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Abstract: In this work we study firstly the general properties of wormholes in classical general
relativity, and the constraints the metric must satisfy to support such structures. We will then
describe some examples of classical solutions and find the issues they have before finally delving into
more recent studies that show wormhole solutions supported by quantum fields and consistent with
all known physical principles.

I. INTRODUCTION

A wormhole is defined as a structure that connects
two arbitrarily distant points in spacetime, acting as a
bridge that allows fast travel and comunication between
seemingly unreachable distances. The existence of such
objects has been widely discussed by physicists almost
since the inception of general relativity, the first popu-
larised model being introduced by Einstein and Rosen in
1935 [1], and they have been invoked in the resolution of
the Cosmological Constant problem [2] and the informa-
tion loss paradox [3], among others. The concept has also
been displayed in popular culture, one notable example
being the novel Contact by Carl Sagan, which was the
incentive for the development of a model for traversable
wormholes by S.Morris and Kip S. Thorne, in 1987 [4].

Traversable wormholes are those that are suitable for
objects, or humans to travel through. The essential re-
quirement for a wormhole to be traversable is that the
time to go through it must be reasonably small measured
by all observers. This implies that there can be no hori-
zons in the geometry. Other conditions can be required
for the wormhole to be traversable in practice, such as
making the tidal forces of the object traversing relatively
small, or the wormhole to be big enough for large objects
to traverse, but in this work we will focus in the most
basic requirements.

In summary, if we take a wormhole to be spherically
symmetric, the conditions the geometry will satisfy are:

1. It has a minimum radius ro, that prevents the struc-
ture from collapsing into a point.

2. The metric has no horizons, and no naked singu-
larities.

3. The space far away form the wormhole is asymp-
totically flat.

The method to find solutions that satisfy these condi-
tions will consist on proposing a metric that alredy sat-
isfies them and calculate the stress-energy tensor that
generates it, and then we will see if the solution is physi-
cally reasonable. The result will be that for a traversable
wormhole to exist, we need certain components of the
stress-energy tensor to be negative, violating the so called

”Null Energy Condition” (NEC), which states that

Tµνk
µkν ≥ 0 (1)

for any null vector kµ. Although classical models that
violate the NEC can be constructed, all of them present
problems, as there are no known fields in the standard
model that violate it at the classical limit. However, as
we will show, it is possible to find solutions supported by
matter that violates NEC due to quantum effects [8].

FIG. 1. Sketch of a traversable wormhole made by J. Wheeler
in 1955 [9]. The lines between the two openings represent a
magnetic field (See section 3)

II. CLASSICAL WORMHOLES

A. Metric

We will begin with an ansatz for a spherically symmet-
ric and static metric

ds2 = −e2Φdt2 +
(
1− b

r

)−1

dr2 + r2(dθ2 + sin2 θdϕ2)

(2)
Where Φ = Φ(r) and b = b(r) with (−+++) signature.
To deduce the stress-energy tensor we must first calcu-
late the Riemann tensor and the curvature scalar, giving
24 non-zero components of the curvature tensor and 4
components of the Einstein tensor. Additionally the ref-
erence frame is switched to one that is at rest, that is
gµ̂ν̂ = diag(−1, 1, 1, 1), which will be more convenient to
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analyze the solutions. It is implemented in the calcula-
tion with the following coordinate transformation

et̂ = e−Φet, er̂ = (1− b/r)1/2er,

eθ̂ = r−1eθ, eϕ̂ = (r sin θ)−1eϕ
(3)

Then the 4 components of the Einstein tensor are

Gt̂t̂ = b′/r2 (4)

Gr̂r̂ = −b/r3 + 2(1− b/r)Φ′/r (5)

Gθ̂θ̂ = Gϕ̂ϕ̂ =

(
1− b

r

)(
Φ′′ − b′r − b

2r(r − b)
Φ′+

+(Φ′)2 +
Φ′

r
− b′r − b

2r2(r − b)

) (6)

B. Stress-energy tensor

Einstein’s equations1 Gµ̂ν̂ = 8πTµ̂ν̂ show that there are
4 non-vanishing components of the stress-energy tensor,
which take the form

Tt̂t̂ = ρ(r), Tr̂r̂ = −τ(r), Tθ̂θ̂ = Tϕ̂ϕ̂ = p(r) (7)

Where ρ(r) is the energy density and τ(r) and p(r) the
radial and lateral pressures, respectively. Solving Ein-
stein’s equations the following relations are obtained.

ρ(r) =
b′

8πr2
(8)

τ(r) =
b/r − 2(r − b)Φ′

8πr2
(9)

p(r) = (2/r)[(ρ− τ)Φ′ − τ ′]− τ (10)

Finally, the boundary conditions are the following. Con-
sidering a finite distribution of matter and energy ρ, τ,
and p must be zero for r > R where R is the radius of a
sphere. This allows ρ and p to be discontinuous at r = R
but τ , being a radial pressure, must go to zero at the
frontier. This implies from equations (8) and (9) that
the metric takes the Schwarzschild’s form for r > R.

C. General constraints of the wormhole

As described in the introduction a traversable worm-
hole requires two basic conditions. First that there is
a minimum value of the radial coordinate, b0 > 0, and
second no horizons can exist. For a metric of the form
(2), horizons are surfaces where the component g00 of
the metric tends to zero. In this metric it implies that

1 We will use natural units, c = G = ℏ = 1. throughout the whole
paper

Φ must be finite everywhere. Combining the the above
conditions we can find a constraint on the stress-energy
tensor. First we define the proper differential radial dis-
tance dl(r) as

dl(r) =
dr√

1− b/r
=⇒ dr

dl
= ±

√
1− b

r
(11)

And differentiating with respect to l(r) it is found that

d2r

dl2
=

1

2r

[
b

r
− b′

]
(12)

Now, since r takes a minimum value at the throat and

increases away from it, then d2r
dl2 > 0 near the throat,

which implies that

b′ <
b

r
=⇒ b′ < 1 near the throat (r ≃ b) (13)

Taking now the following quantity: Tr̂r̂ − Tt̂t̂ and using
equations (8) and (9) near the throat and considering the
result of (13) it is found that

Tr̂r̂−Tt̂t̂ =
1

C
(b/r−2(r−b)Φ′−b′) −−−−→

r,b→b0

1

C
(1−b′) > 0

(14)
Where C = 8πr2 > 0 and implies that Tt̂t̂ < Tr̂r̂.

D. NEC violation

The condition Tt̂t̂ < Tr̂r̂ leads to an interesting result
when we consider the measurement of a radially moving
observer near the throat. Using a radial boost on Tt̂t̂ we
find

T0̂0̂ = γ2(Tt̂t̂ − β2Tr̂r̂) = γ2(Tt̂t̂ − Tr̂r̂) + Tr̂r̂ (15)

And consequently, for large γ the above result will be
negative, meaning that an observer traversing the worm-
hole at sufficient speed will measure negative mass-energy
densities in clear contradiction with the Null Energy Con-
dition. The kind of substance with this property is ref-
ered to as ”exotic matter” and it is indispensible for any
wormhole solution to exist. The lack of such matter in
classical theories will be the motivation for finding solu-
tions in quantum field theory.

E. Visual example of a wormhole

A particularly simple solution is the EMBT (Ellis-
Bronnikov-Morris-Thorne) wormhole [4]. The shape of

the metric is Φ = 0 and b(r) =
b2o
r . The main character-

istic it has is that all components of stress-energy tensor
are equal except for one sign.

−Tt̂t̂ = Tr̂r̂ = Tθ̂θ̂ = Tϕ̂ϕ̂ =
b2o
r4

(16)
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This can only be achieved with a field with negative ki-
netic energy and therefore it is not a realistic solution.
The embedding diagram can be obtained taking a sur-
face of constant t and θ and doing a representation in
cilyndrical coordinates leaving the curve

z(r) = ±boln
(
r/bo +

√
(r/bo)2 + 1

)
(17)

FIG. 2. Embedding diagam of a EBMT wormhole. It has
a throat at b0 and far from it the space-time tends to an
asymptotically flat geometry

Other solutions of this kind can be obtained modifying
the ϕ and b functions in order to get wormholes with de-
sirable properties. However all of them need the presence
of exotic matter in greater or lesser quantities. One could
also ask what happens if we take a more general metric,
non-spherical and non-static, but we would find that the
NEC is violated anyways by virtue of the Raychaudhuri’s
equation. (See Ref. [6], appendix F).

Another option is to consider classical fields that vio-
late NEC such as the one from [7] where a coupling term
is added to the Lagrangian of a scalar field. The issue
here is that none of these fields fit in the standard model.
However, it is relatively easy to find examples in quan-
tum field theory that can violate NEC at a quantum level
and still be permited by the standard model. This is the
subject of the following section.

III. TRAVERSABLE WORMHOLE FROM TWO
MAGNETIC BLACK HOLES

In quantum mechanics, matter is not bound by the
Null Energy Condition, but by the Achronal Averaged
Null Energy Condition (AANEC), which states that the
average energy along an achronal null geodesic must be
positive, that is

∫
γ

Tµνk
µkν ≥ 0 (18)

This condition is less restrictive than the NEC and means
that the stress-energy tensor can be negative locally,
but not when averaged over the achronal null geodesic.
The example from [8] described here consists in taking
two near extremal magnetically charged black holes and
putting a fermion field inside which will create a series of
Landau levels, the lowest of which will have zero energy
in the angular directions. Then it will be shown that
the field has a negative Casimir energy able to support a
wormhole throat.

A. The geometry

The metric of a charged black hole is

ds2 = −
(
1− 2M

r
+
r2e
r

)
dt2 +

(
1− 2M

r
+
r2e
r

)−1

dr2

+ r2dΩ2

(19)

Where r2e = πq2

g2 , with M being its mass, q its charge,

and g the coupling constant to the gauge field, which is

A =
q

2
cos θdϕ (20)

This geometry exhibits a horizon at r = r+ where

r± =M ±
√
M2 − r2e (21)

At near extremality however, we approximate that
r+ = r− = re and in this limit the metric takes the
form

ds2 = r2e
[
−(ρ2 + 1)dτ2 + (ρ2 + 1)−1dρ2 + dΩ2

]
(22)

Where

t = lτ, ρ = l(r − re)r
2
e/r

2
e (23)

This metric corresponds to an AdS2 × S2 metric, which
will be the throat of the wormhole, and l is a parameter
that will be related to its length. For a single black hole
this means we would have an infinitely long throat at
r+. In this situation, however, we will consider two black
holes separated by a distance d. The gauge field in this
case will be

A =
q

2
(cos θ1 − cos θ2)dϕ (24)

Where θ1 and θ2 are the angles measured from the two
mouths with respect to the straight line connecting them.
If we want our fermions to move along the magnetic field
lines, then the magnetic field will be constant and this
gives us a constraint,

(cos θ1 − cos θ2) = ν with 0 ≤ ν ≤ 2 (25)
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In summary, the geometry of the wormhole will be the
following: The wormhole mouths will have the metric
of (19) near its horizon, the wormhole between the two
mouths will be AdS2 × S2 , like (22), and the space in
between, and far from the mouths will be flat.

B. Fermions inside the wormhole

Consider a massless fermion field χ of charge one in the
space described above. To find its energy we must cal-
culate the eigenvectors of the Dirac’s equation in curved
spacetime.

iγaeµaDµΨ = 0 (26)

Where Dµ = ∂µ − i
4ω

ab
µ σab + iqAµ. e

µ
a is a tetrad that

defines a local rest frame, σab is the commutator of the
gamma matrices, σab = i

2 [γa, γb], and ωab
µ are the com-

ponents of the spin connection.
If we consider a general metric of the form

ds2 = −e2σ(t,r)dt2 + e−2σ(t,r)dr2 +R2(t, r)dΩ (27)

Then the tetrad is

e1 = eσdt, e2 = e−σdr, e3 = Rdθ, e4 = R sin θdϕ
(28)

And the only non zero components of the spin connection
are

ω12 = σ′dt+ σ̇dx, ω32 = R′e−σdθ,

ω42 = R′ sin θe−σ, ω43 = cos θdϕ
(29)

Now we can express χ as a tensor product of two
two-dimensional spinors, one in the radial and time di-
mensions, and a second one in the angular directions
χ = ψ(r, t) ⊗ η(θ, ϕ). Now substituting everything in
(26), expressing the gamma matrices as a function of the
Pauli matrices and using the following ansatz

χαβ =
e−σ/2

R
ψα(r, t)ηβ(θ, ϕ) (30)

We obtain two equations

[
σy
∂ϕ − iAϕ

sin θ
+ σx

(
∂θ +

1

2
cotθ

)]
η = 0 (31)

(iσx∂t + σy∂x)ψ = 0 (32)

Solving the first equation we obtain the solutions

η− =

(
sin

θ

2

)j−m (
cos

θ

2

)j+m

eiϕ
(
0
1

)
, η+ = 0 (33)

where j = q−1
2 is the angular momentum and −j ≤

m ≤ j where m is the J3 quantum number. The key
of this solution is to notice that at the lowest Landau
level the energy along the θ and ϕ directions is zero so a
4-dimensional fermion field gives rise to q 2-dimensional
massless fermions in the radial and time directions.

C. Energy along magnetic lines

To calculate the Casimir energy we first need to know
the length of the path the fermions take, which will be
the sum of the length of the wormhole and the length
along the flat space between the mouths. First, we note
that because the fermions move in a 2 dimensional plane,
we can define a rescaled length x such that the metric is

ds2 = gtt(−dt2 + dx2) and dx =

√
grr
−gtt

dr (34)

Then the first term is obtained integrating x along
the wormhole region, which goes between the two points
where the throat starts to open up r − re ∼ re. At this
point ρ ∼ l

re
, and we will suppose that l ≫ re. The

length of the wormhole throat is

Lthroat =

∫ +l/re

−l/re

l

(ρ2 + 1)
dρ = 2l arctan(l/re) ∼ πl

(35)
The second section of the path can be obtained
parametrizing the constant magnetic field lines as a func-
tion of θ1 and θ2 and using (25) to express one angle as a
function of the other one and ν, which also gives us the
integration limits. The length of the flat region is then
Lflat = df(ν) with d being the separation of the mouths
and f a function of ν. But assuming that l ≫ d this
term will be neglected so in the end L = πl. Finally,
the energy of q fermions moving on a circle of length L
creates the following casimir energy [10]

E = − q

12

2π

L
= −1

6

q

l
(36)

The total energy though, needs an extra term, due to
the fact that the space in the wormhole is not flat, but
conformally flat, and there is an extra contribution from
the conformal anomaly. This energy is [11]

E = +
q

24

π

L
(37)

So the final energy of the wormhole is E = − q
8l and the

stress-energy tensor has to be one that gives this energy

⟨Ttt⟩ = ⟨Txx⟩ = − q

8l2
1

4π2r2e
(38)

D. Solution of the Einstein’s equations

We now proceed to incorporate the stress energy tensor
into the Einstein’s equations to prove that we have a
genuine solution and find the length of the wormhole l,
and its minimum energy. We will do that by expanding
the metric (22) as a perturbation and comparing it with
the metric from (19).
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ds2 = r2e
[
−(1 + ρ2 + γ)dτ2 + (1 + ρ2 + γ)−1dρ2

+(1 + ϕ)dΩ2
] (39)

Where γ and ϕ are two parameters with small values.
We can now find ϕ by aplying Einstein’s equations to the
radial component of the stress-energy tensor, which will
have two contributions. One from the regular AdS2×S2

metric, and one from the Casimir effect computed in (38)

8π(Tmag
ρρ + ⟨Tρρ⟩) = Rρρ −

1

2
gρρR =⇒

=⇒ 8π ⟨Tρρ⟩ =
ρϕ′ − ϕ

1 + ρ2

(40)

Now using (38) and the relations between t and τ and
between x,ρ and τ from (34), we get

8π ⟨Tρρ⟩ = − α

1 + ρ2
where α =

q

4πre
(41)

Solving now the differential equation for ϕ and taking the
limit for large ρ

ϕ = α(1 + ρ arctan ρ) ∼ πα

2
ρ (42)

And comparing the dΩ components of (19) and (39) we
obtain

r2 = r2e(1 + ϕ) =⇒ r − re
re

= ϕ =
πα

2
ρ (43)

For large ρ. Finally we can set the distance l comparing
the higher order terms of the time components and using
that dt = ldτ

r − re
re

dt = reρdτ =⇒ l =
r2eρ

r − re
= 16

r2e
q

(44)

With the above results we can also see that (r−re)/re =
ρ), so when comparing the time components of the met-
rics for γ = 0 the ρ2 terms are identical and we only need

to identify the the constant terms and find that

Emin = 2(M − re) = r3e l
2 = − 1

256

q2

r3e
(45)

Finding that the minimum energy of the system is neg-
ative. This condition, along with a minimum radius and
no horizons guarantees that the connection between the
mouths is in fact a traversable wormhole. It should be
noted though, that the fact that the fermion field is con-
sidered massless restricts the size of the wormhole below
the electroweak scale. Otherwise it would not fit in the
standard model.

IV. CONCLUSIONS

We have first shown the shape of the metric and the
constraints on the stress-energy tensor for a spherical
wormhole and found that we need the presence of ex-
otic matter in order to meet the necessary conditions.
We have proceeded to show a simple example of a worm-
hole supported by classical matter and justified the need
for quantum effects to be taken into account in our so-
lutions. Finally we have reproduced the example from
[8] of a wormhole supported by the Casimir energy of
fermion fields.
As a summary we can say that wormholes, although

simple in appearance, are very intricated objects clashing
whith multiple physical principles that force us to find
creative ways to circumvent them. Although it is not
quite clear if they can exist or be created artificially, they
continue to provide insight about the workings of General
Relativity and its connection with quantum field theory.
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