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Abstract: The application of physics in social spheres gives explanations to some collective
phenomena as human decision-making processes. The aim of this work is to study this kind of
process when facing gender-based violence situations. Personal data, decision made and time taken
are obtained from a public experiment in which individuals confronted with this kind of situations
have to decide if they would intervene or not. Experimental data are explained by analogy to the
valley model through the study of the fractal behaviour of the interevent times. As multifractality
is observed, social and personal factors seem to influence the decision-making process.

I. INTRODUCTION

Understanding the times involved in collective
decision-making processes can help us to identify the
personal factors involved in individuals’ decision-making
when confronted with certain situations and how they
are influenced by others’ actions [1]. If all the individ-
uals in a decision-making process behaved in the same
way and decisions were independent from one another,
events would be randomly distributed in time and the
process could be approximated by a Poisson process [2].
In a Poisson process the time between two consecutive
decisions, known as interevent time τ , follows an expo-
nential distribution with characteristic parameter given
by the interevent time average. However, various studies
show that human decision-making processes are not Pois-
sonian [2]. Instead, the interevent times are long-tailed
distributed (the density probability function is a power
law). This means that there are periods where many
really fast decisions are made, separated by long inter-
vals with no decisions. Distributions of this kind appear
when decisions are based on some priority [1] and show a
distinctive feature of human beings. In these cases, frac-
tality in the interevent time probability density function
is observed (self-similar pattern in different scales).

A convenient way to study decision-making processes
is by looking at the interevent time distribution, which
is characterized by its q moments. In particular, the q
moments give information about the fractal behaviour of
the distribution. If the relation

< τ q >∼ Lf(q)

is satisfied for some appropriate scale L, there is fractal
behaviour. When f(q) is linear, the timing process is
said to be monofractal [3], otherwise it is multifractal.
This is due to the fact that, if f(q) is linear, it is possible
to determine the full distribution from just one of the q
moments with a simple regression.
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In this work, we analyze human decision-making when
facing gender-based violence situations in public spaces.
Studying how people react as observers to these situa-
tions can give us some clues about how personal and so-
cial circumstances shape the way decisions are made and
the time it takes to reach them. This is the purpose of
the experiment carried out by NUS Teatre, the feminist
group of Elisava School of Design and the OpenSystems
research group.

The comprehensive study of the fractal behaviour of
the interevent times in the aforementioned experiment
is the central topic of this work. To explain the results
obtained, the valley model is proposed.

II. EXPERIMENT

The experiment consisted in exposing 234 individuals,
divided in groups of six, to four different gender-based
violence situations in a public space [4]. Each situation
was exemplified with a monologue interpreted by an actor
playing the role of an observer. The situations are the
following:

• Situation A: visible discomfort is observed in a man
seeing two men kissing in a terrace.

• Situation R: a woman accuses a person of not using
the correct toilet.

• Situation S: a person complains about a woman
breastfeeding in a library.

• Situation N: a girl is hounded by a man in the
street.

After the performances, the participants had to choose,
via a digital device, how they would act in the actors’ po-
sitions. The options were: intervene decisively (decision
C), intervene in a moderate manner (decision I) or not
to intervene (decision D). Decisions made by each par-
ticipant were available to the whole group in real time.
Their personal data (gender, age, decision made, stud-
ies...) were collected at the end of the experiment.
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The experiment was part of the “Consciències a la
plaça” project and was performed in Mercat de Sant An-
toni, Plaça Sortidor, Plaça J.M. Folch i Torres and Plaça
Orfila (located in Barcelona).

III. VALLEY MODEL

The valley model developed by Scher and Montroll [5]
describes the relaxation time of photocurrents created in
amorphous materials. We can think of the situation as
having potential wells in which carriers may fall. A con-
ditional density ψ(τ |ε), which is assumed to be a simple
exponential, is introduced to compute the pausing time
density. It characterizes the probability that a carrier
spends a time interval t within a potential well of depth
ε given by a random variable of density ρ(ε) [5]. Homo-
geneity of the potential wells leads to monofractality in
the pausing time distribution [6]. It can be shown that
multifractality is obtained by taking a “stretched expo-
nential” of the form

ρ(ε) =
1

2σΓ(1 + 1/α)
exp

(
−
∣∣∣∣ε− µσ

∣∣∣∣α), (1)

with α > 0 and σ > 0 (see [6]). The q moments in this
case exist if α > 1 and are given by

< τ q >' eaqebϕ(q), (2)

with a, b as characteristic parameters of the model and

ϕ(q) =
1

b1
q[1− exp (−b1|q|1/(α−1))], (3)

where b1 > 0. Notice that, for small q’s, expression (2)
becomes

< τ q >' eaqeb|q|
α/(α−1)

; (4)

while, for large q’s, we have monofractality. If a condi-
tional density is considered, the decumulative probability
function may be written as

Ψ(τ) =

∫ +∞

τ

∫ +∞

−∞
ψ(τ ′|ε)ρ(ε) dτ ′dε. (5)

For ψ(τ ′|ε) and ρ(ε) as above, this decumulative distri-
bution becomes

Ψ(τ) =
1

2Γ(1 + 1/α)

∫ +∞

−∞
exp

(
−|x|α − τe−(γx+a)

)
dx,

(6)

with γ = α
(

b
α−1

)α−1
α

as shown in [6].

Extrapolating to our framework, we can think of col-
lective actions as being “interrumped” by potential wells
representing the individuals, where the depth of a well
could be a measure of the difficulty a person faces when
making his own decision as part of a collective phenom-
ena.

IV. FRACTAL BEHAVIOUR

In this section, we look at the fractal behaviour of the
interevent times τ through the q moments. There will be
monofractal behavior if

< τ qi >= θqi e
ni , (7)

where i indicates the group to which we refer, θi = emi

and mi and ni are the slope and the independent term,
respectively, obtained from the linear fittings of data in
FIG. 1 (for q > 5). The considered groups are the ones
that arise from separating the Total group (aggregating
all participants) by gender, age and decision made (I, C
or D). In particular, < τ q >= θqen stands for the Total
group.
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FIG. 1: Logarithm of the q moments as a function of q for all
the groups.

In FIG. 1 we can observe linearity for the large q’s
(q > 5) for all the groups. To check this, we scale the q
moments for each group as

< τ̂i
q >≡< τ qi >

(
θ

θi

)q (
1

eni

)
. (8)

If all the groups present monofractal behaviour, when
representing ln [< τ̂i

q >] as a function of q, we should
obtain the collapse of all of them to a line with slope θ.
We notice from FIG. 2a that this occurs for q >∼ 3, while
for q <∼ 3 a non-linear behaviour is observed. To better
distinguish the range of q’s where there is not monofractal
behaviour, we plot in FIG. 2b

f iF (q) ≡ 1

q ln θi
ln [< τ qi >]− ni

q ln θi
(9)

as a function of q. This function is defined just as a tool
to further test the monofractal behaviour. Notice that,
in the domain where there is monofractality, f iF (q) must
approach to 1 (due to the definition of f iF (q) itself). We
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observe that this happens for q >∼ 2.5 but that for 0.4 <∼
q <∼ 2.5 FIG. 2b shows deviation from this behaviour.
So, for small values of q, the interevent times present
multifractality for all the groups.
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FIG. 2: a) Logarithm of the scaled q moments as a function
of q for all the groups. b) Testing function f iF (q) as a function
of q for all the groups.

By analogy with the valley model, the monofractal be-
haviour for the large q’s can be interpreted as if, within
each group, there is a certain homogeneity between those
individuals with large interevent times; they behave in a
similar way. This behaviour is observed in all the groups
considered but, from FIG. 1, not all of them have the
same large interevent time average. The groups with
larger slopes also have larger averages, that is, people
take longer to make a decision after a previous one. If we
refer to gender, this group is the one formed by women.
By age, old people are the ones who spend more time in
deciding after another decision has been made (this is ac-
tually the group with the largest slope; the average of the
large interevent times is around 7.30s). And by decision,
people in group I have the largest interevent times.

Let’s focus now on the multifractal structure for small

q’s. Taking the range 0.40 <∼ q <∼ 2.5 in FIG. 1, we can
fit, for each group, a polynomial of the form aiq+biq

ci to
ln [< τ qi >] as a function of q. With such a fitting we get
an expression as in (4) for the q moments in said range,
with ci := αi/(αi−1) and ai, bi, αi the parameters given
in TABLE I.

ai bi αi

Total −3.78 ± 0.04 4.69 ± 0.04 7.04 ± 0.05

Women −3.06 ± 0.03 3.98 ± 0.03 6.16 ± 0.04

Men −4.38 ± 0.07 5.30 ± 0.07 7.81 ± 0.09

Young −2.57 ± 0.06 4.10 ± 0.06 8.983 ± 0.115

Adult −2.373 ± 0.015 3.053 ± 0.015 4.887 ± 0.017

Old −2.82 ± 0.03 3.78 ± 0.03 5.88 ± 0.03

I −2.40 ± 0.03 3.33 ± 0.03 5.33 ± 0.03

C −6.39 ± 0.08 7.17 ± 0.08 9.92 ± 0.09

D 0.041 ± 0.004 1.153 ± 0.004 3.669 ± 0.008

TABLE I: Parameters obtained using a polynomial aiq+biq
ci

to fit the curves in FIG.1 for 0.4 <∼ q <∼ 2.5.

To corroborate that the q moments of our data do fol-
low expression (4) for 0.4 <∼ q <∼ 2.5, we plot

1

q
ln [< τ qi >]− ai (10)

as a function of biq
1/(αi−1). FIG. 3 shows the collapse

of all the groups to a line of slope 1 and independent
term equal to 0 for the small values of q. Therefore, the
q moments verify (4), which supports the multifractality
observed in FIG. 1. Furthermore, the observed tendency
of 1

q ln [< τ qi >]−ai to a constant for larger q’s bears out

again the monofractal behaviour. We can also check that
the multifractal formula (4) fits our data well by looking
at FIG. 4.
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FIG. 3: Expression introduced in (10) as a function of the

modified order biq
1/(αi−1) for all the groups. Black dotted

line corresponds to y = x.
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As in the valley model multifractality appears because
of the heterogeneity of the potential wells, we could think
of the multifractal behaviour for the small interevent
times as a consequence of the heterogeneity of the in-
dividuals involved in the experiment. It seems that this
heterogeneity plays an important role when people take
small times in deciding after another participant.

Notice that multifractality of the data is derived from
the exponent of q in (4). The parameters αi are then re-
lated to the fractal dimension of the process, being a good
indicator of the multifractal behavior. The groups with
the smallest values of αi deviate the most from monofrac-
tal behaviour. As shown in TABLE I, those groups are
D and Adult; the minimum αi is for group D, showing
that within this group the heterogeneity is more impor-
tant (there are more differences between the individuals).
Conversely, the group with largest αi is C, people who
decide to intervene decidedly behave in a more similar
way.

At this point we would like to obtain a general expres-
sion to describe the q moments for all 0.4 <∼ q <∼ 20.
Obviously, formula (4) for 0.4 <∼ q <∼ 2.5 and linear-
ity of ln [< τ qi >] for q >∼ 2.5, should be re-obtained
from such an expression in the appropriate ranges of
q. By analogy with the valley model, we have fitted to
the experimental curves in FIG. 1 an expression of the
form ln [< τ qi >] = aiq + Biq[1 − exp (−b1iqci)] in the
range 0.4 <∼ q <∼ 20 for all the groups. The parame-
ters extracted can be found in TABLE II; we have taken
Bi := bi/b1i and ci := 1/(αi−1). Considering this fitting,
the q moments go as in (2).

ai bi b1i αi

Total −1.39 ± 0.04 3.26 ± 0.05 0.740 ± 0.009 2.95 ± 0.02

Women −1.12 ± 0.04 2.79 ± 0.04 0.678 ± 0.008 2.78 ± 0.02

Men −1.31 ± 0.04, 3.24 ± 0.05 0.803 ± 0.009 2.820 ± 0.019

Young 0.010 ± 0.026 2.21 ± 0.03 0.799 ± 0.009 2.91 ± 0.02

Adult −1.36 ± 0.04 2.78 ± 0.05 0.671 ± 0.009 2.68 ± 0.02

Old −0.83 ± 0.03 2.41 ± 0.04 0.627 ± 0.008 2.635 ± 0.017

I −0.96 ± 0.03 2.57 ± 0.04 0.649 ± 0.007 2.692 ± 0.017

C −1.65 ± 0.05 3.50 ± 0.07 0.7958 ± 0.0113 2.88 ± 0.03

D 0.406 ± 0.014 0.984 ± 0.014 0.475 ± 0.006 2.360 ± 0.013

TABLE II: Parameters obtained by fitting, for each group, a
function aiq+Biq[1−exp (−b1iqci)] to the curves in FIG.1 for
0.4 <∼ q <∼ 20. The values are different from TABLE I because
now we are fitting all the range of values of q.

We introduce now a function f iHMF (q) that serves as
a tool to prove that the mentioned generalized formula
describes our data. This function is given by

f iHMF (q) ≡ b1i
bi

[
1

q
ln [< τ qi >]− ai

]
, (11)

where now ai, bi and b1i are the ones in the table above. If
the q moments really follow expression (2), when plotting
f iHMF (q) in front of b1iq

1/(αi−1), we will observe a curve
of the form 1 − exp(−x). As we can see in FIG. 5, this
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FIG. 4: Logarithm of the q moments as a function of q for
groups Adult and D. Red and black solid lines correspond to
regressions assuming (2) and (4), respectively.

happens for all the groups. We can conclude that indeed
formula (2) describes our data for 0.4 <∼ q <∼ 20. In FIG. 4
we can observe the goodness of the fitting for the groups
Adult and D.
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FIG. 5: Plot of f iHMF as a function of b1iq
1/(αi−1) for all the

groups.

FIG. 5 shows again that it makes sense to look for an
explanation to our data in the valley model; up to now, all
the results have been coherent with it. To finish with, the
valley model provides equation (6) as the decumulative
interevent time distribution. When substituting in the
latter the parameters in TABLE II for the Total group,
the empirical decumulative distribution of the interevent
times should resemble the theoretical one. We notice in
FIG. 6 that this occurs for large q’s and when q tends
to zero. Even though we have not found the stretched
exponential ρ(ε) that exactly describes all our interevent
time distribution, the decumulative distribution given by
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the valley model explains well the asymptotic cases that
actually characterize this kind of processes; better than
the exponential function derived from a Poisson process
(see FIG. 6).
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FIG. 6: Decumulative probability function of the interevent
times as a function of the interevent times. DPF stands for
the empirical decumulative function, VM for the theoretical
one given by the valley model and the exponential shows the
distribution for a Poisson process.

V. CONCLUSIONS

We have seen throughout this work that all the dif-
ferent groups considered behave in a self-similar way; in
general, we have similar multifractality for all the groups.
This result is of great importance as it implies that the
decision-making process in front of a situation of gender-
based violence is not Poissonian, times in which decisions
are made appear not to be random.

To better understand the mechanism behind the
decision-making process we have carried out a detailed
study of the interevent times’ fractality. Valley model has
been shown to be a good candidate to explain the fractal
behaviour observed. The main result obtained is that, for
all the groups, there is monofractal behaviour for large
values of q (q >∼ 2.5) and multifractal behaviour for the
small ones (0.4 <∼ q <∼ 2.5). The valley model provides an

interesting explanation for these results: when individ-
uals take long time to decide after a previous decision,
there is homogeneity; differences between the individuals
due to personal factors do not play an important role in
the decision process. Nevertheless, we see variations in
the expected large interevent time between groups. The
fact that groups Old and I are the ones with the largest
interevent times seems quite coherent. Firstly, old people
are, probably, the population sector least familiar with
these topics, as their introduction in education is rela-
tively new. Secondly, group I is the one formed by the
people who decided to intervene in a moderate manner.
This decision is the most neutral of the three possible op-
tions so it could be the one chosen by those people who
didn’t know how to react, which would explain why the
expected time is large. Contrarily, when the interevent
times are small, heterogeneity within a group has to be
considered, personal factors have influenced the decision
times. We already commented that, according to the
parameter αi, some groups present more heterogeneity
than others. The reason why C is the most homogeneous
group could be that, people who would intervene deci-
sively if facing these situations, are mainly characterized
by this intended decision; they are clear about what to
do before seeing the others actions.

Taking all the above into account, we conclude that the
way in which individuals decide when facing a gender-
based violence situation, if they are exposed to the way
the others behave, is based on some priority and it seems
that there are some social or personal conditionings influ-
encing the times involved. Although we have seen some
patterns of behavior, with the study carried out here it
is still not possible to assure which are these influencing
factors. Nevertheless, to be able to claim that people
are conditioned by some aspects is an important step on
the way to understand social sensitivity towards gender-
based violence. This can be really useful to provide better
education and to raise awareness of this relevant issue.
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