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Abstract: This report aims to shed light on the different instability regimes of charged toroidal
droplets. Firstly, we have studied the shrinkage and breakup of neutral tori through Rayleigh-
Plateau instabilities. When charged, electrical stresses can overcome surface tension stresses leading
to droplet expansion. At even higher voltage, tori can develop Saffman-Taylor instabilities, which
result in viscous fingering. Remarkably, at high enough potential, these viscous fingering branch
out, giving rise to a magnificent dendritic-growth behaviour.

I. INTRODUCTION

In nature, droplets can be seen when expelled by
aquatic animals through their blow hole, near the
coastline when waves collapse, or when falling from the
sky in rainy days.
Nevertheless, despite being created via different mecha-
nisms, all droplets ultimately tend to the same shape.
This is due to surface tension, which favours minimizing
the surface for a given volume.
However, in the presence of external forces, a droplet
can adapt transient non-spherical shapes. But once
they disappear, surface tension rounds all liquid drops
up. Consequently, the generation of droplets with a
non-minimal surface is challenging.

Given its symmetry, a donut-like shape can be fully
described through two parameters; the distance from
the rotation axis Ro, and the radius of the tube ao (see
Fig.1a). The slenderness of the torus solely depends on

the ratio of these quantities, the aspect ratio, ξ = Ro

ao
.

We will first consider neutral tori, in which Laplace
pressure, ∆p, will force toroidal droplets to shrink
and/or break. In general,

∆p(r⃗) = 2γH(r⃗) = 2γ(κ1(r⃗) + κ2(r⃗)) (1)

where γ is the surface tension between the liquid making
up the toroidal drop and the continuous phase it is
suspended in, H is the mean curvature, and κ1 and κ2
are the principal curvatures. The vector r⃗ identifies a
point on the surface of a torus.

Since H≠0 ∀r⃗, we expect toroidal droplets to evolve in
remarkable ways to eventually try to become spherical.
In the presence of a constant voltage however, the
uneven charge distribution on the surface results in
additional stresses that will further contribute to the
evolution of the drop.

II. MAKING CHARGED TOROIDAL DROPS

We generate our toroidal droplets using a rotating
stage, on top of which we place a transparent cubic cu-
vette filled with the outer fluid. Through a set of clamps,
a stand holds a needle that is partially immersed inside
the bath, at a distance Ro from the rotation axis. Its
position can be easily tuned using a micromanipulator.
Connected to the needle through a tube, we use a sy-
ringe and a pump to inject the inner fluid at a certain
flow rate. When the fluid is pumped through the nee-
dle, due to the viscosity and the speed of the outer fluid
around the tip of the needle, a jet is formed, and due
to the imposed rotation of the stage, it closes onto itself
after a full rotation, creating a toroidal drop. [1] If more
volume is pumped after the toroid is formed, the fluid
will be directly injected inside the torus, increasing the
value of ao (see Fig.1b).
For charged tori experiments, we need a high voltage
power supply that sets the potential through a wire at-
tached to the metallic needle.
Lastly, in order to monitor the evolution of the droplets,
we use two CCD cameras; the first one pointing towards
the zenith below the cuvette, and the other oriented to
capture the evolution along the z-axis (see Fig.1a).

III. NEUTRAL TORI

We start by noting that toroidal and cylindrical jets
share common features; they both have a circular cross
section, and break into droplets provided their length to
tube ratio is large enough. We thus begin by introducing
breakup in cylindrical jets.

A. Theoretical treatment of cylindrical jets

The theoretical study of Rayleigh-Plateau consists in
a linear stability analysis of the straight jet state, based
on applying a sinusoidal perturbation to a perfectly
symmetric and infinite cylindrical jet that is comprised
of an inviscid and incompressible fluid [2].
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FIG. 1: a) Schematic of the torus measurements and parame-
ters, with ao the tube radius, Ro the centre torus radius, θ the
inner angle, and the xyz coordinate system. b) Schematic of
the setup used to generate toroidal drops with a needle inside
a viscous bath rotating at angular velocity ω. We have used
a diffuse light to obtain a better image contrast.

In this case, for small times, the radius will be
A(z, t) = a + ε eωt+ikz, where a is the initial radius, ω
is the growth rate of the instability, and k = 2π

λ
is the

wavenumber associated to the perturbation, with λ the
wavelength (see Fig.2).

FIG. 2: Sketch of the jet perturbation A(z, t), with λ the
wavelength, and a the initial radius

Since ε≪a, for small times we can ignore second and
higher order terms in ε. Introducing our perturbation
into the Navier-Stokes equation, results in the dispersion
relation:

ω2
=
γ

ρa
(ka)(1 − (ka)2)

I1(ka)

I0(ka)
(2)

where I0 and I1 are the zero and first order Bessel
functions of the first kind.
Our dispersion relation tells us which mode, correspond-
ing to a particular value of ka, is most likely to cause
breakup. The fastest unstable mode then corresponds
to the maximum in the dispersion relation.
Note that there are no unstable modes for ka > 1, since
in this case ω2 < 0, which is not possible for real ω; this
corresponds to a stable situation for which no unstable
modes can develop. Thereby, the Rayleigh-Plateau
criterion provides a threshold wavelength below which
no instability develops: λ < 2πa.

In 1935, S.Tomotika [3] performed a similar stabil-
ity analysis but for the case of a jet with viscosity µi
immersed in a bath of viscosity µo. Through the same
reasoning, he obtained:

ω =
γ

2aµo
(1 − (ka)2) Φ(ka,

µi
µo

) (3)

where Φ is a function that depends on the mode dimen-
sionless wavenumber ka and the viscosity ratio µi

µo
. The

values corresponding to the fastest unstable mode are
tabulated, and through interpolation, one obtains the re-
sult shown in Fig.3.

FIG. 3: Interpolation of the fastest unstable mode with the
tabulated values obtained by Tomotika in his paper [3].

We can see that this dispersion relation scales differently
than that in Eq.2. It depends on the dynamic viscosity
of the outer fluid, which delays breakup. In the inviscid

case, ω ∼
√

γ
ρa

.

B. Toroidal analogy and experimental results

We apply the reasoning for cylindrical jets to a torus
by considering it as a closed cylindrical jet. The resultant
periodicity requires that the wavelength is related to the
overall radius of the torus through 2πRo = nλ, where n
is the number of droplets; that is to say that the torus
must fit an integer number of wavelengths for it to break.
From the previous relation, it follows that:

n =
2π

λ
Ro = kRo = (kao) ξ ≈ (kao)max ξ (4)

This assumes the mode that causes breakup is (kao)max,
as it is the fastest amidst all possible modes.

Using our experimental setup with a 60.000 cSt
silicon oil as outer fluid, and 53 w/w glycerol in water
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as inner fluid, corresponding to µi/µo ≈1/60, we expect
(kao)max ≈0.48 ± 0.2.
Plotting the number of drops observed experimentally
after breakup in terms of the aspect ratio, we obtain
Fig.4.

FIG. 4: Experimental data with the measurement uncer-
tainty, linear regression line (y = 0.51x) and step function
theoretical prediction (y = 0.48x)

Considering the leftmost points for each n, a linear
fit of the data results in a slope corresponding to
(ka)max = 0.51±0.04, in great agreement with our
theoretical expectations.

But, what if (kao)max ξ is not an integer?
From a mechanical point of view, the pressure drop
inside the droplet between θ = 0 and θ = π (see Fig.1a),
is:

pin(π) − pin(0) =
γ

ao

2ξ

ξ2 − 1
> 0 (∀ ξ > 1) (5)

This implies that a torus will tend to reduce its inner
radius, leading to a reduction of the aspect ratio. This
amounts to shrinking which will be more evident in thick
tori, as (pin(π) − pin(0))→∞ as ξ → 1.

This shrinkage explains the steps in Fig.4 and that
we find the same n for a range of ξ-values; the torus
generally shrinks until it can fit a given number of
droplets for it to break through the fastest unstable
mode.

IV. CHARGED TORI

In this section, we will discuss the effects of electri-
cal stresses due to charging a toroidal droplet at con-
stant voltage. To a first approximation, we will think of
this as charging a perfect conductor. We will see that

electrical stresses compete with surface tension stresses.
Therefore, as a means to enhance the effects of charg-
ing, we will use two surfactants to significantly lower γ.
The outer fluid is a 2% by mass of 65 cSt of aminopropyl
terminated silicone (ATSO) in 60.000 cSt silicon oil, and
the inner fluid is a mixture of 16 mM sodium dodecyl
sulfate (SDS) in water, which also serves to increase the
electrical conductivity of this liquid.

A. From shrinking to expanding

If we consider adding charge on a toroidal droplet,
similar to H changing across the surface of the torus,
charge will not be uniformly distributed due to the
non-uniform electrostatic interactions between different
parts of the toroidal surface. If we consider the cross
section of the torus, the electrostatic repulsion that will
feel charges near the centre will be more appreciable
than those in the most external perimeter. Thereby,
these uneven electrical and surface tension stresses will
compete, resulting in novel dynamic evolution and richer
phenomena.

All our experiments have been performed at con-
stant voltage, which we impose by keeping the needle
in contact with the droplet as it evolves. As long as
the droplet is equipotential, charge must be located
at the surface, leading to an electrical stress produced
by the electric field due to the surface. The electrical
stress, τ⃗E = 1

2
σqE⃗o, points perpendicularly outwards

to the interface, as E⃗ is also perpendicular to it. In
this expression, σq is the surface charge density at each

point, which can be written as σq = εrεoE⃗o⋅n̂, with n̂ the
normal vector to the surface, εo the vacuum permittivity,
and εr the relative permittivity of the inner fluid. Hence:

τ⃗E =
1

2
εrεo∣Eo∣

2n̂ (6)

which is along n̂, regardless of the sign of the charge
located at the surface. Together with surface tension
stresses, the Laplace pressure is:

pin − pout = 2γH −
1

2
εrεo∣E∣

2 (7)

This equation tells us that surface tension effects can be
reverted provided that we have enough surface charge
density. Furthermore, we can see in Fig.5 that after a
certain time from the application of the voltage on the
droplet, these begin to expand, and this expansion hinges
on the applied voltage and the aspect ratio.
Although we know the analytical expression of the mean
curvature at every point, the electric field is far more
complicated to compute as we have to consider the pe-
culiar topology of the torus to solve Laplace’s equation
in toroidal coordinates with proper boundary conditions
[4]. However, we can consider the pressure difference
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FIG. 5: Torus before applying the voltage, to which we have
drawn a circumference delimiting the inner radius. Second
image is the same torus 160 seconds later, where we can see
that the inner radius has expanded.

pin(π)−pin(0), as we did before. The transition between
shrinking to expanding can be considered to be between
surface tension and electrical stresses at these two loca-
tions.
Rearranging terms of Eq.7, one can obtain [4]:

p̃int − p̃out =
ξ − 2 cos θ

ξ − cos θ
−NEẼ

2
(ξ, θ) (8)

where p̃int and p̃out are the dimensionless pressures in-
side and outside the surface, Ẽ the dimensionless elec-

tric field, and NE = εoεrV
2

2γao
the electrocapillary number,

which expresses the relative strength of electrical stress
with respect to surface tension stress. The transition oc-
curs when the pressure drop inside the droplet is null,
hence:

N crit
E (ξ) =

2ξ
ξ2−1

Ẽ2(ξ, π) − Ẽ2(ξ,0)
(9)

This is the critical electrocapillary number, and is related
to the transition through:

V (ξ) =

¿
Á
ÁÀ2γaoN crit

E (ξ)

εoεr
(10)

The experimental results have been plotted in Fig.6.
Note that shrinking dominates for small ξ; we need larger
and larger V to revert shrinking into expanding, as far
as surface tension effects become dominant as ξ → 1.
Similarly, decreasing ξ at constant V eventually reverts
expanding, driven by the electric field, into shrinking.

B. Viscous fingering and dendritic behaviour

Further increasing the voltage, we can see that the
interface distorts slightly, eventually leading to the
formation of finger-like patterns along its perimeter.
These fingers can be understood as a Saffman-Taylor
instability. Saffman and Taylor published in 1958 a
paper [5] aiming to explain the formation of patterns

FIG. 6: Data obtained for different aspect ratio and differ-
ent voltages, where n correspond to shrinking tori, s to ex-
panding, and l do not show neither shrinking nor expanding
behaviour.

when a fluid displaces another one with a higher viscos-
ity in the interface of a confined quasi-two-dimensional
space, known as a Hele-Shaw cell. Originally, Hele-Shaw
cells were introduced as a simple method to perform
experiments at low Reynolds numbers, and they consists
of two parallel plates separated a distance b filled with
the highly viscous fluid that is displaced by the inner
fluid, which is pumped either at one of the edges of a
longitudinal cell, or at the center of the upper plate of a
radial cell. It was seen that as soon as the inner fluid
was pumped, the viscous bath drags behind it, lead-
ing to the formation of the so-called viscous fingering. [6]

To connect these experiments with our charged tori, the
idea is that the mechanical stress performed when pump-
ing in Hele-Shaw cells is replaced by the electrical stress
due to the charge distributed on the surface of our drops.

We have experimentally found that the more volt-
age we apply, the more fingers we observe, and the faster
they expand (see Fig.7).
Since the expansion rate is controlled by the pressure
drop at the interface, and thus V , due to Eq.7, it is
reasonable that the timescale for finger growth increases
with the voltage applied.
The number of fingers, nmax, can be estimated using a
mapping to the theory for radial Hele-Shaw cells [7]. By
linearly perturbing the uniform interface state, one can
obtain the mode most likely to be seen.

nmax =

¿
Á
ÁÀ1

3
(

12µo
γ

[Uo (
ξ + 1

2
)

2

] + 1) (11)

where Uo is the expansion velocity of the interface.
This equation shows that the number of fingers increases
as the velocity increases, and due to Eq.7, the number
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FIG. 7: Time evolution of the perturbation in two tori with
the same aspect ratio and different voltage. The frames on
top correspond to a 661 V torus while the second correspond
to 769 V.

FIG. 8: Time evolution in the yz and xy planes of a toroidal
droplet to which we applied 970 V. High voltages resulted in
dendritic growth depicted in the upmost part of the top right
image (t = 68 s). Note that the finger-like pattern expands
along the 3rd dimension of space, as shown in the zoomed
image at the bottom.

of fingers will increase as the voltage increases.

As a final remark, it can be seen that, similarly to

what happens in radial Hele-Shaw cells when large
pressure is applied, large voltages result in the growth
of dendritic interfaces similar to fractal patterns (see
Fig.8). Interestingly, for the case of radial Hele-Shaw
cells it has not been proved yet that the perimeter of
the interface is fractal [6].

V. CONCLUSIONS AND FUTURE STEPS

We have seen that neutral tori obey the linear
stability analysis developed by Tomotika, and that
they shrink towards the centre as predicted theoret-
ically after considering the pressure drop inside the torus.

The data from shrinking-expanding transition in
Fig.6 presents a similar behaviour to experiments
performed in [4].
We note, however, that once we reach a certain voltage
(≈ 450V ), drops tend to expand regardless of their
aspect ratio. This is likely due to the low γ of our
system, which would require values of ξ very close to 1,
at these voltages, for shrinking to be dominant.

We have been able to see a novel 3-dimensional
growth of viscous fingers. Perhaps, these behaviour
might be explained because of the density difference
between the inner and outer fluid, and thus, might be
related to sinking.

Further research should be done in the dendritic
regime. Due to the minute sizes and the accuracy
required to calculate a possible fractal dimension, an
improvement on imaging is a must.
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