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Abstract: Firstly, we introduce the concept of a Path Integral and see how to use it to formulate
Quantum Mechanics. We see some classical examples and learn how to calculate Path Integrals for
simple systems. We also show how Classical Mechanics arises from the Path Integral formulation
of Quantum Mechanics in the classical limit. Then, we see the equivalence between Schrödinger’s
formulation of Quantum Mechanics and the formulation in terms of Path Integrals. Lastly, we study
the Aharonov-Bohm effect.

I. Introduction

The concept of trajectory is of paramount importance
in classical mechanics. When studying physical systems,
one often attempts to find the position of one or more
particles in space at every point in time, be it using New-
ton’s vector-based formulation of mechanics or using the
tools provided by analytical mechanics. At the begin-
ning of the 20th century, however, Quantum Mechanics
was being developed and it forced physicists to abandon
many of the core ideas of classical mechanics, including
the notion of trajectory. Heisenberg’s uncertainty prin-
ciple states that it is not possible to perfectly determine
the position of a particle and thus it is not possible to
determine its trajectory. In spite of this, some physicists
still tried to formulate Quantum Mechanics in a way that
the idea of trajectory did not need to be relinquished. A
notable step towards this direction is Dirac’s 1945 paper
[2] in which he introduces a new function S(q, q′) defined
by

〈q|q′〉 = exp

(
iS(q, q′)

~

)
·G (q, q′) (1)

where q and q′ represent the eigenvalues of the observ-
ables associated with the (generalised) coordinates of the
system Q and Q′, respectively, and G (q, q′) is a product
of delta functions depending each on a function of q and
q′. He then shows that, under certain conditions, the
corresponding momenta observables satisfy

Pr =
∂S(Q,Q′)

∂Qr
+ ∆1 P ′r = −∂S(Q,Q′)

∂Q′r
+ ∆2

where ∆i are functions of a dynamic variable and a func-
tion whose definition is not relevant for the purposes of
this section. Afterwards, he shows that both ∆i depend
on the state of the system between Q and Q′. Feyn-
man in [4] expands on this ideas and postulates that the
amplitude probability for a particle to travel from one
position to another in a certain amount of time is a sum
of complex numbers corresponding each to one possible
path the particle might take and the contribution from
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each path is just the exponential term in (1) where S cor-
responds to the classical action associated to that path.
The goal of this work is to present Feynman’s idea in
more detail and to show it is equivalent to Schrödinger’s
formulation of Quantum Mechanics as Feynman does in
that same article. Then we will see as an example the
free particle. Finally we will study the Aharonov-Bohm
effect using Feynman’s Path Integral formulation.

II. The Path Integral

Let a = (ta, xa) and b = (tb, xb) be two points in space-
time and consider a particle that travels from a to b. This
particle can take many paths. Let’s define the probability
amplitude for this particle to go from a to b, the kernel
K(b, a), as a combination of complex numbers Φ[x(t)]
each associated to a path x(t) joining these points:

K(b, a) =
∑
x(t)

Φ[x(t)] (2)

where Φ[x(t)] ∝ exp
(
iS[x(t)]

~

)
and S[x(t)] is the classi-

cal action for the path x(t). In order to formalise this
summation over all paths we do the following: consider
a partition of the interval [ta, tb] formed by N + 1 evenly
spaced points {ti} and associate to each ti a position in
space xi in such a way that (t0, x0) = a, (tN , xN ) = b.
By joining points (ti, xi) and (ti+1, xi+1) with line seg-
ments we create a polygonal path that goes from a to b.
Now by varying each xi except for x0 and xN we can go
over all polygonal paths joining a and b so the summation
at (2) becomes∫

...

∫
Φ[x(t)] dx1 ... dxN−1

Calling ε the distance between any ti and ti+1, if we take
ε to be small, the polygonal path becomes less jagged and
resembles more a smooth path between a and b. In order
to better approximate a truly smooth path we would like
to take the limit of this expression as ε approaches 0, but
it would not converge. We need to add a constant to
ensure convergence defined by

A−N =

((
2πi~ε
m

) 1
2

)−N
(3)
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FIG. 1: Each path is defined by its position xi at time ti. To
get all paths, we vary the position at every time ti

Finally, we can define the path integral as

K(b, a) = lim
ε→0

1

A

∫
...

∫
exp

(
iS[b, a]

~

)
dx1

A
...
dxN−1

A
(4)

where S[b, a] is the classical action over the path
with endpoints a and b formed by joining (ti, xi) and
(ti+1, xi+1) with line segments. Instead of with line seg-
ments, we can join them with sections of the classical
path which goes from a to b passing through all (ti, xi).
The calculation of K(b, a) is to be performed in this or-
der: first calculate the integrals and, only then, take the
limit. Introducing the following notation we can write
the Path Integral in a more compact form:

K(b, a) =

∫ b

a

exp

(
iS[b, a]

~

)
Dx(t) (5)

III. Events in succesion

If the Lagrangian of the system does not depend on
derivatives of the position of order higher than one, so
it depends on at most the velocity, we can write S[b, a] =
S[b, c]+S[c, a], where c = (tc, xc) and tc is between ta and
tb (this condition on the Lagrangian is required to avoid
needing to specify values of velocity, acceleration... at the

point c). Therefore, exp
(
iS[b,a]

~

)
= exp

(
iS[b,c]

~ + iS[c,a]
~

)
and the path joining a and b can be divided into two
paths, one joining a and c and the other joining c and b.
We can now perform the integral (5) in two steps: first
we integrate over all paths between a and c

K(b, a) =

∫ ∞
−∞

∫ b

c

exp

(
iS[b, c]

~

)
K(c, a)Dx(t) dxc

and then we integrate over all paths between c and b
leaving xc fixed:

K(b, a) =

∫ ∞
−∞

K(b, c)K(c, a) dxc (6)

From this, we can deduce that the kernel to go from a
to b is the sum of the product of amplitudes to go from
a to c and from c to b, over all values of xc. We can
also deduce that the kernel to go from a to c, measure

the state of the system at this point in time, and then go
from c to b is the product of the kernels to go from a to
c and from c to b.

This can readily be extended to consider more than
one point between a and b. In fact, it can even be used
to define the Path Integral in an alternative way (see [5]
p. 36, ”Events occurring in succession”).

IV. The classical limit

If the concepts we have introduced are a good model of
nature, they must also hold in the classical limit, that is,
when the action is very large. Let’s briefly justify this
is the case. Consider a classical system, a system which
has dimensions, mass... so large that the action S is huge
in comparison to ~ ∝ 10−34 J s. For a given path this
system might take x(t) with associated action S[x(t)],
the action of each of its neighbouring paths will be almost
equal to S[x(t)]. This difference, as small as it might be
from a classical point of view, is huge when compared to

~. Therefore, exp
(
iS[x(t)]

~

)
oscillates rapidly when small

variations to x(t) are performed. As a consequence, there
exists a path x′(t) close to x(t) such that the quantity

exp
(
iS[x′(t)]

~

)
is in opposition to the same quantity for

x(t) and their contributions to the Path Integral cancel
out. However, the classical path x(t) is an extrema of
the action, so small variations to it do not cause changes
in the action S[x(t)] to first order. Thus, the only paths
that contribute to the Path Integral are the classical path
and its close neighbours, so the only important path is
the classical one.

In the classical setting, we would also expect that small
changes in the endpoint b do not alter noticeably the
probability that the system ends up in b. We can con-
vince ourselves this is what happens with the following
argument: small changes in b will cause big changes in S

and strong oscillations in exp
(
iS[x(t)]

~

)
, and as a result

K(b, a) will be greatly altered. Nevertheless, from the
previous reasoning we can see that

K(b, a) = f(α) exp

(
iS[x(t)]

~

)
where α represents classical quantities of the system, and
f is a function that only changes when variations in a
classical scale are performed on α. So the probability of
finding the system at b only depends on f(α) and there-
fore small changes to b do not affect it.

V. The Path Integral and the Schrödinger equation

Often we are just concerned with the probability ampli-
tude for a particle to get to a point (tb, xb) and where
the particle came from is of no interest to us. In this
case, the kernel K(xb, tb;xa, ta), which is the amplitude
we are interested in, is written as ψ (xb, tb) and is called
a wave function. It is also often the case that calculating
the path integral is very hard, so we would like to find
a differential equation that the wave function must ful-
fill and calculate it by solving this equation. Let’s begin
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with noticing that since the wave function is a probabil-
ity amplitude, for any two events in succession it must
satisfy (6) which in terms of wave functions is

ψ (xb, tb) =

∫ ∞
−∞

K(xb, tb;xa, ta)ψ (xa, ta) dxa

Now, let ε be an infinitesimal amount of time and put
ta = t, tb = t+ ε, xb = x and xa = y. As ε is very small,
we can take the following approximation for the action
for a path x(t) joining a and b:

S[b, a] =

∫ tb

ta

L (x(t), ẋ(t), t) dt

' εL
(
x+ y

2
,
x− y
ε

)
where L is the Lagrangian of the system. The kernel
K(xb, tb;xa, ta) is proportional to the exponential of i/~
times the action S[b, a], so substituting in the previous
equation we get

ψ (x, t+ ε) =

1

A

∫ ∞
−∞

exp

(
i

~
εL

(
x+ y

2
,
x− y
ε

))
ψ (y, t) dy

The Lagrangian for a particle of mass m in a potential
V (x, t) is L(x, ẋ, t) = m

2 ẋ
2 − V (x, t) and thus

ψ (x, t+ ε) =
1

A

∫ ∞
−∞

exp

(
i

~
m (x− y)

2

2ε

)

× exp

(
− i
~
εV

(
x+ y

2
, t

))
ψ (y, t) dy

If y is very different from x, the first exponential will
oscillate rapidly due to the term (x− y)

2
so the only

important contributions come from y near x. For this
reason, we make the substitution y = x + η and expand
ψ(y, t) = ψ(x + η, t) in a power series around x on the
right-hand side of the equality. On the left-hand side, we
expand ψ(x, t+ε) around t. Keeping only terms of order
ε and approximating εV

(
x+ η

2 , t
)

by εV (x, t) because
the error is of higher order than ε we arrive at

ψ(x, t) + ε
∂ψ

∂t
=

1

A

∫ ∞
−∞

exp

(
imη2

2~ε

)
×
(

1− i

~
εV (x, t)

)(
ψ(x, t) + η

∂ψ

∂x
+
η2

2

∂2ψ

∂x2

)
dη

(7)

By performing the products under the integral, we get
the term

ψ(x, t)
1

A

∫ ∞
−∞

exp

(
imη2

2~ε

)
dη

which has to equal ψ(x, t) at the left-hand side in the

limit ε approaching 0. Therefore, A =
(

2πi~ε
m

)1/2
as we

have stated in (3). This method for finding the value of

A can be adapted to be used in other similar problems.
Returning to (7), we can carry out the products and take
all the terms which do not depend on η outside of the
integral. Performing the gaussian integrals that are left
(see [5] p. 78 for details), equation (7) becomes

ψ + ε
∂ψ

∂t
= ψ − i

~
εV ψ +

i~ε
2m

∂2ψ

∂x2

Finally, this equation is satisfied to order ε if ψ satisfies

i~
∂ψ

∂t
=

(
− ~2

2m

∂2ψ

∂x2
+ V (x, t)ψ

)
which is the Schrödinger equation. This argument and
its conclusions can be readily generalised to the case of a
particle in a 3-dimensional space.

With this, we have proved the equivalence between
Schrödinger’s formulation of Quantum Mechanics and
the Path Integral formulation.

VI. The Free Particle

Consider a free particle. Its velocity is v = xi−xi−1

ti−ti−1
and

it is constant, and its potential energy is 0 everywhere.

Therefore, the Lagrangian is L = 1
2m
(
xi−xi−1

ti−ti−1

)2

and the

action is

S[b, a] =

∫ tb

ta

L dt =

N∑
i=1

∫ ti

ti−1

L dt

We have, remembering that ε = ti − ti−1∫ ti

ti−1

L dt =

∫ ti

ti−1

1

2
m

(
xi − xi−1

ti − ti−1

)2

dt

=
1

2
m

(xi − xi−1)
2

ε

Thus, S[b, a] = m
2ε

∑N
i=1 (xi − xi−1)

2
and (4) is

K(b, a) = lim
ε→0

( m

2πi~ε

)N
2

∫
...

...

∫
exp

(
im

2ε~

N∑
i=1

(xi − xi−1)
2

)
dx1... dxN−1

(8)

In order to calculate this integral, we first integrate with
respect to x1, then x2 and so on. To perform the integral
with respect to x1 we split the exponential of the summa-
tion into the product of two exponentials, one containing
all the terms of the summation that depend on x1 (those
corresponding to i = 1 and i = 2) and another exponen-
tial that does not depend on x1 and can be taken out
from the integral. The integral with respect to x1 is( m

2πi~ε

) 2
2

∫ ∞
−∞

exp
( im

2~ε
(

(x2 − x1)
2

+ (x1 − x0)
2 ))

dx1

Expanding the squares of the sums and grouping all
terms depending on x1 we arrive at

m

2πi~ε
exp

(
im

2ε~
(
x2

2 + x2
0

))
×
∫ ∞
−∞

exp

(
im

2~ε
(
2x2

1 − 2 (x2 + x0)x1

))
dx1
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This is a gaussian integral. Calculating it we obtain

m

2πi~2ε
exp

(
im

2ε2~
(x2 − x0)

2

)
(9)

Now we have to integrate with respect to x2. This cor-
responds to integrating the terms i = 2 and i = 3 in (8).
The term corresponding to i = 2 is already included in
(9) so we just have to multiply it by the term correspond-
ing to i = 3 and integrate using the same technique as
before. We get:( m

2πi~3ε

) 1
2

exp

(
im

3ε2~
(x3 − x0)

2

)
It can be proved that a recursive process is established

and after n− 1 steps we have( m

2πi~nε

) 1
2

exp

(
im

nε2~
(xn − x0)

2

)
Since nε = tn − t0, after the necessary N − 1 steps to
calculate the integrals with respect to x1, x2, ..., xN−1

we obtain an expression which does not depend on ε and
the limit does not have any effect on it. Finally, the
kernel for the free particle is(

m

2πi~ (tb − ta)

) 1
2

exp

(
im

2~
(xb − xa)

2

tb − ta

)
which is equal to the wave function of a free particle
calculated using the Schrödinger equation as it should
be.

VII. The Aharonov-Bohm Effect

In [3] W. Ehrenberg and R. E. Siday considered an exper-
iment consisting in shooting electrons at a screen through
a double slit and studying the pattern imprinted on the
screen. They noticed that if a magnetic field exists in a
region of space this pattern is modified even when this
region is not accessible to the electrons. That is, the ex-
istence of a magnetic field has an effect on the outcome
of the experiment even when the beams of electrons are
in field-free regions only. This effect was presented as a
curiosity and not much importance was given to it. Some
years later, Y. Aharonov and D. Bohm in [1] rediscovered
this phenomenon and explained it more thoroughly. This
effect is nowadays called the Aharonov-Bohm effect and
in this section we are going to present it briefly.

Consider the setup presented in figure 2. When the
solenoid is activated, a current flows through it and as

a consequence a magnetic field ~B is established in the

solenoid. The vector potential associated is ~A and it can-
not be null everywhere outside the solenoid. The proof of

this is as follows: assume ~A was null outside the solenoid
and take a closed curve α circling the solenoid. Letting

Σ be the region of space contained by α, the flux of ~B
through Σ is ∫

Σ

~B · ~dS = ϕB

for some non-zero constant ϕB since Σ contains the

solenoid. However, using Stokes’ Theorem and since ~A is
null outside the solenoid, we have∫

Σ

~B · ~dS =

∫
Σ

(
∇× ~A

)
· ~dS =

∫
α

~A · ~dl = 0

which is a contradiction. Therefore, as the hamiltonian

of the electron H depends on ~A it will not be the same
if the solenoid is active or not and the wave function will
differ between this cases.

FIG. 2: Electrons from a source S are shot at a screen through
a double slit and are detected on the screen at a point D

Let P1 and P2 be paths going through the first and

second slits respectively. In the case ~B = 0, the wave
function of the electron is

ψ(D) = ψP1(D) + ψP2(D)

where ψPk
is the wave function corresponding to the path

Pk and its neighbours for k = 1, 2. Let’s use the Path
Integral to show how the wave function of the electron is
altered if there exists a magnetic field. The lagrangian

in this case is the sum of the langrangian for ~B = 0

L0 plus and additional term ∆L = e
c~v · ~A where e is

the elementary charge, c is the speed of light and ~v is
the (classical) velocity of the electron. Therefore, for an
electron traveling from a point in the source at some time
a to a point in the screen b at a later time following the
path Pi, the exponential in the Path Integral (5) is

exp

(
iS

~

)
= exp

(
i

~

∫
L dt

)
= exp

(
i

~

∫
L0 dt

)
× exp

(
i

~

∫
∆L dt

)
= exp

(
iS0

~

)
exp

(
i

~

∫
∆L dt

)
= E0 exp

(
ie

~c

∫ tb

ta

~̇x · ~A dt
)

= E0 exp

(
ie

~c

∫
Pi

~A · ~dl
)

(10)

where E0 is the exponential of the action (times i/~)
in the case of no magnetic field S0. Taking two paths
Pi and Pi′ , the difference ∆i,i′ in the argument of the
exponential that weights their contribution in the Path
Integral is∫

Pi

~A · ~dl −
∫
Pi′

~A · ~dl =

∫
Pi,i′

~A · ~dl =

∫
Si,i′

(
∇× ~A

)
· ~dS

where Pi,i′ is the closed path formed by joining Pi and Pi′
reversed and Si,i′ is the surface whose boundary is Pi,i′ .

In the neighbourhood of P1, since ~B = ∇ × ~A = 0, this
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