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Abstract: We present a detailed study of Grover’s search algorithm including its mathematical
foundations. We implement the algorithm in IBMs framework using Qiskit and perfom both simula-
tions and actual runs on IBM quantum computers for single and multi-target problems. Afterwards,
we use the algorithm to solve a variant of the N -queen problem treated as a satisfability problem.

I. INTRODUCTION

The advances in Quantum Mechanics during the last
century led to the emergence of theories for computation
using the laws of this branch of physics in the 1980s.
The fact of being able to count on a unit of information,
the qubit, which can be in a superposition of the basic
states of a classic bit, opened the possibility of improving
the computing power of the computers that existed to
date. Some problems that supercomputers were not able
to solve in a reasonable time are put within the reach of
this new computing paradigm. This is what is known as
quantum supremacy.

One of the most important quantum algorithms to date
is Grover’s Algorithm [1]. The everyday life problem of
finding an element in an N elements list, e.g. a phone
number in a phonebook, is solved classically by going
one by one through all the elements. This means that
when the list grows, the search time grows proportionally,
resulting in an O(N) scaling. Grover’s algorithm profits
the superposition principle and is able to find the element
in O(

√
N) steps [2].

In this work we see how the problem of finding an ele-
ment in a list can be mapped into the problem of finding
a target state among the elements of a Hilbert space ba-
sis. Once we have developed the necessary operations to
amplify the probability of success in our search in sec-
tion II, we see how the algorithm can be implemented in
section III. This section also includes simulations using
devices from the IBM Quantum Experience [3]. Subse-
quently, in Section IV we show how the algorithm can be
used to find the solution of a simple satisfiability prob-
lem. Finally, in section V, we present the conclusions
obtained.

II. ALGORITHM BACKGROUND

A. One target

We start by considering the case of having just one
single solution to the search problem, also referred to as
the one target case. In this section we assume that we
know |bt〉.

FIG. 1: On the left the state in the plane and on the right its
amplitudes. a) Initial situation. b) Situation after the first
reflection. c) Result after the two reflections. The states and
reflections are defined just below

1. Grover’s iterations

We consider a Hilbert subspace of dimension N = 2n

where n is the number of qubits. We define the basis
vectors as |bi〉 and our target state as |bt〉. Schematically,
the idea behind the algorithm is to start with an equal
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superposition of all possible solutions which corresponds
to the state

|s〉 =
1√
N

N−1∑
i=0

|bi〉 = cos(θ)|s′〉+ sin(θ)|bt〉. (1)

Then we perform two reflections in the plane defined by

|bt〉 and a perpendicular vector |s′〉 = 1√
N−1

∑N−1
i=0,i6=t |bi〉

which are represented on the left side of Fig. 1. These
two reflections, which we describe below, are named
as phase shift and reflection on the mean. With the
first one, we reverse the phase of the element corre-
sponding to the target state as shown in the right side
of Fig. 1b). In this same figure we have represented
by a dashed line the average amplitude. By means of
the second reflection, we reflect the amplitudes with
respect to this mean value thus obtaining a probability
of our target state amplified vs. the other elements
of the basis. We can see that in the right part of Fig 1.c).

To implement the phase shift we reflect on |s′〉.
We use R(θ) = −R(π2 − θ). Taking advantage of this
property, we can construct the reflection matrix with
respect to |bt〉 as

−Rt = −
(
2|bt〉〈bt| − I

)
= I − 2|bt〉〈bt|. (2)

Applying this to our state |s〉 we obtain (see Fig. 1b),

−Rt|s〉 =
(
I − 2|bt〉〈bt|

)(
cos(θ)|s′〉+ sin(θ)|bt〉

)
= cos(θ)|s′〉 − sin(θ)|bt〉.

(3)

This operation is implemented by means of the oracle
which is defined and explained in section III.

The reflection on the mean is obtained by relfect-
ing on |s〉 as in [4]

Rs = 2|s〉〈s| − I, (4)

which acting on a generic state |ψ〉 =
∑
i αi|bi〉,

Rs|ψ〉 = (2|s〉〈s| − I)
∑
i

αi|bi〉

= 2
1

N

N−1∑
i=0

|bi〉〈bi|
N−1∑
i=0

αi|bi〉 − |ψ〉

= 2〈α〉
N−1∑
i=0

|bi〉 −
N−1∑
i=0

αi|bi〉 =
∑
i

(αi − 2〈α〉)|bi〉.

(5)

From here we define a Grover iteration, also known as
amplification, as G = −RsRt.

2. New probabilities

We can compute the mean after the phase shift taking
into account that αi 6=t = 1/

√
N and αi=t = −1/

√
N ,

〈α〉 =

∑
i αi
N

=
−αt
N

+
1

N

N−1∑
i=0,i6=t

αi =
N − 2

N
√
N
, (6)

so we obtain the new amplitudes using Eq. (5)

α′i6=t =
N − 4

N
√
N
, α′t =

3N − 4

N
√
N
. (7)

The amplitudes allow us to calculate the probabilities of
obtaining each of the states when making a measurement
as pi = |〈bi|φ〉|2 = |α′i|2.

Another interpretation of the probability can be
obtained by noticing that a Grover iteration corresponds
to performing a 2θ rotation. As we increase N , the
results with one iteration get worse and we need to apply
G several times. We can generalize to the application of
k iterations [5]:

Gk|s〉 = sin
(
(2k + 1)θ

)
|bt〉+ cos

(
(2k + 1)θ

)
|s′〉. (8)

We can now compute the probabilities for k=1:
pi=t = |〈bt|G|s〉|2 = sin2(3θ), where θ can be obtained by

multiplying Eq. (1) by 〈bt| obtaining θ = arcsin
(
1/
√

N
)
.

Using the Qasm Simulator we can check that for 3
qubits (N=8) and k=1 we get that pi=t =75,125% with
both interpretations.

3. Upper limit

Our objective is to get as close as possible to an angle
of π/2 so we impose that θ′ ≤ π

2 . In view of Eq. (8),
we get that after k Grover’s iterations our angle is θ′ =
(2k + 1)θ. Putting these last two conditions together we
obtain that the upper boundary condition for the number
of iterations is (2k+ 1)θ ≤ π

2 , condition that leads us to,

k ≤ π

4θ
− 1

2
. (9)

Remembering that θ = arcsin( 1√
N

), if we consider N

large we can use that arcsin(x) ≈ x+O(x3). By making
the limit the condition becomes

lim
N→∞

k ≤ π

4

√
N, (10)

where equality would be the optimal number of iterations
kG. We clearly see that in this case the search speed goes
as O(

√
N) instead of O(N) as in the classical case.

B. Multiple targets

We now consider that we have M solutions, i.e., ele-
ments of the basis marked by the phase shift.
We define our new perpendicular vectors that form our
2D plane

|bt〉 =
1√
M

∑
i,i=t

|bi〉, |s′〉 =
1√

N −M

∑
i,i6=t

|bi〉, (11)
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FIG. 2: a) Probability of obtaining a solution state with
one iteration in the classical case (dashed orange line) and
quantum case using Grover’s algorithm (blue line) when
making a measurement. We have used Eq. (14) and Pclassical.
b) Probability of obtaining a target state for kG iterations
using the floor function (blue line) and the real number
(dashed orange line) which gives us the lower bound [6].

thus the superposition state is |s〉 =
√

N−M
N |s′〉 +√

M
N |bt〉.

We can now calculate the average as done in Eq. (6) and
we get

〈α〉 =
1√
N

(
1− 2M

N

)
. (12)

With this we can now calculate the amplitudes

αi=t =
1√
N

(
3− 4M

N

)
, αi6=t =

1√
N

(
1− 4M

N

)
.

(13)
The probability of making a measurement and obtaining
a target state with a single iteration is [6]:

Pi=t(k = 1) = Mα2
i=t = 9

(
N

M

)
−24

(
N

M

)2

+16

(
N

M

)3

.

(14)
Classically, the probability of success in making a query
on a list of N items with M targets is Pclassical = M/N .

We can see in Fig. 2a) how for M > N/2 Grover’s algo-
rithm is worse than a classical search. For M/N =1/4
we obtain that the probability of success is 100% with
a single iteration. This is because for multiple targets
using Eq. (1) we can identify θ = arcsin(

√
M/N).

FIG. 3: Circuit representation of a Grover iteration for 3
qubits using Qiskit.

Substituting M = N/4 we obtain an angle of 30º, so
when we apply G our quantum state becomes |bt〉.

The optimal number of iterations is given by Eq. (15)
with the new definition of the angle θ. Since this number
must be an integer, we take the lower:

kG =
⌊ π

4θ

⌋
≤ π

4θ
. (15)

Applying the same arguments as in Eq. (10) we see how
the search speed in this case when N is large goes as O(
π
4

√
N
M

)
. The probability for k iterations, looking at

Eq. (8) is computed as

pi=t(k) = sin2
(
(2k + 1)θ

)
. (16)

In Fig. 2b) we see that for M/N −→0 the probability
with the optimal number of consultations is practically
100%. In addition, we can also observe that for M/N ≥
0.5 we get kG = 0 so the probability of success is P (0) =
sin2(θ) = M/N which is the same result as in the classical
case.

III. IMPLEMENTATION

In this section we implement the algorithm carrying
out the different reflections using quantum gates. Let us
do the development for n = 3 qubits. Thus, we have
N = 8 basic states.

A. Phase oracle

A quantum oracle is a black box which is able to recog-
nise the solution of a certain problem. In this case, it
can identify whether an item in the list is the one we are
looking for or not and mark the solution. Its structure
depends on the type of problem. Taking into account
this definition, to create a phase oracle, we consider a
function:

f(bi) =

 0 if i 6= t

1 if i = t
. (17)
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FIG. 4: Comparison of the probability of success when mak-
ing a measurement as a function of the number of Grover
iterations. We see the case of 3 (upper panel) and 4 (lower
panel) qubits with a single target state simulated in the dif-
ferent services offered by IBM Quantum Experience.

This function recognises the solution but can not find
it. The oracle matrix is

(−1)f(b0) 0 · · · 0
0 (−1)f(b1) · · · 9
...

...
. . .

...
0 0 · · · (−1)f(bN−1)

 , (18)

which has the form of Eq. (2).

B. Amplification

We can generate the Z matrix by using two Hadamard
and one X matrix [4]: Z = H ·X ·H.
Using this relationship we can extrapolate the reasoning
for control-control-Z matrix with the target on the third
qubit as: CCZ = (I⊗I⊗H) ·CCX · (I⊗I⊗H). With the
H’s we make a change of base that places us |s〉 in the
state |000〉. From there we make a reflection on this by
means of the gates X⊗3 ·CCZ ·X⊗3 which is equivalent
to a matrix −

(
2|000〉〈000| − I

)
.

Putting all the gates together we obtain

H⊗3 ·X⊗3 · CCZ ·X⊗3 ·H⊗3 =

H⊗3 · (I − 2|000〉〈000|) ·H⊗3 =

(H⊗3 − 2|s〉〈000|) ·H⊗3 = I − 2|s〉〈s| = −Rs,
(19)

where we have use that H⊗3|000〉 = |s〉 and H⊗n ·H⊗n =
I.

C. Real quantum computers

Now, we present simulations performed with 3 and 4
qubits. For this we work with the IBM’s quantum devices
using 8192 shots (repetitions of the measurement) which
allow us to obtain statistic in our results. Note that the
order of the qubits in the IBM Quantum Composer is
reversed, so we read |q2q1q0〉.

Considering that for one target the optimal number
of iterations is kG=2 and kG=3 for 3 and 4 qubits re-
spectively and looking at Fig. 3 we can conclude that
simulations on real quantum computers do not give opti-
mal results. With more than one iteration the probability
should increase, however it does not do so in any of the
cases. This is because even though the algorithm gives
better results with kG iterations, this increases the depth
of the circuit and with it the number of gates which have
an associated error.

As we can see, the different devices give different re-
sults because they have different basic gates and qubit
layout, among other things.

IV. SATISFABILITY PROBLEM

So far we have constructed the oracle assuming that
we know the target state. In this section we build an
oracle that marks the solution without knowing what it
is. We work with a number of qubits too high to use real
quantum computers so we use the Qasm Simulator.

A. Boolean oracle

The oracles we have used so far have been built with
prior knowledge of the solution to the problem, and have
been used to see the implementability of Grover’s algo-
rithm on real quantum computers. We consider the func-
tion of Eq. (17) to create an oracle that it can simply
recognize if a state |x〉 formed by one or more qubits is a
solution and if so, mark it. The way to achieve this is by
using an auxiliary Qubit |q〉 which tells us whether |x〉 is
a solution or not.

To achieve this the oracle must act as O|x〉|q〉 =
|x〉|q ⊕ f(x)〉, where we are implementing a XOR gate,
or in other words, we are making an addition modulo 2.
This is equivalent to applying a gate X to the qubit |q〉
when we are facing a solution. In order to get the oracle
to implement the operation O|x〉 = (−1)f(x)|x〉 we can

initialize |q〉 in the state |−〉 = (|0〉−|1〉)/
√

2. So if we ap-

ply a X gate: X|−〉 = (|1〉− |0〉)/
√

2 = −|−〉. Therefore,
the action of our oracle can be written as follows

O|x〉|−〉 =

 |x〉|−〉 if x is not a solution

−|x〉|−〉 if x is a solution
. (20)
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FIG. 5: Circuit for logic condition of the type (xi ∨ xj ∨ xk)
in Qiskit.

B. Uncomputation

To create new oracles that can address different prob-
lems we need auxiliary qubits. Therefore we have to keep
in mind that in order to reuse these qubits we must leave
them again in the |0〉 state. To do this we must perform
what is known as uncomputation. Taking advantage of
the fact that the quantum gates are unitary matrices that
therefore fulfill that U−1 = U†, those that satisfy that
U = (U∗)T then satisfy that UU = I. In this case all we
have to do is to apply the same gates that we have ap-
plied to the ancilla qubits to put them back to the initial
state.

C. Example: 2x3 Queens Problem

Proceeding as in the examples presented in [7] and [8]
we apply all this to an adaptation of the famous N -queen
problem, in which N queens must be placed on an NxN
chessboard without killing each other.

For this type of problem we need the following qubits:
a qubit for each variable, which forms the subspace of
possible solutions to our problem (xi); an extra qubit for
each condition, where we store if it is fulfilled or not (ai);
an ancilla qubit in order to eliminate some combinations
that are not a solution (e); and the oracle qubit (out). In
view of this, the number of variables and conditions in-
creases with the size of the board and with it the number
of qubits we need. Thus, we restrict it to a 2x3 board in

which we try to place as many queens as possible without
killing each other. The variables are distributed[

x1 x2 x3
x4 x5 x6

]
Since there can only be a maximum of one queen per

row, per column and per diagonal, it is an Exactly-1 SAT
problem, i.e., there is only one true variable per condi-
tion. The logical formula contains conditions of the type
(xi ∨ xj ∨ (¬xi ∧ ¬xj)) and (xi ∨ xj ∨ xk).

The problem is solved by means of gate combinations
as shown in Fig. 5, in which we first set the qubit
a0 to be 1 if an odd number of literals is satisfied and
then eliminate the case in which all three variables are
1. Knowing that there are M = 2 solutions, we carry

out kG ≈ π
4

√
26

2 ≈ 4 iterations in the Qasm Simulator

obtaining the results we expect: |100001〉 and |001100〉
with a 99,99% probability of success.

V. CONCLUSIONS

In this work we have developed and demonstrated the
arguments behind Grover’s algorithm for the case of one
target and multiple targets. We have also checked how
the search speed goes as O(

√
N) and compared its be-

havior against a classical search.
Afterwards, we have implemented Grover’s search al-

gorithm with quantum gates and have perfomed both
simulations and actual runs on IBMs quantum comput-
ers. The current quality of the quantum computers we
have tested does not allow us to obtain a qualitative
agreement with the know expected results. As a final
application, we have considered a 3x2 queens satisfabil-
ity problem on a quantum simulator and have designed
the proper quantum circuit to encode the conditions.
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