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Abstract: The Ryu-Takayanagi conjecture proposes a holographic derivation of the entanglement
entropy of a conformal field theory (CFT) in the context of the AdS/CFT correspondence. To
understand the conjecture, we study the features of Anti-de Sitter (AdS) spacetime and explain
the concept of the entanglement entropy for quantum mechanics. Finally, we use the conjecture to
compute the entanglement entropy in AdS4 and AdS3, and compare the results with the obtained
from CFT.

I. INTRODUCTION

In November 1997, Juan Maldacena proposed a revo-
lutionary conjecture in the context of string theory: the
AdS/CFT correspondence, also known as the ”Malda-
cena duality” or ”gauge/gravity duality” [1]. The con-
jecture posits that there is a mapping between a con-
formal field theory and a theory of quantum gravity
(QG), namely a string theory. The AdS/CFT has been
groundbreaking principally because it is considered to
be the most evident example of the holographic prin-
ciple, (first suggested by Gerard ’t Hooft and further
interpreted by Leonard Susskind), which states that a
certain d -volume of space can be described by the lower-
dimensional boundary of the region [3].

From this point, and after all the attempts to show that
such an equivalence could not stand, have failed, much
of the effort has been focused on understanding how the
correspondence works by establishing what is known as
the ”AdS/CFT dictionary” [7]. Its different entries posit
an equivalence between a quantum property of the CFT
sitting on the conformal boundary of an AdS spacetime
(which is generally difficult to compute and can only be
done in very few cases) and an (easier) calculation of the
associated quantity on the gravitational side (i.e in the
bulk).

It is in this context where the Ryu-Takayanagi conjec-
ture is proposed, as a possible entry of the AdS/CFT dic-
tionary. As Shinsei Ryu and Tadashi Takayanagi argue
in [2], the conjecture relates the entanglement entropy
between any two subsystems A and B of a CFT to an
area (γA) in the AdS bulk:

SA =
Area of γA

4GN
, (1)

Where γA stands for the Ryu-Takayanagi (i.e. minimal)
surface and GN for the Newton’s constant.

II. THE ANTI-DE SITTER SPACETIME

In order to comprehend the Ryu-Takayanagi conjec-
ture it is compulsory to understand the properties of the
Anti-de Sitter spacetime [5, 8] by studying its metric.

For simplicity, we will first describe the 2-dimensional
case (AdS2) and further generalize to higher dimensions.

The defining properties of the AdS spacetime are that
it is maximally symmetric and has a constant negative
scalar curvature. Let us consider a d = 2 submanifold of
equation

−X2 − Y 2 + Z2 = −L2, (2)

embedded in a D = d + 1 = 3 ambient flat space of
signature (−,−,+)

dS2
Amb = −dX2 − dY 2 + dZ2, (3)

where L is a positive real constant which stands for the
radius of the minimal section of an hyperboloid. Since
there is a hyperbolic symmetry, Eq.(2) can be parame-
terized in terms of two new variables ρ and t as

X = L cosh(ρ) sin(t)

Y = L cosh(ρ) cos(t)

Z = L sinh(ρ), (4)

where ρ ∈ (−∞,+∞) and t ∈ (−∞,+∞). Notice that
even though X and Y are periodic in t, it is needed to
extend the range of time to infinity so the spacetime can
be globally hyperbolic, i.e. that there exists a Cauchy
surface.

We can now compute the submanifold tangent vectors

using eµ =
∂Xν

∂xµ
ẽν where Xν are the ambient space co-

ordinates, xµ the submanifold coordinates and ẽν the
Cartesian vectors of the ambient space. The resulting
vectors are

eρ = L [sinh(ρ) sin(t) ẽ1 + sinh(ρ) cos(t) ẽ2 + cosh(ρ) ẽ3]

et = L [cosh(ρ) cos(t) ẽ1 − cosh(ρ) sin(t) ẽ2]. (5)

Also, recalling that the elements of the metric tensor
are defined as gµν = eµ · eν we obtain the non-vanishing
coefficients of the metric that the ambient space induces
to the embedded submanifold

gtt = et · et = −L2 cosh2(ρ)

gρρ = eρ · eρ = L2, (6)
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where we have used η11 = ẽ1 · ẽ1 = −1, η22 = ẽ2 · ẽ2 = −1
and η33 = ẽ3 · ẽ3 = 1. Thus, leading to the AdS2 metric
according to dS2 = gµνdx

µdxν

dS2
AdS2

= −L2 [cosh2(ρ)dt2 + dρ2], (7)

which describes a maximally symmetric spacetime of
constant negative scalar curvature.

The decision of choosing the coordinate transformation
from Eq.(4) to obtain dS2

AdS2
is not arbitrary because

for this parameterization, the form taken by the metric
tensor allows for a generalization to AdSd. To do so, it
can be proven that we only need to add a term which is
proportional to the metric of a (d -2)-sphere (dΩ2

(d−2))

dS2
AdSd

= L2 [− cosh2 ρ dt2 +dρ2 + sinh2 ρ dΩ2
(d−2)]. (8)

Finally, Eq.(8) stands as the line element for AdSd
spacetime.

A. Killing vectors and curvature of AdS2

We will show that AdS2 is a maximally symmetric
spacetime. One way to prove it is by calculating the
Killing vectors of the metric (i.e the isometries of the
spacetime), which are

ζ(1) = et

ζ(2) = tanh(ρ) sin(t)et − cos(t)eρ

ζ(2) = tanh(ρ) cos(t)et + sin(t)eρ. (9)

Notice that ζ(1) = et was to be expected since the AdS2

metric coefficients gµν are time-independent. The maxi-
mum number of Killing vectors in a 2-dimensional max-

imally symmetric spacetime is #max =
d(d+ 1)

2
= 3.

And, since it coincides with the number of Killing
vectors of AdS2 it is verified that it is a maximally
symmetric spacetime.

Another way to prove it is by showing that the scalar
curvature is constant. For maximally symmetric space-
times, the curvature tensors can be written as

Rρσµν =
±1

L2
(gρνgσµ − gρµgσν)

Rρσ =
±1

L2
(d− 1)gρσ ; R =

±1

L2
d(d− 1). (10)

For d = 2 the scalar curvature obtained from (10) is

R =
±2

L2
but it still must be determined whether R > 0

or R < 0. Thus, we are forced to compute the Christoffel
symbols for AdS2. The non vanishing ones are

Γtρt = tanh(ρ) ; Γρtt = cosh(ρ) sinh(ρ), (11)

thus leading to the Ricci tensor components

Rtt = cosh2(ρ) ; Rρρ = −1

Rtρ = Rρt = 0. (12)

Finally, since R = gµνRµν we obtain the right sign

R =
−2

L2
, (13)

proving that AdS2 is a spacetime with constant scalar
curvature and thus, maximally symmetric.

B. The Einstein field equations and the
cosmological constant

Let us show that for AdS spacetime to be a solution
of the Einstein field equations (EFE) it is needed a non-
vanishing negative cosmological constant and no matter
(Tµν = 0). Thus, the EFE become

Rµν −
1

2
gµνR+ gµν Λ = 0. (14)

Substituting Eq.(10) in the latter, we obtain that the
value of the cosmological constant for d > 2 is non-zero

Λ = − (d− 1)(d− 2)

2L2
< 0. (15)

Notice that for d = 2 the cosmological constant is zero,
but this is a special case in which the EFE in empty
space are identically satisfied for any metric describing
a maximally symmetric spacetime. However, for AdS in
d > 2 to be a solution of the EFE in empty space, a
negative cosmological constant is required.

C. The Poincaré patch in AdS4

The Poincaré patch is a new set of coordinates that
will be very useful in the conformal boundary and will
be used in section IV.

Similarly as we did in Eq.(2) we can define a 4-
hyperboloid submanifold

−(X0)2 − (X4)2 + (X1)2 + (X2)2 + (X3)2 = −L2, (16)

embedded in a D = 5 ambient flat space

dS2
Amb = L2[−(dX0)2−(dX4)2+(dX1)2+(dX2)2+(dX3)2].

(17)
Also, consider the following coordinate transformation

Xµ = rxµ for each µ = 0, 1, 2

X4 −X3 = r

X4 +X3 =
1

r
+ r [−(x0)2 + (x1)2 + (x2)2], (18)
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where {X0, X1, X2, X3, X4} is the set of coordinates of
the ambient space, and {x0, x1, x2, r} the coordinates of
the 4-hyperboloid. Now, if we differentiate Eq.(18) and
substitute it in Eq.(17) we obtain

dS2
AdS4

= L2[r2 [−(dx0)2 +(dx1)2 +(dx2)2]+
dr2

r2
]. (19)

Finally, we define one last transformation: r =
1

z
leading

to

dS2
AdS4

=
L2

z2
[−(dx0)2 + (dx1)2 + (dx2)2 + (dz)2], (20)

which is the AdS4 metric restricted to the Poincaré patch.
This result can be generalized for dimension d as

dS2
AdSd

=
L2

(z)2
[−(dx0)2 +

d−2∑
i=1

(dxi)2 + (dz)2], (21)

where x0 can be interpreted as the time coordinate, z
the holographic coordinate (where z > 0 means we are
inside the bulk) and xi the spatial (non-holographic) co-
ordinates.

D. The conformal boundary

In this section we will first define what a conformal
boundary is and we will proceed to show that there
actually is a conformal boundary in AdS spacetime.
This is important because the CFT will be established
in such a boundary.

We say that a spacetime has a conformal boundary at
η0 if the metric coefficients have the following structure

gµν =
1

Z2(η)
g̃µν(η), (22)

where the metric coefficients g̃µν are regular functions
and Z(η) is called the conformal factor, which depends
on the holographic parameter η and fulfils the following
properties

Z(η0) = 0 → At the boundary

dZ(η0) 6= 0 → At the boundary. (23)

We choose AdS4 to exemplify that the AdS spacetime
has a conformal boundary. Since AdS has a spherical
symmetry, the angular coordinates θ and φ can be
set as constant because the conformal boundary will
correspond to a certain radius.

We choose the coordinate transformation given for the
expression sinh (ρ) = tan (η) to obtain the AdS2 metric
in the form

dS2
AdS2

=
L2

cos2 (η)

(
−dt2 + dη2

)
, (24)

which evinces the existence of a conformal boundary
since Z(η) = cos (η) fulfils the properties given by
Eq.(23) at η0 = π

2 .

Notice that the coordinate transformation
sinh (ρ) = tan (η) is exactly the equation of the null
geodesics. Also, what has put us on track of what the
transformations should be is the fact that it takes a
finite time for light to reach infinity in AdS spacetime.

E. Geodesics of an AdS spacetime restricted to the
Poincaré patch - the upper half space (UHS)

The objective of this section is to obtain the spatial
geodesics of AdS3 and also, show that one type of
spatial geodesics for AdS4 are hemispheric regions with
center in the conformal boundary. We will recover this
result in section IV.A to easily compute the area of the
Ryu-Takayanagi surface (γA) in a practical case.

Let us start from the metric of the AdSd spacetime,
restricted to the Poincaré patch Eq.(21). Since we are
interested in the spatial geodesics we will be considering
only a time slice (x0 = constant → dx0 = 0), thus
leading to

dS2
AdSd(spatial)

=
L2

z2

[
d−2∑
i=1

(dxi)2 + (dz2)

]
. (25)

This line element coincides with the well known upper
half space (UHS) in hyperbolic geometry. Then, the spa-
tial part of AdS3 is

dS2
AdS3(spatial)

=
L2

z2
(dx2 + dz2). (26)

The spatial geodesics in hyperbolic geometry are also well
known. There are two types: straight lines in the z di-
rection (which will not be important for our purposes),
and semicircles centered in the conformal boundary

x(λ) = R cos (λ) ; z(λ) = R sin (λ), (27)

where λ ∈ [0, π] is a non-affine parameter. Next,
by computing the non-vanishing Christoffel symbols

{Γ1
2 1 = Γ2

2 2 = −Γ2
1 1 = −1

z
}, it can be proven that the

parameterization Eq.(27) fulfils the geodesics equations
duµ

dλ
+ Γµαβu

αuβ = C(λ)uµ, where C(λ) is a non-

vanishing function of λ, and uν =

(
dx

dλ
,
dz

dλ

)
plays the

role of the 4-velocity.

The generalization of Eq.(26) to AdS4 is

dS2
AdS4(spatial)

=
dx2 + dy2 + dz2

z2
=

dr2 + r2dθ2 + dz2

z2
.

Since we see that the coefficients of the metric are
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independent of the angular coordinate θ, it means there
is a Killing vector ζθ = eθ associated to the rotational
invariance. Thus, for the AdS4 case, the geodesic
semicircles become geodesic hemispheres centered in the
conformal boundary.

III. THE ENTANGLEMENT ENTROPY

In this section, we intend to review the concept of the
entanglement entropy [4, 6]. Given a quantum system
described by some pure state |Ψ〉, the von Neumann en-
tropy is defined by

S = −tr ρ log ρ, (28)

where ρ = |Ψ〉 〈Ψ|. If we divide the whole quantum sys-
tem into two disjointed subsystems A and B, and con-
sider an observer who only has access to the subsystem A
and ignores any information from B, he will describe his
system with the reduced density matrix ρA = trB |Ψ〉 〈Ψ|.
We can now define the entanglement entropy (of the sub-
system A) as the von Neumann entropy of the reduced
density matrix ρA

SA = −tr ρA log ρA, (29)

which is a measure of how entangled the subsystems A
and B are.

In QFT though, things are not so simple. Not only
because it is not true that the global Hilbert space can
be described by the direct product of the Hilbert spaces
of its parts, but also because the entanglement entropy
diverges. As we will see, what is universal is the way it
diverges.

As we will show in section IV, the Ryu-Takayanagi con-
jecture suggests a gravitational derivation of the entan-
glement entropy between two quantum subsystems of a
CFT sitting at the conformal boundary of an AdS space-
time restricted to the Poincaré patch.

IV. THE RYU-TAKAYANAGI CONJECTURE

The Ryu-Takayanagi conjecture states that the entan-
glement entropy of a CFT (a field theory defined on the
conformal boundary of AdS) of a spatial sub-region A is
proportional to the minimal area of the hypersurface in
the bulk for a spatial slice of AdSd [2], i.e

SA =
Area of γA

4GN
. (30)

We refer to the minimal surface γA as the Ryu-
Takayanagi surface, which has the same boundary as A.
In the next section we will use Eq.(30) in AdS3/CFT2
and AdS4/CFT3 and will compare the results with those
obtained from CFT.

A. Holographic derivation of the entanglement
entropy for AdS4/CFT3 and AdS3/CFT2

As we know from the latter section, since one of
the types of geodesics for AdS4 are hemispheres which
correspond to the minimal surfaces γA, we only need to
compute their area.

In the Poincaré patch the spatial part of the AdS4

metric is

dl2 =
L2

z2
(dx2 + dy2 + dz2), (31)

or in cylindrical coordinates

dl2 =
L2

z2
(dr2 + r2dθ2 + dz2). (32)

We also know from section E that for AdS4 the minimal
surface γA is a geodesic hemisphere of radius R with its
center in the boundary, namely

(x− x0)2 + (y − y0)2 + z2 = R2. (33)

Also, since the coefficients of the metric Eq.(31) are in-
dependent of the coordinates x and y, there is a trans-
lational invariance over both of these directions. There-
fore, we can freely choose the position of the center of
the hemispheres at x0 = y0 = 0 without loss of gen-
erality. Then, by differentiating Eq.(33) in cylindrical
coordinates we get

z2 = R2 − r2 → dz2 =
r2

R2 − r2
dr2. (34)

By substituting Eq.(34) into Eq.(32) we obtain the in-
duced metric of the hemisphere dσ2 and its matrix form
h

dσ2 =
L2R2

(R2 − r2)2
dr2 +

L2r2

R2 − r2
dθ2

h =

(
L2R2

(R2−r2)2 0

0 L2r2

R2−r2

)
. (35)

(a) (b)

FIG. 1: Minimal surfaces γA in the bulk for: (a) AdS3

and (b) AdS4.
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The area can be computed as

Area of γA =

∫ 2π

0

dθ

∫ R

0

dr
√
|h|, (36)

where
√
|h| =

L2Rr

(R2 − r2)3/2
is the Jacobian. Now, sub-

stituting
√
|h| and integrating we obtain

Area of γA = 2πL2R

[
1√

R2 − r2

]R
0

. (37)

Rewriting it in terms of z =
√
R2 − r2 leads to

Area of γA = 2πL2R
1

z

∣∣∣∣
z=0

− 2πL2. (38)

As we can see, the area diverges, but this is not surprising
because in hyperbolic geometry the distances grow as we
get closer to the boundary. What is actually important
is the way it diverges. So, it is necessary to introduce a
cutoff in z

Area of γA =
2πL2R

ε
− 2πL2. (39)

Finally, from Eq.(30) we obtain the entanglement entropy
as

SA =
πL2R

2GN

1

ε
− πL2

2GN
. (40)

Similarly, we can repeat the calculation for AdS3/CFT2

to finally obtain

SA =
L

2GN
ln
L

ε
=
c

3
ln
L

ε
, (41)

where c =
3L

2GN
is the CFT2 central charge which,

in broad terms, counts the degrees of freedom of the
theory.

Eq.(41) is one of the few cases (specifically, the easiest
one) in which the entanglement entropy coincides exactly

with that computed in CFT [6]. For Eq.(40) the way it
diverges is exactly as it is expected by CFT. Still, even

though the term
πL2

2GN
is suspected to be related to the

F-Theorem central charge, as far as we know, it has not
yet been actually proven.

V. CONCLUSIONS

In this paper we have proved that the Ryu-Takayanagi
conjecture greatly simplifies the calculation of the en-
tanglement entropy of a CFT. With this objective we
have reviewed the most relevant tools from general rel-
ativity in order to characterize the AdS spacetime, as
well as introducing the concept of entanglement entropy
for quantum mechanics. It is important to highlight the
fact that in order for AdS to be a solution of the EFE it
needs a non-vanishing (and negative) cosmological con-
stant. Finally, we have compared the results obtained
to those computed directly from CFT. We also want to
emphasise the fact that it is still a conjecture and not
a theorem. The area law proposed by Shinsei Ryu and
Tadashi Takayanagi is struggling to prove its validity for
higher dimensions. E.g., for AdS4/CFT3 it has been pos-
sible to find the entanglement entropy by means of the
area law conjectured, but the calculation from the CFT
side, although it is suspected to be related with the so
called F-theorem, as far as we know, it still remains to be
exactly determined. Thus, making difficult to compare
both of the results.
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