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Abstract: The calculation of the propagation of partially coherent and partially polarized optical
beams involves using 4D Fourier Transforms. This poses a major drawback, taking into account
memory and computational capabilities of nowadays computers. In this paper we propose an
efficient calculation procedure for retrieving the irradiance of electromagnetic Schell-model
highly focused beams. We take advantage of the separability of such beams to compute the
cross-spectral density matrix by using only 2D Fourier Transforms. In particular, the number
of operations depends only on the number of pixels of the input beam, independently on the
coherence properties. To provide more insight, we analyze the behavior of a beam without a
known analytical solution. Finally, the numerical complexity and computation time is analyzed
and compared with some other algorithms.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Three-dimensional electromagnetic field distributions generated in the focal region of a high
numerical aperture (NA) focused system has been extensively investigated in the last years
[1–28]. Non-paraxial fields have demonstrated very useful in many fields, for instance in confocal
microscopy, second and third harmonic generation problems, plasmonic effects, optical tweezers,
or optical security, among others. See, for instance, [29–37].

The structure of highly focused beams has a strong dependence on the polarization state of
the input beam. Such dependence on polarization has been exploited to generate beams with
interesting properties [1,7,8,11,14,18–20,22,24,26,27]. An interesting example is light needles
[8,26,28], in which the cross-section of the beam remains confined to a region the size of its
wavelength for distances of many wavelengths away from the focal plane of the system.

For incident coherent and totally polarized paraxial beams, the calculations of the focal field
structure can be carried out using Fourier transforms. Despite Discrete Fourier Transforms
(DFT) have a time complexity of O(N2), where N is the total number of points, the so-called Fast
Fourier Transform Algorithms (FFT) [38,39], display a time complexity of O(N log N). However,
limitations arise when working with partially coherent and partially polarized incident beams:
the statistical properties of light must be taken into account and instead of working with field
amplitudes cross-correlation matrices should be taken into account [40]. As a matter of fact, this
increases the dimensionality of the problem from 2D to 4D. FFTs could still be performed in
theory, but in practice memory limitations impose a hard limit on these algorithms. For instance,
when trying to calculate the irradiance of a 256×256 pixels image, each component of the electric
field requires at least 32 GiB of RAM of single precision floating point numbers. These memory
requirements make most calculations unachievable under most common computer set-ups. To
circumvent this problem, modal expansions of the field can be used to reduce the dimensionality
from 4D to 2D, at the expense of a higher number of 2D operations [40–42]. Recently, this
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method has been successfully applied to the study of highly focused electromagnetic beams
[43–45]. Indeed, this is a powerful method however, it might be limited by the convergence speed.
In theory, each field requires an infinite number of modes. If the weights of each of these modes
do not fall off sufficiently fast, the modal representation would require a high number of terms
and thus, a large amount of memory. Several other methods relying on the decomposition

In this work we propose a fast method of calculating the focal structure of a highly focalized,
partially coherent and partially polarized beam without using a modal decomposition. The
incident beam is assumed to be an electromagnetic Schell field. This kind of paraxial fields is
one of the more remarkable models of partially coherent and partially polarized beams, mainly
due to their simple mathematical form and the wide range of applications [46–49]. Taking
advantage of their particular properties, it is possible to reduce the 4D problem to a set of six
2D convolutions, independently on the shape of the beam. Interestingly, this approach has been
successfully applied in paraxial propagation conditions [50–52].

The paper is organized as follows. In section 2 we discuss the theory behind the tight focusing
of electromagnetic beams both in the coherent and partially coherent and partially polarized
regimes. Section 3 introduces the family of electromagnetic Schell-model sources, the properties
of which are exploited to reduce the dimensionality of the problem. In section 4 we introduce
the algorithm for the fast calculation of focalized electromagnetic Schell source beams. To
demonstrate our method, in section 5 we analyze the focalization of a partially coherent beam with
no closed analytical form. We also examine its computation time and make some extrapolations
to other algorithms. Finally, we summarize the results in section 7.

2. Focal structure of light beams

The electric field distribution at any point in the focal region of a high numerical aperture focusing
system is given by the well known Richards-Wolf integral [53]

E(x, y, z) = A
+∞∬
−∞

P(θ)D(θ, ϕ)E0(θ, ϕ)eik sin θ(x cosφ+y sinφ)e−ikz cos θ sin θdθdϕ, (1)

where A is a constant related to the focal length and wavelength, k is the wavenumber, P(θ)
denotes the so called the apodization function (obtained from energy conservation and geometric
considerations) and D(θ, ϕ) is the region where E0(θ, ϕ) differs from zero. Angles θ and ϕ are
the coordinates at the exit pupil. The geometry of the problem is schematically presented in
Fig. 1. The relation of E0(θ, ϕ) with the radial and azimuthal components of the incident paraxial
beam is

E0(r) = (Ei · eφ)eφ + (Ei · e′θ )eθ , (2)

where the paraxial beam Ei(θ, ϕ) is

Ei(θ, ϕ) =
(︁
Eix(θ, ϕ), Eiy(θ, ϕ), 0

)︁
, (3)

and the unit vectors are given by

⎧⎪⎪⎪⎨⎪⎪⎪⎩
e′θ = (cos ϕ, sin ϕ, 0)
eφ = (− sin ϕ, cos ϕ, 0)
eθ = (cos ϕ cos θ, sin ϕ cos θ, − sin θ).

(4a)
(4b)
(4c)

Here, we consider an apodization function of the form P(θ) =
√

cos θ, corresponding to an
optical system satisfying Abbe’s sine condition. Furthermore, let us consider the change of
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Fig. 1. Geometry of the electromagnetic diffraction problem.

variables ρ = sin θ which, upon introducing into Eq. (1) we obtain

E(x, y, z) = A
+∞∬
−∞

D(ρ, ϕ)
E0(ρ, ϕ)(︁
1 − ρ2

)︁1/4 eikρ(x cosφ+y sinφ)ρdρdϕ. (5)

If we introduce the 2 × 3 matrix N̂(ρ, ϕ)

N̂(ρ, ϕ) = ⎛⎜⎝
sin2 ϕ + cos2 ϕ

√︁
1 − ρ2 sin ϕ cos ϕ

(︂√︁
1 − ρ2 − 1

)︂
ρ cos ϕ

sin ϕ cos ϕ
(︂√︁

1 − ρ2 − 1
)︂

cos2 ϕ + sin2 ϕ
√︁

1 − ρ2 ρ sin ϕ
⎞⎟⎠ , (6)

we may write E0(ρ, θ) = Ei(ρ, ϕ)N̂(ρ, ϕ). Finally, by letting ρ = (ρ cos ϕ, ρ sin ϕ) and r = (x, y)
Eq. (5) can be rewritten in the much compact form

E(r, z) = A
+∞∬
−∞

D(ρ)(︁
1 − ρ2

)︁1/4 Ei(ρ)N̂(ρ)eikρ ·re−ikz
√

1−ρ2dρ. (7)

2.1. Partially coherent and partially polarized beams

Equation (7) describes a focused coherent, totally polarized electromagnetic beam. However,
electromagnetic waves have in general an intrinsic randomness associated with them. The
description given by Eq. (7) can be insufficient to capture all properties of the field and correlation
functions should be used [40]. Specifically, since we are dealing with a single monochromatic
component of the electromagnetic radiation, we introduce the cross spectral density matrix
(CSDM)

Ŵ(r1, r2, z) = ⟨E†(r1, z)E(r2, z)⟩. (8)
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Using the focal field in Eq. (7) and introducing it into Eq. (8) we obtain the following expression

Ŵ (r1, r2, z) = |A|2
⨌ +∞

−∞

D (ρ1)D (ρ2)(︁
1 − ρ21

)︁1/4 (︁
1 − ρ22

)︁1/4 N̂† (ρ1) Ŵi (ρ1, ρ2) N̂ (ρ2)

× e−ik(r1 ·ρ1−r2 ·ρ2)eikz
(︂√

1−ρ2
1−
√

1−ρ2
2

)︂
dρ1dρ2

(9)

where † is the Hermitian conjugate and Ŵi(ρ1, ρ2) is the 2 × 2 CSDM of the input field. With
this, the irradiance of the field can be determined by calculating the trace of the CSDM and
evaluating it at r = r1 = r2,

I(r, z) = Tr
[︁
Ŵ(r, r, z)

]︁
. (10)

In general, Eq. (9) involves a 4D Fourier Transform with 4D arrays. Memory limits the
maximum number of pixels for sampling the field. As explained above, squared arrays of 256
pixels and single precision complex numbers, would require at least 32 GiB of memory for a
single field component array.

3. Electromagnetic Schell-model sources

The CSDM for an electromagnetic Schell incident beams is described by

Ŵi(ρ1, ρ2) = τ̂†(ρ1)ŴS(ρ1 − ρ2)τ̂(ρ2), (11)

where

ŴS(ρ1 − ρ2) =

+∞∬
−∞

Ĥ†(σ)Ĥ(σ)eikσ ·(ρ1−ρ2)dσ, (12)

and Ĥ(σ) is an arbitrary matrix which determines the coherence and polarization properties of
the incident field, along with the matrix τ̂ [54,55]. Note that the CSDM is the matrix product of
three terms, one depending on the difference of coordinates and two which depend on one set of
them. Now, we introduce matrix N̂0(ρ, z) as

N̂0(ρ, z) =
D(ρ)(︁

1 − ρ2
)︁1/4 e−ikz

√
1−ρ2

τ̂(ρ)N̂(ρ). (13)

Then, the CSDM of the focused field [Eq. (9)] can be rewritten as

Ŵ (r1, r2, z) = |A|2
⨌ +∞

−∞

N̂†0 (ρ1, z) ŴS (ρ1 − ρ2) N̂0 (ρ2, z) e−ik(r1 ·ρ1−r2 ·ρ2)dρ1dρ2. (14)

By considering the following change of variables{︃
ρ1 − ρ2 = ∆

ρ1 + ρ2 = 2ρ0,
(15a)
(15b)

Equation (14) becomes

Ŵ (r1, r2, z) = |A|2
⨌ +∞

−∞

N̂†0
(︁
ρ0 + ∆/2, z

)︁
ŴS(∆)N̂0

(︁
ρ0 − ∆/2, z

)︁
× e−

ikΛ
2 ·(r1+r2)e−ikρ0 ·(r1−r2)dρ0d∆.

(16)
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In this form, the CSDM is still determined by a 4D Fourier Transform. The analysis of each
term of the matrix can help to bring it into a simpler form.[︁

Ŵ (r1, r2, z)
]︁

ij = |A|
2

2∑︂
p=1

2∑︂
q=1

∬ +∞

−∞

[︁
ŴS(∆)

]︁
qp e−

ik∆
2 ·(r1+r2)

×

{︃∬ +∞

−∞

[︂
N̂†0

(︁
ρ0 + ∆/2

)︁ ]︂
iq

[︁
N̂0

(︁
ρ0 − ∆/2

)︁ ]︁
pj

×eikρ0 ·(r2−r1)dρ0

}︂
d∆

(17)

where i, j = 1, 2, 3. Note that each term in the (p, q) sum has the form of the 2D Fourier transform
of a 4D convolution, as the two exponential terms in the integrals depend each one on the sum
and the difference of focal plane coordinates respectively.

Analyzing each term of the CSDM, and bringing our attention to measurements of the CSDM
across points r1 = r2 = r, Eq. (16) reads

[Ŵ(r, r, z)]ij = |A|2
2∑︂

p=1

2∑︂
q=1

∬ +∞

−∞

[︁
ŴS(∆)

]︁
qp e−ikα ·r

×

{︃∬ +∞

−∞

[︂
N̂†0

(︁
ρ0 + ∆/2

)︁ ]︂
iq

[︁
N̂0

(︁
ρ0 − ∆/2

)︁ ]︁
pj d∆

}︃
dρ0,

(18)

which is just the 2D Fourier Transform of the function
[︁
Ŵ(∆)

]︁
qp multiplied by a 2D convolution.

Equation (18) provides the relationship between the properties of coherence-polarization of the
incident beam and the elements of the polarization matrix of the focused field. This equation
appears to be specially suitable for the numerical evaluation of the focused field since it only
involves 2D arrays. This means that the calculation of the elements of the CSDM can be
performed in a reasonable short amount of time.

4. Algorithm implementation

Now, Eq. (18) is written in an explicit form, suitable for calculations. The CSDM in the focal
region consists of nine terms, corresponding to the correlations of the x, y and z components of
the electric field, which in turn are the sum of the four elements of ŴS(∆). Note that i ≤ j, as the
off-diagonal terms are complex conjugate of each other, Ŵji = Ŵ⋆

ij , because of the Hermiticity
of the CSDM. This reduces the number of terms from nine to six. Unfortunately, although the
terms in ŴS(∆)p≠q are complex conjugate of one another, their calculation cannot be simplified
in general as matrices N̂0 are not square matrices. Expanding Eq. (18), we obtain:

[Ŵ(r, r, z)]i≤j = |A|2
⨌ ∫ +∞

−∞

{ [WS(∆)]11

[︂
N̂†0

(︁
ρ0 + ∆/2

)︁ ]︂
i1

[︁
N̂0

(︁
ρ0 − ∆/2

)︁ ]︁
1j +

[WS(∆)]22

[︂
N̂†0

(︁
ρ0 + ∆/2

)︁ ]︂
i2

[︁
N̂0

(︁
ρ0 − ∆/2

)︁ ]︁
2j +

[WS(∆)]12

[︂
N̂†0

(︁
ρ0 + ∆/2

)︁ ]︂
i1

[︁
N̂0

(︁
ρ0 − ∆/2

)︁ ]︁
2j +

[WS(∆)]21

[︂
N̂†0

(︁
ρ0 + ∆/2

)︁ ]︂
i2

[︁
N̂0

(︁
ρ0 − ∆/2

)︁ ]︁
1j

}︂
× e−ik∆·rdρ0d∆.

(19)

Equation (19) can be numerically evaluated by the use of FFTs and the convolution theorem.
As the final Fourier Transform factors outside all convolution sums, we just need to perform it
once. An outline of the program structure is presented in Algorithm (1).
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Algorithm 1 Outline for the calculation of the CSDM.
Require: ŴS, τ̂, N̂0

Compute the upper diagonal terms of the CSDM
for j = 1 to 3 do

for i = j to 3 do
C← 0
Compute the four terms inside the integrand.
for p = 1 to 2 do

for q = 1 to 2 do
C← C +

[︂
N̂†0

]︂
ip
∗

[︁
N̂0

]︁
qj {Convolve the N̂0 matrices.}

end for
end for
Ŵij ← FFT[C]

end for
end for
Ŵji ← Ŵ⋆

ij {Assign the lower diagonal the upper diagonal, complex conjugated.}

The algorithm consists of the computation of six independent terms, composed by the
Fourier Transform of four different convolutions. This means that 6 × (4 × 2 + 1) = 54 Fourier
Transformations are required to completely determine the CSDM. As this is the most complex
calculation we are performing, we neglect the time complexity of the rest of the operations. With
this, we state that the time complexity of our algorithm is

T(N) = O(54N log N), (20)

where N = ny × nx is the number of pixels of the amplitude of the electromagnetic field and the
so called "big O" O(·) gives the asymptotic time dependence of the algorithm on the number of
operations. As the number of operations does not depend on a modal decomposition of the field,
we call our method the Mode-less convolution algorithm (Moleca). The code can be found in
[56].

5. Numerical example

To assess our algorithm, we analyze a beam with no known closed analytical solution for Eq. (16).
The characterization of the beam depends on the shape of the terms of Eq. (11). Let us consider
an incident beam with ŴS(∆)

ŴS(∆) = P̂Ln

(︃
∆2

2µ2

)︃
e−

∆2
2µ2 , (21)

where P̂ is a constant matrix given by

P̂ = ⎛⎜⎝
1 1

1 1
⎞⎟⎠ , (22)

Ln is the Laguerre polynomial of order n and µ is the so-called correlation length, which provides
the distance where the correlations in the field vanishes. Matrix τ̂(ρ) takes the form

τ̂ =
⎛⎜⎝
cos ϕ 0

0 sin ϕ
⎞⎟⎠ ρw0

e−
ρ2
w0 . (23)
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Here w0 = REP is the width of the beam and REP is the radius of the entrance pupil of
the microscope objective. The choice made of the above matrices ensures that the CSDM of
the incident beam is well-defined [54,55]. Specifically, with the chosen parameters we are
dealing with a radially polarized, Laguerre-Gaussian Schell type incident beam. The irradiance
distribution and degree of coherence [57,58] at the entrance pupil are represented in Fig. 2.

Fig. 2. (a) Irradiance distribution and (b) degrees of coherence of the beam at the entrance
pupil of the microscope objective.

The parameters used for the calculation are: NA = 0.95, N = 512× 512 sampling points inside
a padded array of Np = 1536 × 1536 and z = 0 (focal plane); three different coherence lengths
have considered: µ→∞, µ = w0/4 and µ = w0/50. To assess the polarization at the focal plane
of the objective, we consider the 3D Degree of Polarization (DoP) [59]:

DoP =

[︄
3
2

(︄
Tr(Ŵ2

)

(Tr Ŵ)2
−

1
3

)︄]︄1/2

. (24)

The results are presented in Fig. 3. Computer and library specifications are summarized in
Table (1). The first row of Fig. 3 corresponds to a coherent beam, with µ→∞. We observe that
the focalized beam produces a doughnut-like distribution transverse irradiance, while a circularly
symmetric spot for the z irradiance. Under these conditions, the latter contains more energy
than the former and the total irradiance is mostly driven by the shape of the z component. The
DoP is constant and equal to one throughout the region, as it should be for a coherent and totally
polarized beam.

Table 1. Relevant technical specifications of the computer used to perform the calculations.

Processor RAM Interpreter FFT library

Intel Core i5-1520M @ 2.50 GHz 8 GiB Python 3.7.3 Scipy 1.4.1

The second row contains the results for µ = w0/4. It can be seen that the decrease in the
values of the cross-correlations increases the spread of the irradiance, reducing the amount of
light capable to be focalized at a single point. The transverse component remains similar, but
broadened. The longitudinal component has completely changed its shape: the central maximum
has become a minimum while the outer ring has completely disappeared. Interestingly, with
a smaller coherence length the DoP in the region with the higher energy density is reduced,
achieving a value DoP = 0.33 for its lowest point. Outside this region, the values increase to
DoP = 0.78, but the irradiance is practically null. As the limit DoP = 0.5 corresponds to a 2D
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Fig. 3. Focalization of a partially coherent radially polarized beam in the EP of a microscope.
From top to bottom, the rows correspond to µ→∞, µ = w0/4 and µ = w0/50. From left to
right, the columns are the intensities in the transverse and longitudinal directions and the
DoP through the region.

unpolarized electromagnetic field [59], the field becomes completely unpolarized in the 2D sense
and highly unpolarized in the 3D sense.

Finally, the last row corresponds to µ = w0/50. The beam notably fails to focalize in any
meaningful way, while the irradiances for the transverse and longitudinal components become
almost indistinguishable, the latter still containing slightly more energy. The DoP becomes almost
homogeneous throughout the region, with a minimum value of DoP = 0.43 and a maximum
value of DoP = 0.47. Remarkably, at any point the DoP is higher than the minimum value of the
µ = w0/4 case: the field is less polarized in the latter case than in the former.

To provide more insight on the beam we are analyzing, we computed the irradiance at different
planes by modifying the propagation distance z with respect to the focal plane. We observe
interesting behaviors of the field considered in Eqs. (22)–(23). Figure 4(a) shows the transverse
irradiance for the three coherence lengths considered at the center of the beam, r = 0. The
coherent beam, µ→∞ remains null throughout the region considered. The mostly incoherent
beam, µ = w0/50 remains with a mostly constant irradiance through the considered region. On
the other hand, the partially coherent beam, µ = w0/4, has a local minimum in the focal plane
and two maxima as the beam propagates outside this plane.

Figure 4(b) shows the irradiance corresponding to the longitudinal component of the electric
field. For the coherent case it contains a global maximum in the focal plane, and rapidly decreases
as it propagates. For the quasi incoherent beam, the irradiance shows a similar slow variation as
in the transverse irradiance but with double the energy. The partially coherent beam contains
a similar amount of energy in both the longitudinal and the transverse component, but with a
shallower minimum in the focal plane.
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Fig. 4. Analysis of the irradiance at r = 0: (a) Transverse irradiance, (b) axial irradiance (c)
total irradiance and (d) DoP of the beam at r = 0. Each of the irradiances is normalized to
their respective maximum total irradiance.

The total irradiance is plotted in Fig. 4(c). We observe that the coherent beam sharply focalizes
in a region of the order of the wavelength; the mostly incoherent beam fails to focalize because
its intensity remaining constant, and the partially coherent display a non-zero minimum in the
focal plane.

The DoP has radically different shapes for the different coherence lengths for the input beam, as
shown in Fig. 4(d). As the shape of the polarization matrix at the center of the beam is diagonal,
the DoP depends only on the relationship between the transverse and longitudinal irradiances.
For the coherent beam, it remains constant and equal to one throughout the region, as it has
only one nonzero value in its polarization matrix. For the case of the mostly incoherent beam,
it also remains mostly constant but with a lower value, around DoP = 0.48. Interestingly, for
the partially coherent case, the DoP is higher than the mostly incoherent at the focal plane, but
quickly drops its value below it.

6. Comparative of computation time

Finally, we assess the speed of our algorithm by comparing it with the naive 4D convolution
and the decomposition suggested in [45]. Results are present in Fig. (5). We used the following
lateral number of points: n = 64, 128, 256, 1024, and 2048 and, accordingly, the total number
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of sampling points is N = n2. Since the estimated time complexity our proposed Moleca method
[Eq. (19) follows Eq. (20), we expect it to have an approximate dependence

Tconvolution(N) = AN log N = An2 log n2 ≈ Ank (25)

for moderately low values of n. A and k can be easily determined by fitting the yellow points in
Fig. (5) (blue line): A = 4.7 · 10−6 s, k = 2.07 Note the exponent in the lateral number of pixels
is slightly higher than 2 because of the log n2 term. Due to the O(n4) dependence of the naive
algorithm, results cannot feasibly be reproduced. However, since we know that for our algorithm
the number of Fourier Transforms performed is 54 = 6 × (4 × 2 + 1), we can use the constant
A as a basis to obtain the raw performance of our computer C0. We define it by dividing the
constant A previously obtained by the number of Fourier Transforms performed, resulting in
C0 = A/54 ≈ 9.4 · 10−8. Using this number, the rough estimate for an n = 2048 image would
approximately take

Tnaive(n) ≈ C0n4 ≈ 17 days (26)

which is an exceedingly long computation time. At any point, our method results at least two
orders of magnitude faster than the naive method.

Finally, using a similar approach, we have estimated the performance of an alternative method
based in a modal decomposition [45]. This method is based on a 2D mode decomposition of the
CSDM at the EP of the optical system. Consequently, the time complexity should be of the order
of the FFT algorithm, multiplied by the number of modes required in the decomposition. This
gives us a time complexity of the form

Talt(n, m) = O(mn2 log n2) ≈ Amnk, (27)

which is similar to the time complexity of our algorithm, but with a variable number of FFTs.
As a compromise between speed and accuracy, in the article they proposed m = 2000 modes
in the decomposition for N = 512 × 512. As this depends on the number of sampling points,
we have scaled the number m proportionally with the number of sampling points. With this,
we obtain the red points in Fig. (5). We see that the modes-based algorithm is faster than
Moleca for a small number of points, but its slope increases as the number of sampling points is
increased. In fact, for a worse case completely incoherent field, its time complexity could arrive
at Talt(n, n2) = O(n4 log n2) which is worse than the naive algorithm. However, if the number of
modes remains lower than 54, this algorithm outperforms Moleca.
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Fig. 5. Calculation times for three different algorithms for the determination of the partially
coherent focal structure of an electromagnetic beam.

7. Concluding remarks

We proposed a computational procedure for calculating the CSDM W(r, r, z) in the focal region
of a high NA optical system, assuming electromagnetic Schell input beams. The method makes
the most of the mathematical properties of these kinds of beams so that the 4D integrals involved
can be rewritten as 2D Fourier transforms of 2D convolutions. As a result, we obtain the Moleca
algorithm. Contrary to the methods in the literature, our approach does not rely on a modal
decomposition of the input beam, requiring a fixed and low number of operations to compute
the CSDM of highly focused beams. The time complexity is demonstrated to be of the form
O(54N log N), where 54 = 6 × (4 × 2 + 1) is the number of Fourier Transforms required in the
algorithm and N = nx × ny is the number of pixels in which we sample the beam. Comparison
with known algorithms show the clear advantage of Moleca with respect to the naive, direct 4D
convolution method, and a relative advantage with respect to modal decomposition approaches
as long as the number of required modes is less than 54.

In summary, our method is able to calculate the polarization matrix of highly focused
electromagnetic Schell-source beams. Despite our approach is faster, the modal decomposition
method can calculate both the polarization and the coherence properties of the propagated beam
even for non-Schell sources.
Funding. Agencia Estatal de Investigación (PID2019-104268GB-C21, PID2019-104268GB-C22).
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