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Abstract: The aim of this work is to analyze the network influence in a model of aging that has
been proposed recently. The model is based in the interdependency of nodes affected by damage and
repair processes. While the original work was limited to analyze random graphs and Barabási-Albert
networks, we propose a general framework based on an exponent dependent preferential attachment
rule for the construction of the network, and the two cases analyzed previously correspond to
particular values of the exponent. We provide a discussion on the biological plausibility of the
different models, which now include a sublinear and superlinear dependence on the degrees.

I. INTRODUCTION

Biological aging can be described as the accumulation
of damage leading to a collapse of the organism and its
causes and mechanisms are still uncertain. [2] Living sys-
tems are interconnected dynamical systems and its aging
can be studied from different perspectives. Firstly, from
their structure. There are many scales to consider: from
cellular, to tissue or to organismal. Secondly, from the
organism’s state of health. In this case, aspects as the
medical record, alimentation or regular exercise are rele-
vant. Finally, it can be studied from a sociological point
of view, as health and mortality change within national
populations and socio-economic groups. For this reason,
many theories coming from different points of view have
been formulated in order to understand these complex
systems.

There are quantitative models, which describe empiri-
cal data. For example, mortality rates increase in aging
populations and the risk of dying increases as an expo-
nential for older ages in humans. That tendency is called
Gompertz law of mortality but its causes are still not well
understood.

As these models describe mortality but not health,
there are others that use several parameters in order
to quantify it. There are studies that work with the
Frailty Index (FI), which measures the fraction of deficits
of health and function from a large selection of possible
ones; and others with the Biological Age (BA), which is
an age defined by several aspects of health. There are
many other parameters and they are used by predictive
models to predict individual health outcomes.

Other models are focused on the dynamics of aging and
build an “organism” relating interacting variables. This
“organism” is not real but it can give an idea of how
does aging work and can be used to identify patterns
already observed in nature. It can be represented by
a network, where nodes are cells/tissues/organs/health
measures and edges are the interactions between them.
Because of its generality these models are unable to study
particular cases, but this generality makes them powerful
and useful for conceptual explorations.

But it is possible to go beyond by generating large

populations of individuals with detailed health trajectory
and mortality thanks to big data and machine learning
tools. However, these computational models present a
relevant problem. There is a huge number of parameters
required to fit a population and identifying an appropri-
ate minimal set from them is far from easy. Moreover, it
is not clear if parameter changing alone is enough to rep-
resent different organisms or populations, because maybe
the structure of the network also needs to be changed.

As it can be seen, aging is a challenging problem with
many suggested models, all of them with their weaknesses
and strengths. This work combines network theory and
the next to last mentioned model in order to study how
does connectivity affect to aging dynamics. In fact, the
model proposed in [1] has been reproduced but two ad-
ditional types of network have also been studied.

II. MODEL

A. Network Model

To study the dynamics of aging, the model originally
proposed in [1] starts with the consideration of an organ-
ism as a network of N nodes. Each node represents an
individual component of the system and the edges repre-
sent the interdependencies between these components.

In order to create the network of an organism bearing
in mind that in nature we find networks that are contin-
uously growing by the addition of new nodes, the next
steps have been followed:

• Begin with one node, i = 1.

• Introduce a new node (i+1) and make it depend on
any of the preexisting ones with probability Π(kj),
where kj is the degree of the preexisting node j.

• Make one of the preexisting nodes m depend on the
new one with probability Π(km).

• Repeat the previous two steps for N − 1 steps in
order to obtain a network of N nodes at the end.
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The way nodes are connected is a relevant aspect to
keep in mind, because the connections determine the in-
terdependencies between the organism components.
As we have a growth process while creating the network,
the older nodes have a greater attachment probability
than the newer ones. For this reason the key lies in how
the attachment probability is chosen. Let’s consider a
generic model, being kj the degree of the node j,

Π(kj) =
kαj∑
i k
α
i

(1)

If Π(kj) depends on the degree of the nodes, preferential
attachment will emerge. Otherwise it will be a constant
number for all nodes, what means a lack of preferential
attachment. For this reason, the α parameter allows the
adjustment of the preferential attachment [5]:

• No Preferential Attachment (α = 0)
The absence of hubs makes the resulting network
similar to an Erdös-Rényi network. Defining m as
the number of links with which each node arrives,
in this case 2. The degree distribution follows an
exponential.

• Linear Regime (α = 1)
It corresponds to a scale-free network known as
Barabási-Albert network, with a power law degree
distribution.

In [1] only these two previous networks are studied,
but for the sake of completeness two other networks are
proposed in this work:

• Sublinear Regime (0 < α < 1)
It results in a network with few and small hubs
(nodes with a number of links that exceeds the
average) and the degree distribution follows an
stretched exponential.

• Superlinear Regime (α > 1)
In this case the resulting network has a hub-and-
spoke topology, where the old nodes become super
hubs.

B. Aging Model

For a given network it is assumed that each component
can be damaged eather with a certain probability γ0 �
1 or because most of its neighbours are damaged, and
repaired with a probability γ1 � 1. Additionally, we fix
an initial fraction of damaged nodes, d� 1.

These rules are implemented following the next steps:

1. Define the state of each node Ψ(t) =
{ψ1(t), ψ2(t), ..., ψN (t)} where ψi(t) can be 1
(functional node) or 0 (nonfunctional, damaged
node). Initially a state value of 0 is assigned to a
fraction d of randomly selected nodes.

2. For each node i, ψi(t) is updated with probability
γ0 to flip ψi(t) = 1 to ψi(t) = 0, and with proba-
bility γ1 to flip ψi(t) = 0 to ψi(t) = 1.

3. Flip ψi(t) = 1 to ψi(t) = 0 if the fraction of living
neighbours is lower than 0.5 (this step is repeated
until no more nodes become nonfunctional).

4. Compute the vitality of the organism, defined as
Φ(t) =

∑
i ψi(t)/N .

5. Repeat steps 2-4 until Φ(τ) = 0.01, where τ is what
we take as the time of death.

Using the described model two different kinds of anal-
ysis have been made. Firstly, the dependencies between
parameters such as γ0, γ1 or d and how does the network
structure effect to them. Secondly, other relevant magni-
tudes in aging processes have been computed throughout
the results in order to study their evolution and relation-
ship with the initial conditions.

One of these magnitudes is the mortality rate, which
has been studied using an ensemble of networks repre-
senting ”different” organisms. It is computed using the
fraction of organisms that are still alive at a given time-
step, s(t):

µ(t) =
s(t)− s(t+ 1)

s(t)
(2)

Another magnitude that turns out to be interesting is
the one that gives the strength of interdependence be-
tween nodes:

λ(φ(t)) =
log(φ(t))

log(φ0(t))
(3)

where φ0(t) = exp((−γ0 + γ1)t) is the expected vitality
of a network with the same number of nodes but with all
dependency edges removed.

III. RESULTS

First of all, the vitality has been studied including a
comparison of how its evolution depends on the network
type. In this case, four different networks have been stud-
ied: no preferential attachment network (NPA, α = 0),
sublinear regime network (α = 0.5), scale-free network
(SFN, α = 1) and superlinear regime network (α = 3
[9]).

As it can be seen in figure 1, all organisms start with
a slow linear decay of their vitality with an specific slope
depending on their structure. Defining the slope as −aγ0,
for SFN a ∈ (1.55, 2.4) is obtained whereas for NPA net-
works it is a ∈ (1.6, 2.7), both coherent with [1]. For

[9] We have analyzed intermediate α values and we have seen a
continuous transition between two different behaviours.
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the sublinear regime a ∈ (1.6, 2.35) is obtained, and
a ∈ (0.8, 1.1) for the superlinear one. Notwithstanding,
the vitality drops suddenly when the system approaches a
certain critical one (around ΦC = 0.6 in all cases with the
exception of the superlinear network). This phenomenon
can be explained by the collapse of the network when the
dead nodes have not enough alive neighbours in order to
sustain a repair. In fact, this sudden decay is also seen in
empiric life span data and several functions, as the Gom-
pertz distribution [3], have been proposed to approximate
this behaviour.

We observe that the superlinear regime network has
a completely different behaviour and it is because of its
structure, having a central node connected to the other
poorly connected ones. This scenario makes the life span
of the organism depend only on the central node state.
If the central node becomes nonfunctional, the whole
organism dies immediately. And as this situation can
happen at any moment, the time of death is distributed
quite uniformly. This behaviour is much less efficient
that the other one observed and it is not seen in nature,
so it can be concluded that it has no biological sense.

FIG. 1: Individual vitality trajectories, Φ(t). It includes 100
runs for each type of network: NPA, sublinear, SFN and sub-
linear; with N = 2500 and the maximum and minimum initial
slopes aγ0. The aging parameters used were γ0 = 0.0025 and
γ1 = d = 0.

Secondly, mortality has been analysed from different
points of view by testing the effect of the parameters γ0

and d but only for the networks showing biological sense
(NPA, SFN [1] and sublinear networks). In all cases the
mortality rate increases with time, but each parameter
affects the resulting evolution in a different way.

An increase of γ0 shifts the mortality rate µ(t) left
(Fig. 2) and NPA seem to age faster than SFN, staying
the sublinear networks in the middle of both behaviours.
However, network topology does not seem to be signifi-
cant in a qualitative point of view. Other than that, an
increase of the initial damage, d, results in an increasing
infant mortality but with an efficient repair converging
all cases at the same point in the high time-steps
region (Fig. 2). This efficient repair can be seen in the
small slope that these organisms show if it is compared
to the one showed by other organisms with a lower
initial damage. For this reason, it can be noticed that
organisms with a high d age slower than the ones having
a low d. However, it does not matter which d a certain
population has that at the end all converge to the same
µ in accordance with the Strehler-Mildvan correlation
law [1, 6]. It is remarkable to say that in this case NPA,
sublinear networks and SFN also behave in a similar way.

FIG. 2: Mortality µ as a function of time. It is an aver-
age of 1000 simulations using SFN (pink markers), sublin-
ear networks (orange markers) and NPA (green markers).
Up: effect of γ0 when N , γ1 and d remain constant with
values {N, γ1, d} = {2500, 0, 0}. Down: effect of d when
γ0, γ1 and N remain constant with values {N, γ1, γ0} =
{2500, 0.0025, 0.0025}.

Next, the interdependence parameter λ(t) has been
studied (Fig. 3) bearing in mind that λ = 1 corre-
sponds to a total independence scenario, like a set of
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disconnected nodes. As it can be observed, for NPA,
SFN and sublinear networks there is a abrupt change
when a certain amount of damage is accumulated. It is
a reflection of the collapse experienced by the network
resulting in a sudden drop of the vitality shown in
figure 1. For short times there is a huge variation of
interdependence and it reaches values < 1, what means
that φ0 > φ and it is not expected. As these fluctuations
decrease when N increases, we can conclude that they
are caused because we are quite far from the limit
N → ∞. Anyway, it is clear that the node’s interaction
makes the effect much more remarkable by giving a
sudden collapse. However, superlinear networks are an
exception as always but for the same reason as before.
In this case, before the collapse there is an independence
scenario (λ ∼ 1), because all nodes are connected to the
central one but barely to others. And the collapse comes
when the central node dies because its huge interaction
with all the other nodes, and not when a certain damage
accumulation is reached as in the other cases. And as
the central node can die at any moment, the collapse
time does not converge toward any concrete limit.

FIG. 3: Interdependence parameter λ as a function of time-
steps including 1000 simulations with N = 104.

By the same token, how do the failure rate γ0 and the
repair rate γ1 affect the longevity of an organism has
been studied. As it can be seen in figure 4, it may exist
a critical repair rate γ∗1 for which the average time of
death diverges and the beginning of this growth happens
in a certain γ1 value that seems to depend on the network
type, being smaller for SFN. Additionally, it is interesting
to see that all the studied networks show a remarkable
similarity despite their different structure.

FIG. 4: Average lifetime versus failure rate γ0 (circles) and
repair rate γ1 (squares) for NPA networks (green), sublin-
ear networks (orange) and SFN (pink) with N = 2500. The
dashed line in blue mark τ = 0.5941/γ0.828

0 , which is the re-
sult of the curve fitting of the points representing τ(γ0). It
is important to mention that γ1 = 0 is kept constant while
varying γ0; and γ0 = 0.0065 while modifying γ1.

IV. MATHEMATICAL ANALYSIS

For the purpose of understanding the sudden collapse
seen in figures 1 and 3, the change in the fraction of
alive nodes has been analyzed. When the system is far
from collapse, the probability that a node dies (p0) is
the sum of the probability of its own failure (γ0) and the
probability of its last provider/neighbour death. Consid-
ering m(Φ) as the probability of having only one single
provider, p0 = γ0 + m(Φ)p0(1 − γ0). Then, being the
reparation probability p1 = h(Φ)γ1, where h(Φ) is the
probability of having the minimum number of neighbours
needed. Subsequently, the change in the fraction of alive
nodes is defined as:

∆Φ = p0Φ− p1(1− Φ)

= − γ0Φ

1−m(Φ)(1− γ0)
+ γ1h(Φ)(1− Φ)

(4)

From this expression the collapse can be understood. It
is clear that m(Φ) and h(Φ) change depending on the
network structure. However, m(Φ) ∈ [0, 1] and increases
towards 1 as Φ decreases. This means that the first term,
which remains negative, finally dominates the second one
resulting in a sudden drop in Φ. But from this equation
the lifetime divergence seen in figure 4 can also be un-
derstood. Setting ∆Φ = 0 (immortality condition), the
repair rate γ1 needed is:

γ∗1 = γ0Φ∗/{h(Φ∗)(1− Φ∗)[1−m(Φ∗)(1− γ0)]} (5)

where Φ∗ ∈ [ΦC , 1]. In this case the vitality of the system
decreases until it reaches a constant value Φ∗. However,
it is only possible in the thermodynamic limit, so every
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finite system will die at least due to statistical fluctua-
tions. [1]

It is also interesting to obtain the exact form of the av-
erage initial slope with which the vitality decreases when
γ1 = 0, the average of the slopes represented in Fig. 1.
If the death probability of a node with k neighbours is
σ(k), for k = 1 it can be expressed as follows:

σ(1) = γ0 + P (1, 1)σ(1) + P (1, 2)σ(2) + ... (6)

where P (1, l) is the probability that a node has only one
neighbour, and that the neighbour itself has l neighbours;
and γ0 corresponds to the probability that the node dies
for any reason independent of its connectivity. If proba-
bilities of order γ20 are neglected, only nodes with degree
1 can die because of the death of their neighbours. For
this reason, σ(k) = γ0 can be considered for k > 1:

σ(1) = P (1, 1)σ(1) + γ0(1 + P (1, 2) + P (1, 3)...) (7)

Considering
∑
i P (1, i) = P (1), σ(1) = γ0

2−P (1,1)
1−P (1,1)

Then, to obtain the value of the average initial slope an
average over the damage rate of all degrees is required:

< a > γ0 =
∑
k

P (k)σ(k)|t=0 = γ0

(
1 +

P (1)

1− P (1, 1)

)
(8)

Analyzing the networks previously used, P (1) and
P (1, 1) have been computed. For the SFN, < a >= 1.81
is obtained, for the NPA the result is < a >= 1.73 (con-
sistent with [1]), for the sublinear it is < a >= 1.67 and
for the superlinear < a >= 278.22. As it can be seen,
these results are consistent with Fig. 1 except the super-
linear network.
Another appealing value is the critical vitality ΦC , which
is the one that the system has when it collapses. Sup-
posing the existence of only one ΦC independent of the
trajectory of the vitality, the collapse can happen when
Φ approaches ΦC in a given number of time-steps or
when there’s a huge damage in one single time-step
(γ0c = 1 − ΦC). Considering γ0 → 1 − ΦC and letting
σi → 1, ΦC = P (1) is obtained.
For the studied networks, P (1) = 0.495 ∼ 0.5 for SFN,
P (1) = 0, 623 ∼ 0.6 for NPA (both coherent with [1]),
P (1) = 0, 55 for the sublinear regime and P (1) = 0, 998
for the superlinear one. These values are consistent

with the critical vitalities obtained in the described aging
model (Fig. 1), again excluding the superlinear case.

V. CONCLUSIONS

The purpose of this work is to study how organisms
might age by using a model based on damage and repair
processes and comparing its results for different types of
network. It is noteworthy that aging is a really complex
phenomenon with many questions to be answered. This
means that the studied model is a simplification of it but
the results are coherent with empirical data and allow to
come to some conclusions.

The results for NPA and SFN are coherent with [1]
and regarding the additional networks studied, it is ob-
served that superlinear networks have no biological sense
because of their structure, which makes them inefficient
in terms of vitality. And it is important to say that this
kind of structures are not seen in nature, what seems con-
sistent with the theory of evolution. However, all other
types of network behave in a remarkable similar way and
this may be the reason behind the similarity between
mortality curves of several model organisms.

Finally, it is seen that for repair rates below the critical
one there are no significant differences in the life span.
All these results lead to the question of how can it be
controlled, if it is possible, and how can an heterogeneous
network, with regions having different γ0 and γ1, behave.
In consequence, it is clear that there is much to be done in
understanding a so complex and universal phenomenon
as aging. This work has been a great opportunity to learn
much more about complex systems and their dynamics,
and doing it within the frame of biology has been a nice
way to see how remarkable the interdependence between
disciplines is.
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