 -0.008 -0.018 -0.132** -0.076 -0.004 -0.033**

(0.006) (0.018) (0.049) (0.044) (0.007) (0.011)

pre5 -0.015* 0.003 -0.050 -0.053 -0.010 -0.027**

(0.006) (0.015) (0.051) (0.040) (0.007) (0.010)

pre6 -0.009 0.021 -0.051 -0.024 0.002 -0.017

(0.007) (0.019) (0.050) (0.042) (0.007) (0.009)

pre7 -0.003 0.020 -0.026 0.005 0.004 -0.010

(0.008) (0.018) (0.056) (0.044) (0.006) (0.009)

pre8 0.006 0.005 -0.032 -0.025 0.011 -0.007

(0.007) (0.019) (0.049) (0.042) (0.008) (0.012)

pre9 0.009 0.022 -0.035 0.006 0.003 -0.008

(0.006) (0.019) (0.045) (0.045) (0.009) (0.013)

pre10 0.007 0.010 0.008 0.017 0.004 0.004

(0.005) (0.022) (0.044) (0.033) (0.007) (0.012)

pre11 0.013* 0.002 0.009 0.028 0.017* 0.015

(0.006) (0.020) (0.044) (0.036) (0.008) (0.013)

pre12 0.007 -0.032 -0.095* -0.064 0.002 0.004

(0.006) (0.023) (0.041) (0.038) (0.009) (0.011)

pre13 -0.001 -0.053* -0.192*** -0.140** -0.003 -0.001

(0.008) (0.023) (0.055) (0.044) (0.008) (0.014)

pre14 0.001 -0.061* -0.215*** -0.167*** -0.010 -0.006

(0.010) (0.027) (0.064) (0.049) (0.009) (0.015)

pre15 0.007 -0.087** -0.294*** -0.210*** -0.019 -0.018

(0.013) (0.031) (0.070) (0.056) (0.014) (0.016)

pre16 0.004 -0.097** -0.299*** -0.200*** -0.023 -0.033*

(0.014) (0.033) (0.072) (0.061) (0.016) (0.015)

pre17 0.000 -0.079** -0.279*** -0.200*** -0.020 -0.035*

(0.016) (0.029) (0.073) (0.051) (0.014) (0.015)

pre18 0.004 -0.066* -0.266*** -0.187** -0.021 -0.031

(0.016) (0.032) (0.076) (0.061) (0.012) (0.016)

pre19 0.001 -0.065* -0.278*** -0.184** -0.021 -0.039**

(0.015) (0.030) (0.075) (0.060) (0.012) (0.014)

pre20 0.001 -0.049 -0.272*** -0.166** -0.022 -0.044**

(0.014) (0.030) (0.068) (0.058) (0.012) (0.015)

pre21 0.002 -0.044 -0.238*** -0.138* -0.016 -0.041**

(0.014) (0.028) (0.068) (0.058) (0.012) (0.014)

pre22 -0.003 -0.053 -0.237** -0.135* -0.022* -0.045**

(0.013) (0.028) (0.079) (0.063) (0.009) (0.015)

pre23 -0.012 -0.054* -0.290*** -0.160** -0.020** -0.049**

(0.011) (0.027) (0.073) (0.058) (0.007) (0.016)

pre24 -0.016 -0.065** -0.306*** -0.161** -0.013 -0.045**

(0.009) (0.023) (0.072) (0.059) (0.008) (0.017)
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Table S2. Mood disorders, self-harm, and sucidial ideation

Mood swing Mood disorder Depression Major dep. disorder Self-harm Suicidal ideation

pre25 -0.009 -0.043 -0.234** -0.141* -0.003 -0.049*

(0.009) (0.024) (0.076) (0.057) (0.008) (0.020)

pre26 -0.001 -0.052** -0.214** -0.122* -0.000 -0.032

(0.008) (0.019) (0.075) (0.059) (0.010) (0.021)

pre27 0.001 -0.040 -0.193* -0.110 0.004 -0.041*

(0.007) (0.021) (0.082) (0.066) (0.012) (0.020)

pre28 0.002 -0.045 -0.208* -0.138* -0.013 -0.057**

(0.007) (0.026) (0.085) (0.068) (0.010) (0.022)

pre29 0.002 -0.018 -0.112 -0.081 -0.019* -0.035

(0.006) (0.027) (0.085) (0.067) (0.008) (0.022)

pre30 0.009 -0.017 -0.090 -0.108 -0.016* -0.017

(0.008) (0.029) (0.088) (0.068) (0.007) (0.018)

pre31 0.005 -0.012 -0.129 -0.138* -0.009 -0.025

(0.008) (0.029) (0.086) (0.066) (0.009) (0.018)

pre32 0.007 -0.021 -0.109 -0.102 -0.018 -0.019

(0.008) (0.030) (0.090) (0.070) (0.010) (0.017)

pre33 0.010 -0.009 -0.156 -0.133 -0.025** -0.017

(0.011) (0.030) (0.098) (0.076) (0.009) (0.017)

pre34 -0.002 -0.027 -0.157 -0.127 -0.022** -0.017

(0.011) (0.030) (0.107) (0.080) (0.008) (0.019)

pre35 0.001 -0.026 -0.168 -0.145 -0.012 -0.012

(0.012) (0.033) (0.111) (0.086) (0.008) (0.020)

pre36 0.001 -0.018 -0.141 -0.149 -0.009 -0.012

(0.011) (0.034) (0.114) (0.092) (0.011) (0.018)

pre37 -0.002 -0.026 -0.148 -0.128 -0.004 -0.013

(0.011) (0.033) (0.108) (0.090) (0.009) (0.017)

pre38 -0.013 -0.024 -0.126 -0.117 -0.003 -0.010

(0.009) (0.033) (0.105) (0.090) (0.008) (0.016)

pre39 -0.004 -0.015 -0.096 -0.092 -0.002 0.001

(0.008) (0.027) (0.099) (0.082) (0.010) (0.015)

pre40 -0.010 -0.003 -0.046 -0.048 -0.001 0.019

(0.008) (0.024) (0.086) (0.071) (0.010) (0.015)

Observations 5196 5199 5199 5199 5199 5199
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Table S3. Sleep disorders

Insomnia Sleep deprivation Sleep disorder Hypersomnia Excessive daytime sleepiness

pre1 -0.131*** -0.024* -0.106** -0.006 0.007

(0.034) (0.009) (0.035) (0.004) (0.015)

pre2 -0.080** -0.015 -0.065* -0.002 0.001

(0.029) (0.009) (0.027) (0.004) (0.015)

pre3 -0.038 -0.015 -0.030 -0.002 0.010

(0.034) (0.010) (0.025) (0.004) (0.014)

pre4 -0.009 -0.007 -0.021 0.001 0.005

(0.036) (0.012) (0.026) (0.004) (0.013)

pre5 0.005 -0.011 0.002 0.005 0.003

(0.035) (0.013) (0.028) (0.004) (0.015)

pre6 0.027 -0.003 0.036 0.008* -0.016

(0.039) (0.012) (0.033) (0.004) (0.017)

pre7 0.058 -0.000 0.044 0.007 -0.006

(0.042) (0.016) (0.037) (0.004) (0.015)

pre8 0.058 0.003 0.039 0.011*** 0.009

(0.040) (0.009) (0.034) (0.003) (0.012)

pre9 0.050 0.004 0.046 0.013*** 0.021

(0.042) (0.012) (0.035) (0.004) (0.012)

pre10 0.031 0.004 0.032 0.012*** 0.026*

(0.040) (0.013) (0.032) (0.004) (0.012)

pre11 0.069 -0.008 0.059 0.012** 0.025

(0.047) (0.012) (0.037) (0.004) (0.013)

pre12 -0.055 -0.021 -0.027 0.009** 0.015

(0.050) (0.012) (0.041) (0.003) (0.010)

pre13 -0.114* -0.028* -0.081 0.003 0.003

(0.058) (0.011) (0.049) (0.004) (0.012)

pre14 -0.122 -0.030* -0.072 -0.001 0.008

(0.067) (0.013) (0.049) (0.004) (0.012)

pre15 -0.123 -0.041* -0.064 0.002 -0.004

(0.075) (0.017) (0.053) (0.005) (0.014)

pre16 -0.150* -0.046** -0.087 0.001 -0.009

(0.075) (0.017) (0.054) (0.005) (0.011)

pre17 -0.160* -0.043* -0.091 -0.001 -0.011

(0.078) (0.018) (0.059) (0.005) (0.014)

pre18 -0.127 -0.048** -0.046 0.006 -0.000

(0.088) (0.017) (0.060) (0.005) (0.013)

pre19 -0.122 -0.054** -0.065 0.005 -0.004

(0.092) (0.017) (0.061) (0.006) (0.014)

pre20 -0.129 -0.048** -0.066 0.003 -0.018

(0.086) (0.016) (0.057) (0.006) (0.014)

pre21 -0.116 -0.050** -0.059 0.003 -0.002

(0.082) (0.017) (0.059) (0.005) (0.014)

pre22 -0.111 -0.055** -0.071 0.001 -0.008

(0.082) (0.018) (0.059) (0.005) (0.017)

pre23 -0.119 -0.051** -0.083 -0.000 -0.015

(0.076) (0.016) (0.055) (0.004) (0.015)

pre24 -0.126 -0.063*** -0.091 -0.001 -0.006

(0.072) (0.014) (0.053) (0.005) (0.013)
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Table S3. Sleep disorders

Insomnia Sleep deprivation Sleep disorder Hypersomnia Excessive daytime sleepiness

pre25 -0.104 -0.056*** -0.087 -0.004 -0.017

(0.063) (0.015) (0.051) (0.005) (0.013)

pre26 -0.086 -0.051*** -0.076 -0.003 -0.022

(0.058) (0.015) (0.048) (0.005) (0.013)

pre27 -0.083 -0.049*** -0.063 -0.002 -0.021

(0.056) (0.015) (0.045) (0.005) (0.011)

pre28 -0.072 -0.049** -0.057 -0.003 -0.017

(0.056) (0.016) (0.048) (0.004) (0.011)

pre29 -0.035 -0.034** -0.038 0.004 -0.003

(0.053) (0.013) (0.050) (0.004) (0.012)

pre30 -0.090 -0.027* -0.060 0.005 -0.015

(0.062) (0.012) (0.053) (0.004) (0.013)

pre31 -0.180** -0.020 -0.096 -0.001 -0.013

(0.062) (0.014) (0.057) (0.004) (0.012)

pre32 -0.218** -0.013 -0.128* 0.002 -0.019

(0.069) (0.015) (0.059) (0.004) (0.011)

pre33 -0.235** -0.020 -0.136* -0.004 -0.009

(0.078) (0.015) (0.065) (0.005) (0.012)

pre34 -0.198* -0.027 -0.125 -0.004 -0.007

(0.080) (0.016) (0.065) (0.004) (0.012)

pre35 -0.187* -0.018 -0.104 -0.004 -0.016

(0.084) (0.017) (0.068) (0.005) (0.013)

pre36 -0.170* -0.019 -0.100 -0.005 -0.014

(0.082) (0.016) (0.068) (0.005) (0.014)

pre37 -0.166* -0.016 -0.100 -0.004 -0.002

(0.079) (0.015) (0.064) (0.005) (0.014)

pre38 -0.125 -0.013 -0.091 -0.009 -0.011

(0.074) (0.016) (0.061) (0.006) (0.014)

pre39 -0.138* -0.019 -0.101 -0.007 -0.021

(0.069) (0.015) (0.059) (0.004) (0.014)

pre40 -0.116 -0.010 -0.080 -0.003 -0.009

(0.059) (0.012) (0.050) (0.004) (0.012)

Observations 5199 5199 5199 5123 5198
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Table S4. Personality and dissociative disorders

Avoidant pers. disorder Paranoia Compulsive hoarding Comp. behavior Depersonalization

pre1 0.004 -0.014 0.004 -0.048 -0.003

(0.009) (0.010) (0.019) (0.040) (0.006)

pre2 0.009 -0.015 0.006 -0.013 0.002

(0.010) (0.008) (0.014) (0.022) (0.005)

pre3 -0.002 -0.013 -0.001 -0.011 0.001

(0.009) (0.009) (0.010) (0.017) (0.006)

pre4 0.000 -0.020* 0.000 -0.014 0.004

(0.010) (0.010) (0.010) (0.010) (0.006)

pre5 -0.003 -0.017* 0.002 -0.016 -0.001

(0.012) (0.008) (0.009) (0.010) (0.005)

pre6 -0.007 -0.010 0.005 -0.008 0.003

(0.010) (0.007) (0.006) (0.009) (0.005)

pre7 0.005 -0.012 0.002 -0.004 0.005

(0.010) (0.006) (0.005) (0.007) (0.005)

pre8 0.005 -0.010 0.005 -0.009 0.006

(0.010) (0.007) (0.005) (0.008) (0.005)

pre9 0.010 -0.007 0.009 -0.008 0.004

(0.009) (0.009) (0.005) (0.009) (0.004)

pre10 -0.001 -0.016 -0.001 -0.005 0.006

(0.007) (0.009) (0.005) (0.008) (0.003)

pre11 0.001 -0.014 -0.003 -0.015 0.010**

(0.008) (0.011) (0.007) (0.011) (0.004)

pre12 -0.010 -0.018 -0.009 -0.007 0.007

(0.011) (0.010) (0.007) (0.010) (0.004)

pre13 -0.009 -0.018 -0.011 -0.021 0.003

(0.011) (0.010) (0.008) (0.012) (0.005)

pre14 -0.013 -0.019 -0.009 -0.033* 0.003

(0.010) (0.010) (0.008) (0.014) (0.005)

pre15 -0.012 -0.017 -0.004 -0.040* -0.005

(0.010) (0.010) (0.007) (0.018) (0.004)

pre16 -0.009 -0.025 -0.005 -0.051* -0.004

(0.007) (0.013) (0.009) (0.020) (0.005)

pre17 0.003 -0.023 -0.004 -0.038* -0.001

(0.011) (0.014) (0.010) (0.018) (0.005)

pre18 0.007 -0.029 -0.006 -0.045* -0.001

(0.009) (0.018) (0.012) (0.021) (0.006)

pre19 0.006 -0.017 0.002 -0.035 -0.001

(0.010) (0.018) (0.012) (0.023) (0.007)

pre20 0.004 -0.016 -0.004 -0.020 -0.003

(0.009) (0.015) (0.013) (0.022) (0.006)

pre21 -0.000 -0.010 -0.001 -0.026 0.001

(0.011) (0.014) (0.012) (0.020) (0.005)

pre22 -0.003 -0.010 -0.001 -0.034* -0.000

(0.013) (0.012) (0.011) (0.017) (0.005)

pre23 -0.006 -0.018 -0.002 -0.036* 0.004

(0.012) (0.012) (0.010) (0.018) (0.005)

pre24 -0.009 -0.016 -0.002 -0.037* 0.004

(0.009) (0.011) (0.010) (0.017) (0.005)
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Table S4. Personality and dissociative disorders

Avoidant pers. disorder Paranoia Compulsive hoarding Comp. behavior Depersonalization

pre25 -0.005 -0.012 0.002 -0.033* 0.000

(0.008) (0.008) (0.010) (0.016) (0.005)

pre26 -0.001 -0.014 -0.003 -0.036* -0.003

(0.008) (0.008) (0.009) (0.017) (0.005)

pre27 0.003 -0.012 -0.003 -0.030 -0.004

(0.009) (0.009) (0.008) (0.018) (0.004)

pre28 -0.003 -0.014 0.007 -0.033 -0.004

(0.008) (0.008) (0.008) (0.022) (0.005)

pre29 -0.005 -0.007 -0.002 -0.044* -0.002

(0.009) (0.008) (0.008) (0.021) (0.005)

pre30 -0.006 -0.006 0.001 -0.021 0.001

(0.008) (0.008) (0.008) (0.016) (0.004)

pre31 -0.010 -0.007 -0.007 -0.022 -0.002

(0.009) (0.008) (0.009) (0.016) (0.004)

pre32 0.000 -0.010 -0.017 -0.024 -0.006

(0.006) (0.007) (0.015) (0.023) (0.004)

pre33 0.009 -0.012 0.015 -0.031 -0.003

(0.008) (0.009) (0.025) (0.020) (0.004)

pre34 0.002 -0.011 -0.006 -0.005 0.001

(0.008) (0.010) (0.009) (0.022) (0.004)

pre35 0.007 -0.005 -0.016 -0.011 -0.005

(0.011) (0.011) (0.009) (0.017) (0.005)

pre36 0.002 -0.013 -0.019* -0.006 -0.002

(0.009) (0.009) (0.010) (0.017) (0.005)

pre37 -0.006 -0.005 -0.017 -0.014 -0.002

(0.009) (0.008) (0.011) (0.017) (0.005)

pre38 -0.007 0.003 -0.016* -0.017 -0.000

(0.007) (0.007) (0.008) (0.016) (0.004)

pre39 -0.002 0.009 -0.008 -0.013 -0.001

(0.006) (0.007) (0.006) (0.016) (0.004)

pre40 -0.002 0.009 -0.008 -0.016 -0.004

(0.005) (0.006) (0.006) (0.015) (0.004)

Observations 5171 5189 5162 5199 5095
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Table S5. Other disorders

Sexual dysf. Erectile dysf. Binge eating Attention deficit Psychosis Aud. Hall. Epilepsy

pre1 -0.032 -0.085* -0.005 -0.110 -0.023 -0.008 -0.038

(0.017) (0.036) (0.011) (0.065) (0.031) (0.005) (0.033)

pre2 -0.031* -0.085** 0.001 -0.129** 0.004 -0.003 -0.048

(0.015) (0.033) (0.009) (0.050) (0.028) (0.005) (0.028)

pre3 -0.012 -0.041 -0.011 -0.141*** 0.001 0.001 -0.049

(0.012) (0.037) (0.009) (0.042) (0.027) (0.005) (0.027)

pre4 -0.004 -0.009 -0.014 -0.152*** -0.015 0.002 -0.054

(0.012) (0.034) (0.012) (0.046) (0.025) (0.005) (0.030)

pre5 -0.004 -0.037 -0.012 -0.117** 0.002 0.000 -0.049

(0.009) (0.030) (0.010) (0.044) (0.029) (0.004) (0.034)

pre6 -0.008 -0.035 0.003 -0.116* -0.008 0.003 -0.049

(0.011) (0.030) (0.009) (0.052) (0.027) (0.003) (0.035)

pre7 0.008 -0.006 0.002 -0.091 0.006 -0.001 0.002

(0.009) (0.032) (0.007) (0.061) (0.032) (0.004) (0.036)

pre8 0.002 -0.011 0.010 -0.106* -0.022 0.003 -0.014

(0.008) (0.033) (0.011) (0.053) (0.026) (0.004) (0.030)

pre9 0.018 -0.010 0.007 -0.059 -0.021 0.003 0.003

(0.010) (0.036) (0.010) (0.046) (0.024) (0.004) (0.025)

pre10 0.011 -0.016 0.015 -0.054 0.004 0.008* -0.010

(0.009) (0.039) (0.011) (0.042) (0.020) (0.004) (0.022)

pre11 0.009 -0.041 0.021 -0.041 0.009 0.007 0.001

(0.011) (0.043) (0.015) (0.045) (0.023) (0.004) (0.025)

pre12 0.004 -0.080 0.012 -0.148** -0.027 0.003 -0.010

(0.010) (0.044) (0.014) (0.048) (0.024) (0.004) (0.025)

pre13 -0.002 -0.083* 0.001 -0.185*** -0.044 0.005 -0.050

(0.011) (0.042) (0.014) (0.053) (0.024) (0.004) (0.033)

pre14 0.002 -0.042 -0.017 -0.211*** -0.053 0.003 -0.068

(0.014) (0.043) (0.015) (0.059) (0.029) (0.005) (0.046)

pre15 0.003 -0.022 -0.027 -0.223*** -0.082* 0.002 -0.051

(0.015) (0.045) (0.020) (0.065) (0.034) (0.006) (0.056)

pre16 0.013 -0.002 -0.029 -0.228*** -0.086* 0.001 -0.062

(0.016) (0.040) (0.022) (0.069) (0.038) (0.006) (0.059)

pre17 0.004 -0.005 -0.024 -0.202** -0.078* -0.003 0.011

(0.017) (0.039) (0.018) (0.073) (0.035) (0.006) (0.064)

pre18 -0.010 -0.007 -0.025 -0.193** -0.069 -0.004 -0.028

(0.021) (0.044) (0.016) (0.073) (0.037) (0.007) (0.062)

pre19 -0.007 0.001 -0.025 -0.209** -0.067 -0.003 -0.035

(0.018) (0.047) (0.014) (0.075) (0.036) (0.007) (0.065)

pre20 -0.009 0.004 -0.032* -0.185* -0.057 0.000 -0.028

(0.021) (0.047) (0.015) (0.076) (0.032) (0.006) (0.075)

pre21 0.001 0.001 -0.032* -0.157* -0.045 -0.002 -0.045

(0.018) (0.047) (0.015) (0.073) (0.033) (0.006) (0.068)

pre22 0.005 0.015 -0.045** -0.183* -0.044 -0.001 -0.105

(0.015) (0.051) (0.015) (0.076) (0.031) (0.007) (0.060)

pre23 0.009 -0.002 -0.046** -0.166* -0.054 -0.007 -0.085

(0.014) (0.053) (0.016) (0.080) (0.029) (0.006) (0.068)

pre24 0.001 0.008 -0.058*** -0.190* -0.055 -0.003 -0.031

(0.014) (0.053) (0.016) (0.083) (0.030) (0.006) (0.053)
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Table S5. Other disorders

Sexual dysf. Erectile dysf. Binge eating Attention deficit Psychosis Aud. Hall. Epilepsy

pre25 0.003 -0.003 -0.051* -0.185* -0.025 -0.003 -0.043

(0.015) (0.050) (0.020) (0.084) (0.030) (0.005) (0.061)

pre26 -0.010 -0.008 -0.045* -0.161 -0.035 -0.006 -0.013

(0.016) (0.048) (0.021) (0.090) (0.030) (0.004) (0.048)

pre27 0.007 0.016 -0.023 -0.153 -0.033 -0.003 0.015

(0.015) (0.043) (0.020) (0.100) (0.031) (0.004) (0.048)

pre28 0.010 0.006 -0.019 -0.146 -0.033 -0.003 0.021

(0.014) (0.044) (0.015) (0.106) (0.031) (0.005) (0.044)

pre29 0.009 0.026 -0.013 -0.128 -0.021 -0.000 0.024

(0.011) (0.036) (0.012) (0.107) (0.030) (0.005) (0.041)

pre30 0.018* 0.018 0.004 -0.150 -0.006 0.002 -0.016

(0.009) (0.036) (0.012) (0.104) (0.032) (0.006) (0.041)

pre31 0.014 -0.038 0.006 -0.124 -0.017 -0.005 -0.036

(0.012) (0.037) (0.012) (0.107) (0.034) (0.006) (0.048)

pre32 0.003 -0.061 0.006 -0.100 -0.016 -0.002 -0.059

(0.011) (0.033) (0.009) (0.101) (0.035) (0.006) (0.057)

pre33 -0.008 -0.099** -0.000 -0.081 -0.045 -0.002 -0.097

(0.012) (0.034) (0.007) (0.096) (0.040) (0.006) (0.070)

pre34 -0.008 -0.104** 0.000 -0.073 -0.038 -0.006 -0.111

(0.012) (0.039) (0.007) (0.091) (0.043) (0.006) (0.090)

pre35 -0.011 -0.097* -0.004 -0.063 -0.049 -0.004 -0.090

(0.012) (0.041) (0.008) (0.086) (0.043) (0.005) (0.095)

pre36 -0.009 -0.095* -0.000 -0.082 -0.041 -0.002 -0.141

(0.012) (0.043) (0.009) (0.081) (0.040) (0.005) (0.119)

pre37 -0.011 -0.094* -0.000 -0.092 -0.009 0.003 -0.211

(0.014) (0.042) (0.009) (0.073) (0.036) (0.005) (0.158)

pre38 -0.008 -0.063 0.009 -0.086 -0.022 0.002 -0.074

(0.013) (0.042) (0.010) (0.067) (0.032) (0.005) (0.154)

pre39 -0.013 -0.062 0.012 -0.087 -0.025 -0.000 0.120

(0.013) (0.041) (0.011) (0.061) (0.030) (0.005) (0.141)

pre40 0.002 -0.049 0.015 -0.033 -0.004 0.005 0.056

(0.011) (0.038) (0.009) (0.053) (0.027) (0.004) (0.090)

Observations 5199 5199 5197 5199 5199 5105 5199

Pablo Brugarolas | Master thesis (MiLE) 11



Event study results: treatment dynamics

Table S6. Anxiety disorders

Anxiety GAD Panic attack Hyperventilation Palpitations Tachycardia Tachypnea

tau0 0.220* 0.065* 0.072* 0.013 0.002 0.054 -0.004

(0.098) (0.030) (0.033) (0.007) (0.012) (0.030) (0.009)

tau1 0.381** 0.147** 0.107* -0.014 0.058 0.106* -0.029*

(0.123) (0.055) (0.048) (0.014) (0.040) (0.047) (0.013)

tau2 0.443* 0.104* 0.097 -0.017 0.050 0.240*** -0.002

(0.187) (0.047) (0.054) (0.017) (0.035) (0.067) (0.013)

tau3 0.575* 0.163** 0.085 -0.007 0.037 0.247** 0.007

(0.238) (0.057) (0.057) (0.026) (0.038) (0.079) (0.016)

tau4 0.343 0.024 0.051 -0.003 0.036 0.209** 0.016

(0.257) (0.047) (0.070) (0.022) (0.037) (0.067) (0.021)

tau5 0.669** 0.185* 0.146** -0.010 0.020 0.178** 0.014

(0.236) (0.079) (0.054) (0.023) (0.029) (0.067) (0.018)

tau6 0.263 0.055 0.034 -0.014 0.042 0.014 -0.013

(0.250) (0.057) (0.055) (0.027) (0.053) (0.068) (0.022)

tau7 0.262 0.136* 0.086 -0.019 -0.034 0.074 -0.019

(0.235) (0.067) (0.053) (0.027) (0.043) (0.059) (0.017)

tau8 -0.038 0.080 0.014 -0.021 -0.049 -0.029 -0.013

(0.331) (0.078) (0.049) (0.027) (0.056) (0.068) (0.011)

tau9 -0.123 0.079 -0.014 -0.036 -0.094 0.036 -0.017

(0.401) (0.063) (0.069) (0.026) (0.049) (0.044) (0.020)

tau10 -0.266 0.097 -0.027 -0.032 -0.059 0.001 -0.019

(0.451) (0.078) (0.070) (0.026) (0.047) (0.053) (0.014)

tau11 -0.237 0.078 -0.019 -0.029 -0.057 -0.015 -0.023

(0.462) (0.058) (0.086) (0.024) (0.045) (0.055) (0.023)

tau12 -0.566 0.048 -0.089 -0.038 -0.056 -0.017 -0.017

(0.443) (0.076) (0.083) (0.020) (0.036) (0.035) (0.019)

tau13 -0.560 0.080 -0.057 -0.051* -0.095 -0.144* -0.028

(0.443) (0.060) (0.088) (0.022) (0.058) (0.067) (0.029)

tau14 -0.603 0.017 -0.176 -0.057** -0.063 -0.126 -0.038

(0.450) (0.075) (0.096) (0.020) (0.048) (0.065) (0.026)

tau15 -0.725 0.026 -0.168 -0.049 -0.146* -0.180* -0.026

(0.443) (0.069) (0.100) (0.026) (0.057) (0.079) (0.026)

tau16 -0.688 -0.066 -0.234** -0.051* -0.041 -0.149* -0.019

(0.442) (0.065) (0.084) (0.024) (0.049) (0.072) (0.024)

tau17 -0.828 -0.071 -0.088 -0.053 -0.086** -0.083 -0.005

(0.442) (0.052) (0.082) (0.029) (0.032) (0.061) (0.019)

tau18 -0.615 -0.061 -0.054 -0.061* -0.002 -0.130* -0.019

(0.429) (0.073) (0.068) (0.029) (0.024) (0.054) (0.021)

tau19 -0.424 0.014 0.020 -0.060* -0.087 -0.115** -0.003

(0.574) (0.074) (0.123) (0.029) (0.046) (0.044) (0.022)

tau20 -0.344 -0.018 -0.022 -0.030 -0.040 -0.111* -0.011

(0.549) (0.068) (0.105) (0.025) (0.039) (0.054) (0.024)

tau21 -0.260 -0.021 0.008 -0.075* -0.111* -0.092 -0.009

(0.490) (0.072) (0.115) (0.033) (0.049) (0.049) (0.016)

tau22 -0.413 -0.032 -0.069 -0.026 -0.066 -0.014 0.001

(0.353) (0.047) (0.080) (0.020) (0.048) (0.052) (0.019)
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Table S6. Anxiety disorders

Anxiety GAD Panic attack Hyperventilation Palpitations Tachycardia Tachypnea

tau23 -0.232 -0.053 -0.058 -0.039 -0.069 -0.011 0.024

(0.295) (0.055) (0.075) (0.025) (0.054) (0.045) (0.032)

tau24 -0.336 0.010 -0.113 -0.030 -0.024 0.066 -0.012

(0.282) (0.050) (0.068) (0.017) (0.037) (0.048) (0.017)

tau25 -0.122 -0.001 -0.108* -0.018 -0.041 0.048 0.021

(0.291) (0.062) (0.053) (0.027) (0.048) (0.050) (0.023)

tau26 -0.107 0.035 -0.100* -0.021 0.060* 0.093 -0.000

(0.298) (0.092) (0.043) (0.018) (0.024) (0.078) (0.027)

tau27 0.160 0.097 0.035 0.001 0.021 0.054 -0.002

(0.327) (0.070) (0.036) (0.017) (0.032) (0.078) (0.029)

tau28 0.160 0.171*** 0.033 0.042 0.080** 0.072 0.017

(0.232) (0.045) (0.044) (0.024) (0.031) (0.066) (0.024)

tau29 0.222 0.216*** 0.055 0.077** 0.025 0.022 0.028

(0.179) (0.051) (0.056) (0.025) (0.026) (0.071) (0.020)

tau30 0.902** 0.295** 0.090 0.063* 0.079 0.060 0.052*

(0.287) (0.094) (0.088) (0.032) (0.045) (0.101) (0.020)

tau31 0.510* 0.307*** 0.049 0.043 0.058 0.037 0.040*

(0.242) (0.060) (0.093) (0.025) (0.035) (0.113) (0.018)

tau32 0.851** 0.255** 0.026 0.021 0.026 0.090 0.055*

(0.273) (0.079) (0.099) (0.022) (0.050) (0.106) (0.024)

tau33 0.562* 0.311*** 0.103 0.017 0.049 0.048 0.057***

(0.280) (0.069) (0.060) (0.022) (0.035) (0.103) (0.012)

tau34 0.539* 0.198** 0.121* 0.027 -0.021 0.096 0.050

(0.218) (0.070) (0.051) (0.023) (0.053) (0.118) (0.029)

tau35 0.731** 0.334*** 0.180*** 0.010 -0.013 0.093 0.047*

(0.282) (0.072) (0.048) (0.023) (0.053) (0.111) (0.020)

tau36 0.954** 0.332*** 0.279*** 0.010 0.081 0.082 0.037*

(0.330) (0.078) (0.066) (0.017) (0.050) (0.091) (0.019)

tau37 1.005** 0.433*** 0.238* 0.006 0.037 0.033 0.031

(0.358) (0.106) (0.093) (0.034) (0.049) (0.068) (0.024)

tau38 0.716* 0.364*** 0.181** 0.033 0.075 0.011 0.037*

(0.318) (0.105) (0.067) (0.024) (0.087) (0.067) (0.018)

tau39 0.799* 0.414*** 0.195* 0.052* -0.019 -0.005 0.012

(0.349) (0.088) (0.087) (0.026) (0.040) (0.076) (0.011)

Observations 5199 5199 5199 5154 5199 5151 5199
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Table S7. Mood disorders, self-harm, and sucidial ideation

Mood swing Mood disorder Depression Major dep. disorder Self-harm Suicidal ideation

tau0 -0.012 0.002 0.064 0.026 -0.028 -0.013

(0.010) (0.020) (0.073) (0.046) (0.016) (0.018)

tau1 0.008 -0.082 0.161 0.238* 0.003 -0.013

(0.028) (0.059) (0.094) (0.107) (0.012) (0.022)

tau2 -0.020 0.089 0.175 0.325* -0.000 0.011

(0.025) (0.055) (0.119) (0.145) (0.029) (0.038)

tau3 -0.058 -0.008 0.162 0.392* 0.004 0.028

(0.040) (0.059) (0.180) (0.173) (0.021) (0.042)

tau4 -0.022 0.148* 0.078 0.516* 0.012 0.053

(0.032) (0.072) (0.210) (0.213) (0.024) (0.055)

tau5 -0.059 -0.012 0.085 0.556*** -0.023 0.077

(0.031) (0.058) (0.184) (0.160) (0.028) (0.046)

tau6 -0.000 0.060 0.119 0.593** 0.066 0.127*

(0.029) (0.077) (0.224) (0.210) (0.035) (0.056)

tau7 0.003 -0.050 -0.054 0.435* -0.016 0.132*

(0.029) (0.089) (0.250) (0.212) (0.031) (0.062)

tau8 0.002 -0.025 -0.029 0.329 0.052* 0.070

(0.044) (0.107) (0.333) (0.272) (0.022) (0.059)

tau9 0.016 0.048 -0.213 0.216 0.033 0.073

(0.045) (0.111) (0.376) (0.272) (0.037) (0.055)

tau10 0.031 -0.066 -0.212 0.085 0.058 -0.000

(0.040) (0.104) (0.376) (0.232) (0.042) (0.065)

tau11 0.015 0.014 -0.258 0.084 0.037 0.006

(0.053) (0.092) (0.367) (0.185) (0.028) (0.072)

tau12 0.010 -0.115 -0.581 -0.083 0.007 -0.014

(0.035) (0.104) (0.376) (0.185) (0.036) (0.054)

tau13 -0.043 0.005 -0.458 0.002 -0.094 0.081

(0.039) (0.097) (0.362) (0.150) (0.061) (0.058)

tau14 -0.050 -0.090 -0.652 -0.100 -0.080 0.070

(0.034) (0.108) (0.389) (0.178) (0.043) (0.055)

tau15 -0.074* -0.062 -0.425 0.035 -0.074 0.101

(0.037) (0.095) (0.363) (0.166) (0.056) (0.057)

tau16 -0.046 -0.065 -0.462 -0.040 -0.060** -0.046

(0.032) (0.108) (0.391) (0.198) (0.022) (0.062)

tau17 -0.105 -0.045 -0.536 -0.015 0.010 -0.005

(0.062) (0.095) (0.399) (0.211) (0.027) (0.061)

tau18 -0.082* -0.035 -0.488 -0.143 -0.051 -0.026

(0.037) (0.099) (0.397) (0.205) (0.034) (0.068)

tau19 -0.078 0.018 -0.387 -0.005 -0.009 0.035

(0.048) (0.108) (0.503) (0.262) (0.045) (0.062)

tau20 -0.069 -0.035 -0.501 -0.076 -0.035 0.057

(0.038) (0.113) (0.485) (0.239) (0.022) (0.058)

tau21 -0.028 0.057 -0.405 0.075 -0.081 0.053

(0.042) (0.116) (0.467) (0.258) (0.047) (0.051)

tau22 -0.038 -0.018 -0.747 0.019 -0.006 0.074

(0.030) (0.095) (0.390) (0.215) (0.027) (0.056)

tau23 -0.052* 0.038 -0.461 0.040 -0.044 -0.043

(0.022) (0.084) (0.326) (0.196) (0.032) (0.058)
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Table S7. Mood disorders, self-harm, and sucidial ideation

Mood swing Mood disorder Depression Major dep. disorder Self-harm Suicidal ideation

tau24 -0.043 -0.032 -0.602* 0.166 0.050 -0.061

(0.036) (0.069) (0.299) (0.181) (0.027) (0.048)

tau25 -0.046 0.029 -0.358 0.015 0.056* -0.088

(0.030) (0.053) (0.251) (0.144) (0.022) (0.054)

tau26 -0.032 0.022 -0.340 0.206 0.086* -0.081

(0.046) (0.082) (0.221) (0.140) (0.037) (0.057)

tau27 -0.011 0.026 -0.128 0.157 0.040 0.012

(0.036) (0.086) (0.299) (0.201) (0.036) (0.064)

tau28 -0.026 0.049 -0.178 0.234 0.081* -0.058

(0.024) (0.083) (0.173) (0.128) (0.035) (0.051)

tau29 0.029 0.001 -0.092 0.226 0.042 -0.007

(0.023) (0.062) (0.181) (0.131) (0.041) (0.055)

tau30 -0.030 0.106 0.303 0.549* 0.090*** -0.005

(0.034) (0.055) (0.184) (0.255) (0.021) (0.049)

tau31 -0.008 0.081 -0.033 0.446* 0.042 -0.011

(0.021) (0.063) (0.176) (0.174) (0.024) (0.042)

tau32 -0.032 0.097 0.323 0.535*** 0.077*** 0.005

(0.037) (0.062) (0.245) (0.151) (0.022) (0.056)

tau33 -0.020 0.122* 0.135 0.582*** 0.075* 0.049

(0.013) (0.059) (0.195) (0.108) (0.029) (0.050)

tau34 -0.019 0.126* 0.075 0.421*** 0.064* 0.024

(0.028) (0.057) (0.162) (0.094) (0.031) (0.050)

tau35 -0.007 0.143** 0.172 0.763*** 0.085*** 0.074

(0.026) (0.051) (0.180) (0.170) (0.024) (0.044)

tau36 -0.026 0.173** 0.223 0.604* 0.079** 0.083

(0.034) (0.065) (0.171) (0.235) (0.026) (0.046)

tau37 -0.036 0.141 0.182 0.761** 0.060 0.034

(0.033) (0.079) (0.172) (0.264) (0.040) (0.043)

tau38 -0.065 0.171* 0.329 0.670** 0.048 0.075

(0.042) (0.078) (0.188) (0.235) (0.039) (0.046)

tau39 -0.054* 0.293*** 0.301 0.754*** -0.013 0.066

(0.023) (0.084) (0.218) (0.211) (0.033) (0.071)

Observations 5196 5199 5199 5199 5199 5199
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Table S8. Sleep disorders

Insomnia Sleep deprivation Sleep disorder Hypersomnia Excessive daytime sleepiness

tau0 -0.052 -0.013 -0.027 0.000 -0.003

(0.051) (0.019) (0.034) (0.004) (0.011)

tau1 0.073 -0.095* -0.055 0.002 0.037

(0.051) (0.042) (0.054) (0.005) (0.021)

tau2 0.142 -0.074 -0.034 -0.001 -0.042

(0.081) (0.046) (0.080) (0.009) (0.045)

tau3 0.070 -0.120* -0.140 -0.010 0.009

(0.079) (0.054) (0.109) (0.009) (0.041)

tau4 0.131 -0.024 -0.018 -0.036 -0.040

(0.089) (0.065) (0.128) (0.019) (0.060)

tau5 0.085 0.042 -0.005 -0.019 0.005

(0.073) (0.053) (0.132) (0.015) (0.032)

tau6 0.018 0.037 0.021 -0.031 0.046

(0.089) (0.074) (0.130) (0.020) (0.047)

tau7 -0.049 0.005 -0.110 -0.005 0.057

(0.106) (0.045) (0.134) (0.013) (0.039)

tau8 -0.094 -0.066 -0.168 0.008 0.118*

(0.154) (0.044) (0.119) (0.011) (0.056)

tau9 -0.205 -0.037 -0.292 0.013 0.102*

(0.120) (0.054) (0.188) (0.019) (0.051)

tau10 -0.051 -0.096 -0.257 0.004 0.052

(0.191) (0.062) (0.170) (0.021) (0.062)

tau11 -0.103 -0.017 -0.273 -0.003 0.079

(0.161) (0.052) (0.185) (0.025) (0.068)

tau12 -0.016 -0.007 -0.189 -0.058** 0.007

(0.175) (0.061) (0.156) (0.020) (0.059)

tau13 -0.146 -0.025 -0.154 -0.065*** 0.037

(0.149) (0.052) (0.154) (0.019) (0.061)

tau14 -0.158 0.006 -0.125 -0.049** 0.026

(0.160) (0.073) (0.156) (0.018) (0.057)

tau15 -0.285* -0.078 -0.247 -0.024 0.046

(0.132) (0.057) (0.139) (0.021) (0.054)

tau16 -0.392** -0.055 -0.192 -0.027 -0.003

(0.142) (0.072) (0.138) (0.023) (0.061)

tau17 -0.439*** -0.051 -0.319* -0.021 0.038

(0.118) (0.066) (0.154) (0.022) (0.048)

tau18 -0.311* -0.094 -0.115 -0.011 -0.010

(0.131) (0.078) (0.135) (0.029) (0.054)

tau19 -0.309 -0.024 -0.179 -0.029 -0.007

(0.201) (0.092) (0.183) (0.021) (0.076)

tau20 -0.047 -0.070 -0.106 -0.020 0.063

(0.179) (0.091) (0.175) (0.032) (0.071)

tau21 -0.127 0.008 -0.133 -0.037 0.055

(0.176) (0.083) (0.162) (0.019) (0.076)

tau22 0.162 -0.046 -0.015 -0.033 0.104

(0.147) (0.071) (0.180) (0.024) (0.071)

tau23 0.117 0.048 0.060 -0.018 0.113

(0.141) (0.076) (0.133) (0.013) (0.068)
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Table S8. Sleep disorders

Insomnia Sleep deprivation Sleep disorder Hypersomnia Excessive daytime sleepiness

tau24 0.180 -0.066 0.031 -0.023 0.072

(0.121) (0.055) (0.143) (0.014) (0.064)

tau25 0.069 0.011 0.149 -0.005 0.069

(0.142) (0.067) (0.086) (0.011) (0.065)

tau26 0.313* -0.065 0.109 -0.003 0.075

(0.149) (0.044) (0.111) (0.011) (0.041)

tau27 0.324 -0.007 0.212 0.017 0.073

(0.167) (0.041) (0.128) (0.020) (0.050)

tau28 0.401** -0.003 0.180 -0.002 0.019

(0.146) (0.029) (0.131) (0.012) (0.040)

tau29 0.394** 0.034 0.144 0.001 0.044

(0.140) (0.039) (0.119) (0.016) (0.044)

tau30 0.566*** 0.095 0.313* -0.006 0.041

(0.170) (0.071) (0.153) (0.017) (0.057)

tau31 0.441** -0.024 0.206 0.009 0.084

(0.169) (0.061) (0.111) (0.015) (0.059)

tau32 0.705*** 0.048 0.381** 0.011 0.098*

(0.182) (0.066) (0.120) (0.017) (0.043)

tau33 0.661*** -0.024 0.327** 0.008 0.144**

(0.195) (0.032) (0.111) (0.013) (0.047)

tau34 0.773*** 0.036 0.445*** -0.004 0.118**

(0.205) (0.051) (0.131) (0.017) (0.045)

tau35 0.814** 0.049 0.425** 0.019 0.167***

(0.255) (0.031) (0.160) (0.016) (0.048)

tau36 0.866*** 0.112 0.541*** 0.030 0.117*

(0.246) (0.074) (0.145) (0.022) (0.055)

tau37 0.889*** 0.023 0.537*** 0.030* 0.146**

(0.235) (0.035) (0.144) (0.013) (0.050)

tau38 0.827*** 0.095 0.458** 0.029* 0.152*

(0.197) (0.051) (0.140) (0.014) (0.065)

tau39 0.830*** 0.037 0.489** 0.001 0.119*

(0.184) (0.075) (0.157) (0.015) (0.059)

Observations 5199 5199 5199 5123 5198
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Table S9. Personality and dissociative disorders

Avoidant pers. disorder Paranoia Compulsive hoarding Comp. behavior Depersonalization

tau0 -0.005 -0.007 -0.004 -0.036 -0.005

(0.005) (0.012) (0.012) (0.023) (0.003)

tau1 -0.035 -0.028 -0.001 0.036 0.002

(0.031) (0.019) (0.018) (0.032) (0.006)

tau2 -0.052 -0.045 -0.006 0.092 -0.016

(0.030) (0.030) (0.015) (0.047) (0.010)

tau3 0.000 -0.028 -0.002 0.050 0.002

(0.039) (0.039) (0.014) (0.043) (0.022)

tau4 -0.009 0.001 0.002 0.102* -0.027*

(0.043) (0.032) (0.016) (0.046) (0.014)

tau5 0.076 0.040 0.023 0.094* -0.014

(0.041) (0.034) (0.033) (0.045) (0.016)

tau6 0.010 0.094* -0.023 0.107 -0.001

(0.032) (0.038) (0.028) (0.058) (0.028)

tau7 0.066* 0.056 0.026 0.115 -0.006

(0.030) (0.033) (0.034) (0.066) (0.024)

tau8 0.048 0.077* 0.009 0.046 0.006

(0.030) (0.035) (0.020) (0.060) (0.030)

tau9 0.029 -0.009 0.026 0.007 -0.003

(0.024) (0.037) (0.028) (0.063) (0.012)

tau10 0.062*** 0.018 0.048 -0.040 -0.001

(0.019) (0.023) (0.025) (0.065) (0.012)

tau11 -0.001 0.066 0.032 -0.016 -0.008

(0.032) (0.042) (0.023) (0.060) (0.016)

tau12 0.047 -0.019 -0.048* -0.067 -0.038*

(0.029) (0.037) (0.022) (0.068) (0.017)

tau13 0.017 0.063 -0.003 0.021 -0.022

(0.036) (0.041) (0.018) (0.074) (0.019)

tau14 0.035 -0.063 -0.059 0.024 -0.045*

(0.034) (0.046) (0.044) (0.074) (0.018)

tau15 0.045 0.031 -0.034* 0.044 -0.023

(0.037) (0.022) (0.015) (0.079) (0.014)

tau16 0.010 -0.017 0.004 -0.070 -0.036*

(0.037) (0.039) (0.032) (0.082) (0.015)

tau17 0.058 0.025 -0.015 -0.039 0.002

(0.055) (0.019) (0.030) (0.078) (0.012)

tau18 0.011 -0.025 0.027 -0.071 0.002

(0.049) (0.019) (0.024) (0.086) (0.016)

tau19 0.110* 0.020 0.135 0.095 0.000

(0.047) (0.038) (0.122) (0.088) (0.021)

tau20 0.035 0.002 0.040 0.036 -0.006

(0.050) (0.019) (0.044) (0.073) (0.021)

tau21 0.085* 0.025 0.120 0.065 -0.022

(0.043) (0.028) (0.112) (0.078) (0.018)

tau22 0.035 0.035 -0.011 -0.025 -0.038

(0.060) (0.027) (0.017) (0.069) (0.020)

tau23 0.011 0.015 -0.000 -0.057 -0.039*

(0.073) (0.013) (0.024) (0.067) (0.019)
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Table S9. Personality and dissociative disorders

Avoidant pers. disorder Paranoia Compulsive hoarding Comp. behavior Depersonalization

tau24 -0.010 0.023 -0.084** -0.083 -0.053***

(0.070) (0.023) (0.026) (0.084) (0.014)

tau25 -0.028 0.024 -0.044* -0.109 -0.043*

(0.038) (0.026) (0.022) (0.107) (0.019)

tau26 -0.004 0.058 -0.040 -0.055 -0.032*

(0.034) (0.039) (0.028) (0.049) (0.013)

tau27 0.005 0.032 -0.023 -0.089 -0.017

(0.032) (0.039) (0.017) (0.055) (0.023)

tau28 -0.017 0.067** -0.026 0.048 -0.040

(0.036) (0.023) (0.022) (0.036) (0.023)

tau29 -0.027 0.027 -0.024 -0.022 -0.054**

(0.035) (0.033) (0.013) (0.039) (0.021)

tau30 -0.006 0.023 -0.056*** 0.062 -0.050**

(0.032) (0.023) (0.015) (0.050) (0.018)

tau31 -0.035 0.031 -0.002 -0.029 -0.062**

(0.026) (0.025) (0.013) (0.043) (0.019)

tau32 -0.033 0.038 -0.054** 0.087 -0.015

(0.031) (0.034) (0.018) (0.045) (0.014)

tau33 -0.032 -0.006 -0.015 0.043 -0.025

(0.034) (0.031) (0.011) (0.048) (0.015)

tau34 -0.050 0.013 -0.018 0.113 -0.015

(0.028) (0.025) (0.024) (0.062) (0.015)

tau35 0.026 -0.008 -0.014 0.012 -0.021

(0.036) (0.024) (0.015) (0.054) (0.011)

tau36 -0.032 0.013 0.033** 0.103 -0.025**

(0.050) (0.025) (0.010) (0.057) (0.009)

tau37 0.059 0.036 -0.033 0.031 -0.032***

(0.036) (0.026) (0.018) (0.047) (0.009)

tau38 -0.010 0.080* -0.004 0.092 -0.041**

(0.029) (0.041) (0.030) (0.057) (0.013)

tau39 0.037 0.062 -0.068** 0.065 -0.057***

(0.030) (0.036) (0.021) (0.050) (0.017)

Observations 5171 5189 5162 5199 5095
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Table S10. Other disorders

Sexual dysf. Erectile dysf. Binge eating Attention deficit Psychosis Aud. Hall. Epilepsy

tau0 -0.031 0.016 -0.016 0.088 -0.010 -0.002 0.067

(0.021) (0.042) (0.019) (0.066) (0.036) (0.005) (0.050)

tau1 -0.027 0.082 -0.007 0.232 0.064 0.010 0.208

(0.021) (0.065) (0.023) (0.147) (0.055) (0.010) (0.115)

tau2 -0.041 0.005 -0.011 0.264 0.093 -0.015 0.250

(0.028) (0.079) (0.022) (0.162) (0.068) (0.014) (0.135)

tau3 -0.050 -0.080 -0.031 0.349 0.146 0.019 0.238

(0.051) (0.103) (0.026) (0.201) (0.084) (0.015) (0.156)

tau4 -0.026 -0.070 -0.003 0.447* 0.146* -0.022 0.258*

(0.058) (0.127) (0.026) (0.179) (0.074) (0.018) (0.127)

tau5 0.023 -0.121 0.048 0.632*** 0.245*** 0.007 0.220*

(0.058) (0.104) (0.032) (0.185) (0.069) (0.011) (0.111)

tau6 -0.006 -0.175 0.022 0.618*** 0.293** 0.003 0.192*

(0.027) (0.121) (0.035) (0.176) (0.110) (0.019) (0.085)

tau7 0.034 -0.236** 0.085 0.545** 0.266* -0.001 0.146

(0.027) (0.089) (0.049) (0.186) (0.105) (0.012) (0.091)

tau8 -0.001 -0.308* -0.033 0.405 0.261 0.014 -0.044

(0.029) (0.128) (0.049) (0.208) (0.153) (0.009) (0.086)

tau9 -0.007 -0.220 0.024 0.160 0.156 -0.016 -0.094

(0.018) (0.128) (0.056) (0.203) (0.108) (0.009) (0.182)

tau10 0.011 -0.246 0.007 0.152 0.005 0.003 -0.155

(0.020) (0.147) (0.060) (0.224) (0.082) (0.009) (0.147)

tau11 0.028 -0.054 0.042 -0.132 0.024 -0.002 -0.039

(0.029) (0.133) (0.058) (0.198) (0.063) (0.013) (0.139)

tau12 -0.029 -0.111 0.083 0.007 -0.062 0.000 0.011

(0.047) (0.112) (0.050) (0.148) (0.058) (0.008) (0.145)

tau13 0.025 -0.107 -0.009 -0.046 -0.029 0.000 0.070

(0.044) (0.114) (0.078) (0.171) (0.042) (0.016) (0.082)

tau14 -0.083 -0.180 -0.018 0.042 0.096 -0.011 0.172

(0.054) (0.153) (0.057) (0.142) (0.059) (0.013) (0.103)

tau15 -0.025 -0.272 -0.055 0.100 0.054 -0.021 0.084

(0.023) (0.163) (0.051) (0.171) (0.082) (0.015) (0.104)

tau16 -0.075 -0.224 -0.018 -0.001 0.083 -0.026 0.142

(0.041) (0.160) (0.057) (0.156) (0.079) (0.022) (0.092)

tau17 -0.091 -0.358 0.005 -0.029 0.041 -0.021 0.069

(0.061) (0.188) (0.063) (0.179) (0.100) (0.021) (0.130)

tau18 -0.086* -0.355* -0.042 -0.002 -0.059 -0.015 0.029

(0.037) (0.165) (0.066) (0.207) (0.071) (0.025) (0.103)

tau19 -0.061 -0.296 0.042 0.041 -0.037 -0.017 0.093

(0.059) (0.266) (0.070) (0.285) (0.098) (0.023) (0.083)

tau20 0.031 -0.165 -0.026 -0.009 -0.042 -0.010 0.196

(0.059) (0.222) (0.060) (0.289) (0.099) (0.021) (0.125)

tau21 0.080 0.049 0.025 -0.098 -0.030 -0.011 0.316*

(0.043) (0.152) (0.062) (0.244) (0.104) (0.023) (0.148)

tau22 0.047 0.054 -0.006 -0.121 -0.017 -0.029 0.485*

(0.031) (0.116) (0.050) (0.138) (0.050) (0.022) (0.230)

tau23 0.037 0.154* -0.032 -0.114 -0.035 -0.029 0.522**

(0.047) (0.066) (0.051) (0.108) (0.083) (0.018) (0.186)
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Table S10. Other disorders

Sexual dysf. Erectile dysf. Binge eating Attention deficit Psychosis Aud. Hall. Epilepsy

tau24 0.024 0.015 -0.100 -0.066 -0.058 -0.041*** 0.660**

(0.039) (0.086) (0.067) (0.094) (0.042) (0.012) (0.214)

tau25 -0.003 0.132* -0.059 -0.007 -0.002 -0.041* 0.629**

(0.071) (0.061) (0.072) (0.136) (0.043) (0.019) (0.222)

tau26 0.023 0.186 -0.061 0.007 0.078 -0.034* 0.500*

(0.054) (0.119) (0.060) (0.170) (0.071) (0.015) (0.217)

tau27 0.050 0.143 -0.017 0.167 0.031 -0.025 0.375

(0.052) (0.109) (0.071) (0.111) (0.060) (0.013) (0.220)

tau28 0.071 0.261 0.048 0.042 0.029 -0.025 0.345

(0.052) (0.135) (0.059) (0.112) (0.047) (0.020) (0.195)

tau29 0.113 0.039 0.051 0.072 -0.013 -0.023 0.262

(0.066) (0.134) (0.059) (0.113) (0.049) (0.020) (0.174)

tau30 0.114* 0.266 0.030 0.296 0.125 -0.004 0.528**

(0.045) (0.164) (0.054) (0.230) (0.087) (0.024) (0.199)

tau31 0.088 0.049 0.037 0.292 0.094 0.020 0.503*

(0.054) (0.150) (0.045) (0.176) (0.050) (0.015) (0.207)

tau32 0.084 0.208 0.008 0.463** 0.243** 0.003 0.601**

(0.049) (0.155) (0.049) (0.170) (0.086) (0.019) (0.197)

tau33 0.064 0.114 0.048 0.427** 0.262*** 0.053* 0.577***

(0.044) (0.140) (0.047) (0.151) (0.071) (0.022) (0.161)

tau34 0.113** 0.132 0.063 0.578*** 0.278*** 0.024 0.501***

(0.036) (0.114) (0.057) (0.120) (0.078) (0.022) (0.129)

tau35 0.090 0.196 0.077 0.558*** 0.267*** 0.042* 0.635***

(0.051) (0.155) (0.046) (0.143) (0.072) (0.018) (0.152)

tau36 0.086 0.147 0.010 0.551** 0.234** 0.026 0.639**

(0.054) (0.122) (0.052) (0.171) (0.081) (0.016) (0.197)

tau37 0.089 0.141 0.073 0.557** 0.144 0.015 0.745***

(0.066) (0.145) (0.066) (0.185) (0.098) (0.017) (0.216)

tau38 0.127** 0.016 0.023 0.675*** 0.169* 0.006 0.714**

(0.048) (0.128) (0.059) (0.189) (0.084) (0.013) (0.241)

tau39 0.076 -0.101 0.075 0.734*** 0.179* -0.003 0.822***

(0.051) (0.102) (0.090) (0.150) (0.082) (0.015) (0.244)

Observations 5199 5199 5197 5199 5199 5105 5199
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