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Abstract 

Consistency is one of the crucial single-case data aspects that are expected to be assessed visually, 

when evaluating the presence of an intervention effect. Complementarily to visual inspection, there 

have been recent proposals for quantifying the consistency of data patterns in similar phases and 

the consistency of effects for reversal, multiple-baseline, and changing criterion designs. The 

current text continues this line of research by focusing on alternation designs using block 

randomization. Specifically, three types of consistency are discussed: consistency of superiority 

of one condition over another, consistency of the average level across blocks, and consistency in 

the magnitude of the effect across blocks. The focus is put especially on the latter type of 

consistency, which is quantified on the basis of partitioning the variance, as attributed to the 

intervention, to the blocking factor or remaining as residual (including the interaction between the 

intervention and the blocks). Several illustrations with real and fictitious data are provided in order 

to make clear the meaning of the quantification proposed. Moreover, specific graphical 

representations are recommend for complementing the numerical assessment of consistency. A 

freely available user-friendly webpage is developed for implementing the proposal.  

Keywords: Single-case design, Alternating treatments designs, Randomized blocks, Consistency, 

Analysis of variance 
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Assessing Consistency in Single-Case Alternation Designs 

Single-case experimental designs (SCEDs) are useful for providing the evidence basis for 

interventions, especially when several threats to validity are taken into account (Horner et al., 

2005; Petursdottir & Carr, 2018; Reichow, Barton, & Maggin, 2018). Several methodology 

quality appraisal scales for SCEDs exist guiding researchers in the conduct of their studies (Ganz 

& Ayres, 2018; Maggin, Briesch, Chafouleas, Ferguson, & Clark, 2014; Zimmerman et al., 

2018). Moreover, apart from ensuring that as many desirable elements (e.g., manipulation of the 

independent variable, reliable measurement of the dependent variable, procedural fidelity, and 

randomization) as possible are included in a specific study, it is also important to report the 

procedures in replicable detail (Ganz & Ayres, 2018), for example using the Single-Case 

Reporting In BEhavioral interventions (SCRIBE) guidelines (Tate et al., 2016). Detailed 

reporting is especially relevant, as it makes replication possible. Replication is especially 

relevant for studies following an idiographic approach (Kennedy, 2005; Sidman, 1960). 

Specifically, within-study replication is necessary for documenting the reliability of an 

experimental effect, whereas across studies replication is required for assessing the generality of 

the effect (Maggin et al., 2014).  

Regarding the demonstration of effects, several authors coincide on the importance of visual 

analysis (Kratochwill et al., 2010; Lane, Shepley, & Spriggs, 2019; Ledford, Barton, Severini, & 

Zimmerman, 2019; Maggin, Cook, & Cook, 2018). This concurs with the SCED tradition (e.g., 

Fahmie & Hanley, 2008; Miller, 1985; Lane & Gast, 2014; Parker, Cryer, & Byrns, 2006; 

Parsonson & Baer, 1978) and with the fact that all methodological quality appraisal scales 

require visual analysis but not all require statistical analysis for evaluating effects (Heyvaert, 

Wendt, Van den Noortgate, & Onghena, 2015). In the presentation of how visual analysis is to be 
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performed (Kratochwill et al., 2010; Lane et al., 2019; Ledford et al., 2019; Maggin et al., 2018), 

the focus is put on six data features. Three of these data features (level, trend, variability) can be 

assessed within each phase and they can also be used when comparing adjacent phases, whereas 

two features (overlap and immediacy of effect) refer necessarily to a comparison across adjacent 

phases. The sixth aspect, consistency, has a twofold conceptualization. On the one hand, it is 

possible to assess the consistency of data patterns between phases implementing the same 

experimental condition(s). On the other hand, the consistency of effects can be evaluated: 

whether the amount and type of change in level, change in slope, change in variability, overlap 

and immediacy is similar across replications of the basic effect when comparing two conditions. 

Thus, in order to be able to state that there is evidence for an intervention effect or for a 

functional relation, the effects observed in the replications should be consistent (Maggin et al., 

2018). Actually, some authors consider consistency to be the “most important” requirement 

(Ledford, 2018, p. 82), given that “consistency and replication are essential characteristics for a 

functional relation determination – large differences in level are not” (Lane, Ledford, & Gast, 

2017, p. 7102300010p6).  

Alternation Designs 

Terms and characteristics. In the present text, we focus on the assessment of consistency of 

effects and we present new proposals for a specific type of SCEDs – alternation designs. 

Alternation designs are SCEDS that are characterized by the rapid alternation of the treatment 

levels, in contrast to phase designs that are characterized by a larger number of consecutive 

measurement occasions under the same treatment level (Onghena & Edgington, 2005). 

Systematic reviews by Smith (2012) and Shadish and Sullivan (2011) indicated that alternation 

designs are commonly used, accounting for six and eight percent respectively in their samples of 
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published research. According to the review by Hammond and Gast (2010), alternation designs 

are even more frequent in journals publishing SCED research on special education, representing 

approximately 16%. 

There are different kinds of alternation designs and the focus of the current text is on 

randomized block designs (RBDs). In RBDs, usually two conditions (called “A” and “B” in the 

following) are being compared and the sequence of measurement occasions is divided into 

blocks of two measurement occasions. In each block, the A and the B conditions take place, in a 

random order. This randomly determined sequence is equivalent to the N-of-1 trials used in the 

health sciences (Nikles & Mitchell, 2015), where the several random-order AB blocks are called 

multiple crossovers. It is possible (and in the health sciences common) to replicate the series 

across several participants, each with its own randomly determined sequence. An RBD is 

different from other alternation designs, such as completely randomized designs, in which any 

sequence is possible (e.g., AAABBABBBA), without considering blocks and without ensuring 

rapid alternation. An RBD is also different from an alternating treatments design with restricted 

randomization (also called restricted alternating treatments design [ATD], Onghena & 

Edgington, 1994) in that certain sequences are not possible under an RBD, but are possible under 

the latter kind of design. For instance, restricting the maximum number of consecutive 

administrations of the same condition to two, a sequence such as AABBAABBAABB is possible 

for an alternating treatments design with restricted randomization, but it cannot be obtained 

following an RBD randomization scheme because the same treatment can only be administered 

once within each block. The current focus on RBDs is related to the quantifications proposed for 

assessing consistency: these quantifications are based on the existence of blocks and the random 

assignment taking place within the blocks.  
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The important distinction between restricted ATDs and RBDs is proposed in several 

methodological articles (e.g., Edgington, 1996; Manolov, 2019; Onghena & Edgington, 2005), 

but in applied SCED literature RBDs probably are not always denoted as such. For instance, an 

RBD can be referred to as an ATD with “blocked pairs random assignment procedure” (Lloyd, 

Finley, & Weaver, 2018, p. 215) or an ATD in which the order of conditions was “block 

randomized” (Warren, Cagliani, Whiteside, & Ayres, 2019, p. 9). Moreover, Wolery et al. (2018) 

mention two options when referring to how the alternation sequence is determined in an ATD.– 

The first option is “random alternation with no condition repeating until all have been 

conducted” and the second option is “random alternation with no more than two consecutive 

sessions in a single condition” (p. 304). The first option refers to an RBD and the second to a 

restricted ATD. Similarly, when referring to alternation designs, Ledford (2018) highlights the 

convenience of block randomization. Therefore, the quantifications proposed in the current text 

are also applicable to alternation designs with block randomization.  

In an adapted ATD (referred to as AATD), in contrast to ATDs, at least two independent 

behaviors or outcome variables (Byiers, Reichle, & Symmons, 2012) are treated. These 

behaviors treated are nonreversible and the main aim is to explore which of two effective 

interventions is more efficient, i.e., enables faster learning (Shepley, Ault, Ortiz, Vogler, & 

McGee, 2019; Wolery et al., 2018). In an AATD it is critical to have the same number of 

sessions per condition and the authors “typically randomly select one condition and then 

automatically conduct the other condition for the next session” (Wolery et al., 2018, p. 315). This 

suggested way of determining the alternation sequence is consistent with randomized blocks, 

and, block randomization has actually been used in applied research using an AATD (e.g., 

Coleman, Cherry, Moore, Park, & Cihak, 2015; Klingbeil, January, & Ardoin, 2019; see also). 
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An equivalent way of proceeding is followed when both interventions take place during the same 

day, in two separate sessions, and the order of the sessions is randomly determined (e.g., Cihak, 

Alberto, Taber-Doughtly, & Gama, 2006) or when in each session both kinds of instruction are 

present and the order of the instructions is determined at random prior to the beginning of the 

session (e.g., Savaiano, Compton, Hatton, & Lloyd, 2016). Therefore, the quantifications 

proposed in the current text are also applicable to AATDs for which the order of the 

interventions is randomly determined within each block (which can represent a different day or 

session). 

Building a case for using block randomization. The use of randomization within blocks 

has been recommended when working with alternation designs (Ledford, 2018). Using 

randomization within blocks ensures meaningful comparisons between measurements belonging 

to different conditions. As the comparisons are performed within blocks, randomization within 

blocks minimizes threats to the internal validity of the study. For example, a patient may 

consistently perform better in condition B than in condition A, but this difference may be an 

artefact if the order of treatment administration for the two interventions is not randomized. This 

also makes it easier to apply visual analysis for assessing the degree of differentiation between 

two data paths, e.g., when comparing adjacent data points (Wolery et al., 2018). By the same 

logic, randomization facilitates the use and interpretation of quantifications proposed for 

alternation designs such as the adaptation of the Percentage of nonoverlapping data (Wolery et 

al., 2014) and the average difference between successive observations (ADISO in Manolov & 

Onghena, 2018). Moreover, using a sequence that is consistent with an RBD avoids situations 

with two initial or final administrations of the same condition, which are possible for restricted 

ATD. Furthermore, in an RBD sequence comparing between data paths using the visual 
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structured criterion (Lanovaz et al., 2019) or the average difference obtained using actual and 

linearly interpolated values (ALIV in Manolov & Onghena, 2018) would entail a smaller loss of 

data. 

In the following sections, we first review the proposals made for assessing consistency in 

other SCEDs, different from alternation designs. Second, we discuss the types of consistency that 

can be assessed for alternation designs with block randomization, making a proposal for the 

quantification of consistency of effects. Third, we illustrate the quantifications of consistency for 

alternation designs with block randomization using fictitious and real data.  

Assessing Consistency in SCEDs 

We consider that further research is required on how to assess consistency, given that most 

analytical proposals have focused on overlap (e.g., see Parker, Vannest, & Davis, 2011, for a 

review), level (e.g., Olive & Smith, 2005; Shadish, Hedges, & Pustejovsky, 2014), trend (in 

combination with level; Solanas, Manolov, & Onghena, 2010; Swaminathan, Rogers, Horner, 

Sugai, & Smolkowski, 2014), and immediacy (Center, Skiba, & Casey, 1985-1986; Michiels & 

Onghena, 2019; Natesan & Hedges, 2017). In contrast, the assessment of consistency has been 

restricted to “an overall gestalt analysis” (Geist & Hitchcock, 2014, p. 304) or to somewhat 

tautological recommendations such as “the extent to which there is consistency in the data 

patterns from phases with the same conditions” (Kratochwill et al., p. 19).  

Regarding some specific proposals for addressing consistency, Maggin, Briesch, and 

Chafouleas (2013) suggest that the ratio of effects to no-effects within a study, should be at least 

3:1, in order to constitute evidence for an intervention effect. For instance, in a multiple-baseline 

design across four participants, this would mean the need to demonstrate an effect for at least 
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three of these participants. The question still remains how an effect is objectively demonstrated 

in each of the AB-comparisons. A recent protocol on visual analysis attempts to make the visual 

assessment more systematic (Wolfe, Barton, & Meadan, 2019), but does not address this specific 

question of how an effect is objectively defined.  

Consistency in Phase Designs 

One formal treatment of consistency in SCEDs focuses on ABAB designs (Tanious, De, 

Michiels, Van den Noortgate, & Onghena, 2019a) and on multiple-baseline and changing 

criterion designs (Tanious, Manolov, & Onghena, 2019). There is one quantification of the 

consistency of data patterns for measurements taken in the same conditions, performing a point-

by-point comparison using the Manhattan distance. This quantification is called CONDAP and it 

is applicable even if the two phases differ in the number of data points and regardless of the 

measurement units of the target variable. For CONDAP, there are interpretative benchmarks 

available helping applied researchers evaluate whether the consistency is very high,  high,  

medium,  low, or  very low  (Tanious, De, Michiels, Van den Noortgate, & Onghena 2019b). A 

second quantification has been proposed for the consistency of effects (changes in level, trend, 

variability, overlap, immediacy) when comparing across adjacent conditions (Tanious, De, et al., 

2019a). This quantification is called CONEFF.  

Consistency in Alternation Designs 

Assessing consistency is important for alternation designs. For instance, when describing the 

visual analysis of ATD data, Wolery, Gast, and Ledford (2018) state that the aim is to assess the 

degree of differentiation between data paths and “differentiation is defined as a consistent 

difference in level between adjacent data points from different conditions” (p. 330, emphasis 
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added). To the best of our knowledge, no quantifications have been proposed or discussed 

specifically for assessing consistency in alternation designs. Nevertheless, some potentially 

applicable options, derived from the existing literature, are discussed next.  

Wolery, Gast, and Ledford (2014) describe an adaptation of the Percentage of 

nonoverlapping data, which for an alternating treatments design would be computed by 

comparing the first measurement in one condition to the first measurement in the other condition, 

and so forth. If there are five measurements per condition (and a sequence of ten measurement 

occasions), there would be five comparisons. The final quantification is the percentage of 

comparisons for which one condition is superior to the other. Such a quantification could be 

conceptualized as a quantification of consistency of superiority (the closer the percentage to 

100%, the more consistently that one condition is better than the other).  

Similarly, Lanovaz, Cardinal, and Francis (2019) propose a comparison between data paths 

(i.e., the lines connecting the measurements for each condition). If there is a sequence of ten 

measurement occasions (with five measurements per condition, e.g., ABBAABBAAB), there 

would be eight comparisons, excluding the first and the last measurement occasion for which 

there is only one data path (e.g., the first A measurement and the last B measurement). Just as for 

the Percentage of nonoverlapping data described previously, the proportion of comparisons for 

which the one condition is superior (ordinally) to the other is tallied. Such a comparison could 

also be understood as leading to an assessment of consistency of superiority. 

A visual approach (see Mengersen, McGree, & Schmid, 2015) to assessing superiority of one 

condition entails using a modified Brinley plot (Blampied, 2017). In this graphical representation 

the measurements from condition A are plotted against the measurements from condition B, 

corresponding to the same. A diagonal line is drawn representing no treatment effect. In case all 
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measurements from condition B values are superior to the measurements from condition A (e.g., 

above the diagonal line), once again the presence of an effect can be considered consistent, but 

not its magnitude (Mengersen et al., 2015).  

All three options focus on the effects of the intervention, understood as the difference between 

conditions. These options for assessing the consistency of effects can be considered ordinal in 

that they do not evaluate whether the amount of difference between conditions is consistent in 

the different comparisons performed throughout the alternation sequence. That is, the previously 

mentioned analytical tools cannot be used to assess the consistency of the magnitude of effect.  

Types of Consistency in an Alternation Design with Block Randomization 

In the current section we discuss the different kinds of consistency that can be assessed in an 

alternation design and discussing possible quantifications. A more in-depth look into the 

interpretation and meaningfulness of these quantifications is presented in the next section, via 

illustrations.  

Consistency in Similar Phases 

Alternation designs do not entail comparing conditions across phases. Therefore, we consider 

that an assessment of the consistency of the data patterns in similar phases (e.g., Kratochwill et 

al., Ledford et al., 2019) would not make sense in this context. As a quantification of the (lack 

of) consistency of measurements in each condition, the standard deviation for all measurements 

belonging to the same condition could be computed. Nevertheless, such a quantification would 

not reflect any data pattern, as a pattern cannot be established when there is a single 

measurement per condition in each block.   

Consistency of Superiority 
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Previously in the text, we reviewed several graphical and quantitative options that could be 

understood as assessing the superiority of one condition over the other. In contrast, in the 

following two sections, we present two quantifications of consistency which go beyond the 

ordinal information that can be obtained from assessing the consistency in superiority. 

Consistency of the Average Level across Blocks 

A single-case RBD is mathematically analogous to an RBD from group designs, in which there 

is a single participant in each cell, defined by the levels of the blocking variable and the 

treatment variable. For a group-design RBD, suppose that we are comparing two treatments, A 

and B, and that the blocks are matched pairs of participants (e.g., according to their age). Within 

each pair, it is randomly determined who receives treatment A and who receives treatment B. An 

analysis of variance for data collected in such an RBD consists in the independent partitioning of 

the variance explained by the treatment factor and the variance explained by the blocking factor 

(Kirk, 2013). The same can be done for an RBD as an SCED, although the blocks do not consist 

of participants, but consist of measurement occasions. The variability across blocks is the degree 

to which the average value for each block is different from the overall/grand mean (i.e., the mean 

of all measurements, regardless of the condition that they were obtained in). In an SCED, the 

average per block mixes a measurement in condition A and a measurement in condition B. 

Therefore, it does not inform about consistency of measurements in similar conditions or about 

consistency of effects across blocks. Moreover, the temporal order of the blocks is not taken into 

account, which further limits its usefulness.  

According to the variance partitioning, the greater the variability attributed to the blocking 

factor, the greater the difference of the average level across blocks, and the lower the consistency 

of the average level across blocks. The variability attributed to blocking can be summarized as an 
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eta-squared, 𝜂𝑏𝑙𝑜𝑐𝑘𝑖𝑛𝑔
2 =

𝑆𝑆𝑏𝑙𝑜𝑐𝑘𝑖𝑛𝑔

𝑆𝑆𝑡𝑜𝑡𝑎𝑙
, where SS denotes sum of squares. Thus, it is possible to 

define the percentage consistency of the average level across blocks, as the complementary 

quantity, (1 −
𝑆𝑆𝑏𝑙𝑜𝑐𝑘𝑖𝑛𝑔

𝑆𝑆𝑡𝑜𝑡𝑎𝑙
) × 100. In any case, it should be noted that the consistency of the 

average level across blocks is an attempt to interpret the variability attributed to blocking 

variable. However, we are not suggesting that the consistency of the average level across blocks 

is always meaningful or that it should be the main quantification of consistency for an alternation 

design. (Our main proposal for assessing consistency is described next.) Actually, for an AATD, 

the consistency of the average level across blocks is not desired, because an improvement is 

expected in both conditions (i.e., a trend), which would entail that the level is lower in the 

beginning of the alternating sequence and higher in the end.  

Consistency of Effects across Blocks 

In contrast to the consistency of the average level, the consistency of effects focuses on whether 

the difference between conditions is the same across blocks, regardless of the average level for 

the block. In that sense, the consistency of effect across blocks helps distinguishing between 

trends with parallel slopes and trends with different slopes, as will be illustrated later. The 

consistency of the average level across blocks compares the average in each block with the grand 

mean. The consistency of effects across blocks compares whether the difference in each block is 

similar to the mean difference between conditions. Thus, conceptually the latter is of greater 

interest for applied researchers. 

Numerically, when partitioning the variance, apart from the effect of the intervention and the 

effect of blocking, there is likely to be residual variability (i.e., the variability that is left 

unexplained by the intervention and the blocking variables). Such residual variability would 
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represent both the error variability (random fluctuations, systematic variation due to factors not 

included in the model) and the interaction between intervention and blocking (Hays, 1994; Kirk, 

2013). This is the case because the interaction cannot be separated from the error when there is 

only one measurement per cell (i.e., combination of a level of the blocking variable and a level of 

the treatment variable). Actually, if interaction were present, this would entail that the magnitude 

of the effect of the intervention depends on the blocking variable. Thus, an interaction would 

represent a lack of consistency of effects across blocks. That is, the degree of lack of consistency 

of effect across blocks is represented by the extent to which the difference between a 

measurement from condition A and a measurement for condition B differs across blocks. 

Complementarily, the consistency of effects across blocks (abbreviated, CEAB), expressed as a 

percentage, would be: 𝐶𝐸𝐴𝐵 = (1 −
𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

𝑆𝑆𝑡𝑜𝑡𝑎𝑙
) × 100. In this expression, the sum of squares are 

computed exactly as in a two-way ANOVA, in which one of the factors is the intervention 

(condition A vs. condition B) and the other factor is the blocking variable (which has as many 

values as there are blocks). Specifically, the total sum of squares (SStotal) is, as usual, the sum of 

the squared differences between each measurement and the overall mean (computed as the 

average of all measurements, regardless of the condition and block that they belong to). The 

residual sum of squares (SSresidual) is the variability left unexplained from SStotal after removing 

(a) the variability attributed to the intervention (i.e., the sum of squared differences between the 

mean in each condition and the overall mean, multiplied by the number of blocks) and (b) the 

variability attributed to the blocking variable (i.e., the sum of squared difference between the 

mean level in each block and the overall mean, multiplied by number of conditions). 
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Illustrations of the Types of Consistency for Alternation Designs with Block 

Randomization 

The illustrations provided here are intended to help gaining a better understanding of the 

previously presented quantifications in different situations. Moreover, we are proposing the use 

of several graphical representations for making easier the assessment of consistency in 

alternation designs. The first six examples provided include fictitious data, whereas the last three 

use real data. 

Figure 1 represents fictitious data in which the effect is consistent across blocks (there is 

always a 2-point difference between the A condition and the B condition), but the average level 

for some blocks is higher. These two types of consistency are visible from the upper right panel 

of Figure 1. In this panel, the horizontal red line represents the grand mean and the thick green 

line represent the average difference between the A-condition and the B-condition (the greater 

the slope, the greater the difference). Each A-measurement is connected to its corresponding B-

measurement from the same block with a dashed line. The order of the A and the B 

measurements within the block is not represented on the graph; neither is the order of the blocks 

within the whole alternation sequence. The consistency of effects across blocks is represented in 

the dashed lines being parallel (versus crossing for lack of consistency of effect). The degree to 

which the average level of the blocks is not consistent is represented by the vertical distance 

between the middle points of the dashed lines and the middle point of the thick green line. 

The data in Figure 2 (upper left panel) show measurements which follow a similar decreasing 

trend in both conditions. As for the data in Figure 1, the grey dashed lines from the upper right 

panel are parallel and the consistency of effects across blocks is complete (i.e., 𝐶𝐸𝐴𝐵 =

 100%). The greater separation between the dashed lines from the upper right panel illustrate the 
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fact that there is a greater difference of the average level across blocks (𝜂𝑏𝑙𝑜𝑐𝑘𝑖𝑛𝑔
2 = 0.20 for data 

in Figure 1 and 𝜂𝑏𝑙𝑜𝑐𝑘𝑖𝑛𝑔
2 = 0.74 for the data in Figure 2). This is an example illustrating how the 

presence of a similar trend in both conditions is represented as a lack of consistency of the 

average level across blocks. 
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Figure 1. Fictitious example 1: CEAB=100%. The upper left panel is a time series plot with the 

A condition in blue and the B condition in orange. The upper right panel represents the A values 

on the left Y-axis, connected with a dashed line to the corresponding B-values on the right Y-

axis. Only two dashed lines are visible due to overlapping across blocks. The horizontal red line 

represents the grand mean of the outcomes, whereas the thick green line connects the mean of 

the A-values to the mean of the B-values. The lower left panel represents the proportions of 

variability attributed to treatment (yellow area), blocking effect (red area) and 

interaction/residual (green area): the percentage to the left is the residual/interaction variability in 

relation to block plus residual variability, whereas the percentage to the right is the 

residual/interaction variability in relation to the total variability (including the treatment effect). 

The lower right panel represents the difference between the A and B measurement in each block, 

as compared to the average mean difference (horizontal red line). 
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Figure 2. Fictitious example 2: CEAB=100%. The upper left panel is a time series plot with the 

A condition in blue and the B condition in orange. The upper right panel represents the A values 

on the left Y-axis, connected with a dashed line to the corresponding B-values on the right Y-

axis. The horizontal red line represents the grand mean of the outcomes, whereas the thick green 

line connects the mean of the A-values to the mean of the B-values. The lower left panel 

represents the proportions of variability attributed to treatment (yellow area), blocking effect (red 

area) and interaction/residual (green area): the percentage to the left is the residual/interaction 

variability in relation to block plus residual variability, whereas the percentage to the right is the 

residual/interaction variability in relation to the total variability (including the treatment effect). 

The lower right panel represents the difference between the A and B measurement in each block, 

as compared to the average mean difference (horizontal red line). 
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The time series pattern of Figure 3 (upper left panel) is U-shaped in both conditions. There is 

not a complete consistency of effects across blocks, because two of the dashed lines cross 

(𝐶𝐸𝐴𝐵 = 93.65%). In terms of the consistency of the average level across blocks, it is equal to 

the one for Figure 2 (𝜂𝑏𝑙𝑜𝑐𝑘𝑖𝑛𝑔
2 = 0.74), because the U-shaped pattern just like the decreasing 

trend also introduces lower consistency of the average level.  

The Figure 4 data are in sharp contrast with Figure 3, in terms of data pattern (more stable 

here) and in terms of consistency. For the Figure 4 data, the dashed lines in the upper right panel 

cross to a greater extent, indicating lower consistency of effects across blocks (𝐶𝐸𝐴𝐵 =

74.81%). These lines are closer together, reflecting that there is greater consistency of the 

average level across blocks (𝜂𝑏𝑙𝑜𝑐𝑘𝑖𝑛𝑔
2 = 0.13). 
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Figure 3.  Fictitious example 3: CEAB=93.65%. The upper left panel is a time series plot with 

the A condition in blue and the B condition in orange. The upper right panel represents the A 

values on the left Y-axis, connected with a dashed line to the corresponding B-values on the right 

Y-axis. The horizontal red line represents the grand mean of the outcomes, whereas the thick 

green line connects the mean of the A-values to the mean of the B-values. The lower left panel 

represents the proportions of variability attributed to treatment (yellow area), blocking effect (red 

area) and interaction/residual (green area): the percentage to the left is the residual/interaction 

variability in relation to block plus residual variability, whereas the percentage to the right is the 

residual/interaction variability in relation to the total variability (including the treatment effect). 

The lower right panel represents the difference between the A and B measurement in each block, 

as compared to the average mean difference (horizontal red line). 
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Figure 4. Fictitious example 4: CEAB=74.81%. The upper left panel is a time series plot with 

the A condition in blue and the B condition in orange. The upper right panel represents the A 

values on the left Y-axis, connected with a dashed line to the corresponding B-values on the right 

Y-axis. The horizontal red line represents the grand mean of the outcomes, whereas the thick 

green line connects the mean of the A-values to the mean of the B-values. The lower left panel 

represents the proportions of variability attributed to treatment (yellow area), blocking effect (red 

area) and interaction/residual (green area): the percentage to the left is the residual/interaction 

variability in relation to block plus residual variability, whereas the percentage to the right is the 

residual/interaction variability in relation to the total variability (including the treatment effect). 

The lower right panel represents the difference between the A and B measurement in each block, 

as compared to the average mean difference (horizontal red line). 
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Figure 5 shows data with considerable variability. In terms of the consistency of effects across 

blocks, three of the dashed lines (upper right panel) are parallel, indicating that the effect for 

three blocks is the same. However, the effect for the other two blocks is markedly different: large 

and positive for one block and negative for the other (see lower right panel). This lower 

consistency of effects is represented by 𝐶𝐸𝐴𝐵 = 60%. In terms of consistency of the average 

level across blocks (𝜂𝑏𝑙𝑜𝑐𝑘𝑖𝑛𝑔
2 = 0.38), it is lower than for the Figure 4 data, but higher than for 

the Figure 3 data, because three of the block averages coincide and are very close to the overall 

mean (see the upper right panel of Figure 5). 
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Figure 5. Fictitious example 5: CEAB=60%. The upper left panel is a time series plot with the A 

condition in blue and the B condition in orange. The upper right panel represents the A values on 

the left Y-axis, connected with a dashed line to the corresponding B-values on the right Y-axis. 

The horizontal red line represents the grand mean of the outcomes, whereas the thick green line 

connects the mean of the A-values to the mean of the B-values. The lower left panel represents 

the proportions of variability attributed to treatment (yellow area), blocking effect (red area) and 

interaction/residual (green area): the percentage to the left is the residual/interaction variability in 

relation to block plus residual variability, whereas the percentage to the right is the 

residual/interaction variability in relation to the total variability (including the treatment effect). 

The lower right panel represents the difference between the A and B measurement in each block, 

as compared to the average mean difference (horizontal red line). 
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Figure 6. Fictitious example 6: CEAB=85.71%. The upper left panel is a time series plot with 

the A condition in blue and the B condition in orange. The upper right panel represents the A 

values on the left Y-axis, connected with a dashed line to the corresponding B-values on the right 

Y-axis. Only two dashed lines are visible due to overlapping across blocks. The horizontal red 

line represents the grand mean of the outcomes, whereas the thick green line connects the mean 

of the A-values to the mean of the B-values. The lower left panel represents the proportions of 

variability attributed to treatment (yellow area), blocking effect (red area) and 

interaction/residual (green area): the percentage to the left is the residual/interaction variability in 

relation to block plus residual variability, whereas the percentage to the right is the 

residual/interaction variability in relation to the total variability (including the treatment effect). 

The lower right panel represents the difference between the A and B measurement in each block, 

as compared to the average mean difference (horizontal red line). 
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Figure 6 represents data in which there are opposite trends in the two conditions (see upper 

left panel) and the same average level across blocks (i.e., the dashed lines share the same middle 

point on the upper right panel). This is relevant for the interpretation of the consistency 

quantifications. On the one hand, all the dashed lines sharing the same middle point implies that 

there is no effect of blocking (𝜂𝑏𝑙𝑜𝑐𝑘𝑖𝑛𝑔
2 = 0) and it could be stated that there is perfect 

consistency of the average level across blocks. Nonetheless, note that this does not mean that all 

the A-measurements or the B-measurements are the same across blocks, or that the intervention 

effect is the same across blocks; just that the average of each block is equal to the grand mean. In 

terms of consistency of effects across blocks, there is consistency in the superiority of one 

condition over the other, but not perfect consistency in the magnitude of effect (𝐶𝐸𝐴𝐵 =

85.71%), because some of the dashed lines cross (see the upper right panel of Figure 6). The 

consistency is high, because the A-B differences for two of the blocks are exactly equal to the 

average A-B difference and there are two other values of the A-B difference that are repeated 

twice (see the lower right panel of Figure 6). The fact that certain values of the A-B differences 

are present more than once, with the A and B values also coinciding is represented by the fact 

that there are some of the dashed lines of the upper left panel are overlapping.  
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Figure 7 represents a data pattern in which there is no intervention effect. Actually, half of the 

variability is attributed to blocks and half to the interaction between blocks and intervention. 

𝐶𝐸𝐴𝐵 =  50% would be misleading, in case it is interpreted in isolation, but it has to be 

evaluated only in relation to the fact that there is actually no intervention effect (i.e., no 

variability explained by the intervention). Thus, it does not make sense to evaluate the 

consistency of an inexistent effect. 

  



27 

CONSISTENCY IN ALTERNATION DESIGNS 

  

  

Figure 7. Fictitious example 7: CEAB=50%. The upper left panel is a time series plot with the A 

condition in blue and the B condition in orange. The upper right panel represents the A values on 

the left Y-axis, connected with a dashed line to the corresponding B-values on the right Y-axis. 

Only two dashed lines are visible due to overlapping across blocks. The horizontal red line 

represents the grand mean of the outcomes, whereas the thick green line connects the mean of 

the A-values to the mean of the B-values. The lower left panel represents the proportions of 

variability attributed to treatment (yellow area), blocking effect (red area) and 

interaction/residual (green area): the percentage to the left is the residual/interaction variability in 

relation to block plus residual variability, whereas the percentage to the right is the 

residual/interaction variability in relation to the total variability (including the treatment effect). 

The lower right panel represents the difference between the A and B measurement in each block, 

as compared to the average mean difference (horizontal red line). 
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The first example with real data focuses on the measurements of duration of hand-flapping 

obtained by Lloyd et al. (2018) from a participant called Martin, diagnosed with autism spectrum 

disorder and attention deficit hyperactivity disorder and presenting stereotypy (see Figure 8). For 

these data, across blocks, there is a mixture of five smaller A-B differences (similar among 

themselves) and five larger A-B differences (also similar among themselves, but different from 

the smaller A-B differences); this is visible from the lower right panel of Figure 8. As 

represented on the upper right panel, there are also several parallel dashed, that are crossing with 

several other parallel dashed lines. Numerically, this is summarized as 𝐶𝐸𝐴𝐵 = 75.64%.  
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Figure 8. Lloyd et al. (2018) data: duration of hand-flapping – CEAB=75.64%. The upper left 

panel is a time series plot. The upper right panel represents the A values on the left Y-axis, 

connected with a dashed line to the corresponding B-values on the right Y-axis. The horizontal 

red line represents the grand mean of the outcomes, whereas the thick green line connects the 

mean of the A-values to the mean of the B-values. The lower left panel represents the 

proportions of variability attributed to treatment (yellow area), blocking effect (red area) and 

interaction/residual (green area): the percentage to the left is the residual/interaction variability in 

relation to block plus residual variability, whereas the percentage to the right is the 

residual/interaction variability in relation to the total variability (including the treatment effect). 

The lower right panel represents the difference between the A and B measurement in each block, 

as compared to the average mean difference (horizontal red line). The lower right panel 

represents the difference between the A and B measurement in each block, as compared to the 

average mean difference (horizontal red line). 
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The measurements of latency to hand-flapping by Martin, as obtained by Lloyd et al. (2018), 

are represented in Figure 9 (left panel), in order to include data with an apparent outlier. (It is not 

clear whether methods for detecting outliers such as the boxplot rule, [Tukey, 1977] or the rule 

based on the median of absolute deviations [Leys, Ley, Klein, Bernard, & Licata, 2013] are 

reasonable when there a few (e.g., five or six) measurements in a condition.). An outlier 

introduces lack of consistency. For instance, the outlier is related to certain line-crossing (upper 

right panel), but this is not the only reason for the lower consistency (𝐶𝐸𝐴𝐵 = 58.25%). Other 

contributions to the lack of consistency are visible in the lower right panel of Figure 9: there is 

one difference with a negative sign and two differences that are very close to zero, with the 

majority of differences being positive and close to 10 (seconds), plus a very large positive 

difference. Moreover, an outlier makes the average of one of the blocks farther away from the 

overall mean, leading to lower consistency of the average level across blocks (𝜂𝑏𝑙𝑜𝑐𝑘𝑖𝑛𝑔
2 = 0.32 

vs. 𝜂𝑏𝑙𝑜𝑐𝑘𝑖𝑛𝑔
2 = 0.14 for the Figure 8 data).  
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Figure 9. Lloyd et al. (2018) data: duration of hand-flapping – CEAB=58.25%. The upper left 

panel is a time series plot. The upper right panel represents the A values on the left Y-axis, 

connected with a dashed line to the corresponding B-values on the right Y-axis. The horizontal 

red line represents the grand mean of the outcomes, whereas the thick green line connects the 

mean of the A-values to the mean of the B-values. The lower left panel represents the 

proportions of variability attributed to treatment (yellow area), blocking effect (red area) and 

interaction/residual (green area): the percentage to the left is the residual/interaction variability in 

relation to block plus residual variability, whereas the percentage to the right is the 

residual/interaction variability in relation to the total variability (including the treatment effect). 

The lower right panel represents the difference between the A and B measurement in each block, 

as compared to the average mean difference (horizontal red line). 
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Application to AATDs 

In an AATD, the level of responding is not expected to be consistent across blocks, because the 

participant is expected to improve in both conditions (probably faster in one of them). The lack 

of a consistent average level of responding across blocks would be quantified by the effect of the 

blocking variable. With CEAB (the consistency of effects across blocks), we can assess whether 

the difference between conditions is consistent in size. Three scenarios are possible: (a) one of 

the conditions is not consistently and clearly superior to the other throughout the whole data 

series (e.g., Cihak et al., 2006, data for Group 1; Klingbeil et al., 2019, data for participant 

Carlos); (b) the difference between the conditions is of a very similar size for all measurement 

occasions (e.g., Klingbeil et al., 2019, data for participant Zoe; Savaiano et al., 2016, data for 

participant Helen); or (c) the difference between conditions increases with time (Coleman et al., 

2015, data for participant Alice; Klingbeil et al., 2019, data for participant Daniela).  

The data for Carlos (Klingbeil et al., 2019) are represented on Figure 10. The difference 

between the conditions is not very clear, neither in terms of differentiation nor in terms of 

efficiency (speed of improvement or slope of the trend line). In that sense, the variability 

attributed to the intervention is practically zero, whereas the variability attributed to blocking is 

very high (see the distance between the lines on the Y-axis in the upper right panel of Figure 10). 

When the effect is almost null (i.e., differences within blocks very close to zero, some positive, 

some negative – as per the lower right panel of Figure 10) it does not make sense to discuss the 

consistency of effect across blocks. 
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Figure 10. Klingbeil et al. (2018) data for Carlos: CEAB=98.83%. The upper left panel is a time 

series plot. The upper right panel represents the A values on the left Y-axis, connected with a 

dashed line to the corresponding B-values on the right Y-axis. The horizontal red line represents 

the grand mean of the outcomes, whereas the thick green line connects the mean of the A-values 

to the mean of the B-values. The lower left panel represents the proportions of variability 

attributed to treatment (yellow area – not shown as it is practically zero), blocking effect (red 

area) and interaction/residual (green area): the percentage to the left is the residual/interaction 

variability in relation to block plus residual variability, whereas the percentage to the right is the 

residual/interaction variability in relation to the total variability (including the treatment effect). 

The lower right panel represents the difference between the A and B measurement in each block, 

as compared to the average mean difference (horizontal red line). 

 

 



34 

CONSISTENCY IN ALTERNATION DESIGNS 

The data for Zoe (Klingbeil et al., 2019) are represented in Figure 11. There is a 

differentiation between the two conditions, which is practically the same throughout the whole 

series. In that sense, the slopes of the trend lines are very similar (i.e., the trend lines are 

practically parallel, as per the upper right panel of Figure 11). This indicates similar efficiency of 

the two interventions. This can also be understood as consistency of the effect across blocks 

(CEAB=98.76%), but this is usually not the desired result in an AATD. Due to the presence of 

similar trends, the variability attributed to blocking is high (86%). 
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Figure 11. Klingbeil et al. (2018) data for Zoe: CEAB=98.76%. The upper left panel is a time 

series plot. The upper right panel represents the A values on the left Y-axis, connected with a 

dashed line to the corresponding B-values on the right Y-axis. The horizontal red line represents 

the grand mean of the outcomes, whereas the thick green line connects the mean of the A-values 

to the mean of the B-values. The lower left panel represents the proportions of variability 

attributed to treatment (yellow area), blocking effect (red area) and interaction/residual (green 

area): the percentage to the left is the residual/interaction variability in relation to block plus 

residual variability, whereas the percentage to the right is the residual/interaction variability in 

relation to the total variability (including the treatment effect). The lower right panel represents 

the difference between the A and B measurement in each block, as compared to the average 

mean difference (horizontal red line). 
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The data for Daniela (Klingbeil et al., 2019) are represented on Figure 12.  In this case, there 

is not only differentiation, but also difference in efficiency. In other words, the difference 

between the conditions becomes larger as time passes (see the lower right panel of Figure 12). 

This can be interpreted as smaller consistency of effects across blocks as compared to the Zoe 

(here CEAB=85.63%), but it is also indicative that one of the interventions leads to achieving the 

final goal faster. 
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Figure 12. Klingbeil et al. (2018) data for Daniela: CEAB=85.63%. The upper left panel is a 

time series plot. The upper right panel represents the A values on the left Y-axis, connected with 

a dashed line to the corresponding B-values on the right Y-axis. The horizontal red line 

represents the grand mean of the outcomes, whereas the thick green line connects the mean of 

the A-values to the mean of the B-values. The lower left panel represents the proportions of 

variability attributed to treatment (yellow area), blocking effect (red area) and 

interaction/residual (green area): the percentage to the left is the residual/interaction variability in 

relation to block plus residual variability, whereas the percentage to the right is the 

residual/interaction variability in relation to the total variability (including the treatment effect). 

The lower right panel represents the difference between the A and B measurement in each block, 

as compared to the average mean difference (horizontal red line). 
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Discussion 

Contributions 

In the current text, we first propose a quantification of the consistency of effects across blocks 

for an alternation design with block randomization. This quantification, CEAB, is based on a 

solid statistical model such as the analysis of variance. It should be noted that we are not 

recommending here the use of analysis of variance as a primary method for evaluating 

intervention effectiveness (e.g., Gentile, Roden, & Klein, 1972). In contrast, we only use the 

variance partitioning performed by the analysis of variance, with no reference to statistical 

significance, which is likely to be affected by serial dependence (Toothaker, Banz, Noble, Camp, 

& Davis, 1983). Thus, only descriptive, but not inferential information is used. 

For obtaining easily the results of the variance partitioning and the quantifications of 

consistency, a web-based application was created 

(https://manolov.shinyapps.io/ConsistencyRBD/). This application also provides several 

graphical representations: (a) a time series line graph; (b) a plot superimposing the pairs of 

measurements obtained in the different blocks (as the upper right panels presented throughout 

the current text); (c) a representation of the proportion of variability explained by the 

intervention, by the blocks and the residual / interaction variability (see the lower left panels); 

and (d) a representation of differences between conditions for each block, represented in a time 

sequence and compared to the mean difference between conditions (see the lower right panels). 

Implications for Applied Researchers 

One approach to the analysis of data obtained from alternation designs is visual inspection 

(Wolery et al., 2018). When a quantitative analysis is actually performed complementing the 

https://manolov.shinyapps.io/ConsistencyRBD/
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visual inspection, the data are typically analyzed by reporting means and ranges per condition 

(Manolov & Onghena, 2018). However, relying on averages is not sufficient, as they may hide 

relevant variability (Normand, 2016). A nonzero effect, on average considering the tiers in an 

MBD, the phases in an ABAB design or the alternations of the conditions in an alternation 

design does not necessarily entail consistency. Actually, a lack of consistency could be indicative 

of an excess of uncontrolled sources of variation, which would suggest that the underlying 

mechanism of the intervention (or the variables controlling the behavior of interest) is not 

sufficiently understood.  

Before an intervention can be recommended for certain situations (problematic behaviors and 

personal characteristics), there should be some information available regarding the expected 

direction and magnitude of the effect of this intervention. Otherwise, erroneous conclusions 

about treatment efficacy in applied research can have severe consequences. This may for 

example result in administering ineffective treatments to patients or misallocation of scarce 

financial resources. Given the importance of assessing consistency (Kratochwill et al., 2010; 

Lane et al., 2017; Ledford, 2018), the current text, with its focus on alternation designs, fills a 

relevant gap in the literature, complementing the previous work (Tanious, De, et al., 2019a; 

Tanious, Manolov, et al., 2019).  

Thanks to the web-application developed, the quantifications proposed can be easily 

complemented with several visual representations of the data. These visual representations 

enable a better interpretation of the numerical values, because some of them directly represent 

the degree of consistency of the effect across blocks (i.e., the degree to which the dashed lines 

cross in upper right panels of the Figures included here), as well as the degree of consistency of 

the average level across blocks (i.e., the distances between the dashed lines on the Y-axis in 
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these upper right panels). For instance, the upper right panel of Figure 6 shows that the average 

level across blocks is the same, but the effect is not completely consistent across blocks. In 

contrast, the upper right panel of Figure 2 shows that the effect is perfectly consistent across 

blocks, but the average level is very different. Furthermore, another graphical representation (i.e., 

the lower right panels of the Figures included here) represents the size of the difference between 

conditions, preserving their temporal order. This is very important, given that the measurement 

time or the order of the blocks is not taken into consideration in the ANOVA partitioning of the 

variance. For instance, the lower right panel of Figure 12 illustrates how the effect is getting 

larger for later blocks and measurement occasions, whereas the lower right panel of Figure 7 

shows that the average effect is zero (and thus consistency of effect need not be assessed) and 

positive and negative differences are alternated in time.  

Our recommendation is to interpret the numerical results (e.g., the CEAB value) alongside a 

visual analysis of the raw time series graph just as it has been recommended when assessing the 

magnitude of effect (Fisher, Kelley, & Lomas, 2003; Harrington & Velicer, 2015). Visual 

inspection is necessary in order to know whether the lack of consistency in the effect is due to 

excessive unexplained variability or due to trends with different slopes (i.e., the conditions 

becoming more dissimilar with time). The former case (e.g., Figure 8) is indicative of an 

insufficient experimental control and would indicate a problematic lack of consistency. In 

contrast, the latter data pattern (e.g., Figure 12) could be desirable if the effect of the difference 

between conditions is expected to become more pronounced with time. In this latter case, a 

certain degree of lack of consistency across blocks can be expected and not be considered 

detrimental. In that sense, we consider that the quantitative results (such as CEAB) should be 
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interpreted always in relation to the expected data pattern, considering whether an ATD or an 

AATD is used. 

A kind of unexplained variability that can introduce lack of consistency is the presence of 

outliers (see Figure 9). An outlier can be expected to reduce the consistency of effects across 

blocks. For the data depicted in Figure 9, CEAB=58.25%. If the value for the second 

measurement occasion (a high outlier in the condition marked with a filled triangle) is set to be 

equal to the value for the fourth measurement occasion, belonging to the same condition but not 

as outlying, CEAB would be 63.04%. Similarly, if the value for 18th measurement occasion (a 

high outlier in the condition marked with a filled circle) is set to be equal to the value for the 

16th measurement occasion, belonging to the same condition but not outlying, CEAB would be 

66.44%. If both outliers are replaced by their not so extreme “neighbors” from the same 

condition, then CEAB would be 78.32%. Visual analysis can help identifying whether an outlier 

is the likely cause of a relatively low value of CEAB.  

Visual inspection can also be useful when the variability attributed to the intervention is zero 

(i.e., there is no main effect of the intervention, on average). In such a case, interpreting CEAB 

will not make sense, but a visual inspection of the data can be useful for determining whether the 

lack of average effect is due to (a) the two conditions giving identical scores, (b) rapid 

alternation in the superiority of one condition over another (similar to the data represented on 

Figure 7), or (c) one condition being superior in the beginning and the other in the end of the 

time series (similar to the data represented on Figure 10). 

Finally, the interpretation of the results in terms of a causal relation between the intervention 

and the target behavior can be aided by the introduction of randomization in the design, for 

instance, block randomization in an alternation design (Ledford, 2018). Apart from boosting 
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internal validity, the use of randomization makes possible the application of a randomization test 

as quantification of the degree to which the effect size observed can be expected by chance 

(Levin, Kratochwill, & Ferron, 2019; Onghena & Edgington, 1994). 

Limitations and Future Research Directions 

The current text presents and illustrates a proposal for quantifying consistency of effects across 

blocks. Our aim was to offer a didactical demonstration that is easy to follow, on the basis of 

several specific examples of different data patterns and different degrees of consistency. 

Nonetheless, a simulation study would still be useful for providing evidence on the performance 

of the proposal made. Specifically, generated data could be used to explore how different data 

patterns (e.g., including linear and nonlinear trends in similar or different directions, outliers in 

one or the two conditions) are reflected in the quantification of consistency of effects across 

blocks (proposed here) or in the quantification of the consistency of superiority such as the 

Percentage of nonoverlapping data (Wolery et al., 2014). A simulation study would be especially 

relevant in case another measure of consistency is proposed for alternation designs with block 

randomization, in order to compare the performance and informative value of the quantifications. 

A second relevant line of future research would be to perform a field test, for establishing 

interpretative benchmarks for CEAB. Specifically, such a field test can follow the approach for 

obtaining benchmarks for CONDAP (Tanious, De, et al., 2019b). Finally, it would be important 

to continue developing measures of consistency, specifically for alternating treatments designs 

with restricted randomization (Onghena & Edgington, 1994). Such designs are challenging for 

two reasons. First, the variance partitioning cannot be obtained on the basis of blocks (as such 

are absent) and, therefore, a different kind of measure of consistency is called for. Second, these 

designs can lead to unequal number of measurements per condition in certain alternating 
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sequences (e.g., Eilers & Hayes, 2015; Maitland & Gaynor, 2016), which makes less 

straightforward even the assessment of consistency in superiority using the Percentage of 

nonoverlapping data (Wolery et al., 2014). 
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