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Abstract: The Schrödinger equation is known to be a great tool for understanding small physical
systems, yet an analytical solution exists solely for some simple cases. As a consequence of this, a
wide variety of numerical methods are used to solve real systems, and machine learning methods,
namely Artificial Neural Networks (ANNs), are amidst the newest. In this work we use an ANN
to find the ground state wave function of the deuteron -this is, the nuclear two-body bound state-,
achieving energy values that are within 0.05% of the exact results and wave functions that overlap
up to 99.9997% with the exact ones. We also compare the performance of a single-layer ANN against
a two-layer ANN, the latter not showing significant improvements over the former.

I. INTRODUCTION

Artificial Neural Networks are being used more and
more in science as an alternative method to solve com-
putationally expensive problems [1]. Fields like quan-
tum chemistry are currently seeing significant improve-
ments both in terms of efficiency and accuracy due to
this methodology. Amongst the best examples of this is
FermiNet [2], an ANN that uses a variational ab-initio
method to solve the many-electron problem, obtaining
better results than the variational methods typically used
to approach such problems. In this work we approach the
deuteron in a similar way, albeit much simpler in spirit.

The methodology that we use to solve the deuteron
problem, as concerns the design and implementation of
the ANN, stems from Ref. [3], published in 2020 with
my advisor as the co-author. In this paper, the ground
state wave function of the deuteron in momentum space
is found using a single-layer ANN that acts as the trial
wave function in a variational method. The main aim
of this work is to reproduce the results obtained in that
paper, and also to extend the neural network by adding
an extra hidden layer and compare the performance of
both the original and the extended ANN.

This document is structured in the following manner:
in section II we briefly go over the structure of a simple
ANN; in section III we tackle the deuteron problem and
explain the computational implementation. In the next
section we comment on our extension of the network in
Ref. [3] and in section V we show some numerical results
obtained with both the initial ANN and the extended
ANN.

II. NEURAL NETWORKS

From the mathematical point of view, an ANN is a
function that depends on a given number of parameters
and a special kind of function. A single-layer ANN with
one input and one output reads:

f(x) =

Nhid∑
i=1

W
(2)
i σ

(
W

(1)
i x+Bi

)
. (1)

FIG. 1: Architecture of a one-layer, one-output ANN with
bias B in the hidden layer and four hidden neurons.

Here, the parameters W
(1)
i , W

(2)
i , Bi, i = 1, . . . , N are

the components of the vectors W(1), W(2), B, and σ is
the activation function, i.e., a continuous, non-decreasing
function such that limx→−∞ σ = 0 and limx→∞ σ = 1.
A theorem exists asserting that, if N is large enough, a
function like (1) can uniformly approximate any contin-
uous function [4]; this is usually referred to as Univer-
sal Approximation Theorem. Therefore we must find the
vectors W(1),W(2),B that best approximate the desired
function.

In order to understand the process of finding these vec-
tors, the usual graph representation comes in handy; the
graph corresponding to Eq. (1) would be the one in Fig.
1.

Computationally, the ANN learns a function in a finite
number of points, the training set, and if properly trained
it is able to transfer that knowledge to other points as
well (testing set). One iteration of the learning process is
as follows: every input xi of the training set is passed to
the input layer, from where it is “propagated forward”
to each neuron of the next layer, and so on. In this

propagation each neuron uses a weight parameter W
(i)
j

to perform an affine transformation on the neuron input
(see Eq. (1)).

The final output f(x) is then used to compute the cost
function, which is a measure of the quality of the pre-
diction and has a global minimum where the prediction
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is exact. Finally, this cost function is in turn passed
to a minimisation algorithm, usually called optimizer,
which “backpropagates” the error to each neuron, i.e., it
changes the weights of all the neurons in a way that will
let the next prediction be more accurate than the previ-
ous one. The amount by which the parameters are varied
is typically proportional to a (hyperparameter) constant
called learning rate, which is to be chosen carefully. This
process is repeated until the ANN converges to the de-
sired function.

III. COMPUTATIONAL SET-UP

We use an ab-initio variational method: starting from
an arbitrary wave function that depends on N parame-
ters, we aim to find the parameters that minimize the
total energy. The ANN plays the role of the varia-
tional wave function, and the parameters of the net-
work are the parameters of the wave function. From
here it follows naturally that the energy is the cost
function, which is precisely the function that is min-
imised throughout the training process; thus, we have
direct access to the ground state wave function. Defining
W = {W(1),W(2),B}, the energy in terms of the ANN
parameters reads:

EW =
〈ψWANN|Ĥ|ψWANN〉
〈ψWANN|ψWANN〉

. (2)

We solve the problem in a 64-point, one-dimensional
lattice that we use as the momentum space (training
set), with q′ (relative momentum) initially in the interval
[0, 1]. As concerns the distribution of q′, we initially take
q′i = xi, where xi are the x-points used in the Gauss-
Legendre integration method with N = 64 points. This
allows us to use the same points to compute both the
wave function and the necessary quadratures via Gauss-
Legendre. In order to capture the high momentum com-
ponents of the potential energy we perform the following
auxiliary transformation over the initial training set:

qi =
qmax

tan
π

2
q′N

tan
π

2
q′i , (3)

where q′N is the biggest q value of the initial mesh, and
qmax = 500 fm−1. This extends the mesh up to 500 fm−1

whilst providing us with a dense mesh at low momenta.
We know beforehand that the only possible states

for the deuteron are the ones with angular momenta
L = 0, L = 2, and this information allows us to choose a
proper ANN architecture. In fact, we use the one shown
in Fig. 1, but now with two output neurons instead of
one: one for the |ψL=0(q)〉 state (or S−state) and one
for the |ψL=2(q)〉 state (or D−state). The number of
parameters in terms of the number of hidden neurons is
now N = 4Nhid.

Following [3], we take three steps to train the network.
First, we initialize the parameters to uniform random
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FIG. 2: Total energy as a function of the number of iterations.

values: W(1) ∈ [−1, 0), W(2) ∈ [0, 1) and B ∈ [−1, 1),
and we choose a sigmoid as the activation function. This
step is important, for the ANN is completely random at
first, and by setting sensible initial values we avoid early
large values for the wave function.

In the second step we train the ANN to mimic a target
function that bears a certain degree of physical meaning
and is somewhat similar to the exact one: ψL

targ(q) =

qLe−
ξ2q2

2 , with ξ = 1.5 fm to match expected results. We
use the overlap

KL =
〈ψL

targ|ψL
ANN〉

2

〈ψL
targ|ψL

targ〉 〈ψL
ANN|ψL

ANN〉
(4)

to compute the cost function, defined as:

C = (KS − 1)2 + (KD − 1)2 . (5)

Eq. (5) is zero if, and only if, KS = KD = 1; thus, in
order to minimize the cost function, both the S-state and
the D-state must converge to the target functions. The
choice of optimizer here is RMSProp ([1], p.18), which is
fast and dynamically varies the learning rate to adapt lo-
cally to the cost function. Training a medium-sized ANN
(Nhid ≈ 20) usually takes about 104 iterations; despite
that, this step is unnecessary in some configurations.

In the third and final step we train the pre-trained
model from step two to find the actual ground state wave
function just by setting the total energy (2) as the new
cost function. The strong interaction of choice is N3LO
Entem-Machleidt nucleon-nucleon force [5], which we can
directly embed in our code since it is a momentum-
dependent potential. In Fig. 2 we can observe the evo-
lution of the energy (blue) as the number of iterations
increases. The energy displays a clear tendency to de-
crease, and it does so more slowly as training time in-
creases, finally reaching a value of EW ≈ −2.225 MeV.
This corresponds to a model with Nhid = 20 hidden neu-
rons and a learning rate of 10−2.

Fig. 3 displays the wave function obtained at the end
of the training process of the same model: on the right
panel we can observe the D-state corresponding to the
ANN (solid blue); the wave function obtained via exact
diagonalization (dashed red) is shown as well as a refer-
ence. On the left panel we have the same information
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FIG. 3: Wave function computed by the ANN (blue) com-
pared to the wave function obtained via exact diagonalisation
(red).

for the S-state. Both states match almost perfectly the
expected results, overlapping with the exact function by
KS ≈ KD ≈ 0.99995.

To implement this method we have used Python as
the programming language in tandem with the PyTorch
library, which contains pre-made subroutines that allow
for a more direct implementation of all ANN-related op-
erations. The full version of the code can be found
in the GitHub repository: https://github.com/javier-
rozalen/deuteron.git

IV. EXTENDING THE ANN

We have just seen that a one-layer ANN can already
yield decent results. Despite that, it is widely known
that deep neural networks, i.e. multi-layer ANNs, often
perform notably better than one-layer ANNs. Therefore
we have extended the ANN we have been using hitherto
in this paper by adding an extra hidden layer, without
modifying anything else.

The architecture of this ANN is depicted in Fig. 4,
and the function form reads:

ψL
ANN(q) =

Nhid∑
i=Nhid/2+1

W
(3)
i,Lσ

Nhid/2∑
j=1

W
(2)
j,Lσ

(
W

(1)
j,Lq +Bj,L

) .

(6)

The number of parameters in terms of the number of
hidden neurons is now N = Nhid

(
2 + 1

4Nhid

)
. Multi-

layer networks rest under the umbrella of the Universal
Approximation Theorem as well; in fact, the theorem in
Ref. [4] is a particular case of a bigger theorem that
includes any kind of ANNs [6].

The first thing that we notice when we train a network
with this architecture is that it is almost indispensable to
start the training from a pre-trained model, as opposed
to the one-layer case. In addition, we even find more

FIG. 4: Architecture of a two-layer ANN with two outputs
and a single input with bias in the first hidden layer. Both
hidden layers have the same number of neurons.

difficulty in obtaining good pre-trained models. This is
partially due to the fact that we use the same intervals
for the initial parametersW as for the one-layer case, and
a quick look at Eq. (1) and Eq. (6) confirms this: for
a given number of hidden neurons Nhid there are more
terms in the sum in the two-layer case than in the one-
layer case, which entails larger early values of the wave
function and therefore possible divergencies. More spe-
cific results obtained with this network are discussed in
section V.

V. NUMERICAL RESULTS

A. Discussion of the results

The quantities that we use as indicators of the quality
of our models are the energy, the fidelity (as in Eq. (4))
and the probability of the D-state.

In Fig. 5 we present the results obtained after testing
both the one-layer and two-layer networks with a sig-
moid, RMSProp as the optimizer and a learning rate
of 10−2 for different numbers of Nhid. As for the two-
layer ANN there exist better hyperparameters, but we
place more importance in isolating architecture effects
to understand them rather than in obtaining accurate
results; using different hyperparameters for the two net-
works would thereby hinder our analysis.

The solid black lines in Fig. 5 indicate the central val-
ues of each quantity, whereas the shaded areas show the
errors associated to the central values. The nature of the
errors will be discussed in subsection B. We observe a
clear tendency: the more hidden neurons, the better the
results. In fact, we can observe lower energies and higher
fidelities at high Nhid, which was somewhat expected;
the energy increase at Nhid = 80 for 2 layers is an iso-
lated anomaly, as further tests have evinced). For 1 layer,
increasing Nhid from 20 to 100 translates into a 0.02% de-
crease in energy (≈ 0.04 keV), a 7 ·10−4% increase in KS

and a 4 · 10−4% increase in KD, whilst for 2 layers these
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FIG. 5: Left panels: energy (top) and fidelity (bottom) as
a function of the number of hidden neurons for the one-layer
ANN. Right panels: the same for the two-layer ANN, omitting
the D-state fidelity for clarity.

percentages are 0.2% (≈ 4.4 keV), 0.006% and 0.01%.
The best absolute results are: EW = −2.2258 MeV,
KS = 99, 9997%, KD = 99, 999% (1 layer) and EW =
−2.2255 MeV, KS = 99, 999%, KD = 99, 9998% (2 lay-
ers), the exact values being E = −2.2267 MeV (obtained
via exact diagonalization), KS = KD = 100%.

Fig. 5 is to be interpreted carefully, nonetheless.
Firstly, each architecture has been trained during the
same number of iterations, and this is the main reason
behind the form of the energy plots: we have found that,
for Nhid

>∼ 10, ANNs with a lower number of neurons do
not learn worse, only slower. Indeed, if we take a model
with low Nhid and we train it for long enough, the energy
reaches similar values to those obtained for high Nhid.
This does not happen for Nhid

<∼ 10, however: in these
cases the ANN has too few parameters to adjust and the
result becomes independent of the number of iterations
at a certain point.

There is another factor to take into consideration, and
it is that with the one-layer ANN, for high values of Nhid

it is increasingly difficult to find adequate initial parame-
ters, i.e., ones that avoid early divergences and vanishing
gradients. For example, when Nhid = 10, it takes ∼ 10
different initializations to obtain non-divergent models,
whereas for Nhid = 100 it takes ∼ 30 different initializa-
tions to obtain 10 good models. We believe that this is
due to the fact that we use random initial values within
the same intervals as in section III; if we look at Eq. (1)
we realize that, in the extreme case of Nhid = 100 we
are adding 100 terms together, and if the initial param-
eters W(2) happen to be large enough this could lead
to an early divergence. On the other hand, if W(1) and
B make the argument of the sigmoid too positive or too
negative, the gradient of the sigmoid approaches zero and
the change of parameters is insignificant, leading to what
is known as frozen neurons: neurons that no longer con-
tribute to the learning process.
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FIG. 6: Top: D-state probability post-evolution of a trained
model with a single-layer architecture and Nhid = 40 hidden
neurons. Bottom: total energy evolution of the same model
as in the top panel.

The two-layer ANN undergoes a similar phenomenon
but in reverse: it is more difficult to train networks with
little neurons. One possible explanation for this is that,
since we are using a sigmoid as our activation function,
vanishing gradient becomes more problematic as we now
have two hidden layers, and this leads to frozen neu-
rons. In addition to this, having few neurons increases
the probability that all of them become frozen. This is
the reason why we believe that, for multi-layer networks
it is better to use an activation function like softplus,
which has an infinite range and a larger gradient.

B. Error analysis

The shaded areas of Fig. 5 represent two different
types of errors: stochastic (dark) and oscillating (softer
hue) (only the former is considered in Ref. [3]). To un-
derstand the necessity for the two kinds of errors we have
to understand the relation between the training process
and the final trained ANN. When training the neural
network, as the energy approaches the global minimum,
oscillations appear (see Fig. 2). This is not surprising,
for we are seeking the minimum value of a function by
taking finite steps in the direction where the gradient is
negative. We are interested in finding the energy of the
ground state, and if we suppose that the oscillations hap-
pen around the minimum value of EW we can estimate
this value by averaging these oscillations; therefore, the
oscillations provide us with a measure of the likelihood
that the minimum value of EW lies within the range of
the amplitude, and are hence an error source.

In order to determine this error we take a trained
model and we let it evolve for ∼ 300 iterations; this
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number is small enough so that the mean value will not
change during this process, and also big enough so that
periodicity in the oscillations is observed.

We then leverage the last 200 iterations to calculate the
mean value of the energy and also to determine the max-
imum and minimum values, which will be taken as the
top and bottom error associated with the mean value.
This is illustrated in the bottom panel of Fig. 6: the
energy (blue) oscillates around the mean value (green
dashed line), and the top and bottom bounds of this os-
cillations are shown in yellow and purple dashed lines.
In this particular example, the mean value of the en-
ergy is EW = −2.2241 MeV, with oscillation errors of
δEW+ = 0.8 keV, δEW− = 0.6 keV; these are the typical
values obtained for almost any number of neurons.

On the top panel of Fig. 6 we show a similar analysis
for the D-state probability, with values: PD = 4.51%,
δPD

+ = δPD
− = 0.1%; in fact, the same analysis is done

for the overlap, which is shown in Fig. 5 (and not shown
in Fig. 6 for brevity).

In order to take into account the stochastic factor we
repeat the process above 10 times for each network con-
figuration (Nhid), and we extract the central value of
the energy by taking the average of the 10 mean values.
The final oscillation errors also include this stochastic-
ity: both top and bottom bounds are calculated by av-
eraging the 10 invididual bounds. This method suggests
that, given a cost function with no multiple minimums
of similar heights (hence all oscillations happen around
the same minimum) the mean values of EW should all be
similar. This, in tandem with the fact that we estimate
the stochastic δEW as the standard deviation, is the rea-
son why in Fig. 5 we observe small stochastic errors and
comparatively bigger oscillation errors.

VI. CONCLUSIONS AND FUTURE OUTLOOK

Firstly, we have been able to successfully reproduce
most of the work done in [3], following roughly the same

methodology; this comprises sections II and III. The re-
sults obtained are in perfect concordance with the ones
in Ref. [3]. We have also provided a new source of error
for the energy, the oscillating error (discussed in section
V, subsection B).

Besides this, we have extended the reference ANN by
adding a hidden layer, and it has proven to perform
nearly as accurately as the original ANN with the par-
ticular hyperparameters of our choice. The comparison
between both networks has provided us with a deeper
insight into the intricate mechanism of ANNs (see dis-
cussion in section V, subsection A).

We have explored a possible extension of this work con-
sisting in approaching the deuteron problem with deeper
ANNs (more than 2 layers). According to the tests car-
ried out, the need for an activation function like soft-
plus gains more importance as the number of layers in-
creases; otherwise, the gradients rapidly vanish and the
ANN learns no more. The results obtained are not any
better than the ones obtained with the simpler ANNs
used hitherto in this work. We believe that this is due to
the simplicity of our approach; for instance, if we were to
design our trial wave function as a Slater determinant of
monoparticular wave functions, as done in [2], we would
then probably benefit from the extra layers. This kind of
approaches might yield better results and are worth ex-
ploring, although they are beyond the aim of this work.
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