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Abstract: We study the radiation reaction force in electrodynamics, reviewing a derivation of the
Lorentz-Dirac equation. Then we treat the case of a non-relativistic binary system, which becomes
unstable due to the radiation reaction force, and study the evolution of its orbital parameters and
the decay time. Finally, we solve the relativistic case numerically and compare it with the non
relativistic behaviour.

I. INTRODUCTION

When a charged particle is accelerated it emits radia-
tion, leading to a loss of energy. In classical Electrody-
namics, such phenomenon is described by the Lorentz-
Dirac equation, which includes the radiation reaction
force. If taken seriously, the equation predicts a fast
decay of electron orbits around atomic nuclei, in contra-
diction with the existence of chemically stable matter.
Of course, the behaviour of electrons in atoms is outside
the scope of the classical theory, and requires a quantum
description.

Nonetheless, the classical study of radiation reaction in
two body systems of charged particles is simple enough
to make some analytic progress, which may in fact be
of more than just academic interest. There are physical
situations where this can be a reasonable approximation.
For instance, it may have interesting applications when
studying classical Rydberg-like atoms [1]. Also, it can be
used to describe the decay of ”monopolonium” a bound
state of magnetic monopole and antimonopole that may
have formed in the early universe [2]. Monopoles are
rather massive topological defects that behave classically,
and hence the Lorentz-Dirac equation seems very appro-
priate to describe the evolution of monopolonium bound
states. The radiation emitted by such bound states could
be experimentally observed, yielding information about
physical processes at energies ranging from current ac-
celerators to the grand unification scale [2, 3].

In this work, we review a derivation of the Lorentz
Dirac equation in its covariant form, commenting on cer-
tain issues it presents, such as pre-acceleration and run-
away solutions. This is done in Section II. In Section
III, we use this equation to study a binary system of
two particles with opposite charges +q and −q. We will
study the behaviour of their orbits in the non-relativistic
regime, and the secular changes in the orbital parameters
(such as eccentricity and semi-major axis) due to the ra-
diation reaction. Finally, in Section IV, we will perform
a numerical treatment in the relativistic case, where the
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orbits precess, and quantify to what extent the results
depart from the non-relativistic analytic treatment. Our
conclusions are presented in Section V.

II. THE LORENTZ-DIRAC EQUATION

In order to obtain the equations of motion of a charged
particle we can use the Lorentz force caused by an elec-
tromagnetic field Fαβ . Knowing that the moving particle
creates its own electromagnetic field, which we can call
Fαβrr , we can consider the total field as the sum of the
external field and a radiation reaction (rr) field

maα = qFαβextuβ + qFαβrr uβ . (1)

Following [4], we need to calculate both the advanced and
retarded potentials Aαret(x) and Aαadv(x), because half the
addition of both gives rise to the Coulomb field, and half
the subtraction gives rise to the rr term [5]. They have
the support in the past and future light cones respectively
of the point x in which we are calculating the field.

We let u and v be the proper time in which the world
line of the particle intersects the past and future light
cones respectively, called the retarded and advanced
times. Now we shall call zα(u) and uα(u) the position
and velocity of the particle in these points. To define
a notion of distance between these points and x we
consider the scalars r and radv as:

r = −[xα − zα(u)]uα(u)

radv = −[xα − zα(v)]uα(v).
(2)

If we compute these scalars in the momentarily co-
moving Lorentz frame (MCLF), in which the particle is
momentarily at rest (uα = δα0 ) we can see that they cor-
respond to the distance between the points z and x, and
so we call them the retarded and advanced distances re-
spectively.

The retarded potential is given by the usual Liénard-
Wiechert expression, which reads:

Aαret(x) = q
uα(u)

r(x)
. (3)
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The form of the advanced potential will not be as sim-
ple, as we want to express it in the retarded coordinates.
Since we are interested in points close to the world line,
we will have to expand both uα(v) and radv(x) around
r = 0. To do so we define ∆τ ≡ v − u. Furthermore, we
introduce the null vector

kα(x) =
1

r
[xα − zα(u)], (4)

and the scalars ak ≡ kα(x)aα(u), ȧk ≡ kα(x)ȧα(u), and
a2 = aα(x) aα(u). Here the dot in ȧα represents a deriva-
tive with respect to the proper time. Keeping in mind
that z(v) is in the light cone of x we obtain the following
relation between ∆τ and r:

∆τ = 2r

[
1− akr +

(
a2k −

1

3
a2 − 2

3
ȧk

)
r2 +O(r3)

]
.

(5)
The expansion of zα(v) and uα(v) in terms of ∆τ is
straightforward, and it reads:

zα(v) = zα(u) + uα∆τ +
1

2
aα∆τ2 +

1

6
ȧα∆τ3 +O(∆τ4),

uα(v) = uα(u) + aα∆τ +
1

2
ȧα∆τ2 +O(∆τ3).

(6)

If we now substitute (6) and (5) into (2), after some alge-
bra we obtain the desired expressions for radv and uα(v):

radv = r +
2

3
(a2 + ȧk)r3 +O(r4),

uα(v) = uα(u) + 2aαr + 2(ȧα − akaα)r2 +O(r3).
(7)

Plugging these into the advanced version of (3) we get
the following vector potential:

Aαadv(x) = q
uα

r
+ 2qaα + 2q[ȧα − akaα

−1

3
(a2 + ȧk)uα]r +O(r2).

(8)

We want to calculate the potential on the world line, so
all terms of order r2 or higher will vanish after differen-
tiation.

Considering that the term of the potential correspond-
ing to radiation reaction is Aαrr(x) = (Aαret −Aαadv)/2 we
now find that the rr field is

Fαβrr = −2

3
q(ȧαuβ − uαȧβ). (9)

If we now substitute this into (1) we obtain

maα = Fαext +
2

3
q2(δαβ + uα, uβ)ȧβ , (10)

which can also be expressed as

maα = Fαext +
2

3
q2(ȧα − a2uα). (11)

This is the Lorentz-Dirac equation. This equation
presents a number of problems, which are nicely reviewed
in [5].

First of all, we can see that it involves the time deriva-
tive of acceleration, meaning it is a third order differ-
ential equation. Therefore we should need more initial
conditions than just the position and velocity, something
quite problematic. Also, consider the non relativistic case
where a force is turned on at t = 0 and then stays con-
stant. We obtain the following solution:

a(t) = et/t0
[
b− f

m

(
1− e−t/t0

)
Θ(t)

]
, (12)

where t0 = 2q2/3m. As we can see for arbitrary val-
ues of b the acceleration grows exponentially with time
even though the force is constant. These type of solu-
tions are called runaway solutions. We can get rid of this
behaviour by setting b = f/m, being this the third pa-
rameter we needed. The problem is that in this case the
acceleration of the particle is affected by the force acting
on it at later times, violating the principle of causality.
This phenomenon is called preacceleration.

These problems are due to the fact that we considered
the particle to be point-like, ignoring all of its multipole
terms, which would not negligible in a regularized ver-
sion of the world line where the particle has finite size.
To avoid this problem we can use a technique known as
reduction of order, discussed in [5] and [6], with which
we obtain the modified Lorentz-Dirac equation:

maα = Fαext +
2

3
q2(δαβ + uαuβ)F βext ,γu

γ , (13)

where we have basically assumed that the time deriva-
tive of the acceleration is mostly due to the time deriva-
tive of the external force. This is justified by the fact
that the radiation reaction force is suppressed by a fac-
tor (t0/tc), relative to the external force, where tc ∼ a/ȧ
is the timescale in which the acceleration changes signif-
icantly, and we assume tc � t0. In the non-relativistic
regime, Eq. (13) reads:

ma = Fext +
2q2

3m
Ḟext. (14)

This equation presents no runaway solutions or preaccel-
eration, and has the same degree of accuracy as the orig-
inal, which is up to corrections of order (t0/tc)

2. There-
fore this is a better candidate to describe the motion of
a point charge.

III. NON-RELATIVISTIC LIMIT

Let us now consider two charges of opposite sign,
bound to each other in non-relativistic motion. In this
case the orbits are nearly elliptical. Following Landau
and Lifshitz [4] (see also Peters [7] for the related case
of gravitational radiation), the orbit will be described by
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its eccentricity e and its major semi-axis a. If there was
no radiation reaction force, these two would be constants
of the motion, but the emission of radiation causes a loss
of energy and angular momentum, leading to a change
in time of said parameters. From now on we will use the
electrostatic CGS system of units, so the speed of light c
will appear in the equations.

In an elliptical orbit the parameters a and e define the
energy and the angular momentum as follows:

E = − α

2a
L =

√
µαa(1− e2), (15)

where α is the constant of the interaction between the
particles. In the Coulomb case it reads α = |q1q2|.

For the following calculations we will restrict ourselves
to the non-relativistic limit, and we will also treat the
radiation reaction as a perturbative term. Therefore we
will consider the orbiting charge to describe an unaltered
trajectory, and then calculate the losses of energy and
angular momentum upon the completion of such orbit.

The equation of motion for the particle will read:

µr̈ = −α r

r3
. (16)

The expression for the intensity of the radiation of two
moving charges in the non relativistic limit is given by
the Larmor formula:

I =
2

3c3
d̈
2
. (17)

Where d is the dipole moment, which can be expressed
as:

d = µ

(
q1
m1
− q2
m2

)
r ≡ µβr. (18)

µ is the reduced mass and r is the relative position be-
tween the charges r1 − r2. With the help of (16) and
substituting (18) into (17) we obtain:

I =
2α2

3c3
β2 1

r4
. (19)

Now we have to average this intensity through a full pe-

riod, 〈I〉 = 1
T

∫ T
0
Idt. Using the ellipse equation and the

definition of the angular momentum, L = µr2 dφdt we can
switch from an integration over time to an integration
over the angular coordinate φ. This results in:〈

dE

dt

〉
= −〈I〉 = − 2α2β2

3c3a4(1− e2)5/2

[
1 +

e2

2

]
. (20)

Now, the loss of angular momentum can be calculated
from an equivalent definition, L =

∑
r × p. We want

to obtain its variation over time, L̇ =
∑

r × f. The
force acting upon the particle can be decomposed into the
Coulomb force and the radiation reaction force, where the
former will not cause a change in the angular momentum

of the system. Thus, the change we are looking for will
come from the latter, which acting on one charge reads:

fi =
2qi
3c3

...
d . (21)

Hence, the angular momentum will read:

dL

dt
=

2

3c3

∑
qiri ×

...
d =

2

3c3
d×

...
d . (22)

dL

dt
=

2

3c3

(
d

dt
(d× d̈)− ḋ× d̈

)
. (23)

The first term of the last expression will vanish upon
averaging as we consider the charges to be in a periodic
orbit. Therefore, the desired expression will be:

dL

dt
= −2β2µ2

3c3
(ṙ× r̈) , (24)

dL

dt
= −2αβ2

3c3
L

r3
. (25)

Using a process similar as the one used in the calcula-
tion of the intensity we find:〈

dL

dt

〉
= − 2α3/2µ1/2β2

3c3a5/2(1− e2)
. (26)

Using (15) and the chain rule we can calculate the
expressions for the major semi-axis and the eccentricity,
and we obtain:

〈
da

dt

〉
= − 4αβ2

3c3a2(1− e2)5/2

[
1 +

e2

2

]
. (27)

〈
de

dt

〉
= − αβ2

c3a3(1− e2)3/2
e. (28)

Thus, during the decay of the orbit we can relate the
eccentricity and the major sem-axis with the following
differential equation:〈

da

de

〉
=

4a

3(1− e2)e

[
1 +

e2

2

]
. (29)

This equation can be resolved upon integration, and leads
to:

a = a0

(
e

e0

)4/3(
1− e20
1− e2

)
. (30)

It would also be interesting to calculate the decay time of
the system, and to do that we shall substitute (30) into
(28), obtaining:

de

dt
= − αβ2e40

c3a30(1− e20)3
(1− e2)3/2

e3
. (31)
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If we now integrate the differential equation from e0 to
0, we will obtain the decay time T (a0, e0)

T (a0, e0) =
c3a30(1− e20)3

αβ2e40

[
2− e20

(1− e20)1/2
− 2

]
. (32)

Note that for a given initial major axis a0 (or correspond-
ing binding energy E0) the life-time is significantly re-
duced if the orbit is very eccentric.

IV. NUMERICAL STUDY

To check the results obtained in the previous section we
will compute the collapse of the system using numerical
methods. The system will be treated relativistically, but
it will have some other simplifying assumptions. We will
consider the limit where one of the charged particles is
much more massive than the other, and hence stationary,
effectively transforming this into a one body problem. In
this case, the dipole moment will become d = qr. Using
the equation we obtained in (11) we obtain the following
relativistic expression for the radiation reaction force:

Freac =
2

3
q2
[
d

dt

(
γ2r̈ + γ4 (ṙ · r̈) ṙ

)
−(

γ4r̈2 + γ6 (ṙ · r̈)
2
)
ṙ
]
.

(33)

Where now the dots represent derivatives with respect to
the coordinate time. The equation of motion reads:

d

dt
(mγṙ) = − er

|r|3
+ Freac. (34)

We will also treat radiation reaction as a perturbation
term, and assume the derivatives in (33) to come from
(16). This way we obtain a second order differential equa-
tion which can be easily solved using a Runge-Kutta of
order 4.

In order to obtain the parameters of the orbit a and e,
the maximum and minimum distances to the focus rmax
and rmin are calculated upon the completion of every
orbit, and we define a and e as:

a =
rmax + rmin

2
e =

rmax − rmin
rmax + rmin

. (35)

Where they do not have to be understood as the semi-
axis and eccentricity of an ellipse, because the relativistic
orbits are no longer ellipses and manifest precession (see
e.g. [8]).

To check the results obtained in the last section we will
first calculate the orbits in the non relativistic regime.
We will start with an initial value of the major semiaxis
of a = 10−8cm (which is comparable to the Bohr radius),
the electron charge q = 4.803 · 10−10statC and an orbit-
ing particle with the electron mass m = 9.109 · 10−28g.
If we plot the logarithm of the major semiaxis as a func-
tion of eccentricity, we obtain Fig. 1. The initial speed

FIG. 1: Major semi-axis as a function of eccentricity for an
electron orbiting a heavy nucleus of equal and opposite charge,
for three different initial values of e. The initial size of the
orbit is comparable to the Bohr radius, and the motion be-
comes mildly relativistic, with (v/c) ∼ 0.1, towards the lower
range of plotted sizes. Time evolution is indicated by an ar-
row. Thick coloured lines represent the numerical evolution,
which agrees very well with the thin black lines corresponding
to the analytic result Eq. (30).

FIG. 2: Charged particle orbiting the nucleus, with an initial
semiaxis of a0 = 1.8 · 10−10cm. The orbits precess and their
size decreases over many iterations.

in this case is of order (v/c) ∼ αEM ∼ 10−2, where
αEM ∝ q2/~c is the fine structure constant, and then
scales as (v/c) ∝ a−1/2 as the radius decreases, with
(v/c) <∼ 10−1 down to distances of order a >∼ 3×10−11cm.
The numerical results, plotted in thick colored lines ob-
tained are in very good agreement with the analytical
results obtained in the previous Section, which, for com-
parison, are plotted as thin black lines for different values
of the initial eccentricity.

The typical orbit is illustrated in Fig. 2, where we
see that it precesses, and that its size shrinks over time.
In Fig. 3 we plot the decay time as a function of the
initial major semiaxis, for an orbit with negligible eccen-
tricity [on a logarithmic scale, the effect of eccentricity
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would only be noticeable for (1 − e0) � 1]. The effect
can be quite substantial even if the initial orbit is only
mildly relativistic. The decay time departs from the non-
relativistic expression (32), where it is proportional to a30.
In the relativistic regime the radiation reaction force in
(33) is greater due to the gamma factors, and thus the
particle spirals to the center at a faster pace.

V. CONCLUSIONS

We reviewed the derivation of the Lorentz-Dirac equa-
tion using covariant methods. This is an equation with
third derivatives of position, and is riddled with problems
such as runaway solutions and pre-acceleration. These
can be addressed by using a reduction of order method,
which leads to a modified version which does not have
such pathologies and has the same level of accuracy.

We have then studied a classical binary system in the
non relativistic limit, calculating the evolution over time
of the orbit parameters and the decay time of the system,
which spirals into the center radiating away its energy,

and losing its eccentricity along the way too. Highly ec-
centic orbits decay much faster than circular ones, ac-
cording to Eq. (32).

We then solved the relativistic equation using a Runge-
Kutta method of order 4. The results agree with the
analytic results in the case of an electron orbiting at an
initial semi-axis of 1 Å. This is comparable to the Bohr
radius and therefore a non-relativistic approach should be
enough to describe Rydberg-like atoms, where the elec-
trons are in highly excited states further away from the
nucleus.

As we probe into smaller values of the initial size of
the orbit, relativistic effects begin to take importance
and the reaction force increases leading to smaller de-
cay times. This observation is not particularly useful for
the case of electrons in an atom, where orbitals of size
comparable to the Bohr radius already require a quan-
tum mechanical treatment. However, it could be of rele-
vance in the case of monopolonium, where the magnetic
charges behave classically even in the relativistic regime.
The life-time of non-relativistic bound states scales like
T ∝ M2q−4

m a30, where qm ∼ q−1 is the magnetic charge.
Since the mass of a monopole in grand unified theories
can be of order M >∼ 1016GeV (rather than m ∼ 0.5MeV
for the electron), the corresponding lifetime can easily be
comparable to the age of the universe or larger, even for
microscopic initial sizes. It would be interesing to con-
sider the impact of relativistic effects on the lifetime of
monopolonium in specific cosmological scenarios. This
issue is left for further research.
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