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Abstract

In this project, we study the automorphisms of Cn. We give a proof of the Global Andersén
Lempert Theorem (Theorem 3.1) as well as the Local Andersén Lempert Theorem (Theorem
3.11). We illustrate the importance of these results by giving three geometric applications
(Theorems 4.1, 4.10, and 4.18).
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1 Introduction

It has always been of interest to classify maps that preserve a structure. For example, the linear
automorphisms of a vector space, the affine bijections on affine spaces, the isometries of Rn ...In
this project, we will focus our attention on the space Aut(Cn), that is, the space of holomorphic
bijective maps with holomorphic inverse. We call the maps of Aut(Cn) automorphisms of Cn.

It would be ideal to end up giving a list of maps defining the whole Aut(Cn). Such a list
exists for Aut(C) as the following theorem shows:

Theorem 1.1.

Aut(C) = {f ∈ H(C) | f(z) = az + b where a, b ∈ C and a 6= 0}.

Proof. Let us see that for f ∈ Aut(C) the singularity at infinity can only be a pole. Indeed,
if it is removable then f is bounded, and by Liouville’s Theorem [5] f is constant, and thus,
not injective. If the singularity at infinity is essential, then by the Great Picard’s Theorem [5]
the function f fails to be injective. Thus f must have a pole at infinity. This implies that f
is a polynomial, but by the Fundamental Theorem of Algebra, the only polynomials that are
bijective are those of degree 1. That is, f(z) = az + b for some a, b ∈ C and a 6= 0.

No similar result holds in Cn. In fact Aut(Cn) is a very complicated space. To illustrate
this, we present the following example:

Consider h : Cn−1 → C a holomorphic function, and define the map fm : Cn → Cn as

fm(z) = z + h(z1, . . . , ẑm, . . . , zm)em, (1)

where 1 ≤ m ≤ n is an integer, and em is the m-th vector of the canonical basis in Cn. It is
easy to see that this map is an automorphism of Cn.

The interesting thing about this map fm is that it shows that there are at least as many
automorphisms of Cn, as holomorphic functions in H(Cn−1). Thus, if n > 1, then Aut(Cn) is
infinite-dimensional!

A similar example can be constructed if we take h : Cn−1 → C to be a nowhere zero holo-
morphic function. Then an automorphism associated to h, say gm : Cn → Cn, can be defined
as

gm(z) =
(
z1, . . . , zmh(z1, . . . , ẑm, . . . , zn), . . . , zn

)
. (2)

We will see that these maps will be useful for our study.

Definition 1.2. We will call f : Cn → Cn a shear map if after a linear change of variables, f
is given by equation (1). We will say that g : Cn → Cn is an overshear map, if after a linear
change of variables g satifies equation (2).

These two particular types of maps were very important to the study of Aut(Cn). In
fact, for some time, mathematicians studied the space Aut(Cn) through shears and overshears.
Such studies ([22] for example) gave, for example, some information on how Aut(Cn) acted on
countable sets. In 1988, Walter Rudin and Jean Pierre Rosay proved that there were some
sequences that could not be mapped to N × {0} × · · · × {0} by automorphisms of Cn, while
many others could be. This and some other results showed that Aut(Cn) had a very delicate
structure.

Of course, automorphisms of Cn were not only studied from the point of view of shears
and overshears. Before the work of Rudin and Rosay, Masakazu Suzuki in 1974, gave some
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results for polynomial automorphisms of Cn i.e. automorphisms where every component is a
polynomial (see [20] for more information). But it was not until 1990 that a remarkable result
concerning all types of automorphisms was proven. In [2], Erik Andersén showed that every
volume-preserving automorphism of Cn is a uniform limit, on compact sets, of compositions of
shears (in fact, Erik Andersén was motivated by a question asked in the paper by Rudin and
Rosay). Shortly after, in 1992, Erik Andersén and Lázló Lempert proved two groundbreaking
results similar to the one proved by Erik Andersén. They proved that every automorphism of
Cn is a uniform limit, on compact sets, of compositions of overshears. They also proved that
any biholomorphism on an open set is a uniform limit, on compact sets, of compositions of
overshears.

These three results allowed the birth of approximation-type theorems for automorphisms of
Cn.

This will be the goal of our project. To prove the three theorems proved by Erik Andersén
and Lázló Lempert, and to give some applications to illustrate how powerful the theorems from
Andersén and Lempert are.

1.1 Main theorems

Here we state the main theorems that we will prove in this project. We begin with the two
versions of the Andersén-Lempert Theorem.

Theorem 1.3 (Andersén-Lempert). Let f ∈ Aut(Cn). Then there exists a sequence (ψk)k of
finite composition of overshears such that ψk tends to f uniformly on compact sets of Cn.

Moreover if f is volume-preserving (that is, detDf(z) = 1 for all z), then the sequence
(ψk)k can be chosen so that each ψk is a finite composition of shears.

Theorem 1.4 (Local Andersén-Lempert Theorem). Let Ω ⊂ Cn be an open set, and H :
[
0, 1
]
×

Ω → Cn be an isotopy of biholomorphisms such that each each Ωt is Runge in Cn. Then if
H(0, ·) can be approximated by automorphisms of Cn uniformly on compact sets of Ω, then for
every t ∈

[
0, 1
]

the map H(t, ·) can also be approximated by automorphisms of Cn uniformly
on compact sets of Ω.

The three following geometric applications, follow from the Local Andersén-Lempert The-
orem.

Theorem 1.5. Let K1, . . . , Km be pairwise disjoint compact star-shaped domains of Cn. Let
for each 1 ≤ k ≤ m φk ∈ Aut(Cn). If the sets φk(Kk) are pairwise disjoint, and K =

⋃m
k=1Kk

and K ′ =
⋃m
k=1 φk(Kk) are polynomially convex, then for each 1 ≤ k ≤ m there exists Uk a

neighborhood of Kk and a sequence (ψj)j ⊂ Aut(Cn) such that ψj converges to φk uniformly on
Uk, for each 1 ≤ k ≤ m.

Theorem 1.6. Let Ω ⊂ Cn be a pseudoconvex Runge domain and Z = (zk)k≥0 ⊂ Ω a dis-
crete sequence (that is with no accumulation points). Then there exists a proper holomorphic
embedding f : D ⊂ C→ Ω satisfying Z ⊂ f(D).

Theorem 1.7. Let γ : [0, 1] → Cn be an injective real analytic arc with γ′ 6= 0. Then there is
a sequence (ψk)k of automorphisms of Cn such that ψk ◦ γ converges uniformly on [0, 1] to the
map ν(t) = (t, 0, . . . , 0) (t ∈ [0, 1]).

1.2 Structure of the project

We now explain how the project is structured.
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Section 1 gives a brief introduction to the topic of automorphisms of Cn. In Section 2 we
give some background results on the theory of ODEs, and explain how automorphisms are
tied to ODEs. Next, in Section 3 we give the proofs of the Global and Local versions of the
Andersén-Lempert Theorem, and we comment on the existence of automorphisms that are
not compositions of shears nor overshears. Section 4 is divided into three subsections one for
Theorem 1.5 and some results concerning polynomial convexity. One for Theorem 1.6, where
we give a proof of such theorem and comment on the existence of Fatou-Bieberbach domains.
And finally, the third subsection is devoted to Theorem 1.7. The last section, Section 5, gives
some conclusions of the project.

These four sections are the main ones. We have also included an appendix (Appendix A)
introducing some concepts from the theory of several complex variables.
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2 Automorphisms through ODEs

This section is devoted to explaining one of the key ingredients on the proof of the Andersén-
Lempert Theorem, that is to show how are the solutions to ODEs related to automorphisms of
Cn. We only have included those proofs that we thought were important, or not well-known.
Nevertheless, we encourage the reader to see [18] and [4] if he or she is not familiar with some
of the concepts or results we mention. We begin by recalling some notions of the theory of
ODEs.

2.1 Complete holomorphic vector fields

We will work with continuous time-dependent vector field X : R × Cn → Cn, if X is locally
Lipschitz on the second variable uniformly with respect to the first one. Remember that for such
vector fields, the flow of X at (t0, z0) ∈ R×Cn is the map ϕ(·; t0, z0) defined on a neighborhood
It0 of t0 which satisfies the following Cauchy problem

dϕ

dt
(t; t0, z0) = X

(
t, ϕ(t; t0, z0)

)
ϕ(t0; t0, z0) = z0,

with t ∈ It0 . We will also refer to ϕ as the solution to the vector field X.

Definition 2.1. Let X : R × Cn → Cn be a continuous time-dependent vector field, locally
Lipschitz on the second variable uniformly with respect to the first one. We say that X is
complete if the flow ϕ of X at any (t0, z0) ∈ R×Cn is defined for all t ∈ R. In other words, X
is complete if for any (t0, z0) ∈ R× Cn the solution to the Cauchy problem

dϕ

dt
(t; t0, z0) = X

(
t, ϕ(t; t0, z0)

)
ϕ(t0; t0, z0) = z0,

is defined for all t ∈ R.

On an autonomous vector field X (those that only depend on z), the choice of t0 is irrelevant
to define the flow of X. Thus we will always assume that t0 = 0, and we will write ϕ(t; z) instead
of ϕ(t; 0, z). We will refer to ϕ as the solution generated by X, or a solution to X.

What will be important to us is that given a complete holomorphic autonomous vector field
X : Cn → Cn, the flow of X defines a 1-parameter group of automorphisms. More concretely,
for any fixed t ∈ R the map ϕ(t; ·) : Cn → Cn (referred to as the time-t map) will be an
automorphism of Cn with inverse ϕ(−t; ·). A converse of this result is also true, as we will see
in Section 3.

Let us recall how the divergence of a vector field X is tied to the determinant of the
differential of its solution.

Proposition 2.2. Let Ω ⊂ Cn be open, X : Ω → Cn be a C1 vector field, and ϕ be its flow.
Then

d

dt
detDzϕ(t; z) = divX

(
ϕ(t; z)

)
· detDzϕ(t; z)

where t ∈ R and z ∈ Cn are so that ϕ(t; z) is defined. In particular, divX = 0 if and only if
detDzϕ(t; z) is constant in t.
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Proof. This is a straightforward computation. Let us put Dzϕ(t; z) in vector notation, i.e.

Dzϕ(t; z) =

(
∂ϕ

∂z1

(t; z), . . . ,
∂ϕ

∂zn
(t; z)

)
.

Then the derivative of the determinant is

d

dt
detDzϕ(t; z) =

n∑
j=1

det

(
∂ϕ

∂z1

(t; z), . . . ,
d

dt

( ∂ϕ
∂zj

)
(t; z), . . . ,

∂ϕ

∂zn
(t; z)

)
=

=
n∑
j=1

det

(
∂ϕ

∂z1

(t; z), . . . ,
∂

∂zj

(dϕ
dt

)
(t; z), . . . ,

∂ϕ

∂zn
(t; z)

)
=

=
n∑
j=1

det

(
∂ϕ

∂z1

(t; z), . . . ,
∂

∂zj

(
X
(
ϕ(s;w)

))
(t; z), . . . ,

∂ϕ

∂zn
(t; z)

)
=

=
n∑
j=1

det

(
∂ϕ

∂z1

(t; z), . . . ,
∂X

∂zj

(
ϕ(t; z)

)
· ∂ϕ
∂zj

(t; z), . . . ,
∂ϕ

∂zn
(t; z)

)
=

=
n∑
j=1

∂X

∂zj

(
ϕ(t; z)

)
· det

(
∂ϕ

∂z1

(t; z), . . . ,
∂ϕ

∂zj
(t; z), . . . ,

∂ϕ

∂zn
(t; z)

)
=

= divX
(
ϕ(t; z)

)
· detDzϕ(t; z)

where we have used that ϕ is the flow generated by X, and ϕ is C1 in (t, z).

Remark 2.3. Observe that if divX = 0, and detDzϕz(0; z) = 1, then we have that detDzϕ(t; z) =
1. That is ϕ(t; ·) is a volume-preserving automorphism. This fact will prove crucial in Section
3.

2.2 Approximation of solutions to ODEs

Another useful result for us will be how the solution to an ODE changes when we make a small
change in the vector field defining the equation. To give a full proof of that we first need the
following lemma.

Lemma 2.4 (Gronwall inequality). Let T > 0 and ψ :
[
0, T

]
→ R. Suppose there exist

a, b, c ∈ R with b ≥ 0 such that

ψ(t) ≤ a+

∫ t

0

bψ(s) + cds, t ∈
[
0, T

]
.

Then

ψ(t) ≤ aebt +
c

b
(ebt − 1).

Proof. Define φ(t) = e−bt, and for all t ∈ [0, T ] consider the derivative

d

dt

(
φ(t)

∫ t

0

bψ(s) + cds
)

= bφ(t)
(c
b

+ ψ(t)−
∫ t

0

bψ(s) + cds
)

Now using the hypothesis on ψ we have

d

dt

(
φ(t)

∫ t

0

bψ(s) + cds
)
≤ bφ(t)

(
a+

c

b

)
,
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and integrating we get

φ(t)

∫ t

0

bψ(s) + cds ≤
∫ t

0

bφ(s)
(
a+

c

b

)
ds = (1− e−bt)

(
a+

c

b

)
.

Multiplying by φ(t)−1 and adding a to both sides yields

a+

∫ t

0

bψ(s) + cds ≤ aebt +
c

b
(ebt − 1), t ∈ [0, T ].

Applying the inequality of the hypothesis to the left-hand side gets us the desired result.

As a consequence of the Gronwall inequality, we have the following theorem.

Theorem 2.5. Let Ω ⊂ Cn be open, I ⊂ R an open interval, and f, g : I × Cn → Cn be
time-dependent continuous vector fields. Suppose f is locally Lipschitz on the second variable,
uniformly with respect to the first one. And let ψ and ϕ be the solutions to the following Cauchy
problems 

dϕ

dt
(t; t0, z0) = f

(
t, ϕ(t; t0, z0)

)
ϕ(t0; t0, z0) = z0,


dψ

dt
(t; t0, w0) = g

(
t, ψ(t; t0, w0)

)
ψ(t0; t0, w0) = w0,

then we have that

||ϕ(t; t0, z0)− ψ(t; t0, w0)|| ≤ ||z0 − w0||eL|t−t0| +
M

L

(
eL|t−t0| − 1

)
,

where

L = sup
(t,z) 6=(t,w)∈U

||f(t, z)− f(t, w)||
||z − w||

,

and

M = sup
(t,z)∈U

||f(t, z)− g(t, z)||

being U a set containing both graphs of ϕ(t; t0, z0) and ψ(t; t0, w0).

Proof. To prove this we will only need to see that the function ||ϕ(t; t0, z0)− ψ(t; t0, w0)|| sat-
isfies the hypothesis of Gronwall’s inequality lemma. This is a direct result from the definition
of ϕ, ψ, L, and M . Indeed,

||ϕ(t; t0, z0)− ψ(t; t0, w0)|| ≤ ||z0 − w0||+ ||ϕ(t; t0, z0)− z0 − ψ(t; t0, w0) + w0|| ≤

≤ ||z0 − w0||+
∫ t

t0

||f(s, ϕ(s, t0, z0))− g(s, ψ(s; t0, w0))||ds ≤

≤ ||z0 − w0||+
∫ t

t0

||f(s, ϕ(s, t0, z0))− f(s, ψ(s; t0, w0))||ds+

+

∫ t

t0

||f(s, ψ(s; t0, z0))− g(s, ψ(s; t0, w0))||ds ≤

≤ ||z0 − w0||+
∫ t

t0

L||ϕ(s; t0, z0)− ψ(s; t0, w0)||+Mds.

Now applying the Gronwall inequality with a = ||z0 − w0||, b = L, c = M and ψ(t) =
||ϕ(t; t0, z0)− ψ(t; t0, w0)||, we get the result we wanted.
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In a sense, this theorem tells us that if the vector fields f and g are close enough, then the
solutions defined by ϕ and ψ will also be close (provided that z0 and w0 are also close enough).
This will be a crucial fact that we will use in the following section.

Finally, we present another result on approximating solutions to ODEs which will be very
important on the proof of the Andersén-Lempert Theorem.

Theorem 2.6. Let X be a holomorphic vector field, and let ϕ be its flow (which we assume it
is defined in

[
0, 1
]
× Cn). Suppose there exist complete holomorphic vector fields X1, . . . , Xm

such that X =
∑N

k=1Xk, and let φk denote the flow of Xk. And for k ≥ m define φk(t; z) by
the following recurrence φk+1

(
t; z
)

= φk
(
t;φ1

(
t; z
))

φ1(t; z) = φm

(
t;φm−1

(
t; . . . ;φ1(t; z)

)
. . .
))

Then, φj
(
t
j
; z
)

converges uniformly on compact sets of
[
0, 1
]
× Cn to ϕ(t; z).

This theorem tells us that given the decomposition X =
∑N

k=1Xk, composing the flows of
the Xk’s in cyclically (first φ1, then φ2 up to φm, then again φ1 and repeat) enough times with
small steps in the variable t, gives an approximation to the flow of X.

Proof. Observe first that since each Xk is complete, φj(t; z) is defined for all (t, z) ∈ R ×
Cn. Because we are interested in uniform convergence on compact sets, it is enough that we
prove that we have local uniform convergence. Let us then prove that we have local uniform
convergence.

Observe that

d

dt

(
φ1
( t
j

; z
))∣∣∣∣

t=0

= Xm

(
φm−1

( t
j

; . . . ;φ1

( t
j

; z
)
. . .
))1

j

∣∣∣∣
t=0

+

+Dzφm

(
t

j
;φm−1

( t
j

; . . . ;φ1

( t
j

; z
)
. . .
))
· d
dt

(
φm−1

( t
j

; . . . ;φ1

( t
j

; z
)
. . .
))∣∣∣∣

t=0

=

=
1

j
Xm(z) +Dzφm(0; z)Xm−1(z)

1

j
+Dzφm(0; z)Dzφm−1(0; z)

d

dt

(
φm−2

( t
j

; . . . ;φ1

( t
j

; z
)
. . .
))∣∣∣∣

t=0

=

=
1

j
Xm(z) +

1

j
Dzφm(0; z)Xm−1(z) + . . .+

1

j
Dzφm(0; z) · · ·Dzφ2(0; z)X1(z).

Since each φk is of class C1 and φk(0; z) = z, we have that Dzφk(0; z) = Id. Then our last
formula tells us that

d

dt

(
φ1
( t
j

; z
))∣∣∣∣

t=0

=
1

j

m∑
k=1

Xk(z) =
1

j
X(z) =

d

dt

(
ϕ
( t
j

; z
))∣∣∣∣

t=0

which implies that

d

dt
(φ1 − ϕ)

( t
j

; z
)∣∣∣∣

t=0

= 0.

In particular, for a fixed (t0, z0) ∈
[
0, 1
]
×Cn, there exists a neighborhood U0 of (t0, z0) satisfying

(φ1 − ϕ)
(
t/j; z

)
= o

(∣∣t/j∣∣) uniformly on U0. Let now L be a Lipschitz constant for X. By

Gronwall’s inequality (Lemma 2.4) we have

||ϕ(t; z)− ϕ(t;w)|| ≤ eL|t|||z − w||. (3)
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Now let us rewrite ϕ(t; z)− φj(t/j; z) as follows:

ϕ(t; z)− φj
( t
j

; z
)

= ϕj
( t
j

; z
)
− φj

( t
j

; z
)

=

= ϕj−1
( t
j

;ϕ
( t
j

; z
))
− ϕj−1

( t
j

;φ1
( t
j

; z
))

+

+ ϕj−2
( t
j

;ϕ
( t
j

;φ1
( t
j

; z
)))

− ϕj−2
( t
j

;φ2
( t
j

; z
))

+ . . .+

+ ϕj−k
( t
j

;ϕ
( t
j

;φk−1
( t
j

; z
)))

− ϕj−k
( t
j

;φk
( t
j

; z
))

+ . . .+

+ ϕ
( t
j

;φn−1
( t
j

; z
))
− φ1

( t
j

;ϕn−1
( t
j

; z
))
.

Therefore using (3) we have

||ϕ(t; z)− φj
( t
j

; z
)
|| ≤

j∑
k=1

||ϕj−k
( t
j

;ϕ
( t
j

;φk−1
( t
j

; z
)))

− ϕj−k
( t
j

;φk
( t
j

; z
))
|| ≤

≤
j∑

k=1

eL|t/j|(j−k)||ϕ
( t
j

;φk−1
( t
j

; z
))
− φ1

( t
j

;φk−1
( t
j

; z
))
||.

Finally, for all (t, z) ∈ U0 we have

||ϕ(t; z)− φj
( t
j

; z
)
|| ≤

j∑
k=1

eL|t/j|(j−k)o(t/j) =
eL|t/j| − eL|t|

1− eL|t/j|
o(t/j) =

=
eL|t/j| − eL|t|

j/t− j/teL|t/j|
o(t/j)

t/j
−→
j→∞

0

because (eL|t/j| − eL|t|)/(j/t− j/teL|t/j|) −→
j→∞

−1 uniformly on U0. This finishes the proof.
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3 The Andersén-Lempert Theorem

This section is devoted to the proof of the Andersén-Lempert Theorem (the global and local
versions). The Andersén-Lempert Theorem as we present it here is actually two theorems, one
by Erik Andersén proved in 1990 and the other one by Erik Andersén and László Lempert
proved in 1992. Instead of following their original proofs (which can be found in [2], and [3])
we follow an argument presented by J-P.Rosay in [11], a paper published in 1999.

3.1 The Global Andersén-Lempert Theorem

Let us state exactly what we want to prove.

Theorem 3.1 (Andersén-Lempert). Let f ∈ Aut(Cn). Then there exists a sequence (ψk)k of
finite composition of overshears such that ψk tends to f uniformly on compact sets of Cn.

Moreover, if f is volume-preserving (that is, detDf(z) = 1 for all z), then the sequence
(ψk)k can be chosen so that each ψk is a finite composition of shears.

The outline of the proof will be divided into several parts:
1st part:
First, we will connect f to the identity via a map ϕ(t; z) in a way that ϕ(0; z) = z, ϕ(1; z) =
f(z), and ϕ is the solution to some vector field X (which will depend on f , and which will
be time-dependent). So f will be the time-1 map of X. At this point, the idea is first to
approximate in intervals of the form

[
k
m
, k+1
m

]
the vector field X with time-independent vector

fields Yk,m. This will imply that a solution of Yk,m will approximate the solution of X, ϕ, in[
k
m
, k+1
m

]
. Thus concatenating the solutions of Yk,m will yield an approximation to ϕ.

2nd part:
Secondly, we will approximate each vector field Yk,m with a vector field whose solutions are
overshears. For that, we will first need to approximate Yk,m by a polynomial vector field and
then decompose the polynomial vector field into a sum of complete vector fields Zj satisfying
that the time−t maps of Zj are overshears.

3rd part:
The third and final part is to compose in the variable t, the time−t maps of the Zj’s, which
will give us an approximation (this, will be a composition of overshears) to the solution of Yk,m,
thus an approximation to ϕ, and in particular setting t = 1 we will get an approximation to f .

Following the outline of the proof, we first give some lemmas that will serve us for the first
part of the proof.

Lemma 3.2. Let f ∈ Aut(Cn) with f(0) = 0 and Df(0) = Id. Then ϕ : R×Cn → Cn defined
by {

ϕ(t; z) =
f(tz)

t
, if t 6= 0

ϕ(t; z) = z , if t = 0

is a 1-parameter group of automorphisms of Cn, analytic in t and z. Moreover ϕ satisfies the
Cauchy problem 

dϕ

dt
(t; z) = X

(
t, ϕ(t; z)

)
ϕ(0; z) = z,

(4)

13



where

X(t, z) =
dϕ

dt
(t, ϕ(−t, z)),

thus in particular X is complete. If in addition detDf(z) is constant then divzX = 0.

Proof. To prove that ϕ(t; z) is analytic on both t and z we will see that ϕ can be expressed as
a power series.

Because f is an automorphism, we have that for every compact K ⊂ Cn

f(z) =
( ∑
|α|≥0

c(1)
α zα, . . . ,

∑
|α|≥0

c(n)
α zα

)
, z ∈ K.

And since f(0) = 0 we have that c
(1)
0 = . . . = c

(n)
0 = 0, therefore

f(z) =
( ∑
|α|≥1

c(1)
α zα, . . . ,

∑
|α|≥1

c(n)
α zα

)
, z ∈ K.

Now for t 6= 0

f(tz)

t
=
( ∑
|α|≥1

c(1)
α t|α|−1zα, . . . ,

∑
|α|≥1

c(n)
α t|α|−1zα

)
.

This series defines an analytic map on both t and z. Moreover since Df(0) = Id, we have

lim
t→0

f(tz)

t
=
( ∑
|α|=1

c(1)
α zα, . . . ,

∑
|α|=1

c(n)
α zα

)
= z.

Thus in the end, we have that ϕ is analytic on both t and z.
The fact that ϕ is bijective comes from f being bijective. And because f−1 is also entire,

we get that the inverse of ϕ is also analytic in both t and z (for this it is enough to repeat
the previous argument substituting f by f−1). Therefore ϕ is a 1-parameter path of automor-
phisms. What makes ϕ into a 1-parameter group of automorphisms is the fact that it satisfies
the Cauchy problem (4), which follows directly from the definition of X.

Finally observe that Dzϕ(t; z) = Df(z). Thus if detDf(z) is constant, then detDzϕ(t; z)
is also constant. Which by Proposition 2.2 implies that divzX = 0.

We now approximate the vector field X by time-independent vector fields.

Lemma 3.3. Let f and X be as in the previous lemma. For every integer m ≥ 1, consider the
vector field Ym :

[
0, 1
]
× Cn → Cn defined by

Ym(t, z) =



X
(
0, z
)

if 0 ≤ t <
1

m

X

(
1

m
, z

)
if

1

m
≤ t <

2

m
...

X

(
m− 1

m
, z

)
if

m− 1

m
≤ t ≤ 1

14



and let ym(t; z) be the so that
dym
dt

(t; z) = Y m

(
t, ym(t; z)

)
,

ym(0; z) = z

Then (ym)m converges uniformly on compact sets of [0, 1]×Cn to ϕ the solution generated by
X.
If in addition divzX = 0, then divzYm = 0.

Proof. We want to use Theorem 2.5 to the vector fields X and Ym. But Ym is not continuous,
so we will have to restrict ourselves to intervals of the form

[
k
m
, k+1
m

]
with 0 ≤ k < m.

First, fix K ⊂ Cn any compact set, and let ε > 0. Let

L = sup
(t,z) 6=(t,w)∈[0,1]×K

||X(t, z)−X(t, w)||
||z − w||

,

and

Mn = sup
(t,z)∈[0,1]×K

||X(t, z)− Ym(t, z)||.

Put C = max
(
eL, e

L−1
L

)
, observe that C ≥ 1. Because X is continuous, it is absolutely con-

tinuous in [0, 1] ×K. Then there exists m0 ∈ N such that for every m ≥ m0, Mm < ε
2C

. Let
us now see that for each 0 ≤ k < m we have that ||ϕ(t; z)− ym(t; z)|| < ε in [ k

m
, k+1
m

]×K. To
that end we use induction on k.

For k = 0, because Ym is continuous in [0, 1
m

] and X is continuous and locally Lipschitz on
z uniformly with respect to t (every C1 map is locally Lipschitz), we can use Theroem 2.5 to
get that for every (t, z) ∈ [0, 1

m
]×K

||ϕ(t; z)− ym(t; z)|| ≤ ||z − z||eLt +
Mm

L

(
eLt − 1

)
≤ Mm

L

(
eL − 1

)
<

<
eL − 1

L

ε

2C
≤ ε

2
< ε.

Now suppose the result is true for k and let us prove it for k + 1. By the previous argument,
we can apply Theorem 2.5 to get that for every (t, z) ∈ [k+1

m
, k+2
m

]×K we have

||ϕ(t; z)− ym(t; z)|| ≤
∣∣∣∣∣∣ϕ(k + 1

m
; z
)
− ym

(k + 1

m
; z
)∣∣∣∣∣∣eLt +

Mm

L

(
eLt − 1

)
≤

≤
∣∣∣∣∣∣ϕ(k + 1

m
; z
)
− ym

(k + 1

m
; z
)∣∣∣∣∣∣eL +

Mm

L

(
eL − 1

)
<

<
ε

2C
eL +

eL − 1

L

ε

2C
≤ ε.

In the end, for any m ≥ m0 and any 0 ≤ k < m we have

||ϕ(t; z)− ym(t; z)||[ k
m
, k+1

m
]×K < ε

thus in the end we have

||ϕ(t; z)− ym(t; z)||[0,1]×K < ε.

That is, (ym)m converges uniformly on compact sets of [0, 1]× Cn to ϕ.
The fact that Ym has divergence 0 with respect to z when X does, comes directly from the
definition of Ym.
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Now we present the necessary results to get the second part of the proof of the An-
dersén-Lempert Theorem. Let us focus on an interval of the form [ k

m
, k+1
m

] so that Ym is
time-independent. For simplicity, we perform a dilation sending [ k

m
, k+1
m

] to [0, 1], and let us
refer to Ym simply by Y .

Observe that since Y is holomorphic, it can be approximated by a polynomial vector field
uniformly on compact sets (because of Theorem A.8). Let us first see that the divergence of
this second vector field is also zero.

Lemma 3.4. Let Y : Cn → Cn be a holomorphic vector field with divY = 0. Then there exists
a polynomial vector field Z : Cn → Cn approximating Y uniformly on compact sets such that
divZ = 0.

Proof. Fix K ⊂ Cn compact and ε > 0. To the vector field Y (z) = (y1(z), . . . , yn(z)) assign
the holomorphic (n− 1, 0)−form

ω(z) =
n∑
k=1

(−1)k−1Yk(z)dz1 ∧ . . . ∧ d̂zk ∧ . . . ∧ dzn.

Observe that the exterior derivative of ω is

dw =
n∑
k=1

(−1)k−1∂Yk
∂zk

dzk ∧ dz1 ∧ . . . ∧ d̂zk ∧ . . . ∧ dzn =

=
n∑
k=1

∂Yk
∂zk

dz1 ∧ . . . ∧ dzn = divY dz1 ∧ . . . ∧ dzn = 0,

because divY = 0. Thus because Cn is simply connected there exists a holomorphic (n −
2, 0)−form τ such that ω = dτ . Now because τ is holomorphic we can find a polynomial
(n− 2, 0)−form σ approximating τ uniformly on compact sets. That is, if τ and σ are given by

τ =
∑

1≤i<j≤n

τijdz1 ∧ . . . ∧ d̂zi ∧ . . . ∧ d̂zj ∧ . . . ∧ dzn

and

σ =
∑

1≤i<j≤n

σijdz1 ∧ . . . ∧ d̂zi ∧ . . . ∧ d̂zj ∧ . . . ∧ dzn,

then there exists δ > 0 such that for every z, z′ ∈ K, if ||z − z′|| < δ, we have that |τij(z) −
σij(z)| < ε. Calculating the exterior derivative of both τ and σ yields

ω = dτ =
∑

1≤i<j≤n

(−1)i−1∂τij
∂zi

dz1 ∧ . . . ∧ d̂zj ∧ . . . ∧ dzn+

+
∑

1≤i<j≤n

(−1)j−2∂τij
∂zj

dz1 ∧ . . . ∧ d̂zi ∧ . . . ∧ dzn

and

dσ =
∑

1≤i<j≤n

(−1)i−1∂σij
∂zi

dz1 ∧ . . . ∧ d̂zj ∧ . . . ∧ dzn+

+
∑

1≤i<j≤n

(−1)j−2∂σij
∂zj

dz1 ∧ . . . ∧ d̂zi ∧ . . . ∧ dzn.
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Let us now see that dσ approximates dτ uniformly on K. For that, we use the Cauchy inequali-
ties. Since K is compact, it can be covered with finitely many polydisks with radius r < δ (that
is r1, . . . , rn < δ). Then it is enough to see that dσ approximates dτ uniformly on a polydisk
∆n(w, r) ⊂ K, with r < δ. By the Cauchy inequalities we have∣∣∣∣∂τij∂zk

(z)− ∂σij
∂zk

(z)

∣∣∣∣ ≤ 1

r
sup

z∈∆n(w,r)

|τij(z)− σij(z)| < ε

r
, ∀z ∈ ∆n(w, r).

Therefore we have that dσ approximates dτ uniformly on K. Finally, rewrite dσ as

dσ =
n∑
k=1

(−1)k−1Zkdz1 ∧ . . . ∧ d̂zk ∧ . . . ∧ dzn,

and let Z(z) =
(
Z1(z), . . . , Zn(z)

)
be a holomorphic polynomial vector field. Because Z is

assigned to dσ the same way that Y is assigned to w = dτ , and dσ approximates dτ , we have
that Z approximates Y uniformly on K. Moreover

0 = d2σ =
n∑
k=1

∂Zk
∂zk

dz1 ∧ . . . ∧ dzn = divZdz1 ∧ . . . ∧ dzn.

In the end Z is a holomorphic polynomial vector field approximating Y uniformly on compact
sets with divZ = 0, just as we wanted.

The next step is to prove that any polynomial holomorphic vector field Z can be decomposed
into a sum of complete holomorphic vector fields, whose solutions are overshears, or shears if
divZ = 0. To prove that fact, we need the three following lemmas.

Lemma 3.5. Let P ∈ C[z] be a polynomial of degree d ≥ 0. Then
span

(
P (z), P (z − 1), . . . , P (z − d)

)
= C≤d[z]. That is, P (z), P (z − 1), . . . , P (z − d) span the

space of polynomials of one variable of degree at most d with complex coefficients.

Proof. We use induction on d. The case d = 0 it is clear, because P is a constant, and thus
span

(
P (z)

)
= C = C0[z].

Suppose now the result is true for d, and let us prove it for d + 1. Let then P ∈ C≤d+1[z],
and define Q(z) = P (z) − P (z − 1). Because Q has degree d, by the induction hypothesis
span

(
Q(z), . . . , Q(z−d)

)
= C≤d[z]. Therefore span

(
P (z), Q(z), . . . , Q(z−d)

)
= span

(
P (z), P (z−

1), . . . , P (z − d− 1)
)

= C≤d+1[z].

Lemma 3.6. Let P : Cn → C be a polynomial. Then there exist l1, . . . , lr linear forms on Cn

and P1, . . . , Pr : C→ C polynomials such that

P (z) =
r∑

k=1

Pk
(
lk(z)

)
.

Proof. Let P : Cn → C be the polynomial given by

P (z) =
∑
|α|≤N

cαz
α,

where α = (α1, . . . , αn) ∈ Nn, cα = cα1,...,αn , and zα = zα1
1 · · · zαn

n . Thus we can write P as

P (z) =
∑

α1+...+αn≤N

cα1,...,αnz
α1
1 · · · zαn

n ,
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thus it is enough to prove the lemma for expressions of the form zα1
1 · · · zαn

n . Let us prove it
by induction on n. First consider the case n = 2, that is we want to prove it for zα1

1 zα2
2 . Put

m ≥ α1, α2, which we will fix later. By Lemma 3.5 applied to zα1
1 and d = m we know there

exist some numbers cj with 0 ≤ j ≤ m such that

zα1
1 =

m∑
j=0

cj(z1 − j)m. (5)

Replacing in (5) z1 by z1/z2 yields

zα1
1 zm−α1

2 =
m∑
j=0

cj(z1 − jz2)m.

Finally, by putting m = α1 + α2 we get what we want.

Now suppose we have the result for n ≥ 2 and let us prove it for n + 1. By the induction
hypothesis we have

zα1
1 · · · z

αn+1

n+1 = (zα1
1 · · · zαn

n )z
αn+1

n+1 =
m∑
k=1

Pk
(
lk(z1, . . . , zn)

)
z
αn+1

n+1 =

=
m∑
k=1

Nk∑
j=0

ck,j
(
lk(z1, . . . , zn)

)j
z
αn+1

n+1 ,

where Pk(x) =
∑Nk

j=0 ck,jx
j. Applying again the case n = 2 now to each

(
lk(z1, . . . , zn)

)j
z
αn+1

n+1

we get

(
lk(z1, . . . , zn)

)j
z
αn+1

n+1 =

Ñj∑
r=1

Qr

(
sr(lk(z1, . . . , zn), zn+1)

)
=

Ñj∑
r=1

Qr

(
s̃r,k(z1, . . . , zn+1)

)
.

Putting this together with our last formula yields

zα1
1 · · · z

αn+1

n+1 =
m∑
k=1

Nk∑
j=0

Ñj∑
r=1

ck,jQr

(
s̃r,k(z1m. . . , zn+1)

)
which is an expression of the form that we wanted.

Lemma 3.7. For every polynomial P : Cn → C, there exist complete polynomial holomorphic
vector fields X1, . . . , Xm such that

div

( m∑
k=1

Xk(z)

)
= P (z)

Proof. By Lemma 3.6 it is enough to prove it when P (z) = P1

(
l(z)
)
, where P1 is a polynomial

in one variable. Indeed, assume that we have proved it for polynomials of the form P1

(
l(z)
)
.

Let P be any polynomial in n variables. Then by Lemma 3.6 we can express P as

P (z) =
m∑
k=1

Pk
(
lk(z)

)
.
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Now, because we are assuming the result to hold for Pk
(
lk(z)

)
, for each 1 ≤ k ≤ m there exist

Xk1, . . . , Xkmk
complete polynomial holomorphic vector fields satisfying

div

( mk∑
j=1

Xkj(z)

)
= Pk

(
lk(z)

)
.

Then

div

( m∑
k=1

mk∑
j=1

Xkj(z)

)
=

m∑
k=1

div

( mk∑
j=1

Xkj(z)

)
=

m∑
k=1

Pk
(
lk(z)

)
= P (z).

Thus if we are able to prove the lemma for a polynomial of the form P1

(
l(z)
)

we will have
completed the proof. Let us then focus on proving the result for P1

(
l(z)
)
. Rearranging the

variables if necessary, we can suppose that l(1, 0, . . . , 0) 6= 0. Then performing the change of
variables {

w1 = l(z)
wj = zj for 2 ≤ j ≤ n

we have that P1

(
l(z)
)

= P1(w1). Define the vector field X(w) = (0, w2P1(w1), 0, . . . , 0) which
satisfies

divX(w) = P1(w1) = P (z)

and is complete because it has flow

ϕ(t;w) = (w1, w2e
tP1(w1), w3, . . . , wn)

which clearly is defined for all t ∈ R and all w ∈ Cn. Because our change of variables is linear,
we have that X(z) will be a complete polynomial vector field with divX = 0.

Remark 3.8. Observe that the time−t maps of X in the previous lemma, are overshears. This
will be useful when proving the Andersén-Lempert Theorem.

We finally give a proof that every polynomial vector field can be decomposed into a sum of
complete polynomial vector fields.

Theorem 3.9 (Decomposition of polynomial vector fields). Let X be a polynomial holomorphic
vector field. Then there exist X1, . . . , Xk complete holomorphic vector fields such that

X =
k∑
j=1

Xj.

and the time t−maps of each Xj are overshears. If in addition divX = 0, then every Xj can
be chosen so that divXj = 0, and the time−t maps of each Xj are shears.

To prove this theorem, first, we will see that with the help of the previous lemmas it is
enough to consider the case where divX = 0. Then to X we will attatch a (n − 1, 0)−form
ω, as we did in Lemma 3.4. Then we will consider τ a (n − 2, 0)−form such that dτ = ω.
Using Lemma 3.6 we will get a decomposition of τ , which will induce a decomposition of ω,
ω =

∑m
j=1 ωj. Finally our vector fields Xj will be those attached to each ωj.
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Proof. Let us first see that it is enough to see the case when divX = 0.
Indeed, supose we have proved the theorem when divX = 0, and let X be any polynomial

holomorphic vector field. Then divX is also a polynomial, and by Lemma 3.7 there exist
X1, . . . , Xm complete polynomial holomorphic vector fields satisfying

div

( m∑
k=1

Xk

)
= div(X).

Thus the vector field X−
∑m

k=1Xk has divergence zero. By our assumption there exist complete
holomorphic vector fields Xm+1, . . . , Xm′ satisfying

X −
m∑
k=1

Xk =
m′∑

k=m+1

Xk

which implies

X =
m′∑
k=1

Xk.

That is, X is a sum of complete holomorphic vector fields.
We now prove the case where divX = 0. Denote X = (X1, . . . , Xn), and consider the

holomorphic (n− 1, 0)−form ω defined by

ω =
n∑
k=1

(−1)k+1Xkdz1 ∧ . . . ∧ d̂zk ∧ . . . ∧ dzn.

Since dω = divXdz1 ∧ . . . ∧ dzn = 0, and Cn is simply-connected there exists a holomorphic
(n− 2, 0)−form τ with dτ = ω. Because ω is polynomial we can also take τ to be polynomial.
Put

τ(z) =
∑

1≤i<j≤n

τij(z)dz1 ∧ . . . ∧ d̂zi ∧ . . . ∧ d̂zj ∧ . . . ∧ dzn,

where τij are polynomials. Now to each τij apply Lemma 3.6 to get

τij(z) =

mij∑
r=1

Pijr
(
lijr(z)

)
with Pijr polynomials in one variable and lijr linear forms. Now let ωijr be the (n− 1, 0)−form
defined by

ωijr = d

(
Pijr
(
lijr(z)

)
dz1 ∧ . . . ∧ d̂zi ∧ . . . ∧ d̂zj ∧ . . . ∧ dzn

)
.

More precisely put

ωijr =(−1)i−1P ′ijr
(
lijr(z)

)
c

(i)
ijrdz1 ∧ . . . ∧ d̂zj ∧ . . . ∧ dzn+

+ (−1)jP ′ijr
(
lijr(z)

)
c

(j)
ijrdz1 ∧ . . . ∧ d̂zi ∧ . . . ∧ dzn.

To ωijr associate the vector field Yijr defined as

Yijr(z) =
(

0, . . . , 0,

i
^

(−1)i+jQ′ijr
(
lijr(z)

)
c

(j)
ijr, 0, . . . , 0,

j
^

(−1)i+j−1Q′ijr
(
lijr(z)

)
c

(i)
ijr, 0, . . . , 0

)
.
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As we have seen in other proofs we have divYijrdz1 ∧ . . . ∧ dzn = dωijr = 0. And because ωijr
is a decomposition of ω we have

X(z) =
∑

1≤i<j≤n

mij∑
r=1

Yijr.

If we see that each Yijr is complete and their time−t maps are shears we will be done. To that
end, consider the linear change of variables

w = Az,

where w1 = lijr(z) and A is a unitary matrix, that is, we complete A so that the rows form
an orthonormal system (if needed modify Pijr so that the vector defining lijr has norm 1). In
these new coordinates we have

Pijr
(
lijr(z)

)
dz1 ∧ . . . ∧ d̂zi ∧ . . . ∧ d̂zj ∧ . . . ∧ dzn =

=
∑

1≤l<k≤n

λlkPijr(w1)dw1 ∧ . . . ∧ d̂wl ∧ . . . ∧ d̂wk ∧ . . . ∧ dwn

which implies that

ωijr = P ′ijr(w1)

( n∑
k=2

λ1kdw1 ∧ . . . ∧ d̂wk ∧ . . . ∧ dwn
)
.

Therefore the vector field Yijr in the w coordinates is

Yijr(z) =

(
0,−P ′ijr(w1)λ12, . . . , (−1)n−1P ′ijr(w1)λ1n

)
and has as flow

ϕijr(t;w) =
(
w1, w2 − tP ′ijr(w1)λ12, . . . , wn + (−1)n−1P ′ijr(w1)λ1n

)
,

which for every t, it is a shear. Since completeness is invariant under a change of variables, we
get that each Yijr is complete, and thus X is a sum of complete holomorphic vector fields with
divYijr = 0.

Finally, we have all the necessary ingredients to give a proof of the Andersén-Lempert
Theorem.

3.1.1 Proof of the global Andersén-Lempert Theorem

Let f : Cn → Cn be an automorphism of Cn. We first prove the general case.
Fix any compact K ⊂ Cn and a ε > 0. Observe that any linear map (and translation) can

be written as a composition of overshears. Then we can suppose that f(0) = 0 and Df(0) = Id

(if needed we rewrite f as f(z) = Df(0)−1
(
f(z) − f(0)

)
. Then by Lemma 3.2 ϕ(t; z) = f(tz)

t

if t 6= 0 and ϕ(0; z) = z is a 1-parameter group of automorphisms of Cn. Moreover ϕ can
be viewed as the flow of the time-dependent vector field X. Let now Ym be the vector field
described in Lemma 3.3 and ym its flow. Because ym approximates ϕ uniformly on compact
sets we have that there exists m0 ∈ N such that for all m ≥ m0

||ϕ− ym||[0,1]×K <
ε

3
.
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Because Ym is a time-independent vector field in the intervals of the form
[
k/m, (k + 1)/m

]
,

we can approximate Ym uniformly on
[
k/m, (k + 1)/m

]
×K by a polynomial vector field Z(k)

whose flow φ(k) satisfies

||ym − φ(k)||[k/m,(k+1)/m]×K <
ε

3
.

Lastly, by the Decomposition Theorem (Theorem 3.9) there exist Z
(k)
1 , . . . , Z

(k)
M complete holo-

morphic vector fields satisfying

Z(k) =
m∑
j=1

Z
(k)
j .

Let ψj(k) represent the composition of the flows of each Z
(k)
j , as in Theorem 2.6. Then by

Theorem 2.6 we have that there exists jk ∈ N such that for all j ≥ jk we have that for all
(t, z) ∈

[
k
m
, k+1
m

]
×K we have ∣∣∣∣∣∣φ(k)(t; z)− ψj(k)

( t
j

; z
)∣∣∣∣∣∣ < ε

3
.

Therefore we have that∣∣∣∣∣∣ϕ− φj(k)

∣∣∣∣∣∣
[k/m,(k+1)/m]×K

≤ ||ϕ− ym||[k/m,(k+1)/m]×K + ||ym − φ(k)||[k/m,(k+1)/m]×K+

+
∣∣∣∣∣∣φ(k) − ψj(k)

∣∣∣∣∣∣
[k/m,(k+1)/m]×K

< ε.

Putting it all together, for any fixed t ∈
[
0, 1
]
, ψj(k) (whith k depending on t) will be a uniform

approximation in K of ϕ(t; ·). Finally, because of the Decomposition Theorem, we know that

the flows of each Z
(k)
j are overshears, we have that for a fixed t, ψj(k)(t/j; z) is a composition

of overshears. Putting t = 1 gives us that ϕ(1; z) = f(z) is approximated by a composition of
overshears, just as we wanted.

For the case where f is a volume-preserving automorphism, we have (as stated by each
lemma and theorem), that the approximations can be carried out so that all the vector fields
have zero divergence. By the Decomposition Theorem (Theorem 3.9), this implies that the

time t-maps of each Z
(k)
j are shears. Thus ψj(k) is a composition of shears, and therefore f can

be approximated uniformly on compact sets by a composition of shears. This concludes the
proof.

3.1.2 Not all automorphisms are compositions of overshears/shears

At this point, having seen that automorphisms of Cn are approximable by overshears it is
natural to ask ourselves if all automorphisms are compositions of overshears (or compositions
of shears). The answer (as the title of this section hints) is no. There are some automorphisms
that are not compositions of shears nor overshears. The first known example was provided by
Erik Andersén in his paper [2], and it is the following map

f(z1, z2) = (z1e
z1z2 , z2e

−z1z2).

This example only covers the case of n = 2 and where we are considering approximation by
shears. It was later proved that any map of the form

f(z1, z2) = (z1e
φ(z1z2), z2e

φ(z1z2))
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where φ : C→ C is holomorphic and non-constant, is not a composition of shears.

Later Erik Andersén and Lázló Lempert proved in [3], that there exists a volume-preserving
map f ∈ Aut(Cn) that is not a composition of shears, and there also exists a map f ∈ Aut(Cn)
that is not a composition of overshears.
The proofs of these two results were not constructive. That is the authors were not able to find
an explicit automorphism which is not a composition of shears/overshears. To this day (that
we know of) there have not been found explicit automorphisms not being a finite composition
of shears/overshears.

3.2 The Local Andersén-Lempert Theorem

Having seen the Global Andersén-Lempert Theorem, we now move to state and prove the local
version. To do that it is useful to consider the following definition.

Definition 3.10. Let Ω ⊂ Cn be open. We say that H :
[
0, 1
]
× Ω → Cn is an isotopy of

biholomorphisms of Ω (we will also refer to H just as an isotopy) if

i) H is of class C2 on
[
0, 1
]
× Ω

ii) For each t ∈
[
0, 1
]

the map H(t, ·) : Ω→ Cn is a biholomorphism from Ω into Cn.

For each t ∈
[
0, 1
]
, we will put Ωt to indicate the range of H(t, ·).

The concept of isotopy will replace the role of ϕ on the proof of the Global Andersén-Lempert
Theorem.

It will be important to refer to the inverse of H for a fixed t, i.e. the inverse of the map
H(t, ·). We will denote this inverse as H−1(t, ·). So H−1(t, z) will be the map H−1(t, ·) evaluated
at z.

We now state the Local Andersén-Lempert Theorem.

Theorem 3.11 (Local Andersén-Lempert Theorem). Let Ω ⊂ Cn be an open set, and H :
[
0, 1
]
×

Ω → Cn be an isotopy of biholomorphisms such that each Ωt is Runge in Cn. Then if H(0, ·)
can be approximated by automorphisms of Cn uniformly on compact sets of Ω, then for every
t ∈

[
0, 1
]

the map H(t, ·) can also be approximated by automorphisms of Cn uniformly on
compact sets of Ω.

Observe that one of the main differences between this theorem and the Global version is
that we start with a biholomorphism H(0, ·) which is defined only in an open set Ω instead of
the whole Cn. That is why it is used the term ”Local”. The second main difference is that we
require the sets Ωt to be Runge in Cn, the reason for doing this will be clear when discussing
the outline of the proof.

The outline of the proof is very similar to the one of the Global Andersén-Lempert Theorem.
We mainly focus on the parts that are different.

1st part: We will begin by noting that we can reduce ourselves to the case where H(0, ·) =

IdΩ. Then, using H we will construct a time-dependent vector field X with domain
[
0, 1
]
×Ωt,

whose flow will be H. The rest of this part is to approximate X with a vector field Ym that is
time-independent on intervals of the form [k/m, (k + 1)/m].

2nd part: Focusing on an interval [k/m, (k + 1)/m], Ym will be time-independent. Then
using that each Ωt is Runge, we will be able to approximate Ym by a polynomial vector field Z.
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Using the Decomposition Theorem we will decompose Z into a sum of complete holomorphic
vector fields whose solutions are automorphisms of Cn.

3rd part: Finally, we will compose the different time-t maps resulting from the previous
decomposition (which will yield a composition of automorphisms of Cn). This composition will
end up approximating H(t, ·).

Proof. It is enough to see the result when H(0, ·) = IdΩ.
Indeed, suppose we have proved the theorem when H(0, ·) = IdΩ, and let H be an isotopy

which at time t = 0 is not the identity. Let K ⊂ Ω be compact and ε > 0.
We have that the map H̃(t, z) :

[
0, 1
]
× Ω0 given by

H̃(t, z) = H
(
t,H−1(0, z)

)
is an isotopy of biholomorphisms of Ω0 such that H̃(0, z) = z. Observe also that the range of

H̃(t, ·) is also Ωt. Then by our assumption, for any t ∈
[
0, 1
]
, since K0 = H(0, K) is compact,

there exists ψ ∈ Aut(Cn) satisfying that for every z ∈ K0

||H̃(t, z)− ψ(z)|| < ε

2
,

which implies that for every z ∈ K

||H(t, z)− ψ
(
H(0, z)

)
|| < ε

2
.

Now by hypothesis, for every δ > 0 there exists Ψ ∈ Aut(Cn) such that for every z ∈ K

||H(0, z)−Ψ(z)|| < δ,

and because ψ is uniformly continuous on K, we can choose δ small enough so that for all
z ∈ K

||ψ
(
H(0, z)

)
− ψ

(
Ψ(z)

)
|| < ε

2
.

Putting it all together yields that for every z ∈ K

||H(t, z)− ψ
(
Ψ(z)

)
|| ≤ ||H(t, z)− ψ

(
H(0, z)

)
||+ ||ψ

(
H(0, z)

)
− ψ(Ψ(z))|| < ε

2
+
ε

2
= ε.

Since ψ and Ψ are both automorphisms ψ ◦ Ψ is also an automorphism, thus H(t, z) can be
approximated uniformly on compact sets of Ω by automorphisms.

Let us now prove the case when H(0, ·) = IdΩ. Let K ⊂ Ω be compact and ε > 0. Define
the time-dependent vector field X : [0, 1]× Ωt as

X(t, z) =
dH

dt

(
t,H−1(t, z)

)
.

Observe that its flow is given by H because

X
(
t,H(t, z)

)
=
dH

dt

(
t,H−1

(
t,H(t, z)

))
=
dH

dt
(t, z),

and H(0, z) = z. Moreover, X is holomorphic in z, and it is of class C1 on both t and z because
H is of class C2. Thus X is locally Lipschitz on the second variable uniformly with respect to the
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first one. Let Ym denote the vector field defined on the proof of the Global Andersén-Lempert
Theorem (replacing ϕ with H). We already know that ym, the flow of Ym, for a large enough
m satisfies that

||H − ym||[0,1]×K <
ε

3
.

Let us focus now on an interval of the form [k/m, (k + 1)/m] (where Ym is time-independent).
Because each Ωt is Runge, and Ym is holomorphic, we can approximate Ym by a polynomial

holomorphic vector field Z, whose flow φ(k) satisfies

||ym − φ(k)||[k/m,(k+1)/m]×K <
ε

3
.

At this point the proof carries out exactly as in the Global Andersén-Lempert Theorem. Thus
(keeping the same notation) we can find ψj(k) such that for all (t, z) ∈

[
k
m
, k+1
m

]
×K we have∣∣∣∣∣∣φ(k)(t; z)− ψj(k)

( t
j

; z
)∣∣∣∣∣∣ < ε

3
.

Moreover for a fixed t, ψj(k)(t/j; ·) is a composition of automorphisms of Cn. In the end we have
that ∣∣∣∣∣∣H − φj(k)

∣∣∣∣∣∣
[k/m,(k+1)/m]×K

≤ ||H − ym||[k/m,(k+1)/m]×K + ||ym − φ(k)||[k/m,(k+1)/m]×K+

+
∣∣∣∣∣∣φ(k) − ψj(k)

∣∣∣∣∣∣
[k/m,(k+1)/m]×K

< ε.

Therefore, for any fixed t ∈
[
0, 1
]
, H(t, ·) can be uniformly approximated in K by an automor-

phism of Cn. This ends the proof of the theorem.

Remark 3.12. In practice, if we have f : Ω→ Cn a biholomorphism with f(Ω) Runge. It will
be enough to see that Ω is star-shaped to deduce that f can be approximated by automorphisms
of Cn uniformly on compact sets of Ω.
Indeed, suppose Ω is star-shaped with respect to z0. Then the map F :

(
Ω− z0

)
→ Cn defined

by

F (z) = Df(z0)−1
(
f(z + z0)− f(z0))

is a biholomorphism satifying F (0) = 0 and DF (0) = Id. Thus H :
[
0, 1
]
×
(
Ω − z0

)
→ Cn

defined by {
H(t, z) =

F (tz)

t
, if t 6= 0

H(t, z) = z , if t = 0

is well defined and also, because of Lemma 3.2, an isotopy. Moreover, since linear maps and
translations preserve the Runge property, we have that

(
Ω − z0

)
t

is Runge for all t ∈
[
0, 1
]
.

Therefore we can apply the Local Andersén-Lempert Theorem to see there is a sequence (ψk)k ⊂
Aut(Cn) such that ψk converges uniformly on compact sets to H(1, z) = F (z). Thus the
sequence defined by Df(z0)ψk(z − z0) + f(z0) will converge uniformly on compact sets of Ω to
f .
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4 Applications of the Andersén-Lempert Theorem

In this section, we give, as an illustration, three major theorems that follow from the Andersén-
Lempert Theorem.

4.1 Approximation near polynomially convex sets

What we will prove in this section, in loose terms, is that given a finite collection of compact star-
shaped sets K1, . . . , Km, and an automorphism φk for each Kk. Then, under some conditions
there exists a sequence (ψj)j ⊂ Aut(Cn) such that ψj approximates simultaneously each φk
uniformly on a neighborhood of Kk. Notice that we are approximating different maps by just
one map!

In more concrete terms, we will prove the following:

Theorem 4.1. Let K1, . . . , Km be pairwise disjoint compact star-shaped domains of Cn. Let
for each 1 ≤ k ≤ m φk ∈ Aut(Cn). If the sets φk(Kk) are pairwise disjoint, and K =

⋃m
k=1Kk

and K ′ =
⋃m
k=1 φk(Kk) are polynomially convex, then for each 1 ≤ k ≤ m there exists Uk a

neighborhood of Kk and a sequence (ψj)j ⊂ Aut(Cn) such that ψj converges to φk uniformly on
Uk, for each 1 ≤ k ≤ m.

The idea of the proof is first to see an auxiliary result saying that if we have an isotopy of
biholomorphisms H of Ω ⊂ Cn, and K a polynomially convex set, then approximating H (for
a fixed t) on a neighborhood of K is equivalent to checking that for each t, Kt = H(t,K) is
polynomially convex.
Therefore to prove Theorem 4.1, we will only need to construct an isotopy H where every
H(t,K) is polynomially convex.

But all of this will be pointless unless we have a condition to check whether the union of the
compact polynomially convex sets K1, . . . , Km is polynomially convex. That is exactly what
Eva Kallin did in her revolutionary paper [12] in 1964. Before proving Theorem 4.1 we present
her findings.

4.1.1 The Separation Lemma and the three-sphere problem

As we have already mentioned, Eva Kallin gave in her paper [12] a condition on two compact
polynomially convex sets to ensure that their union is polynomially convex. For the proofs of
the following results, we have followed her paper [12].

Theorem 4.2 (Separation Lemma). Let K1, K2 be two compact sets in Cn. If f is a polynomial

satisfying f̂(K1) ∩ f̂(K2) = ∅, then ̂(K1 ∪K2) = K̂1 ∪ K̂2.

Observe that because both f(K1) and f(K2) are compact sets in C, the condition of f being

such that f̂(K1) ∩ f̂(K2) = ∅ just translates to f(K1) not surrounding f(K2) and vice versa.
The idea of the proof is to use Runge’s approximation theorem to construct polynomials

satisfying ||h||K̂1∪K̂2
< |h(a)| for some a ∈ Cn \ ̂(K1 ∪K2), thus implying that ̂(K1 ∪K2) ⊂

K̂1 ∪ K̂2.

Proof. First, let us prove that K̂1 ∪ K̂2 ⊂ ̂(K1 ∪K2) (which always holds). Let a ∈ K̂1 ∪ K̂2.
By definition we have that for every holomorphic polynomial P we have |P (a)| ≤ ||P ||K1 or
|P (a)| < ||P ||K2 . Without loss of generality we may assume that the former holds. Then we
also have that for every holomorphic polynomial P

|P (a)| ≤ max(||P ||K1 , ||P ||K2) = ||P ||K1∪K2 .
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Thus a ∈ ̂(K1 ∪K2), which proves the inclusion.

For the other inclusion, suppose a ∈ Cn \ (K̂1 ∪ K̂2) and let us prove that a 6∈ ̂(K1 ∪K2).

We now have two cases, either f(a) 6∈ f̂(K1) ∪ f̂(K2) or f(a) ∈ f̂(K1) ∪ f̂(K2).
On the first case, choose g a holomorphic function in one variable satisfying g(f(a)) = 1 and

||g ◦ f ||K1∪K2 < δ, with δ > 0 (here g depends on δ). Now applying the Runge approximation

theorem to g on the compact f(a) ∪ f(K1) ∪ f(K2) (by hypothesis C \
(
f(K1) ∪ f(K2)

)
is

connected, thus C \
(
f(K1)∪ f(K2)∪ f(a)

)
is also connected), we get that for every ε > 0 ther

exists a polynomial Pε such that |Pε(f(a)) − 1| < ε and ||P ◦ g||K1∪K2 < ε. Choose ε < 1/2.
Then we have

|P (f(a))| − ||P ◦ f ||K1∪K2 > 1− 2ε > 0.

Since P ◦ f is a polynomial, we get that a 6∈ ̂(K1 ∪K2).

On the second case, if f(a) ∈ f̂(K1)∪ f̂(K2), since f̂(K1)∩ f̂(K2) = ∅, either f(a) ∈ f̂(K1)

or f(a) ∈ f̂(K2). Without loss of generality assume that f(a) ∈ f̂(K1). Since a 6∈ K1

(because K1 ⊂ K̂1), we can find q a polynomial (in several variables) such that q(a) = 1 and
||q||K1 < 1/2. Put M = ||g||K2 . Again using Runge’s approximation theorem we can find a
polynomial p satisfying

||p− 1||f(K1) <
1

3

and

||p||f(K2) <
1

2M
.

Then the polynomial h(z) = q(z) · p
(
f(z)

)
satisfies

|h(a)− 1| < 1

3

and

||h||K1∪K2 <
2

3
.

Indeed,

|h(a)− 1| = |q(a)p
(
f(a))− 1| = |p

(
f(a)

)
− 1| ≤ ||p− 1||

f̂(K1)
<

1

3

where in the first inequality we have used that f(a) ∈ f̂(K1). The other inequality, namely
||h||K1∪K2 <

2
3
, comes from ||h||K1∪K2 = max(||h||K1 , ||h||K2) and

||h||K1 = ||p||f(K1)||q||K1 <
4

3

1

2
=

2

3
, ||h||K2 = ||p||f(K2)||q||K2 <

1

2M
M =

1

2
.

In the end we have that

||h||K1∪K2 <
2

3
< |h(a)|,

which because h is a polynomial, it implies that a 6∈ ̂(K1 ∪K2).

In both cases we ended up with a 6∈ ̂(K1 ∪K2), and since a ∈ Cn \ (K̂1 ∪ K̂2) is arbitrary

we have that ̂(K1 ∪K2) ⊂ K̂1 ∪ K̂2. This finishes the proof.
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From the previous theorem, we can deduce two important corollaries.

Corollary 4.3. If K1 and K2 are two disjoint convex compact sets, then K1∪K2 is polynomially
convex

Proof. First observe that since K1 and K2 are convex, they are polynomially convex. Since
K1 and K2 are disjoint convex sets, there is a hyperplane H separating K1 from K2. Now the
equation of such hyperplane is a polynomial p of degree one. Then p(K1) and p(K2) are also

disjoint convex sets, thus p̂(K1) ∩ p̂(K2) = ∅. Therefore by the Separation Lemma, we have
that K1 ∪K2 is polynomially convex.

Corollary 4.4. Let a1, . . . , ak ∈ Cn be different points. Then there exist δ0 > 0 such that for
all 0 < δ < δ0, the set

⋃k
j=1B(aj, δ) is polynomially convex.

The proof relies on finding a complex line L satisfying that for every pair of points aj, and
am we have π(aj) 6= π(am), where π is the orthogonal projection onto L. Having found this
line, we then can send this line L to C× {0} × · · · × {0} via a translation and rotations. The
resulting map will be a polynomial separating the points aj’s, thus separating some balls with
a small radius.

Proof. First, we want to choose a line L satisfying that for any two points aj, am we have
π(aj) 6= π(am) (where π is the orthogonal projection onto L). Observe that π(aj) = π(am) if
and only if aj and am belong to a common hyperplane Haj ,am which is perpendicular to L. We
would like to choose a line L whose defining unitary vector v is not any perpendicular vector to
the hyperplanes Haj ,am containing aj and am. We claim that we can always find such a vector.

Indeed, with 1 ≤ j < m ≤ k fixed, let Saj ,am ⊂ SnC be the set of unit normal vectors defining
each hyperplane containing both aj and am (here SnC is the unit sphere of complex coordinates
of complex dimension n). Observe that dimSaj ,am = n−1 as a complex manifold. Then the set
of all the possible normal unitary vectors defining the hyperplanes passing through each pair aj,
am is the set

⋃
1≤j<m≤k Saj ,am ⊂ SnC. Observe that this is a finite union of sets of dimension n−1,

therefore
⋃

1≤j<m≤k Saj ,am 6= SnC. This implies that there is a vector v ∈ SnC \
⋃

1≤j<m≤k Saj ,am ,
i.e. v is a vector that is not perpendicular to any hyperplane Haj ,ak . Thus the line L defined
by v satisfies what we wanted.

Let then π denote the orthogonal projection of Cn onto L. Then for every aj, am we have
that π(aj) 6= π(am). By means of a translation and rotations (which are polynomials of degree
one in each coordinate) send L to the set C×{0}× · · ·×{0} (denote g the composition of such
a translation and rotations). Therefore the first coordinate of g ◦ π is a polynomial f such that
f(aj) 6= f(ak).

Put ε0 = 1/2 min1≤j<k≤m(|f(aj) − f(ak)|), and choose ε < ε0. Because f is continuous,
for each 1 ≤ j ≤ m there is δj > 0 such that for every z ∈ Cn, if ||z − aj|| < δj then
|f(z)− f(aj)| < ε. Take δ < 1/2 min(δ1, . . . , δm) and δ < 1/2 min1≤j<k≤m(||aj − ak||). Then for

all j, k different we have that B(aj, δ) ∩ B(ak, δ) = ∅, and because f
(
B(aj, δ)

)
⊂ B(f(aj), ε)

we also have that f
(
B(aj, δ)

)
∩ f
(
B(ak, δ)

)
= ∅.

In the end we have found a polynomial f separating the sets B(aj, δ) whenever δ < δ0.

Then by the Separation Lemma, we have that
⋃k
j=1B(aj, δ) is polynomially convex.

The work of Eva Kallin was important because it answered a question mathematicians had
not been able to answer for some time. Kallin was able to prove that the polynomial convex
hull of three spheres (of any radius) is the union of the closed balls whose boundaries are such
spheres. It is still a mystery to this day if the same holds for more spheres.

Theorem 4.5 (Three Sphere Theorem). The polynomial hull of the three spheres S1, S2, S3 in

Cn is Ŝ1 ∪ Ŝ2 ∪ Ŝ3, where Ŝj is the closed ball whose surface is Sj.
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The proof is a direct consequence of the Separation Lemma. The strategy is then to con-
struct a polynomial separating the three closed balls.

Proof. We may begin assuming that the balls Ŝj are all disjoint. If not, since the spheres are
disjoint by hypothesis, we have the following two cases:

i) Two of the balls are included in the third one.

ii) Only one ball is included in another.

On case 1), by renaming the balls we can suppose that Ŝ1, Ŝ2 ⊂ Ŝ3. Then because S1∪S2∪S3 ⊂
Ŝ3 we have ̂(S1 ∪ S2 ∪ S3) = Ŝ3 = Ŝ1 ∪ Ŝ2 ∪ Ŝ3. This, in turn, implies ̂(S1 ∪ S2 ∪ S3) = Ŝ3 =

Ŝ1 ∪ Ŝ2 ∪ Ŝ3.
On case 2), without loss of generality, we can assume Ŝ1 ⊂ Ŝ2 and Ŝ2 ∩ Ŝ3 = ∅. Then by

Corollary 4.3 we have that Ŝ1 ∪ Ŝ2 ∪ Ŝ3 = Ŝ2 ∪ Ŝ3 is polynomially convex.
Having discussed these two small cases we turn our attention to the case where all three

balls are disjoint. By Corollary 4.3 and the Separation Lemma, it is enough to find a polynomial
separating one ball from the other two, to deduce Ŝ1 ∪ Ŝ2 ∪ Ŝ3 is polynomially convex. Let us
find such a polynomial.

By means of renaming the balls and performing a dilation, we can take S1 to be the ball
with the biggest radius, and to have its radius equal to 1. Let r2, r3 ≤ 1 be the radii of S2 and
S3 respectively. Now perform a translation so the center of S1 is 0. In the space spanned by
the center of the spheres take coordinates so that the center S1 is in (0, 0) and the center of
S2 lies on the real z1-axis. Next, perform a rotation in z1 and then in z2 so that the center of
S3 is of the form (α, β) with α, β ∈ R (essentially we are just multiplying the first and second
coordinates by complex numbers of modulus 1). This leaves the center of S1 at (0, 0) and the
center of S2 at (γ, 0) with γ ∈ C. We claim that the polynomial f given by

f(z1, z2) = z2
1 + z2

2

separates Ŝ1 from Ŝ2 ∪ Ŝ3. Let us see this.
Clearly |f(z)| ≤ 1 for all z ∈ Ŝ1. We also have that Re(f(z)) > 1 in Ŝ2. To see this, write

for j = 1, 2, zj = xj + iyj, and remember that Ŝ1 ∩ Ŝ2 = ∅, thus α2 + β2 > (1 + r2)2. Therefore
we have that for (z1, z2) ∈ {(z1, z2) ∈ C2 | |z1 − α|2 + |z2 − β|2 ≤ r2

2} the following inequality
holds

(x1 − α)2 + y2
1 + (x2 − β)2 + y2

2 ≤ r2
2.

Put η =
√
α2 + β2− 1− r2 > 0, and ε = r2−

√
(x1 − α)2 + (x2 − β)2 ≥ 0. Then we have that

Re(z2
1 + z2

2) = x2
1 + x2

2 − (y2
1 + y2

2) ≥ x2
1 + x2

2 + (x1 − α)2 + (x2 − β)2 − r2
2 ≥

≥ (1 + η + ε)2 + (r2 − ε)2 − r2
2 = 1 + 2η + 2ε(1− r) + (η + ε)2 + ε2 > 1

because η > 0, ε ≥ 0, and 0 < r2 ≤ 1.
Now if we replace z1, z2, α, β, and r2 by |γ|

γ
z1,
|γ|
γ
z2, |γ|, 0 and r3 we get

Re

(
|γ|2

γ2
(z2

1 + z2
2)

)
> 1

for all (z1, z2) ∈ {(z1, z2) ∈ C2 | |z1 − γ|2 + |z2|2 ≤ r3}, because |γ| > 1 + r3 and r3 ≤ 1.

In the end |f(z)| > 1 for all z ∈ Ŝ2 ∪ Ŝ3. Thus f separates Ŝ1 from Ŝ2 ∪ Ŝ3 which is what
we wanted.
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4.1.2 Auxiliary results

As we have mentioned at the beginning of Section 4.1, to prove Theorem 4.1 we first need
an auxiliary result saying that having an isotopy of biholomorphisms preserving polynomial
convexity is equivalent to being able to approximate each biholomorphism by automorphisms
of Cn.

To prove the auxiliary result we first need two previous results.

Lemma 4.6. Let f : Ω → Ω′ be a biholomorphism from a domain Ω ⊂ Cn onto the domain
Ω′ ⊂ Cn that can be approximated uniformly on compact sets by automorphisms of Aut(Cn).
Then:

i) K b Ω is polynomially convex if and only if f(K) b Ω′ is polynomially convex.

ii) Ω is Runge if and only if Ω′ is Runge.

Proof. a)
We will prove that if K ′ = f(K) is polynomially convex then K is also polynomially convex.

For that choose a ∈ Ω\K and let us prove that a 6∈ K̂. Since f(a) 6∈ K ′ and K ′ is polynomially
convex (by hypothesis) we can find a holomorphic polynomial p satisfying

||P
(
f(a)

)
|| > ||P ||K′ = ||P ◦ f ||K .

Put d = |P
(
f(a)

)
| − ||P ◦ f ||K > 0. By hypothesis we can find ψ ∈ Aut(Cn) satisfying

||P ◦ ψ − P ◦ f ||K∪{a} <
d

2
.

Therefore we have that

||P ◦ ψ||K < ||P ◦ f ||K +
d

2
< |P

(
f(a)

)
| − d

2
< |P

(
ψ(a)

)
|.

Now because P ◦ ψ ∈ H(Cn), we can approximate P ◦ ψ uniformly on K ∪ {a} by a polyno-
mial Q satisfying ||Q||K < |Q(a)| (we just need to repeat the same argument replacing P ◦ ψ
with Q and P ◦ f with P ◦ ψ). In the end, we have that a 6∈ K̂. Because a ∈ Ω \ K is ar-

bitrary, we have proved K̂ ⊂ K which implies that K = K̂. In short, K is polynomially convex.

For the other implication, the same argument works replacing f by f−1 (because f is a
biholomorphism).
b)
Suppose that Ω′ is Runge, and let us show that Ω is also Runge. Let K b Ω and g ∈ H(Ω).
To see that Ω is Runge it is enough to see that g can be uniformly approximated by polyno-
mials. Choose U an open set satisfying f(K) ⊂ U b Ω′. Now because Ω′ is Runge, g ◦ f−1

can be uniformly approximated on U by a polynomial P . Therefore P ◦ f approximates g
uniformly on f(U). Using the hypothesis on f , we can choose ψ ∈ Aut(Cn) so that it ap-
proximates f in U and ψ(K) ⊂ U . Finally P ◦ ψ approximates g uniformly on K, and since
P ◦ψ ∈ H(Cn), g can be approximated uniformly on K by polynomials. In the end, Ω is Runge.

Repeating the same argument for f−1 instead of f yields the other implication.

Lemma 4.7. Let Ω ⊂ Cn be open, and H :
[
0, 1
]
× Ω → Cn be an isotopy. If K ⊂ Ω is a

compact polynomially convex set satisfying that each Kt = H(t,K) is polynomially convex,
then there exists a basis of Stein neighborhoods U of K such that for every t ∈

[
0, 1
]
H(t, U)

is Runge.
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Proof. Because K is polynomially convex, there exists ρ ≥ 0 a smooth plurisubharmonic ex-
haustion of Cn such that ρ|K = 0. Now for each ε > 0 the set

Uε = {z ∈ Cn | ρ(z) < ε}

is pseudoconvex (because ρ is plurisubharmonic). In other words (Uε)ε>0 is a basis of Stein
neighborhoods. We claim that for ε small enough H(t, Uε) is Runge.

Indeed, fix t ∈
[
0, 1
]
. Because H(t, ·) is a biholomorphism, ρt(z) = ρ

(
H−1(t, z)

)
≥ 0 is

plurisubharmonic on Ωt = H(t,Ω), and it vanishes on Kt. Choose V b Ωt an open neighbor-
hood of Kt. Since Kt is polynomially convex, we can find η ≥ 0 a smooth plurisubharmonic
exhaustion of Cn so that it is strongly plurisubharmonic on Cn \ V and vanishes on a smaller
neighborhood V1 b V os Kt. Consider now an auxiliary smooth function χ compactly supported
on Ωt so that χ|V = 1. We now can choose δ > 0 small enough so that

ηt(z) = η(z) + δχ(z)ρt(z), z ∈ Cn

is a strongly plurisubharmonic exhaustion of Cn. This works because the Levi matrix of ηt
will be the Levi matrix of η plus δ multiplied by something depending on χ and its derivatives
(which are all uniformly bounded above and below by a constant M), thus taking δ < m/M
where m is the minimum over the compact support of χ of the enrties of the Levi matrix of η,
does the job.

Therefore we have that ηt is a smooth strongly plurisubharmonic exhaustion that vanishes
on Kt, and equals δρt(z) whenever z ∈ V1. We also have that the sets of the form

{z ∈ Cn | ηt(z) < ε}

are Runge. In the end, taking ε0 > 0 small enough so that for all 0 < ε < ε0 H(t, Uε) ⊂ V1

implies that

H(t, Uε) = {z ∈ V1 | ρt(z) < ε} = {z ∈ Cn | ηt(z) < δε},

hence H(t, Uε) is Runge, as we claimed.

Finally, the same ε0 works for a neighborhood of the fixed t, thus using the compactness of[
0, 1
]

we can choose ε0 to be independent of t, thus proving the lemma.

We are now ready to prove our auxiliary result.

Proposition 4.8. Let Ω ⊂ Cn be open and H be an isotopy of biholomorphisms of Ω so
that H(0, ·) = IdΩ. Then for every compact polynomially convex set K ⊂ Ω the following are
equivalent:

i) For every t ∈
[
0, 1
]
, Kt = H(t,K) is polynomially convex.

ii) There exists a neighborhood U of K so that for all t ∈
[
0, 1
]
, the map H(t, ·) can be

uniformly approximated in U by automorphisms of Cn.

Proof.
i)⇒ii)
By Lemma 4.7 we can find a neighborhood U of K so that each H(t, U) is Runge. Then by
the Local Andersén-Lempert Theorem, each map H(t, ·) can be uniformly approximated by
automorphisms of Cn on U .
ii)⇒i)
Applying Lemma 4.6 i) to each H(t, ·) (we can do so because H(t, ·) is approximable by auto-
morphisms, by hypothesis) yields that each Kt is polynomially convex.

We are now ready to prove Theorem 4.1.
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4.1.3 Proof of Theorem 4.1

Because of Proposition 4.8 applied to K =
⋃m
j=1Kj, it is enough to find for each 1 ≤ j ≤ m an

isotopy Hj defined on a neighborhood Uj of Kj satisfying:

a) Hj(0, ·) = IdUj
.

b) Hj(1, ·) = φj

c) The sets Kj,t = H(t,Kj) are pairwise disjoint, and their union
⋃m
j=1Kj,t is polynomially

convex for each t ∈
[
0, 1
]
.

To find such an isotopy we first need some preparations.
Begin by considering for each 1 ≤ j ≤ m, Uj a bounded neighborhood of Kj, star-shaped

with respect to a point, call it aj so that the U j’s are pairwise disjoint, and φj(Uj) = U ′j are also
pairwise disjoint. We know that for each φj there is a smooth isotopy ϕj so that ϕj(0, ·) = IdCn ,
and ϕj(1, ·) = φj (the procedure to get this is really similar to the one done in Lemma 3.2 in
Section 3). Modifying each ϕj by a family of translations (depending on t), we may assume
that the points bj,t = ϕj(t, aj) are all distinct for 1 ≤ j ≤ m and t ∈

[
0, 1
]
.

Let now ε > 0 be small enough so that
⋃m
j=1 B(bj,t, ε) is polynomially convex for every

t ∈
[
0, 1
]

(we can do this by Corollary 4.4). Let δ > 0 be small enough so that ϕj(t, ·) maps
B(aj, δ) to B(bj,t, ε) for every t ∈

[
0, 1
]

(we can do this because H is uniformly continuous on[
0, 1
]
×Kj). Finally, let R > be large enough so that for every j, Uj ⊂ B(aj, R).

We are now ready to define our isotopy. Put c so that 1− c/3 = δ/R, and define Hj(t, z) by

Hj(t, z) =


aj + (1− ct)(z − aj) if 0 ≤ t ≤ 1/3
ϕ
(
3t− 1, aj + δ/R(z − aj)

)
if 1/3 ≤ t ≤ 2/3

φj

(
aj +

(
1 + c(t− 1)

)(
z − aj

))
if 2/3 ≤ t ≤ 1.

What this isotopy does is first contract Uj into B(aj, δ), then apply ϕj to B(aj, δ) and finally
expand B(bj,t, ε) into U ′j. It remains to be seen that for each t ∈

[
0, 1
]
,
⋃m
j=1Hj(t,Kj) is

polynomially convex.
For 1 ≤ t ≤ 1/3 the union

⋃m
j=1Hj(t,Kj) is polynomially convex because K =

⋃m
j=1 Kj is

polynomially convex (by hypothesis), and Hj(t, ·) is a contraction (thus a biholomorphism)
therefore by Lemma 4.6 i) we have that

⋃m
j=1Hj(t,Kj) is polynomially convex. A similar thing

happens for 2/3 ≤ t ≤ 1. And for 1/3 ≤ t ≤ 2/3, Hj(1/3, Kj) is star-shaped, because Kj is,
and thus polynomially convex. Therefore again by Lemma 4.6 i) we have that

⋃m
j=1Hj(t,Kj)

is polynomially convex.
One could object that our isotopy H is not smooth on t, but that is no problem because we

can reparametrise
[
0, 1
]

so that Hj(t, z) is smooth. This ends the proof.

As an immediate corollary, using the Separation Lemma (Theorem 4.2) we have the follow-
ing:

Corollary 4.9. Let B1, B2, B3 and B′1, B
′
2, B

′
3 be two sets of pairwise disjoint closed balls

in Cn. Then there exists a sequence (ψk)k ⊂ Aut(Cn) so that ψk converges uniformly on a
neighborhood of each Bj to an affine map sending Bj to B′j.
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4.2 Embedding holomorphic discs through discrete sets

In this section, we present yet another application of the Andersén-Lempert Theorem that can
be found in [6], which schematically says that given a discrete sequence Z, we can always find
a space biholomorphic to a disk, that crosses each one of the points in Z.

In more concrete terms we want to prove the following:

Theorem 4.10. Let Ω ⊂ Cn be a pseudoconvex Runge domain and Z = (zk)k≥0 ⊂ Ω a
discrete sequence (that is with no accumulation points). Then there exists a proper holomorphic
embedding f : D ⊂ C→ Ω satisfying Z ⊂ f(D).

The idea of the proof of Theorem 4.10, is to construct a sequence (fk)k of proper holomorphic
embeddings fk : C→ Cn in a way that the points z0, . . . , zk are contained in the same connected
component of fk(C) ∩ Ω. The map fk+1 will be obtained as the composition fk+1 = φk ◦ fk,
where φk will be an automorphism of Cn such that φk is very close to the identity on a compact
polynomially convex set Kk b Ω, it fixes z0, . . . , zk and zk+1 ∈ fk+1(C).

In what follows we will need to refer both to points in C and points in Cn. To make it easier
for the reader to follow, w will denote a point in C while z will be a point in Cn.

To prove Theorem 4.10 we need two major results:

Lemma 4.11. Let Ω ⊂ Cn be a pseudoconvex Runge domain and f : C → Cn be a proper
holomorphic embedding. Then each connected component of f(C)∩Ω is simply connected and
therefore is biholomorphic to the unit disk D or to C.

Proof. Let A be a connected component of f(C) ∩ Ω, and let U = f−1(A). Since f is an
embedding, to prove A is simply connected, it is enough to prove that U is simply connected.
Suppose it is not and let us arrive at a contradiction. Since U is not simply connected we can
choose w0 a point in a bounded component of C \ U . Now consider the holomorphic function
F : A→ C defined by

F (z) =
1

f−1(z)− w0

,

which is well defined since w0 /∈ U . Now by Cartan’s theorem A (Theorem 7.2.8 of [9]), F can
be extended to a holomorphic function on Ω. Now because Ω is Runge, it follows that there
exists (Pk)k a sequence of holomorphic polynomials converging uniformly on compact set to F .
Then Pk ◦ f defines a sequence of entire functions converging uniformly on compact sets of U
to the function w 7→ 1/(w − w0) which is a contradiction.

We also need the following proposition (which we think is interesting by itself).

Proposition 4.12 (Combing hair by Holomorphic Automorphisms). Let K ⊂ Cn be a compact
polynomially convex set and γ a parametrization of a Cr-diffeomorphic image of [0, 1] (r ≥ 3)
so that γ∗ ∩ K = {γ(0)}. Let F : K ∪ γ∗ → K ∪ C ′ ⊂ Cn be a homeomorphism so that
F |(K∪γ∗)∩U = id for some open neighborhood U of K.

Then ∀ ε > 0 ∃ ψ ∈ Aut(Cn) so that ||ψ − F ||K∪γ∗ < ε. Moreover, for each pair of finite
subsets A ⊂ γ∗ B ⊂ Cn \ γ∗, we can find ψ as above such that it also satisfies that ψ|A = F |A
and ψ(b) = b for every b ∈ B.

Since the proof of the Combing hair by Holomorphic Automorphisms is rather long and to
understand it we need to introduce different concepts, we choose to postpone it.

With Lemma 4.11 and the Combing hair by Holomorphic Automorphisms, we are ready to
prove Theorem 4.10.
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4.2.1 Proof of Theorem 4.10

We first consider the case where Ω 6= Cn.
Take ρ : Ω → R a smooth plurisubharmonic exhaustion function such that ρ(zk) 6= ρ(zj)

whenever k 6= j (if needed modify ρ in a neighborhood of zk). Assume that ρ(zk) < ρ(zk+1)
for all k ≥ 0 (if necessary we reorder the sequence Z). For each k ≥ 0 choose rk so that
ρ(zk) < rk < ρ(zk+1), and put Kk = {z ∈ Ω | ρ(z) ≤ rk}. Because ρ is a plurisubharmonic
exhaustion, it follows that Kk is a compact polynomially convex set (Theorem 5.2.10 of [9]).
Then (Kk)k is an increasing sequence of compact polynomially convex sets such that

⋃∞
k=0Kk =

Ω, Kk ∩ Z = {z0, . . . , zk} and (Kk+1 \Kk) ∩ Z = {zk+1}.
Let us now define f0. Fix a point a ∈ Cn \ Ω, and put w0 = 0 ∈ C. Let f0 : C → Cn

be a proper holomorphic embedding so that f0(0) = z0, f0(1) = a, and z1 /∈ f0(C). Set
L−1 = ∆−1 = V−1 = ∅.

Suppose now that for every k ≥ 0 we already have a proper holomorphic embedding fk : C→
Cn, a set of points in the complex plane w0, . . . , wk 6= 1, a number Mk−1 and a smooth bounded
simply connected domain ∆k−1 b C \ {1} such that

i) fk(wj) = zj for all 0 ≤ j ≤ k,

ii) fk(1) = a,

iii) zk+1 /∈ fk(C), and

iv) {w0, . . . , wk} ∪∆k−1 is contained in U0
k which is a connected component of f−1

k (Ω).

Observe that ρ ◦ fk is an exhaustion function of f−1
k (Ω). Let Mk be a so that

Mk ≥ max(rk,Mk−1) + 1, (6)

Mk is a regular value of ρ ◦ fk|f−1
k (Ω) and {w0, . . . , wk} ∪ ∆k−1 is contained in one connected

component of

Vk = {w ∈ f−1
k (Ω) | ρ ◦ fk(w) < Mk} b f−1

k (Ω). (7)

We can choose such an Mk because of Sard’s Theorem, which tells us that the set of critical
values of ρ ◦ fk has Lebesgue measure 0. Thus we can always take Mk big enough to satisfy
what we desire.

Let us denote the connected component of Vk containing {w0, . . . , wk} ∪ ∆k−1 by ∆k. By
Lemma 4.11, Vk is made up of smooth bounded simply connected components ∆k,∆

1
k, . . . ,∆

jk
k

which have disjoint closures (because Mk is a regular value). There are finitely many because
fk is an embedding (see Figure 1 to get an idea of fk(Vk) and fk(∆k)).

Put

Lk = Kk ∪ (fk(C) ∩ ΩMk
) = Kk ∪ fk(Vk),

where ΩMk
= {z ∈ Ω | ρ(z) ≤ Mk}. Let us see that Lk is polynomially convex. To do that,

suppose is not and let us arrive at a contradiction. Let b ∈ L̂k \ Lk. Since Lk ⊂ ΩMk
and ΩMk

is polynomially convex, we have that L̂k ⊂ ΩMk
, and therefore b /∈ fk(C)∪Kk. Using Cartan’s

A Theorem (Theorem 7.2.8 of [9]) there exists g : Cn → C holomorphic such that g(b) = 1
and g = 0 on fk(C). Because Kk is polynomially convex and b /∈ Kk, we can find h : Cn → C
holomorphic with h(b) = 1 and ||h||Kk

< 1. Let now N ∈ N be so that

||hN ||Kk
< ||g||−1

Kk
.
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Figure 1: A schematic version of the disposition of the sets Ω, fk(C), f(Vk), and f(∆k).

Then the function G(z) = g(z)h(z)N satisfies G(b) = 1 and

||G||Lk
= max{||G||Kk

, ||G||fk(C)∩ΩMk
} = ||G||Kk

= ||ghN ||Kk
< 1.

Thus we have found a holomorphic function G so that ||G||Lk
< G(b), this implies that b /∈ L̂k,

which is a contradiction. Therefore Lk is polynomially convex.
We now want to apply Proposition 4.12 to the set Lk and some suitable arc Ck. For that,

let αk be a smooth arc in U0
k \∆k with one endpoint attached to ∆k and not intersecting any

other connected component of Vk. Call wk+1 the endpoint of αk that is not attached to ∆k.
Then Ck = fk(αk) is an arc in fk(C) ∩ Ω that connects fk(wk+1) to a point in fk(∆k) ⊂ Lk.

Now by Proposition 4.12 applied to Lk and Ck, for any εk > 0 there exists φk ∈ Aut(Cn)
satisfying:

a) ||φk − Id||Lk
< εk

b) φk(fk(wk+1)) = zk+1

c) φk(zj) = zj for all 0 ≤ j ≤ k and φk(a) = a

d) φk(Ck) ⊂ Ω

e) zk+2 /∈ φk(fk(C)).

Now define fk+1 := φk ◦ fk : C → Cn. Since fk is a proper holomorphic embedding and
φk ∈ Aut(Cn), fk+1 is also a proper holomorphic embedding of C into Cn. Moreover, fk+1

satisfies the same properties as fk, that is properties i) to iv) above (replacing k with k + 1).
With all of this, we have constructed a sequence (fk)k of proper holomorphic embeddings

from C to Cn with some desired properties. Observe that the εk’s are arbitrary. We will impose
some conditions on them now.

Set

V =
∞⋃
k=0

Vk and ∆ =
∞⋃
k=0

∆k. (8)
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Then we have wk ⊂ ∆ ⊂ V ⊂ C \ {1} for all k ≥ 0. Observe that by property a), for all k ≥ 0
we have ||fk+1 − fk||Vk < εk. Now in each step choose εk > 0 satisfying

A) εk ≤ εk−1/2

B) εk <
1
2
d(Lk,Cn \ ΩMk+1)

C) εk <
1
2
d(Kk−1,Cn \Kk).

Because Mk+1 ≥ Mk + 1, by A) and B) we have that Vk b Vk+1 for all k. We also have that
(fk)k is uniformly Cauchy on each Vk. Indeed, on Vk, for j > k

||fj − fk||Vk ≤
∞∑
l=k

||fl+1 − fl||Vk <
∞∑
l=k

εl
A)

≤
∞∑
l=k

εk
2l−k

= 2εk.

Because the Vk’s form an exhaustion of V , (fk)k is uniformly Cauchy on compact sets of V .Then,
there exists the limit f = limk→∞ fk (which is uniform on compact sets of V ), and this limit
defines a holomorphic function. By B), we also have that f(Vk) ⊂ Ω for all k, then f(V ) ⊂ Ω.

Now because each fk is an embedding, we have that f is an injective immersion into Ω (if
needed we take each εk smaller). If we see that f is proper, we will have that f is a proper
injective immersion, and thus a proper embedding (Proposition 4.22 of [16]). Let us then see
that f is proper.

Because ||φk − Id||Kk
< εk, by A) and C), after the k-th step no point from Cn \ Kk will

end up in Kk−1. Then

f(V \ Vk) ⊂ Ω \Kk−1

for all k. Thus f is proper.
Now because for each k ∆k is a connected component of Vk and Vk b Vk+1, we have that ∆

is a connected component of V . More is true, ∆ ⊂ C \ {1} is a simply connected domain since
(∆k)k is an increasing sequence of simply connected domains.

In summary, we have that f : ∆ → Ω is a proper holomorphic embedding from a simply
connected domain ∆ ⊂ C \ {1} to Ω. If we see that Z ⊂ f(∆) then we will be done. By
properties b) and c) of φk, we have that for all k, f(wk) = lim

j→∞
fj(wk) = fk(wk) = zk. Then

Z ⊂ f(∆) as we wanted.
As we have claimed this is enough, because by the Riemann mapping theorem, since

∆ ⊂ C \ {1}, ∆ is biholomorphic to the disk D, say by F : D→ ∆. Then the proper holomor-
phic embedding we want is the map f ◦ F .

All of this takes care of the case Ω 6= Cn. To prove the case for Cn, we take U ⊂ Cn a Fatou-
Bieberbach Runge domain (that is, a Runge domain biholomorphic to Cn), and F : U → Cn

a biholomorphism. We then apply the theorem to U with the discrete set F−1(Z) to find
f : D→ U a proper holomorphic embedding such that F−1(Z) ⊂ f(D). Then the map F ◦ f is
a proper holomorphic embedding of the disk such that Z ⊂ F (f(D)). This finishes the proof
(if we take the Combing hair by Holomorphic Automorphisms to be true).

We take this opportunity to give two comments regarding the proof of Theorem 4.10. The
first one is about the existence of Fatou-Bieberbach Runge domains, and the second one on the
choices of the sequence (wk)k in the previous proof.
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Existence of Fatou-Bieberbach Runge domains: The existence of Fatou-Bieberbach
Runge domains is not something to be taken for granted. Some work is required to prove that
such objects exist. We just enunciate a result concerning this manner and give an example
from a paper of Walter Rudin and Jean Pierre Rosay [22].

Theorem 4.13. Let F ∈ Aut(Cn), and p ∈ Cn such that F (p) = p. Suppose the eigenvalues of
DF (p), satisfy |λ1| ≥ |λ2| ≥ . . . ≥ |λn| and

|λ1|2 < |λn|.

Then

Ω = {z ∈ Cn : lim
k→∞

F k(z) = p},

the basin of attraction of p, is a Fatou-Bieberbach region and there is a biholomorphic map
ψ : Ω→ Cn, given by

ψ = lim
k→∞

(DF (p))−kF k,

where the limit is taken uniformly on compact subsets of Ω. Here, by F k we mean F ◦ k. . . ◦ F .

Example 4.14. The map F : C2 → C2 defined by

F (z1, z2) =

(
z1

2
+
(z2

2
+ z2

1

)2

,
z2

2
+ z2

1

)
is a holomorphic automorphism of C2 whose eigenvalues at the origin are 1/2 and −1/2 and
that leaves the origin fixed (i.e. F (0, 0) = (0, 0)). In other words, F satisfies the hypothesis of
Theorem 4.13. Thus the basin of attraction of (0, 0) is a Fatou-Bieberbach domain. But Ω is
not all C because F (1/2, 1/2) = (1/2, 1/2).

On the choice of (wk)k: With the same notations as in Theorem 4.10, one could ask that
if the sequence (wk)k in the proof of Theorem 4.10 is fixed, then can we also find f : D → Cn

a proper holomorphic embedding satisfying f(wk) = zk? The answer depends on the choice of
(wk)k and fk. The reason is that we needed the automorphisms φk to satify φk(fk(wj)) = zj for
all j ≤ k (with some additional properties). It is not clear at all that such an automorphism
exists for an arbitrary sequence (wk)k. In fact, it was shown in [22] that there exist pairs of
discrete sequences (ak)k∈N, (bk)k∈N on Cn such that there is no φ ∈ Aut(Cn) sending (ak)k∈N to
(bk)k∈N.

Having discussed the two previous topics, we now move to the proof of the proposition of
Combing hair by Holomorphic Automorphisms.

4.2.2 Combing hair by Holomorphic Automorphisms

To fully understand the proof, it is important for the reader to be familiar with Section A.3,
since we will use some techniques regarding the ∂-equation.

Proof of Combing hair by Holomorphic Automorphisms
Firstly, since γ∗ is a Cr-arc and homeomorphisms are approximable by Cr-diffeomorphisms, we
then can think that F is a Cr-diffeomorphism from γ∗ to another arc and that F is the identity
in a neighborhood U of K. Shrinking U if needed we can assume that γ∗∩U = C ′∩U (because
F |U = idU). Now we extend F to the identity to U . Let now H : [0, 1]× (U ∪ C)→ U ∪ Ct be
a Cr map connecting idU∪γ∗ to F such that
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i) H(t, ·)|U = idU for all 0 ≤ t ≤ 1.

ii) H and dH
dt

(t, z) are Cr
(

[0, 1]× (U ∪ γ∗)
)

.

Here Ct = H(t, γ∗). Observe that Ct ∩ U = γ∗ ∩ U for all 0 ≤ t ≤ 1. Let now X be the vector
field defined by the equation

dH

dt
(t, z) = X(H(t, z)).

By ii), X is of class Cr on (z, t). To make computations easier to follow we include t as a
complex variable. For that let us define

S =
⋃
t∈[0,1]

{t} × Ct , L0 = [0, 1]×K , L = L0 ∪ S.

Now because the set K ∪Ct ⊂ Cn is polynomially convex for all 0 ≤ t ≤ 1 (this follows from a
result in [7]) then L0 and L are also polynomially convex.

Choose U ′ b C to be a neighborhood of the segment [0, 1] ⊂ C, and let U0 = U×U ′ b Cn+1

be the corresponding neighborhood of L0. We then extend the map X to U0 ∪ S as

X(ζ) = X(t, z) , where ζ = (t, z) ∈ S and X|U0 = 0.

Observe that S ⊂ Cn+1 is a totally real Cr-manifold. Because X is of class Cr on S and zero
on U0, we can extend X to a map X : Cn+1 → Cn of class Cr with compact support. Then by
Lemma A.32 we have that

∂X(ζ) = o(d(ζ, S)r−1) as ζ → S (9)

uniformly on compact sets of S. In (9), by ∂X we mean ∂Xk for all 1 ≤ k ≤ n + 1. Now for
each compact K ′ ⊂ Rm we denote K ′ε = {x ∈ Rm| d(x,K) < ε}. The proposition follows now
from the following two lemmas and the local Andersén-Lempert theorem.

Lemma 4.15. With the same notation as above and r ≥ 3. There exists ε0 > 0 and ν : [0,∞)→
[0,∞) such that ν(t) > 0 ∀ t > 0 and ν(0) = 0, and for every 0 < ε < ε0 there exists
Yε0 : Cn+1 → Cn entire with

||X − Yε||Lε ≤ ν(ε)ε.

Lemma 4.16. Let X,Y be two time-dependent Lipschitz vector fields on Rm with local flows
φ and ψ (respectively). Suppose that φ(t, x) is defined for all x ∈ K b Rm and 0 ≤ t ≤ 1.
Denote Kt = φ(t,K), and

A(ε) = sup{|X(t, x)− Y (t, x)| : x ∈ (Kt)ε, 0 ≤ t ≤ 1},
B = sup{|X(t, x)− Y (t, y)| : x, y ∈ (Kt)ε, 0 ≤ t ≤ 1}.

If A(ε)eB ≤ ε ≤ 1, then the flow ψ(t, x) is defined for all x ∈ K and 0 ≤ t ≤ 1, and

|φ(t, x)− ψ(t, x)| ≤ A(ε)eBt, x ∈ K, 0 ≤ t ≤ 1.

In particular, ψ(t, x) ∈ (Kt)ε for x ∈ K and 0 ≤ t ≤ 1.
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With these two lemmas, the proof of the proposition is as follows.
Let ε > 0 be so that Lemma 4.15 holds. Let Y be the entire approximation of X. Then

using Lemma 4.16 we can take ε small enough so that the flow of Y , G(t, z), exists and remains
in (Kt)ε for all 0 ≤ t ≤ 1, where Kt = K ∪ Ct ⊂ Cn and

|H(t, z)−G(t, z)| < ε, z ∈ K ∪ γ∗, t ∈ [0, 1].

Finally |H(1, z)−G(1, z)| = |F (z)−G(1, z)| < ε for all z ∈ K∪γ∗. Then by the Local Andersén-
Lempert Theorem applied to G(1, ·), we find ψ ∈ Aut(Cn) that ||ψ−G(1, ·)||K∪γ∗ < ε, therefore
||ψ − F ||K∪γ∗ < 2ε.

It now then remains to prove Lemma 4.15 and Lemma 4.16. To prove Lemma 4.15 we first
need the following:

Lemma 4.17. With the notations of Proposition 4.12, ∃ρ ≥ 0 a continuous plurisubharmoni
exhaustion of Cn+1 so that

i) ρ−1(0) = L = L0 ∪ S.

ii) ρ(z) ≤ d(z, L)2 for z in a neighborhood of L.

iii) ρ(z) = d(z, S)2 in a neighborhood of S \ U0.

Proof. Because L is polynomially convex, there exists ρ1 ≥ 0 a smooth plurisubharmonic
exhaustion of Cn+1 so that ρ−1

1 (0) = L and ρ1 is strongly plurisubharmonic outside L. Now
because ρ1, ρ

′
1 and ρ′′1 vanish on L, by replacing ρ1 by cρ1 with c > 0 small enough (if necessary)

we have that ρ1(z) ≤ d(z, L)2 in a small neighborhood of L. Thus ρ1 satisfies both i) and ii).
We now modify ρ1 so that iii) also holds. Observe that d(z, S)2 is strongly plurisubharmonic
on a sufficiently small neighborhood V = (S \ U0)ε of S \ U0. Let χ ∈ C∞c (Cn+1) be real
with support contained in U0 ∩ V so that χ|∂V ∩S > 0. Choose δ > 0 small enough so that
ρ2 = d(z, L)2 − δχ(z) is strongly plurisubharmonic in V and ρ2 = d(z, L)2 in a neighborhood
of S \ U0 (this can be achieved in a similar manner as in Lemma 4.7). Observe now that in a
neighborhood of ∂V ∩ S b U0 we have ρ2 < 0 ≤ ρ1. Then the function

ρ3 = max(ρ1, ρ2)

is well defined, continuous and plurisubharmonic in a neighborhood W ⊂ U0 ∪ V of L even
smaller. We then have ρ3 = ρ1 near L0, ρ3 = ρ2 in W \ U0, and ρ−1

3 (0) = L.
Finally, we only need to choose C > 0 large enough and c > 0 small enough so that

ρ = max(ρ3, C(ρ1 − c)) is a plurisubharmonic extension of ρ3, to get what we want.

We now move to the proof of Lemma 4.15.

Proof. By the previous Lemma we can find ρ ≥ 0 a continuous plurisubharmonic exhaustion
of Cn+1 so that ρ−1(0) = L, ρ(z) ≤ d(z, L)2 in a neighborhood of L and ρ(z) = d(z, S)2 in a
neighborhood of S \ U0. For ε > 0 let ωε = {z ∈ Cn+1| ρ(z) < ε2}. Let ε0 > 0 be such that
ωε0 ⊂ Lε0 ∪ U0 and ρ(z) ≤ d(z, L)2, ρ(z) = d(z, S)2 holds for z ∈ ωε0 . Then for 0 < ε < ε0 we
have

Lε ⊂ ωε ⊂ Lε ∪ U0 and ωε \ U0 = Lε \ U0 = Sε \ U0.

Remember that f = ∂X satisfies

|f(z)| = o(d(z, L)r−1) as z → L and f |U0 = 0.
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Now we get that as ε→ 0∫
ω3ε

|f |2dV =

∫
L3ε\U0

|f |2dV +

∫
U0

|f |2dV =

∫
L3ε\U0

o(d(z, L)r−1)2dV =

= o(ε2(r−1))

∫
S3ε\U0

dV = o(ε2(r−1))O(ε2n) = o(ε2(n+r−1)).

Now fix 0 < ε ≤ ε0/3. Let φε = hε ◦ ρ, where hε : R→ R+ is a convex increasing function with
hε(t) = 0 for t ≤ 2ε, and hε is sufficiently rapidly increasing in t > 2ε so that∫

Cn+1\ω3ε

|f |2e−φεdV ≤
∫
ω3ε

|f |2dV.

Then ∫
Cn+1

|f |2e−φεdV = o(ε2(n+r−1)).

Now applying Theorem A.35 to f (we can do this because f ∈ L2(Cn+1, φε) and ∂f = ∂∂X = 0)
we can deduce that there exists uε ∈ L2

loc(Cn+1) satisfying ∂uε = f and∫
Cn+1

|uε(z)|2e−φε(z) dV

(1 + ||z||2)2
= o(ε2(n+r−1)).

Now, because L2ε ⊂ ω2ε, using Lemma A.33 we can deduce that ||uε||Lε = o(εr−1) (we first
apply the Lemma to f to get ||f ||L2ε = o(εr−2) and then apply it again to uε).

Finally, Yε = X − uε : Cn+1 → Cn satisfies ∂Yε = 0, thus Yε is entire and ||X − Yε||Lε =
o(εr−2) = εo(εr−3) This proves the lemma because r ≥ 3.

We complete the proof of Proposition 4.12 by proving Lemma 4.16.

Proof. Fix x ∈ K and set f(t) = |φ(t, x) − ψ(t, x)|, which is defined for 0 ≤ t ≤ t0 for some
t0 > 0. Then for all 0 ≤ t ≤ t0 we have

f(t) =
∣∣∣ ∫ t

0

X(s, φ(s, x))− Y (s, ψ(s, x))ds
∣∣∣ ≤

≤
∣∣∣ ∫ t

0

X(s, φ(s, x))−X(s, ψ(s, x))ds
∣∣∣+
∣∣∣ ∫ t

0

X(s, ψ(s, x))− Y (s, ψ(s, x))ds
∣∣∣ ≤

≤ B

∫ t

0

f(s)ds+ A(ε).

Then using Gronwall’s inequality (Proposition 2.4) we get

f(t) ≤ A(ε)eBt

for all 0 ≤ t ≤ 1 where the flow ψ(t, x) is defined. Since by hypothesis we have that A(ε)eB ≤ ε,
the previous inequality tells us that ψ(t, x) ∈ (Kt)ε where it is defined. Because x is arbitrary
and K is compact we get that ψ(t, x) is defined for all x ∈ K and all 0 ≤ t ≤ 1 thus proving
the Lemma.
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4.3 Approximate straightening

In this section, we want to tackle the problem of approximately straighten a curve. More
precisely, given γ : [0, 1]→ Cn a smooth arc we want to find a sequence (ψj)j of automorphisms
of Cn such that ψj ◦ γ converges uniformly on compact sets of [0, 1] to the map ν : [0, 1]→ Cn

defined by ν(t) = (t, 0, . . . , 0). To do that we follow J-P.Rosay’s paper [17].
Here we do not prove the case where γ is smooth but the case where it is real analytic

(which is easier for us).

Theorem 4.18. Let γ : [0, 1]→ Cn be an injective real analytic arc with γ′ 6= 0. Then there is
a sequence (ψk)k of automorphisms of Cn such that ψk ◦ γ converges uniformly on [0, 1] to the
map ν(t) = (t, 0, . . . , 0) (t ∈ [0, 1]).

The idea of the proof is first to extend γ to a neighborhood of [0, 1]. Then consider a
plurisubharmonic exhaustion ρ of Cn so that it vanishes on [0, 1]. Then for ε > 0 small, the
image by γ of the sets {ρ(z)ε} will be Runge. This will put us in a position where we can use
the Local Andersén-Lempert Theorem to get the result.

Proof. Since γ is real analytic, we can extend γ to U ⊂ Cn a neighborhood of [0, 1] (viewed as
a subset of Cn). Moreover, the extension of γ, from now on γ̃, can be chosen to be holomorphic
and injective in U (if needed, we choose U smaller).

Let now ϕ : R → R+ be an auxiliary convex function vanishing in [0, 1]. Let ρ : Cn → R+

be defined by

ρ(z1, . . . , zn) = ϕ(x1) + y2
1 +

n∑
k=2

|zk|2,

where x1 = Re(z1) and y1 = Im(z1). Observe that by our choice of ϕ, ρ is a plurisubharmonic
exhaustion of Cn vanishing only on [0, 1] × {(0, . . . , 0)}. Then for every ε > 0, the set Uε =
{z ∈ Cn | ρ(z) < ε} is pseudoconvex (in fact it is convex). From now on consider ε > 0
small enough so that Uε ⊆ U . We claim that for ε small enough, the set γ̃(Uε) is Runge.
Indeed, since γ∗ is an arc of finite length, it is polynomially convex (Chapter 3 of [16]). Then
γ∗ has a basis of Stein neighborhoods that are Runge. Let V ⊂ γ̃(U) be such a neighborhood.
Take ε > 0 so that γ̃(Uε) ⊂ V . Now ρ ◦ γ̃−1 is plurisubharmonic, thus γ̃(Uε) is pseudoconvex
(because γ̃(Uε) = {z ∈ Cn | ρ ◦ γ̃−1(z) < ε }). In the end, because γ̃(Uε) ⊂ V and both are
pseudoconvex, we deduce that γ̃(Uε) is Runge in V (here we are using Theorem A.28, in Section
A) But because V is Runge, it follows that γ̃(Uε) is also Runge, just as we wanted.

Finally, by our choices of γ̃ and Uε, the map γ̃ : Uε → γ̃(Uε) is a biholomorphism. And
because γ̃(Uε) is Runge, using the Local Andersén-Lempert Theorem we find a sequence (ϕk)k
of automorphisms of Cn such that ϕk → γ̃ uniformly on compact sets of Uε, as k →∞. Putting
ψk = ϕ−1

k gives us the desired sequence. That is, a sequence (ψk)k of automorphisms of Cn such
that ψk ◦ γ converges uniformly on [0, 1] to the map t 7→ (t, 0, . . . , 0) (in fact ψk ◦ γ converges
to IdUε uniformly on compact sets of Uε).

Remark 4.19. As mentioned earlier, the previous theorem can be generalized to smooth arcs.
But one has to be careful because by generalizing the arguments we have given, the result
weakens a bit replacing uniform convergence for convergence in the C∞ topology. Although it
seems likely that the theorem could be true for uniform convergence in the smooth case (even in
the case Cr with r ≥ 3) using the Combing Hair Proposition (Proposition 4.12) of the previous
section.
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5 Conclusions

We consider that we have met our principal objectives, to prove the different versions of the
Andersén-Lempert Theorem and give some relevant consequences of these theorems. We hope
that we have been able to illustrate the difficulties one can encounter when working with
automorphisms of Cn.

Of course, there is a lot more that could be said about the space Aut(Cn). In fact, auto-
morphisms of Cn have been studied recently, as shown in [13], [8], and [21] (for example). If
the reader wishes to know more about this topic, we highly recommend taking a look at [11],
where a lot of results surrounding automorphism of Cn are presented.
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Appendices

A Preliminaries

This section is devoted to defining the necessary concepts and key properties from the theory
of several complex variables that we need in order to understand and follow this work. If the
reader is familiar with the theory of several complex variables, he or she may skip this section.

Because we are only interested in results, we will not give most of the proofs and we will
only present those that are relevant to our work (if the reader is interested in the proofs, we
highly recommend taking a look at [9], [15] and [14]).

A.1 Holomorphic functions of several variables

We begin by defining the concept of a holomorphic function of several variables.

Definition A.1. Let U ⊂ Cn be open. A map f : U → C is said to be holomorphic in U if f
is holomorphic in each variable.

This definition is not enough for our work since we need to talk about holomorphic maps
from Cn to Cn (or some subsets of Cn). For that we have the following:

Definition A.2. Let U ⊂ Cn be open. Then a map f : U → Cm is said to be holomorphic in
U if each component of f is holomorphic. More concretely, if

f(z) =
(
f1(z), . . . , fm(z)

)
, z = (z1, . . . , zn) ∈ U

then f is holomorphic if each fj is holomorphic (with 1 ≤ j ≤ m).

As in the theory of one complex variable, we say that f is holomorphic on a closed set
C if there exists an open set U ⊃ C such that f can be extended to U and the extension is
holomorphic. We will write H(A) to denote the space of holomorphic functions in A ⊂ Cn.

We can now define the object of our study.

Definition A.3. Let U ⊂ Cn be open with n ≥ 1. A map f : U → Cm with m ≥ 1, is called a
biholomorphism of U if f is holomorphic, injective and it has a holomorphic inverse defined on
the range of f . If in addition the domain and the range of f coincide, we then say that f is an
automorphism of U . We will denote the space of automorphisms of U as Aut(U).

A.1.1 The Cauchy integral formula

As in the theory of one complex variable, in several complex variables there is also a Cauchy
integral formula. With one complex variable, the Cauchy integral formula holds on disks, but
with several complex variables, the Cauchy integral formula holds on polydisks.

Definition A.4. Let n > 1 be an integer, a = (a1, . . . , an) ∈ Cn, and r = (r1, . . . , rn) ∈ Rn
+.

The polydisk of center a and radius r is the set

∆n(a, r) =
{

(z1, . . . , zn) ∈ Cn
∣∣ |z1 − a1| < r1, . . . , |zn − an| < rn

}
=

= D(a1, r1)× · · · ×D(an, rn)

where D(aj, rj) is the disk of center aj and radius rj in C.
The distinguished boundary (also called skeleton) is the set

b∆n(a, j) =
{

(z1, . . . , zn) ∈ Cn
∣∣ |z1 − a1| = r1, . . . , |zn − an| = rn

}
which is the product of the n circles with center aj and radius rj in C.
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It is important to not confuse the concept of polydisk in Cn with that of a ball in Cn.
For example (1/

√
2, 1/
√

2) ∈ ∆2(0, (1, 1)) since 1/
√

2 < 1, but (1/
√

2, 1/
√

2) 6∈ B(0, 1) since
||(1/
√

2, 1/
√

2)|| = 1 (here B(a, r) denotes the ball of center a ∈ C2 and radius r > 0). In fact
we always have the inclusion B(a, r) ⊂ ∆n(a, (r, . . . , r)), but not the other way around.

In a similar manner, the skeleton of a polydisk is not the same as the boundary. As an exam-
ple, consider the polydisk ∆2(0, (1, 1)). Then (1, 0) ∈ ∂∆2(0, (1, 1)) but (1, 0) 6∈ b∆2(0, (1, 1)).
We always have that b∆n(a, r) ⊂ ∂∆n(a, r), but not the other way around.

Having discussed what a polydisk is, we are now able to state the Cauchy integral formula.

Theorem A.5 (Cauchy’s integral formula for polydisks). Let a ∈ Cn, r ∈ Rn
+. If f ∈

H(∆n(a, r)) then for every z ∈ ∆n(a, r)

f(z) =
1

(2πi)n

∫
b∆n(a,r)

f(w)

w − z
dw =

1

(2πi)n

∫
b∆n(a,r)

f(w1, . . . , wn)

(w1 − z1) · · · (wn − zn)
dw1 . . . dwn.

From this theorem, there can be deduced two major corollaries.

Corollary A.6. Let U ⊂ Cn be open, f ∈ H(U). Then f ∈ C∞(D) and for every multi-index
α, ∂αf ∈ H(U). Moreover, for every polydisk ∆n(a, r) b U (i.e. ∆n(a, r) is compact in U)

∂αf(z) =
α!

(2πi)n

∫
b∆n(a,r)

f(w)

(w − z)α
dw, z ∈ ∆n(a, r)

where α + 1 = (α1 + 1, . . . , αn + 1).

Corollary A.7 (Cauchy inequalities). Let a ∈ Cn, r ∈ Rn
+, and f ∈ H

(
∆n(a, r)

)
. Then for

every multi-index α

|∂αf(a)| =
∣∣∣∣∂αf∂zα

(a)

∣∣∣∣ ≤ α!

rα
sup

z∈∆n(a,r)

|f(z)|.

A.1.2 Series expansion

We end this section of holomorphic functions by stating the following theorem regarding holo-
morphic functions and their Taylor series expansion.

Theorem A.8. Let U ⊂ Cn be open and f ∈ H(U). Then f has a Taylor expansion locally in
U , i.e. for every w ∈ U there is a neighborhood V of w so that for every z ∈ V we have

f(z) =
∑
α∈Nn

1

α!

∂αf

∂zα
(w)(z − w)α,

where the series converges uniformly to f on compact sets of U .

The converse is also true, that is, every power series that converges uniformly on compact
sets of an open set U , defines a holomorphic function whose Taylor expansion coincides with
the series.

A.2 Domains

Another important concept (or rather concepts) in the theory of several complex variables are
the different types of domains and how they relate to each other.
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A.2.1 Runge domains

In the theory of one complex variable Runge’s approximation theorem ([5]) asserts that given
a holomorphic function f : K ⊂ C → C, if K is a compact set such that C \K is connected,
then f can be uniformly approximated in K by polynomials. The importance of this theorem
is that we only need a topological property on K to ensure that f can be approximated by
polynomials uniformly. This is, in general, not the case in Cn. That is why the following notion
is useful:

Definition A.9. We say that a domain Ω ⊂ Cn is Runge if for every f ∈ H(Ω), f can be
uniformly approximated on compact sets of Ω by polynomials.

More generally, given two domains Ω1 ⊂ Ω2 ⊂ Cn, we say that Ω1 is (relatively) Runge in
Ω2 if for every f ∈ H(Ω1), f can be uniformly approximated on compact sets of Ω1 by functions
in H(Ω2).

Observe that since entire functions can be uniformly approximated on compact sets (by
their Taylor expansion), saying that Ω is Runge is the same to say that Ω is Runge in Cn.

Another useful observation is that if Ω1 ⊂ Ω2 ⊂ Ω3 are domains in Cn such that Ω1 is Runge
in Ω2, and Ω2 is Runge in Ω3, then Ω1 is Runge in Ω3.

Example A.10. Every star-shaped domain Ω is a Runge domain ([1]).

A.2.2 Plurisubharmonicity

To give all the different types of domains, we need to talk about plurisubharmonic functions,
which are a generalization of subharmonic functions to higher dimensions. Let us first recall
what a subharmonic function is, for that we first need to define upper semicontinuous functions.

Definition A.11. Let X be a topological space. We say that u : X → [−∞,+∞) is upper
semi-continuous if for every a ∈ R, the set u−1

(
[−∞, a)

)
is open in X.

Definition A.12. Let U ⊂ C be open. A map u : U → [−∞,+∞) is subharmonic if it is upper
semicontinuous and satisfies the following. For every z ∈ U there exists ρ > 0 (depending on
z) such that

u(z) ≤ 1

2π

∫ 2π

0

u(z + reit)dt

for all 0 ≤ r < ρ.

The next proposition gives us a wide range of examples of subharmonic functions.

Proposition A.13. Let U ⊂ C be open, and f ∈ H(U). Then log |f(z)| is a subharmonic
function on U .

We can now begin to talk about plurisubharmonic functions.

Definition A.14. Let Ω ⊂ Cn be open. A map u : Ω→ [−∞,+∞) is plurisubharmonic if

i) u is upper semi-continuous.

ii) For every z0 ∈ Ω and a ∈ Cn, the restriction of u to the set {w ∈ C| z0 + wa ∈ Ω} is a
subharmonic function.

We will denote P(Ω) the set of all plurisubharmonic functions on Ω.
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We have a similar proposition as in the case of one dimension.

Proposition A.15. Let Ω ⊂ Cn be open and f ∈ H(Ω). Then log |f | and |f |p, for p ≥ 1, are
plurisubharmonic functions in Ω.

This proposition gives a wide family of examples of plurisubharmonic functions. Another
big family of plurisubharmonic functions is the family of convex functions.

If we require u ∈ C2(Ω), checking if u is plurisubharmonic is far easier, as the following
proposition shows.

Proposition A.16. Let Ω ⊂ Cn be open, and u ∈ C2(Ω). Then u is plurisubharmonic if and

only if for every z ∈ Ω, the hermitian matrix Lu =
(

∂2u
∂zi∂zj

(z)
)

1≤i,j≤n
(called the Levi matrix of

u) is positive semidefinite.

Some useful properties of plurisubharmonic functions are the following:

Proposition A.17. Let Ω ⊂ Cn be open, u1, u2 : Ω→ [−∞,+∞) be plurisubharmonic. Then

i) If c > 0 then cu1 is plurisubharmonic.

ii) u1 + u2 is plurisubharmonic.

iii) If φ : R→ R is a monotonically increasing convex function, then φ◦u1 is plurisubharmonic.

iv) u(z) = max
(
u1(z), u2(z)

)
is plurisubharmonic.

Having introduced plurisubharmonic functions, we introduce Levi pseudoconvex sets.

Definition A.18. Let Ω ⊂ Cn be a domain with C2 boundary. Let ρ : Cn → R be a defining
function for Ω, that is ρ is such that

Ω = {z ∈ Cn | ρ(z) > 0}

and ∇ρ(z) 6= 0 for z ∈ ∂G. Then the point p ∈ ∂Ω is called Levi pseudoconvex if

n∑
j,k=1

∂2ρ

∂zj∂zk
(p)wjwk ≥ 0, (10)

for all w ∈ T (1,0)
p (∂Ω). We say that p is strongly Levi pseudoconvex if the inequality in (10) is

strict.
We will say that Ω is (strictly) Levi pseudoconvex if every point in ∂Ω is (strictly) Levi

pseudoconvex.

Note that in particular, all convex domains are Levi pseudoconvex.

A.2.3 Domains of holomorphy, polynomial convexity, and pseudoconvexity

We now present the concept of a domain of holomorphy.

Definition A.19. Let Ω ⊂ Cn be a domain. We say that Ω is a domain of holomorphy if
for every connected domain U that intersects the boundary ∂Ω and for every component Ω1 of
U ∩ Ω, there is f ∈ H(Ω) whose restriction f |Ω1 has no holomorphic extension to U .

We also say that Ω̃ is an envelope of holomorphy for Ω if

i) Ω ⊂ Ω̃ and every f ∈ H(Ω) can be extended to Ω̃.
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ii) For every a ∈ ∂Ω̃ there exists f ∈ H(Ω̃) which has no holomorphic extension to a
neighborhood of a.

Roughly speaking, this definition tells us that not every holomorphic function on Ω can
be extended outside of Ω. The following proposition gives us some properties of domains of
holomorphy.

Proposition A.20. i) If Ω1, . . . ,Ωk ⊂ Cn are domains of holomorphy, then Ω =
⋂k
j=1 Ωj is

also a domain of holomorphy.

ii) If (Ωj)j∈N is an increasing sequence of domains of holomorphy in Cn, then Ω =
⋃∞
j=1 Ωj

is also a domain of holomorphy (this is refered to as the Behnke-Stein Theorem).

iii) If Ω1 and Ω2 are domains of holomorphy in Cn1 and Cn2 (respectively), then Ω1 × Ω2 is
a domain of holomorphy in Cn1+n2 .

To get an idea of how domains of holomorphy look like, we give some examples.

Example A.21. i) In C every domain Ω is a domain of holomorphy. Take for a ∈ ∂Ω the
function f(z) = 1/(z − a).

ii) In Cn every ”polydomain” Ω = Ω1 × · · · × Ωn, with Ωj ⊂ C a domain, is a domain of
holomorphy. It is enough to consider the functions f(z) = 1/(zj − aj) for aj ∈ Ωj (this
fact can also be deduced from the first example and iii) of the previous proposition).

iii) Every convex domain in Cn is a domain of holomorphy.

The latter example raises the question of whether every domain of holomorphy is convex.
The answer is no, but all domains of holomorphy have some type of convex property.

Definition A.22. Let Ω be a domain in Cn, and K b Ω a compact set. The set

K̂Ω = {z ∈ Cn | |f(z)| ≤ ||f ||K , for all f ∈ H(Ω)} (11)

is called the holomorphically convex hull of K. We say that K is holomorphically convex if and
only if K = K̂Ω. More generally, we say that Ω is holomorphically convex if for every K b Ω
we have K̂Ω b Ω.

It turns out that Ω ⊂ Cn is a domain of holomorphy if and only if Ω is holomorphically
convex. From this, it is natural to ask if the same happens when in (11) we take f to belong
to another family instead of H(Ω). This leads to the following two definitions.

Definition A.23. Let Ω be a domain in Cn, and K b Ω a compact set. The set

K̂ = {z ∈ Cn | |P (z)| ≤ ||P ||K , for all P a holomorphic polynomial} (12)

is called the polynomially convex hull of K. We say that K is polynomially convex if and only
if K = K̂. More generally, we say that Ω is polynomially convex if for every K b Ω we have
K̂ b Ω.

Definition A.24. Let Ω be a domain in Cn, and K b Ω a compact set. The set

K̂P(Ω) = {z ∈ Cn | |h(z)| ≤ ||h||K , for all h ∈ P(Ω)} (13)

is called the pseudoconvex hull of K. We say that K is pseudoconvex if and only if K = K̂P(Ω).

More generally, we say that Ω is pseudoconvex if for every K b Ω we have K̂P(Ω) b Ω.
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It can be seen that if instead of H(Ω) we put L (the set of linear functions in Cn), then Ω
is L-convex if and only if Ω is convex.

Observe that for K b Ω compact we always have the inclusions K ⊂ K̂Ω ⊂ K̂ ⊂ K̂L,
and K ⊂ K̂P(Ω). Therefore, every convex set is also polynomially convex. Another example of
interesting polynomially convex set is the following:

Example A.25. Every finite arc C in Cn is polynomially convex ([19]).

The following theorem shows us how these different types of convexity relate to each other.

Theorem A.26. Let Ω ⊂ Cn be a domain. The following statements are equivalent:

i) Ω is a domain of holomorphy.

ii) Ω is holomorphically convex.

iii) Ω is pseudoconvex.

iv) Ω is Levi pseudoconvex (assuming Ω has C2 boundary).

v) Ω has a continuous (C∞) plurisubharmonic exhaustion ρ such that every Ωc = {z ∈
Ω |ρ(z) < c} b Ω (each Ωc being pseudoconvex).

vi) Ω has a smooth (C∞) plurisubharmonic exhaustion ρ such that every Ωc = {z ∈ Ω |ρ(z) <
c} b Ω (each Ωc being pseudoconvex).

In the two last statements, the sets Ωc are also relatively Runge to each other. We will call
such a family (Ωc)c a basis of Stein neighborhoods of Ω.

The last theorem does not tell us how the notions of pseudoconvexity relate to polynomial
convexity. For that we have the following theorems:

Theorem A.27. Let K ⊂ Cn be a polynomially convex compact set. Then there exists a
non-negative plurisubharmonic exhaustion ρ : Cn → R≥0 such that

a) K = ρ−1(0).

b) ρ is strictly plurisubharmonic on Cn \K

c) lim
||z||→∞

ρ(z) =∞.

Conversely, if ρ is a non-negative plurisubharmonic exhaustion of Cn such that lim
||z||→∞

ρ(z) =∞,

then ρ−1(0) is polynomially convex.

Theorem A.28. Let Ω be a domain of holomorphy, and K ⊂ Ω a compact pseudoconvex set.
Then K is Runge in Ω.

Theorem A.29. Let Ω ⊂ Cn be a domain of holomorphy. Then the following are equivalent:

i) Ω is Runge.

ii) Ω is a polynomially convex domain.

From these theorems, we can see that there is a close relation between polynomially convex
domains and Runge domains.

On the one-dimensional setting, this last theorem and Runge’s approximation theorem tells
us that every polynomially convex set in C is simply connected. Thus the polynomially convex
hull of K ⊂ C is obtained by ”filling the holes” in K.

One final concept related to polynomial convexity is the following:
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Definition A.30. Let Ω ⊂ Cn be a domain. We say that Ω has a basis of Stein neighborhoods
if there exists a sequence (Uk)k of pseudoconvex domains in Cn with Ω ⊂ Uk and Ω =

⋂∞
k=1 Uk.

The relationship between this new concept and pseudoconvexity is given by the following
theorem.

Theorem A.31. Every Ω ⊂ Cn pseudoconvex Runge domain has a basis of Stein neighborhoods
which are Runge.

With this result, we end the section on domains and move to the next one.

A.3 The ∂-equation

In the theory of one complex variable one can define the operator ∂ as

∂f =
∂f

∂z
=

1

2

(∂f
∂x

+ i
∂f

∂y

)
,

where z = x+ iy. This operator turns out to be very important since it characterizes holomor-
phic functions in the sense that f is holomorphic if and only if ∂f = 0 (if f is supposed to be
of class C1). The same notion can be generalized to several complex variables.

Given a function f ∈ C1(Ω) where Ω is a domain in Cn, we define ∂f as the (0, 1)-form

∂f =
n∑
k=1

∂f

∂zk
(z)dzk

where

∂

∂zk
=

1

2

( ∂

∂xk
− i ∂

∂yk

)
(14)

and xk, yk are the real and imaginary parts of the coordinate zk. Observe that in this setting
f is holomorphic in Ω if and only if ∂f = 0.

If we consider the differential operators in (14) to be defined in the sense of distributions,
then we can extend the notion of ∂f to a more general setting where f ∈ L2(Ω). We can also
extend the ∂ operator in another useful way, namely to (p, q)-forms. Let f be (p, q)-form with
coefficients in L2(Ω) (we will write f ∈ L2

(p,q)(Ω)). If f is given by

f =
∑
|α|=p
|β|=q

fαβdz
α ∧ dzβ

where α and β are multi indices in Nn in ascending order. Then we define ∂f as the (p, q+ 1)-
form

∂f =
∑
|α|=p
|β|=q

( n∑
k=1

∂fαβ
∂zk

dzk ∧ dzα ∧ dzβ
)
.

Observe that in the case where f ∈ C1
(p,q)(Ω), the fact that ∂f = 0 does not imply that f is a

holomorphic form. This is only true in the case q = 0. For example, the form given by

f(z) = ||z||dz1 ∧ dz2 ∧ . . . ∧ dzn , z ∈ Cn

clearly satisfies ∂f = 0, but by no means ||z|| is a holomorphic function. So we need to be
careful when working with (p, q)-forms. Next, we enunciate some results that will be useful for
our study.

The following lemmas are Lemma 4.3 and Lemma 4.4 of [10].
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Lemma A.32. Let S be a closed subset of an open set Ω ⊂ Cn, and let K be a compact subset
of S such that S \K is a totally real Cr-manifold, with r ≥ 1 (here totally real means that the
tangent space at each point is real). Let f ∈ Cr(Ω) and ∂f = 0 in a neighborhood of K. Then
there exists u ∈ Cr(Ω) so that u = f on S and

∂u(z) = o
(
d(z, S)r−1

)
as z → S,

uniformly on compact sets of S.

Lemma A.33. Let B(0, ε) = {z ∈ Cn| ||z|| < ε}. Let u ∈ L2(B(0, ε)) satisfy ∂u = f in the
sense of distributions. If f is continuous, then u is also continuous and

|u(0)| ≤ C(ε−n||u||L2(B(0,ε)) + ε||f ||B(0,ε)).

This estimate can be generalized provided some additional assumptions are made (as the
following remark explains).

Remark A.34. If Ω ⊂ Cn is open and u ∈ L2(Ω) satisfies ∂u = f on Ω, (with f ∈ C(Ω)) then
for a fixed z ∈ Ω and a ε > 0 such that B(z, ε) ⊂ Ω, we can apply Lemma A.33 to the function
u ◦ τ−z where τ−z(w) = w + z because u ◦ τ−z ∈ L2(B(0, ε)) and ∂(u ◦ τ−z) = f ◦ τ−z. Then
keeping in mind that u(τ−z(0)) = u(z), we get

|u(z)| ≤ C(ε−n||u||L2(B(z,ε)) + ε||f ||B(z,ε)) ≤ C(ε−n||u||L2(Ω) + ε||f ||Ω).

Of course this estimate is not independent of z since ε depends on z. But for every compact
K ⊂ Ω, by covering K with enough balls and using the compactness of K, we can make the
estimate independent of z (say with ε = εM) to finally get

||u||K ≤ C(ε−nM ||u||L2(K) + εM ||f ||K).

Another useful result (the last one we mention) in estimating the solution to the equation
∂u = f is the following:

Theorem A.35. Let Ω be a pseudoconvex open set in Cn and ϕ a plurisubharmonic function
in Ω. For every f ∈ L2

(p,q+1)(Ω, ϕ) with ∂f = 0 there exists u ∈ L2
(p,q),loc(Ω) such that ∂u = f

and ∫
Ω

|u(z)|2 e−ϕ(z)

(1 + ||z||2)2
dV ≤

∫
Ω

|f(z)|2e−ϕ(z)dV.

Here u ∈ L2
(p,q+1)(Ω, ϕ) if u is a (p, q + 1)-form such that ||ue−ϕ||2 < ∞, and L2

(p,q),loc(Ω) is

the space of locally square-integrable (p, q)-forms.
This ends Appendix A.
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