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Abstract: We study the differences between the normal, the superradiant, and the lasing phases
emerging in a model describing an ensemble of atoms interacting with a single quantized mode of
light. The model interpolates between the two well known Dicke and Tavis-Cummings Hamiltonians.
We obtain the phase diagram using a mean-field stability analysis and an exact numerical calculation,
that allows us to evaluate observables such as the expected value of the number of photons and
population inversion. We finish our work by analyzing and comparing the spectra of light emitted
in each of these phases.

I. INTRODUCTION

The concept of superradiance is first introduced by
Dicke in 1954 [1], when he described the problem of a
gas of molecules interacting with a common radiation
field. In contrast to previous studies, molecules are not
treated as independent. The radiative properties (spon-
taneous emission rate) are strongly modified due to the
presence of the common bath when atoms are confined
in a small volume (compared to the light wavelength).
This allows the existence of superradiant states with co-
herent spontaneous emission, that is, an emission rate
that scales as the square of the molecule concentration,
in stark contrast to independent atoms whose emission
scales linearly.

What we now know as the Dicke model, refers to an en-
semble of atoms paired to a single quantized light mode,
such as the optical mode of a cavity [2]. It predicts a
continuous phase transition between a normal and a su-
perradiant state characterized by photon occupation of
the cavity mode. This model also belongs to the same
universality class as the Ising model.

Despite being closely related, lasing is not exactly
equivalent to superradiance. A canonical model for las-
ing is the Tavis-Cummings Hamiltonian, analogous to the
Dicke model without counter-rotating terms (those that
do not conserve the total number of excitations), in pres-
ence of an additional incoherent pump. In standard las-
ing, besides photon occupation of the cavity mode, there
exists atomic population inversion (that is, the probabil-
ity of finding the atom in the excited state is higher than
in the ground state). Furthermore, the light escaping
the cavity shows different spectral properties in the two
phases.

In this work we will revisit these two models and an-
alytically derive the superradiant and lasing transition
critical points using a mean-field approximation (sections
II A and II B). We will then introduce a generalized
model describing N atoms coupled to a cavity mode that
exhibit both the superradiant and the lasing transition
(section II C). The model interpolates between the Dicke
and the Tavis-Cummings Hamiltonian, in presence of in-
coherent pump and where cavity losses and spontaneous

emission of the atoms into other modes apart from the
cavity are also taken into account. Finally, we will con-
struct a phase diagram and explore more deeply the char-
acteristics of each of the phases, using different methods
such as linear stability analysis and exact diagonalization
(section III).

II. MODELS

A. Dicke Model and Superradiant Transition

The Dicke model [1, 2], which describes a collection of
N two-level quantum emitters (usually atoms) interact-
ing with a single bosonic mode (usually the cavity optical
mode), can be written as (from now on, ~ = 1):

HD = ωca
†a+

ω0

2

N∑
i=1

σzi +
λ√
N

N∑
i=1

(a+ a†)σxi . (1)

Here a† (a) creates (destroys) a photon in the cavity
mode and satisfies

[
a, a†

]
= 1. The atomic operators

σzi and σxi are the usual Pauli matrices acting on atom i,
and are given by σxi = σ+

i +σ−i and σzi = σ+
i σ
−
i −σ

−
i σ

+
i ,

where σ+
i are σ−i the corresponding creation and annihi-

lation operators of an excitation of atom i, respectively.
By transforming a→ −a and σx → −σx we can see that
the Hamiltonian remains invariant, and thus exhibits a
discrete Z2 symmetry, related to the parity of the number
of excitations.

Let us analyse each of the terms of the Hamiltonian
in Eq.(1). The first term corresponds to the energy of
the photons in the mode of the cavity, while the sec-
ond term is associated with the internal energy of the
atoms, counting the difference between atoms on the ex-
cited state and atoms on the ground state. The last
term refers to the photon-atom interaction, and includes
both co-rotating and counter-rotating interactions with
the same coupling strength λ. The former are the more
conventional energy-conserving terms, which describe the
excitation of an atom by absorbing a cavity photon, and
the desexcitation of the atom by emitting a photon in
the cavity. Instead, the latter do not conserve energy,
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and correspond to excitation of an atom with the gain of
a cavity photon, and desexcitation of an atom with the
loss of a cavity photon. Note that the coupling constant
is rescaled by the factor 1/

√
N . This is introduced in

order to have a finite value of the critical coupling in the
thermodynamic limit.

With our model defined, we will now find when the
phase transition takes place in a mean-field approxima-
tion by minimizing the free energy with respect of α.
This mean-field approximation is achieved by supposing
that all the photons of the cavity are in a coherent state,
which implies: a |α〉 = a† |α〉 = α |α〉 , with α a real num-

ber and |α〉 = e−
|α|2
2

∑∞
n=0

αn√
n!
|n〉 a coherent light state.

This assumption allows us to replace a and a† operators
by the real number α in Eq. (1) and the Hamiltonian
becomes:

HMF
D = ωcα

2+
ω0

2

N∑
i=1

σzi +2α
λ√
N

N∑
i=1

σxi ≡ ωcα2+

N∑
i=1

hi

(2)
Where we have separated the photonic constant part and
the atom-dependent part. We can now compute our par-
tition function as Z(α) = Tr

(
e−βHMF

)
, with β = 1/KBT .

With the mean field approximation, this result is greatly
simplified, as we only need to diagonalize the 2x2 matrix:

Z(α) = e−βωcα
2

Tr

[
exp

(
−β ω0

2 −β2 λα√
N

−2β λα√
N

β ω0

2

)]N
. (3)

By doing this we obtain the expression for the partition
function:

Z(α) = e−βωcα
2

2 cosh (−βE0)
N
, (4)

where E0 =

√
ω2

0

4 + 4λ
2α2

N . From this expression it is

straightforward to obtain the free energy:

F (α) = − 1

β
lnZ(α) = ωcα

2 − N

β
ln 2 cosh(βE0). (5)

Applying the minimum condition with respect to α, we
obtain the phase transition condition:

∂F

∂α
= 2α

(
ωc −

2λ2

E0
tanh(βE0)

)
= 0. (6)

This equation has two solutions. The first one, where
α = 0, means that we have a phase with no photons in
the cavity, the normal phase. The study of this phase
is of no interest for us because nothing is happening in
the cavity. On the other hand, when α 6= 0, we have
a breaking in the aforementioned Z2 symmetry, leading
to a continuous phase transition. This new superradiant
phase, is characterized by an increase of photon emission
by the system. In the thermodynamic limit (N → ∞),
and low temperature regime (β → ∞) it is possible to
evaluate the coupling constant λc from Eq.(6):

λc =
1

2

√
ωcω0. (7)

As we will see later, the superradiant transition persists
in presence of cavity losses and single atom radiative de-
cay, with a renormalized value of the critical coupling
λc.

We could think that having a phase where our light
emission is enhanced would be useful for building lasers,
but there are two very important drawbacks for it to be
possible. The first one, is that this increase in emission
is not bound to a particular wavelength, making it a bad
choice for a laser. The other one, is that if we calculate
〈σz〉 we see that it is less than 0, meaning that in order
to be stable there have to be less excited atoms than
ground-state atoms, contrary to what we would expect
from a laser atom population.

B. Tavis-Cummings Hamiltonian and Lasing

Another historically relevant model is the so called
Tavis-Cummings, which can be defined by neglecting
Dicke’s counter-rotating terms, with only terms that con-
serve the total excitation number:

HTC = ωca
†a+

ω0

2

N∑
i=1

σzi +
λ√
N

N∑
i=1

(
aσ+

i + a†σ−i
)
. (8)

Now, instead of a Z2 symmetry, we have a U(1) sym-
metry, since a unitary tranformation a → eiθa and
σ− → eiθσ− would leave our Hamiltonian unchanged.
Taking a similar approach as in the Dicke model, we will
impose mean-field interaction for the light with the cor-
responding Hamiltonian:

HMF
TC = ωcα

2 +
ω0

2

N∑
i=1

σzi + α
λ√
N

N∑
i=1

σxi . (9)

We find a very similar partition function:

Z(α) = e−βωcα
2

2 cosh
(
−βẼ0

)N
, (10)

now with Ẽ0 =

√
ω2

0

4 + λ2α2

N . Similarly as before, we find

in the thermodynamic and zero temperature limits the
critical value for the coupling constant to be:

λc =
√
ωcω0, (11)

which is the same as Eq. (7) except for a factor of 1
2 .

This difference stems from the fact that there are now
only two interacting terms in the Hamiltonian instead of
four terms.

Importantly, this superradiant transition disappears in
presence of spontaneous emission of photons into free
space. In this case, the system trivially relaxes into the
normal state, with all atoms in the ground state and no
photons in the cavity. However, this model undergoes
a lasing phase transition when adding an external inco-
herent pump to the atoms, leading to atomic population
inversion (〈σzi 〉 > 0) and emission of light highly peaked
at a particular frequency, two features that characterize
a standard laser.
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C. Generalized driven-dissipative Dicke model

We will now consider a more general Hamiltonian that
smoothly interpolates between the two previously dis-
cussed models, by adding a relative strength between
counter- and co-rotating terms λ′/λ that can be varied
at will:

HG = ωca
†a+

ω0

2

N∑
i=1

σzi +
λ√
N

N∑
i=1

(aσ+
i + a†σ−i )

+
λ′√
N

N∑
i=1

(a†σ+
i + aσ−i ).

(12)

We can easily see that the case λ′ = λ corresponds to
the Dicke model, while with λ′ = 0 we recover the Tavis-
Cummings model. We will also make our system more
realistic by including photon cavity losses (that is, a pho-
ton has certain probability to be transmitted through
the mirrors of the cavity) and spontaneous emission of
photons into other modes rather than the cavity one, at
rates κ and Γ↓, respectively. Like discussed before, inco-
herent pumping of the atoms also needs to be added in
order to avoid a trivial decay to the normal state when-
ever Γ↓, κ 6= 0 and also to ensure that we will have a
lasing phase by enabling atomic population inversion.
All these processes can be modeled in the Markov ap-
proximation using the so-called Lindblad super-operator,
which in general acts on the density matrix as:

Lx̂[ρ] = Γx

[
x̂ρx̂† − 1

2

{
x̂†x̂, ρ

}]
, (13)

for a given collapse operator x̂ acting on the state at rate
Γx. In our case x̂ =

{
a, σ−i , σ

+
i

}
(with i = 1, · · · , N) and

Γx = {κ,Γ↓,Γ↑} for the cavity losses, free-space spon-
taneous emission and incoherent pumping processes, re-
spectively. The density matrix time evolution is then
governed by the following master equation:

∂tρ = −i[HG, ρ] +
∑
α

L[x̂α]ρ (14)

where the summation index runs over all the collapse
operators previously defined. From Eq.(14) we can also
derive the differential equation governing the dynamics of
the expectation value of a time-independent observable
Â (the so-called Heisenberg-Langevin equations):

∂t 〈Â〉 = i 〈[HG, Â]〉+
∑
α

Γxα

[
〈x̂†αÂx̂α〉 −

1

2
〈
{
x̂α
†x̂α, Â

}
〉
]
.

(15)

III. RESULTS: FULL MODEL

After having revisited the two well known Dicke and
Tavis-Cummings models, here we study the full model

given by Eq.(14). In order to derive the phase diagram
in the thermodynamic limit, we first perform a linear
stability analysis in the mean-field approximation, where
we impose that the light and atomic operators are com-
pletely decorrelated. Then, we perform a full quantum
calculation and numerically evaluate the observables cor-
responding to photon number in the cavity mode and
atomic excited state population, using exact diagonaliza-
tion for a small system size of N = 8 atoms and N = 10
photons. Finally, we show an example of the spectrum
of the emitted light for different phases of the phase dia-
gram.

A. Mean-field and linear stability analysis of the
phase diagram

We will first obtain the phase diagram in the ther-
modynamic limit (N → ∞) with a mean-field approxi-
mation, where we assume that the atomic and photonic
operators are completely decorrelated. Using Eq.(15)
and assuming the system is homogeneous, we derive
the equations of motion for the expectation values 〈a〉,
〈σ−〉 ≡

∑
i 〈σ
−
i 〉 /N and 〈σz〉 ≡

∑
i 〈σzi 〉 /N :

∂t 〈a〉 = −iω̃c 〈a〉 − i
(
λ 〈σ−〉+ λ′ 〈σ−〉∗

)
∂t 〈σ−〉 = −iω̃0 〈σ−〉+ 2i 〈σz〉

(
λ 〈a〉+ λ′ 〈a〉∗

)
∂t 〈σz〉 = ΓT (ν/2− 〈σz〉) +

+ 2Im
[
λ 〈a〉 〈σ−〉∗ − λ′ 〈a〉 〈σ−〉

]
, (16)

with ω̃c ≡ ωc− iκ/2, ω̃0 ≡ ω0− iΓT /2, ΓT ≡ Γ↑+Γ↓ and
ν ≡ (Γ↑−Γ↓)/ΓT . These expressions have been obtained
at the mean-field level, by approximating the expectation
values 〈a†σα〉 ≈ 〈a†〉 · 〈σα〉 (with α = +,−, z), that is, we
consider that the photonic and atomic degrees of freedom
are decorrelated.

In order to study the stability of the normal phase we
then perform a perturbation on the normal state, that is,
we assume our operators to be of the form x̂ = 〈x̂〉NS+δx̂,
with 〈x̂〉NS denoting the expectation value of the opera-
tor in the normal phase and δx̂ is the perturbation. In
the normal phase 〈a〉NS = 〈σ−〉NS = 0 and 〈σz〉NS = −1.
Therefore, the time evolution of the expectation value of
the operators is just given by the perturbation term, that
is ∂t 〈x̂〉 = ∂t 〈δx̂〉. Replacing this in Eq. (16) the expres-
sion for the operators and only keeping linear perturba-
tion terms (neglecting higher order terms), we obtain a
4x4 matrix for the time evolution of the expected value
of the operators a, a†, σ+ and σ−:

∂t

 〈δa〉
〈δa†〉
〈δσ−〉
〈δσ+〉

 =

 −iω̃c 0 −iλ −iλ′
0 iω̃∗c iλ′ iλ
iνλ iνλ′ −iω̃0 0
−iνλ′ −iνλ 0 iω̃∗0


 〈δa〉
〈δa†〉
〈δσ−〉
〈δσ+〉

 .

(17)
〈σz〉 terms have been purposely left behind as (in lin-
ear order) they only couple to themselves and do not
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FIG. 1: Phase diagram of (a) the stability analysis, (b) the expected value of the number of photons and (c) the expected value

of the spin inversion. In all graphs we represent λ′

λ
versus

Γ↑−Γ↓
ΓT

, each with its color key to help identify the different phases.

Values for the constants are ωc = 1, κ = 1, ΓT = 1, λ = 0.9, all in ω0 units.

contribute to the stability analysis. We will now build
the phase diagram. As can easily be seen in Eq. (17),
when at least one of the eigenvalues of the matrix satis-
fies Re > 0, the phase will be unstable to perturbations
and the photonic mode will achieve macroscopic occupa-
tion. This phase diagram is shown in Fig. (1) (a), and
the different phases correspond to: In purple, the nor-
mal phase N with no Re > 0 eigenvalues, stable under
perturbations. In blue, the superradiant phase SR, with
1 eigenvalue with Re > 0, with the properties discussed
in section A. In yellow, 2 differentiated lasing phases,
the regular lasing RL phase, associated with large val-
ues of Γ↑ and small λ′, which corresponds to the phase
discussed in section B. A counter-lasing CL phase in the
large λ and Γ↓ region arises due to instability induced by
counter-rotating terms, but its not quite like RL, as its
emission peaks in a definite frequency too, but there is
no inversion of population, as can be seen in Fig. (1) (c).

B. Exact calculation for a finite number of particles

The previous mean-field analysis only works for N →
∞. For a finite small value of N we need to go one
step further, and perform the exact calculation that takes
into account all quantum correlations between atoms and
light. In order to do this, one needs to express first the
Hamiltonian and Lindblad in an appropriate basis that
spans the Hilbert space of the system. An intelligent
choice for the computational basis is the one resulting
from the product state of each atom in a well defined in-
ternal state (ground or excited state) and the photons in
a Fock state (well defined number of photons in the cav-
ity mode). Since this basis has infinite dimension (as the
number of photons is not limited), one needs to truncate
the photon states to a maximum number. After doing
this, the stationary state can be found from the asymp-
totic long-time solution after numerically integrating the
master equation Eq.(14), starting with an (arbitrary) ini-
tial state where all atoms are excited. The evaluation of

an observable Â (expressed in the same computational

basis) is then straightforward from 〈Â〉 = Tr[ρÂ].
Constructing the full code to perform this calculation is

a complex task and we (my advisor and I) have regarded
it as being out of scope of the present work. Therefore, we
have adapted an open source code that exploits the per-
mutation symmetry between atoms in the system [3] to
treat our particular problem. Using this, we have studied
two observables that characterize the superradiant and
lasing phases: the photon number in the cavity mode
〈a†a〉 and the population inversion 〈σz〉. The results are
shown in Fig.1 (b) and (c), respectively, for N = 8 atoms
and Nph = 10 photons. We observe that both in the
superradiant and in the lasing phase the cavity mode is
populated by photons, while only in the regular lasing
phase there is population inversion (〈σ〉 > 0).

C. Spectral analysis of light emitted in the
superradiant and lasing phases

The spectrum of light emitted by the atoms, character-
izes each of the phases and it can be useful to distinguish
between the superradiant and the lasing states. Here,
we study the emission spectrum, which is defined as the
Fourier transform of the two-photon correlation function
[4]:

S(ω) = 2Re

[∫ ∞
0

〈a†(t)a(0)〉 eiωtdt
]
. (18)

The expectation value 〈a†(t)a(0)〉 can be obtained by
making use of the quantum regression theorem, that tells
us that this quantity is equivalent to the expectation
value of the a† operator, evaluated for the time-evolved
state that was initially prepared as aρss, with ρss the
steady state of the system.

In order to observe the distinct features of the spec-
trum we need to have a sufficiently large number of
atoms. As previously mentioned, the maximum number
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FIG. 2: Light emission spectrum for the superradiant, regular
lasing, and counter lasing phases respectively. Frequency ω
in ω0 units. S(ω) axis in logarithmic scale. Values for the
constants are: (SR) λ′ = λ, Γ↓ = 1 and Γ↑ = 0; (RL) λ′ = 0,
Γ↓ = 0 and Γ↑ = 1; (CL) λ′ = 3λ, Γ↓ = 1 and Γ↑ = 0; and
for all cases ωc = 1, κ = 1, ΓT = 1, λ = 0.9, all in ω0 units.

of atoms that we can consider in the exact calculation is
strongly limited. For this reason, we will consider here a
different approach based on truncating the correlations
between quantum operators to second order, called sec-
ond order cumulant expansion [6]. That means, we will
go one step further from the mean-field calculation and
treat exactly the product between two operators (see the
Appendix for more details). This will allow us to obtain
the two-photon correlation function 〈a†(t)a(0)〉 needed
for the evaluation of the spectrum.

This part of the work has been done by adapting the
open source library [5] to our particular problem. Using
this, we have obtained the emission spectra for differ-
ent values of parameters corresponding to the different
phases: superradiant, regular lasing and counter-lasing.
The result is shown in Fig.2. As already anticipated, the
spectra is very different in these three cases. For the
superradiant phase the spectrum covers a broader range
of frequencies, while for the lasing phases it is peaked
at some particular frequency, indicating that the emit-
ted light is mostly monochromatic. In the regular lasing
phase this frequency corresponds to the one for the cav-
ity mode ωc, whereas for the counter-lasing phase it is
shifted to a different value.

IV. CONCLUSIONS

We have presented the Dicke and Tavis-Cummings
models and analyzed their superradiant and lasing phase
transitions. We then have generalized the model and
made it more realistic by adding cavity photon losses,
spontaneous emission and incoherent pumping, as well
as making the relative strength between co-rotating and
counter-rotating coupling terms tunable. With such a
model, we were able to construct a phase diagram in the
(ν, λ

′

λ ) space. Firstly, we used the mean-field approxima-
tion and linearized our model (neglecting second order
operators) by considering complete decorrelation of the
atomic and photonic operators, to check whether a phase
was stable under perturbations. Next, we have gone be-
yond mean-field (which only works for N →∞) and con-
sidered the exact quantum calculation by integrating the
master equation for a reduced number of particles, and
evaluated the expectation value of the number of atoms
〈a†a〉 and the spin inversion 〈σz〉 and represented it in the

same (ν, λ
′

λ ) space. Our results are in perfect agreement
with [6] and [7]. Finally, we compared the light emission
spectrum of the three phases and observed clear differ-
ences between them, notably a very pronounced peak in
the regular lasing phase. Further extension of this work
could include the generalization to more complex types of
cavities, such as multimode or ring cavities that respect
the continuous translational symmetry of the system, and
for which more exotic phases are expected to emerge.
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Appendix A: Emission spectrum using second order
cumulant expansion

As mentioned in the main text, the second order cu-
mulant expansion consists of treating in an exact way the
expectation value of the product of two operators such
as 〈a†a〉, 〈aσ+〉, 〈aσ−〉, 〈σ+σ−〉 and 〈σ+σ+〉 (and the
corresponding conjugate values). By using Eq.(15), and
neglecting higher order correlation terms, it is possible
to obtain a complete set of differential equations describ-
ing the evolution of these expectation values in time [6].
We can then find the steady state by numerically inte-
grating the set of differential equations, and finding the
asymptotic value in the long time limit.

Once the steady state is found, we can apply the quan-
tum regression theorem and find the time-delayed corre-
lation functions by further evolving the expectation val-
ues according to (the steady state is taken as the initial
state for the evolution) [6]:

dC

dt
=MC(t) (A1)

with

C(t) =

 〈a
†(t)a(0)〉
〈a(t)a(0)〉
〈σ+(t)a(0)〉
〈σ−(t)a(0)〉

 (A2)

and

M =

 iω̃c 0 iλ iλ′

0 −iω̃∗c −iλ′ −iλ
−iλ 〈σz〉ss −iλ′ 〈σz〉ss iω̃0 0
iλ′ 〈σz〉ss iλ 〈σz〉ss 0 −iω̃∗0

 , (A3)

where 〈σz〉ss is the steady state expectation value.

After solving this set of differential equations to find
〈a†(t)a(0)〉 it is straightforward to evaluate the Fourier
transform in Eq.(18) that defines the spectrum.
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