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Abstract: A study on neutron stars, regarding the equations of state and the structure equations
used to model them, has been performed as a benchmark for investigating the tidal deformability of
these compact stars, which may be accessed through gravitational wave detections, and its contribu-
tion in obtaining generic (model-independent) relations between neutron star relevant magnitudes.

I. INTRODUCTION

Neutron stars (NS) are extremely dense objects, with
masses comparable to that of the Sun, and radii of around
10 km. As described in, e.g. Refs. [1,2], at such densi-
ties, most of the interior of the star consists of a nu-
clear liquid composed by neutrons with a certain frac-
tion of protons, electrons and muons that maintain the
β-equilibrium. This constitutes the core of the NS, a re-
gion that accounts for over ∼ 90% of its whole mass and
size. Moving outside from the core, both density and
pressure decrease. At a certain point, when the density
is low enough, matter inhomogeneities start to prevail,
and protons distribute in clusters that define a solid lat-
tice (in order to minimize the Coulomb repulsion), which
is surrounded by a gas of free neutrons and a background
of electrons such that the whole system is charge neutral.
This region of the star is called the inner crust. At even
lower densities that reach up to the surface of the NS, in
what is called the outer crust, neutrons are finally con-
fined within the nuclear clusters and thus matter consists
of a lattice of neutron-rich nuclei embedded in a degener-
ate electron gas. The whole NS crust is an external layer
around ∼ 1 km deep.

The physics of isospin-rich ultradense nuclear matter
is yet to be fully understood, due to its complex nature
and the technological impossibility to replicate it in the
laboratory. As a consequence [3-5], astronomical observa-
tions on NS play an essential role in this field, as the only
viable source of experimental data. Many of the magni-
tudes of astronomical interest (such masses, as radii and
moments of inertia), which can be obtained indirectly
from observational data, are strongly dependent on the
nuclear equation of state (EoS). Therefore, great effort
is directed towards learning how to use NS observational
data to constrain the EoS.

Since the first gravitational wave (GW) detection com-
ing from the coalescense of a binary system of NS mea-
sured by the LIGO-Virgo collaboration [12] (GW170817),
this kind of observations has proven to carry much infor-
mation about the merging objects themseves. From the
GW signal, it is possible to extract the chirp mass (which
is a weighted average of masses) of the system, that influ-
ences the inspiral frequency of the merging bodies; and
also the tidal deformability of the system, which affects
the signal by adding phase corrections to the point-mass

dynamics, as described in Refs. [3-5]; and also, which is
highly sensitive to the EoS.

In this work, we have started by studying the equa-
tion of state, particularly by analytically deducing and
analysing the properties of a simplified EoS. Then, em-
ploying some of the EoSs commonly featured in the liter-
ature, we have solved the equations for the structure, the
tidal deformability and the moment of inertia for a NS.
We have used the resulting data to study the behaviour
of these magnitudes and their dependence on the EoS.
Finally, and motivated by the results found in the lit-
erature, we have deduced some universal (EoS indepen-
dent) relations involving the tidal deformability, which
are of great interest when coming to imposing restric-
tions on the EoS, while also providing helpful ways to
constrain non-measurable parameters (such as, in GW
observations, the radius of the star or its moment of iner-
tia) from observable magnitudes (such as, again for GW
detections, the tidal deformability).

II. THEORETICAL BACKGROUND

A. TOV Structure Equations

Following Refs. [6,7], for very compact stellar objects
such as NSs, which require for the effects of general rel-
ativity to be introduced, imposing hydrostatic equilib-
rium under spherical symmetry leads to the Tolmann-
Oppenheimer-Volkoff (TOV) equations, which read:

dp(r)

dr
= −Gm(r)

r2
ε(r)

c2

[
1 +

p(r)

ε(r)

]
[
1 +

4πr3p(r)

m(r)c2

] [
1− 2Gm(r)

rc2

]−1
,

(1)

dm(r)

dr
= 4πr2

ε(r)

c2
, (2)

where p(r) and ε(r) stand for the pressure and the en-
ergy density, respectively; m(r) for the mass contained in
a sphere of radius r ; G is the gravitational constant and
c is the speed of light. These are foundational structure
equations that lead to the energy density profile inside
the neutron star by solving from the center (r = 0), with
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initial condition m(0) = 0 and an arbitrary central pres-
sure, to the surface (which is reached when pressure van-
ishes). Solving for different central pressures defines the
mass-radius (M -R) relation. Nonetheless, another equa-
tion is needed corresponding to the EoS −which relates
the pressure and the energy density, p(ε)− in order to
compute the stellar structure.

B. Equation of State

We have described the core of the neutron star, accord-
ing to Refs. [1,2,7], as composed by a uniform β−stable
nuclear liquid. As such, the EoSs used to describe it
consists of two independent contributions: one coming
from leptons (electrons and muons), and the other com-
ing from neutrons and protons (the nuclear EoS ). In this
work we will not consider more exotic compositions, such
as hyperons or quark matter.

Due to the extreme densities found in the core, the lep-
tonic contribution can be considered as an ultrarelativis-
tic free electron Fermi gas at T = 0, as the temperatures
inside the core fall way below the Fermi temperature.
Therefore, the energy density in terms of the electron
number density (ne) reads [7]:

He(ne) =
m4
ec

5

8π2~3
[√

1 + x2
(
2x3 + x

)
− arcsinh(x)

]
,

(3)
where x ≡ (3π2ne)

1/3~/mec, and me is the electron rest
mass. In the ultrarelativistic limit, this expression can
be simplified to read:

He(ne) =
3

4
(3π2)1/3n4/3e ~c, (4)

Furthermore, for large electron densities muons may start
appearing through the following equilibrium [1]:

e− −→ µ− + νµ + ν̄e

µ− −→ e− + ν̄e + νµ,
(5)

which is implemented into the leptonic equation of state
by adding a muon contribution analogous to Eq. (3),
whenever the electron chemical potential (µi = ∂Hi/∂ρi)
grows higher than the muon rest mass. The equilibrium
between muons and electrons (µµ = µe) leads to:

n2/3µ = n2/3e −
(m2

µ −m2
e)c

2

~2(3π2)2/3
, (6)

if the muon number density (nµ) satisfies nµ ∈ R+; oth-
erwise, nµ = 0.

The hadronic contribution to the EoS, following Ref.
[8], contains the kinetic energy of both protons and neu-
trons, and the interaction energy between them; the lat-
ter being dependent on the model chosen to describe nu-
clear interactions. In this work, we have described them
using Skyrme parametrizations, which are effective de-
scriptions based on contact potentials (e.g. V (x1, x2) ∼

δ(x1 − x2)). As a result, the energy density for infinite
nuclear matter can be written in terms of powers of np
and nn (number densities for protons and neutrons). The
following energy density, which corresponds to the sim-
plified version that we have used as a preliminary study
on the properties of the Skyrme EoS, may serve as an
example:

HN (nn, np) =
3~2

10mN
(3π2)2/3

(
n5/3n + n5/3p

)
+
t0
4

[
(1 + x0)n2 − (2x0 + 1)(ρ2n + n2p)

]
+
t3
24
nσ
[
2n2 − (n2n + n2p)

]
+mNc

2n,

(7)

where mN ≈ mp ≈ mn, and all the other parameters
(t0 = −1803.51 MeV·fm3; t3 = 12913.52 MeV·fm4;x0 =
0.16;σ = 1/3) are semi-empirical and adjusted, depend-
ing on the particular Skyrme interaction, based on ex-
perimental results or matching certain constraints (e.g.
imposing the saturation density to occur at n = 0.16
fm−3, requiring an energy per particle of −16.0 MeV,
etc.). The variables can be redefined as the asymmetry
between neutrons and protons, δ = (nn − ρp)/2, and the
total number density, n = nn + np.

In addition, as the liquid core consists mainly of indi-
vidual neutrons which are unstable and tend to decay via
β−decay, the following equilibrium must be included in
the EoS [1,7]:

n −→ p+ e− + ν̄e

p+ e− −→ n+ νe.
(8)

The condition of β−stability can be implemented via
matching the chemical potentials of both sides of the
equilibrium (and neglecting the chemical potential of
neutrinos, as they travel through the star almost without
interacting at all). The resulting equation, µn+µp = µe,
combined with the charge neutrality condition and Eq.
(6), constitute a system that allows for δ and ne to be
determined for each value of n:

~c(3π2ne)
1/3 =

2

n

∂HN
∂δ

(9)

ne + nµ =
1

2
n(1− δ). (10)

Finally, the equation of state itself, p(ε), can be retrieved
from:

ε(n) = He(n) +Hµ(n) +HN (n), (11)

p(n) = ne
∂He
∂ne

+ nµ
∂Hµ
∂nµ

+ n
∂HN
∂n

− ε(n). (12)

Aside from the core, in this work, the outer crust has
been modelled with the Douchin-Haensel EoS, while the
inner crust has been approximated with a polytropic EoS
that is smoothly matched to those of the core and the
outer crust, as in Ref. [6].
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FIG. 1: EoS for all the Skyrme parametrizations used in this
work. The simplified Skyrme EoS studied analytically has
also been included. The inset shows the difference between
accounting for the presence of muons (solid lines) and not
doing so (dashed lines) for a few Skyrme interactions.

C. Tidal Deformability

When a spherical NS of mass M is subjected to the
effect of a gravitational tidal field Eij , such as the grav-
itational influence between two neutron star in an early
inspiralling binary system (to linear order), it develops as
a response a quadrupole moment Qij [4,5].The parameter
that relates Eij and Qij is the tidal deformability (λ):

λ = −Qij
Eij

. (13)

The tidal deformability can be written in terms of the
radius of the star and an adimensional parameter known
as Love number (k2) [4,5]:

λ =
2

3

k2R
5

G
. (14)

The calculation of the Love number requires for a dif-
ferential equation to be solved altogether with the TOV
equations [4,5]. As a consequence, k2 is a parameter that
depends on the whole energy-pressure profile inside the
star, and thus it depends on the EoS used to describe
it. Further detail on the calculation of the tidal Love
number is given in the annex.

The adimensional tidal deformability (Λ) is defined:

Λ =
2

3
k2ξ
−5 =

2

3
k2

(
Rc2

2GM

)5

, (15)

where ξ = 2GM/Rc2 is the dimensionless compactness
parameter.

In a NS binary system, however, the tidal deformability
of one of the stars is not a direct observable. The mea-
surable quantity responsible for the total (corresponding
to both stars) effect of the tidal deformability on the
phase evolution of the GW signal is the mass-weighted

tidal defformability (Λ̃) of the binary system [3]:

Λ̃ =
16

13

(M1 + 12M2)M4
1 Λ1 + (M2 + 12M1)M4

2 Λ2

(M1 +M2)
5 .

(16)
Another observable which can be extracted from the time
evolution of the frequency in the observed GW signals is
the chirp mass (M):

M =
M

3/5
1 M

3/5
2

(M1 +M2)
1/5

. (17)

This magnitude can be constrained with much greater
precision than the tidal deformability, and thus when
working with the numerical calculations it can be fixed
to be equal to an observed experimental value in order to

compare the results obtained for Λ̃ with the experimental
data.

D. Moment of Inertia

The moment of inertia (I) for a NS, in the slow-

rotation approximation (Ω�
√
GM/R3) is given by the

following integral [6]:

I =
8π

3

∫ R

0

r4e−ϑ(r)
ω̄(r)

Ω

[ε(r) + p(r)]√
1− 2Gm(r)/r

dr. (18)

where Ω stands for the angular velocity of the NS; and
ϑ(r), ω̄(r) are certain radial functions. Further informa-
tion on the resolution of this integral, and on the calcu-
lation of the radial functions that appear in it, is given
in the annex.
The moment of inertia is not a direct GW observable;
however, as we shall see in section III,it can be related to
the tidal deformability using existing universal relations
involving I and Λ.

III. RESULTS

The TOV structure equations (1) and (2), together
with those of the tidal deformability and the moment
of inertia (see Annex), have been solved using a set of
Skyrme EoS for the description of the NS core, which
are: SLy4, SLy7, SLy5, MSkA, MSL0, SIV, SkMP, SKa,
Gs, SV, SkI2, SkI5, and the simplified interaction pre-
sented in Eq. (7) −although this simplified EoS is only
displayed in Fig. 2, and has not been used to obtain
further results. Additionally, a selected number of di-
verse non-Skyrme EoSs has also been used in order to
strengthen the generality of the derived relations. These
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FIG. 2: Resulting M -R, Λ−R and I−R relations. In the M -R
relation, we have added two recent observational constraints
on the highest masses observed for NS, extracted from Refs.
[9,10]); and another constraint on both M and R from recent
NICER observations, Ref. [11].

additional EoSs are: Gogny D1M*, Gogny D2, BCPM,
and MDI. The results are displayed in Fig. 2.

Inspired by the results obtained in Ref. [14], in Fig. 3
we have reproduced the so called I-Love relation, which
stands as a universal relation between Λ and a renormal-
ization of I, that is satisfied by all NS models with inde-
pendence on the particular EoSs used. These two mag-
nitudes (Λ and I) are usually not simultaneously mea-
surable (e.g. GW detections can be used to constrain M

and Λ̃ −from which restrictions for Λ can be obtained−;
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FIG. 3: Relation between a renormalization of the moment of
inertia and the adimensional tidal deformability, the I-Love
relation. Below, the direct relation between I and Λ.

but not I). Thus, being fulfilled without dependence on
the nuclear model, this relation may prove useful in the
derivation of experimental constraints on I, from Λ ob-
servations (or vice versa).

In Fig. 4, we have represented each model’s predic-
tion (i.e. the results of the calculations for each EoS)
on R and Λ, for fixed values of M . As it can be seen,
the resulting point spreads fall remarkably well within
power laws. Therefore, as the results for all EoS tend to
collapse on the same fits, these power laws can be consid-
ered as generic relations for NS; especially for increasing
NS masses, were the point dispersion decreases. These
relations may be useful both in terms of fireproofing EoSs
(as those whose resulting NS models fail to satisfy this
relations may be inappropiate to describe NS interiors),
and in terms of obtaining constraints on either Λ or R
from observations in which the other is measurable.

Nevertheless, in GW produced by coalescing NS binary
systems, Λ is not a direct observable, and instead it is de-

rived from the weighted average of Λ for both NS (Λ̃), cf.
Eq. (16). Because of this, in Fig. 5 we have implemented
a representation analogous to that of Fig. 4 but repre-

senting, for each EoS, Λ̃ and R1.4 (radius of a canonical
NS: M = 1.4 M�) at a fixed chirp mass corresponding
to GW170817 (M = 1.186+0.001

−0.001 [12]). The point spread
that results after doing so allows for a power law fit to
be conducted. Furthermore, the same power law can be
used for the point spreads of both values of the mass ratio
(M1/M2 = 0.7 and 1). As such, this power law consti-
tutes again a generic (although with finite dispersion)
relation for NSs, that serves for multiple mass ratios (at
the very least, for M1/M2 ranging between 0.7 and 1).

This power law does indeed allow for constraints on
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straints on Λ̃ from GW170817 and AT2017gfo, as of [12,13],

are: Λ̃ ∈ (197, 720).

R1.4 to be derived from direct observational data on Λ̃.
Being that so, using the power law fit given in Fig. 5,
and using the restrictions on the mass-weighted tidal
deformability extracted from the GW170817 event by
the LIGO-Virgo collaboration [12] (and from its elec-
tromagnetic counterpart, AT2017gfo [13]), we have ob-
tanied constraints on the radius of a canonical NS (M =
1.4 M�). The corresponding constraints are: R1.4 ∈
(10.7, 13.2) km.

Furthermore, the given constraints on R1.4 may also
be used in relations like Fig. 4 to restrict the possible
values of Λ and I for a canonical NS.

IV. CONCLUSIONS

� In this work we have performed the calculations for
the structure, the tidal deformability and the mo-
ment of inertia for NS, and compared them graph-
ically with some experimental restrictions.

� We have also reproduced the I-Love relation first
found in [14].

� We have then deduced generic relations between Λ
and R, for NS of different masses.

� Finally, we have deduced a generic relation between

Λ̃1.186 of the NS binary system and R1.4, valid for
different values of M1/M2 (ranging between 1 and
0.7, at least); and we have used it, altogether with
the observational constraints from the GW170817
event, to deduce constraints on the radius of a
canonical NS: R1.4 ∈ (10.7, 13.2) km.
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V. ANNEX

A. Tidal Love Number

All the following expressions have been extracted from
Refs. [4,5], for further detail see [4,5] and references
therein.

The tidal Love number is given by:

k2(ξ, yR) =
1

20
ξ5(1− ξ)2 [(2− yR) + (yR − 1)ξ]

×
{[

(6− 3yR) +
3

2
(5yR − 8)ξ

]
ξ

+
1

2

[
(13− 11yR) +

1

2
(3yR − 2)ξ +

1

2
(1 + yR)ξ2

]
ξ3

+ 3 [(2− yR) + (yR − 1)ξ] (1− ξ)2ln(1− ξ)

}−1
,

(19)
where ξ = 2GM/Rc2 is the dimensionless compactness
parameter. The quantity yR ≡ y(R) is another dimen-
sionless parameter, solution of the following first-order
differential equation:

dy(r)

dr
= −y(r)2

r
− y(r)

r
F (r)− rQ(r), (20)

with boundary condition y(0) = 2, and:

F (r) =
{

1− 4πr2 [ε(r)− p(r)]
} [

1− 2m(r)

r

]−1
, (21)

Q(r) = 4π

[
5ε(r) + 9p(r) +

ε(r) + p(r)

ν2s (r)
− 6

r2

]
×
[
1− 2m(r)

r

]−1
− 4m2(r)

r4

[
1 +

4πr3p(r)

m(r)

]2 [
1− 2m(r)

r

]−2
,

(22)

where ν2s (r) ≡ dp(r)/dε(r) stands for the squared speed
of sound. Equation (16) has to be solved together with
the TOV structure equations, as it needs the functions
ε(r), p(r) and νs(r). Thus, y(r) is calculated from the
center to the surface of the star.

There is an alternative method for the calculation of
the Love number, which involves the solution of a system

of two differential equations as described in Ref. [5]. Al-
though it may be longer, as it involves multiple functions
and two differential equations, as opposed to the method
presented here, with only one differential equation corre-
sponding to (20); both methods are indistinctively used
in the literature. In our case, although we’ve presented
the most compact method of the two, we have used the
one corresponding to Ref. [5] in to compute k2.

B. Moment of Inertia

The following expressions have been extracted from
Ref. [6], for further information see [6] and references
therein.

In the slow-rotation approximation (Ω�
√
GM/R3),

the moment of inertia is given by Eq. (18). Under
the same slow-rotation approximation, ϑ(r) can be de-
termined from evaluating the following integral:

ϑ(r) =
1

2
ln

(
1− 2GM

R

)
−G

∫ R

r

[
m(x) + 4πx3p(x)

]
x2 (1− 2Gm(x)/x)

dx,

(23)
and ω̄(r) can be obtained by solving the following differ-
ential equation on ω̃(r) = ω̄(r)/Ω:

d

dr

(
r4j(r)

dω̃(r)

dr

)
+ 4r3

dj(r)

dr
ω̃(r) = 0,

j(r) =

{
e−ϑ(r)

√
1− 2Gm(r)/r if r ≤ R

1 if r > R,

(24)

with the following two boundary conditions:

ω̃′(0) = 0 (25a)

ω̃(R) +
R

3
ω̃′(R) = 1. (25b)

In the slow-rotation approximation, the moment of iner-
tia does not depend on Ω. Therefore, Eq. (24) can be
integrated starting from an arbitrary value for ω̃(0), up
to the surface. Finally, a scaling of the function and its
derivative (by a constant) will usually be needed in order
to satisfy condition (25b); as arbitrary values for ω̃(0)
will not usually satisfy it.
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