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Abstract: We analyze the tunneling dynamics between two weakly interacting Bose-Einstein
condensates in a symmetric double-well potential within the two-mode approach. We consider a
single component and a binary mixture as well. Using a two-mode ansatz, we obtain the corre-
sponding equations of motion from the Gross-Pitaevskii equation. We investigate the Josephson
dynamics and the macroscopic quantum self-trapping regimes for the single component case. On
the other hand, for the binary mixture, we explore the small oscillations for the strongly polarized
and the non-polarized case.

I. INTRODUCTION

A Bose-Einstein condensate (BEC) is a new state of
matter that exhibits an ensemble of bosons at very low
temperatures. A BEC is characterized by the macro-
scopic population of the lowest energy single-particle
state. From the first experimental realization in 1995 [1],
they have attracted an increasing interest since in these
systems, quantum phenomena become macroscopic [2].
Some interesting properties that have been investigated
in BECs are, for instance, superfluidity and phase coher-
ence. The latter one has been experimentally observed
in interference experiments [3] and in Josephson oscilla-
tions [4].

The aim of this project is to study the tunneling dy-
namics and the Josephson-like oscillations between two
weakly interacting BECs confined in a double-well poten-
tial. We will consider a large number of bosons, at zero
temperature, and we will assume a two-mode approach
to obtain the coupled equations that describe the tun-
neling dynamics of the system. We will consider first a
single component BEC and afterwards, we will study a
binary mixture.

The paper is organized as follows. In Sect. II we in-
troduce the Gross-Pitaevskii equation that provides the
mean-field theoretical framework. Then, in Sect. III we
investigate the single component case and the binary
mixture is presented in Sect. IV. In both cases, we ob-
tain the analytical equations of motion and present the
results focusing on two different regimes for each case.
Finally, in Sect. V we conclude.

II. GROSS-PITAEVSKII EQUATION

We consider a system of N weakly-interacting bosons
at zero temperature, trapped in a double-well potential,
Vext(r). The many-body Hamiltonian of the system is [5]:

H =

N∑
i=1

[
−~2∇2

i

2m
+ Vext(ri)

]
+

1

2

∑
i6=j

V (rij) . (1)

We assume that the potential barrier in Vext(r) is high
enough to ensure the weakly interaction between the two
components and low enough to allow tunneling. From
Eq. (1) we can obtain the Gross-Pitaevskii (GP) equation
in the mean-field approximation. It provides an accurate
description when N is large, at very low temperatures
and for weakly interacting systems.

The GP equation for a single component condensate
reads:

i~
∂Ψ(r, t)

∂t
=

[
−~2∇2

2m
+ Vext(r) + gN |Ψ(r, t)|2

]
Ψ(r, t) ,

(2)
where the coupling constant is g = 4π~2as/m, and as
is the scattering length. We have normalized the wave
function as

∫
dr|Ψ(r, t)|2 = 1.

In a binary mixture there are two different wave func-
tions, one for each component; Ψi(r, t) with i = a, b.
Such two-component BECs can be experimentally pro-
duced from two different hyperfine states of the same
atomic species, for instance 87Rb, or from two different
atomic species. Here we consider the first situation. The
binary mixture system is described by two coupled GP
equations:

i~
∂Ψi(r, t)

∂t
=

[
− ~2∇2

2mi
+ Vext(r) + giiNi|Ψi(r, t)|2+

+ gijNj |Ψj(r, t)|2
]
Ψi(r, t) , (3)

where gii and gij are the intra- and inter-species interac-
tions with i 6= j and i, j = a, b. The number of particles
of each component is Ni and satisfies N = Na +Nb.

We will also use the following expression of the energy
to obtain the Hamiltonian of the system:

E =

∫
dr

[
~2

2m
|~∇Ψ(r, t)|2 + Vext(r)|Ψ(r, t)|2+

+
gN

2
|Ψ(r, t)|4

]
. (4)
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III. SINGLE COMPONENT CASE

We study the system dynamics with a two-mode ap-
proximation that will allow us to find the equations of
motion in an analytical form. In the single component
case, we consider a single wave function, describing the
condensate, composed by the superposition of two time-
independent spatial wave functions ΦL(r) and ΦR(r) [6]:

Ψ(r, t) = ΨL(t)ΦL(r) + ΨR(t)ΦR(r) , (5)

where each wave function, ΦL(r) and ΦR(r), will be lo-
cated on the left and right side of the potential barrier,
respectively. The ansatz (5) is a good approximation
provided the barrier is high enough for weakly interac-
tion and low enough for tunneling effect between the two
coupled condensates. Due to the phase coherence prop-
erties of the BECs one can write:

ΨL(R)(t) =

√
NL(R)(t)

N
eiφL(R)(t) , (6)

where the total number of atoms is N = NL(t) +NR(t).
Each spatial wave function can be expressed as a super-
position of the ground state and the first excited state of
the double-well potential, Φ+(r) and Φ−(r), respectively:

ΦL(r) =
Φ+(r) + Φ−(r)√

2
, ΦR(r) =

Φ+(r)− Φ−(r)√
2

.

In a symmetric double-well, Φ± are orthogonal for its
parity, therefore ΦL(R) are also orthogonal. It can be
checked that Ψ(r, t) is normalized to 1.

A. Equations of motion

To study the tunneling dynamics we consider the stan-
dard two-mode approximation (S2M) [7]. We replace the
wave function ansatz (5) in the GP equation (2). The
S2M approach consists of neglecting the overlap between
left and right components due to the weak link. There-
fore the integrals of the type

∫
dr ΦiΦj ' 0 with i 6= j

and i, j = a, b. Then, projecting the resulting equation
to the left (right) mode we arrive at two new coupled
equations [6]:

i~
∂ΨL(t)

∂t
= ΨL(t)

[
E0
L +NL(t)UL

]
−ΨR(t)K ,

i~
∂ΨR(t)

∂t
= ΨR(t)

[
E0
R +NR(t)UR

]
−ΨL(t)K ,

where

E0
L(R) =

~2

2m

∫
dr |~∇ΦL(R)|2 +

∫
drVextΦ

2
L(R) ,

K = − ~2

2m

∫
dr ~∇ΦL · ~∇ΦR −

∫
drΦLVextΦR ,

UL(R) = g

∫
drΦ4

L(R) , ∆E =
E0
L − E0

R

2K
+
UL − UR

4K
N .

Notice that in a symmetric double-well E0
L = E0

R , UL =
UR and ∆E = 0. By defining the two new variables,
the population imbalance, z(t), and the phase difference,
δφ(t),

z(t) =
NL(t)−NR(t)

N
, δφ(t) = φR(t)− φL(t) ,

one can obtain the coupled equations of motion in the
S2M:

ż(t) = −
√

1− z2(t) sin δφ(t) , (7)

δφ̇(t) = Λz(t) +
z(t)√

1− z2(t)
cos δφ(t) , (8)

where the time is in units of the Rabi frequency, ωR =
2K/~. We have defined Λ ≡ NU/(~ωR), it is the ratio
between the interaction of particles of the same mode and
the coupling term K [8].

To find the Hamiltonian expression as a function of
the new variables, we proceed in an analogous way as
before, but starting with the equation of the energy (4).
It yields:

H =
Λ

2
z2(t)−

√
1− z2(t) cos δφ(t) . (9)

B. Results

With the coupled equations (7) and (8), we can repre-
sent the evolution of the population imbalance and the
phase difference over time. But the initial conditions z0,
δφ0 and the Λ value have to be defined.

In order to find the stability points [6], we compute
from the Hamiltonian (9):

∂H

∂z

∣∣∣∣
z0,δφ0

= 0 ,
∂H

∂δφ

∣∣∣∣
z0,δφ0

= 0 .

It is found for the phase difference; sin δφ0 = 0, so we
will consider δφ0 = 0, π. For the population imbalance
we obtain: z0 = 0,±

√
1− 1/Λ2.

We can distinguish two interesting regimes to study.
The first one is the Josephson dynamics. It is charac-
terised by the fast tunnelling of atoms, through the po-
tential barrier which is caused by the phase difference.
The population imbalance oscillates around 0, so its tem-
poral mean will be 〈z〉 = 0. Fig. 1 shows the characteris-
tic behavior of Josephson dynamics. The top panel, rep-
resents the time evolution of the population imbalance
and the phase difference. The trajectories in the z − δφ
plane are depicted at the bottom panel. The initial con-
ditions are z0 = 0.2, δφ0 = 0 and Λ = 0.2. It is shown
that the Josephson orbits are closed trajectories in the
z − δφ plane around a minimum or a maximum. In this
case they are around the minimum (z0 = 0, δφ0 = 0).

There is another interesting regime: the macroscopic
quantum self-trapping (MQST). In this case, the popula-
tion imbalance does not oscillate around 0, but around a
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FIG. 1: Top panel: imbalance and phase difference as a func-
tion of time. Bottom panel: trajectory in the z − δφ plane.
Initial conditions: z0 = 0.2, δφ0 = 0 and Λ = 0.2, that corre-
spond to Josephson dynamics.

positive or negative value, depending on which side of the
well the self-trapping is located. This is caused by high
initial z0 values. In this regime, most particles do not
reach the other side of the potential barrier through tun-
neling, hence they are trapped in one side of the well, as
the name suggests. This effect comes from the non-linear
interaction term of the GP equation [6]. This behaviour
leads to a non-zero temporal mean value of the popula-
tion imbalance, 〈z〉 6= 0. Fig. 2 shows this regime for the
initial conditions z0 = 0.8, δφ0 = 0 and Λ = 7. We can
see that the phase difference does not oscillate, but keeps
rising. This results can be compared with a pendulum
with a high initial velocity that spins without oscillating.
For this reason, the trajectories in the z − δφ plane are
no longer closed orbits.

We are interested in the small oscillations around the
minima (z0 = 0, δφ0 = 0, π), so we can approximate
sin δφ0 ∼ δφ0 and cos δφ0 ∼ 0. It allows to find the new
equation of motion of the population imbalance z̈(t) =
−z(t) (1 + cos δφ0Λ). We can see that we have recovered
the expression of a harmonic oscillator with frequency
ωJ = ωR

√
1 + cos δφ(t)Λ.

We fix the initial conditions (z0 = ±0.9, δφ0 = 0) and
we consider different values of Λ. Then, we solve the time
evolution of the population imbalance, and we compute
its temporal mean value. These results are presented in
Fig. 3. It shows that for small Λ values the system begins
at the Josephson regime, oscillating around z = 0 either
with z0 = ±0.9. On the other hand, with larger values of
Λ the system exhibits the MQST dynamics since the tem-
poral average 〈z〉 6= 0. The positive branch corresponds
to the initial value of z0 = 0.9, whereas the negative one
to z0 = −0.9. It is interesting to point out that this repre-
sentation has been used for experimental demonstration

FIG. 2: Same as in Fig. 1, for z0 = 0.8, δφ0 = 0 and Λ = 7.
It corresponds to macroscopic quantum self-trapping.

FIG. 3: Temporal mean value of the population imbalance
with the initial conditions (z0 = ±0.9, δφ0 = 0) for different
values of Λ. 〈z〉2 (grey dashed line) is calculated for a time
average 500 larger than the 〈z〉1 time (red solid line).

of the different regimes [8]. However, these results may
be slightly different depending on how long the averag-
ing is done. See for example the comparison between the
two representations of Fig. 3. The grey dashed line is the
temporal mean 〈z〉2 for a time 500 larger than the red
one, 〈z〉1.

IV. BINARY MIXTURE CASE

In this section, we generalize the two-mode ansatz for
a binary mixture. For each component (a) and (b) we
assume an analogous wave function as in the single com-
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ponent case:

Ψj(r, t) = ΨjL(t)ΦjL(r) + ΨjR(t)ΦjR(r) ,

where i, j = a, b and it is fulfilled
∫
drΦiαΦjβ = δijδαβ ,

where α, β = L,R. As above, we can consider that each
wave function has a well-defined quantum phase, there-
fore we can write the following ansatz:

Ψj,α(t) =

√
Nj,α(t)

Nj
eiφj,α(t) ,

where Nj,α is the population of the j -component on each
side of the potential barrier. It fulfils Nj = Nj,L(t) +
Nj,R(t). So the total number of particles is N = Na +
Nb = Na,L(t) +Na,R(t) +Nb,L(t) +Nb,R(t).

A. Equations of motion

From the GP equation of the binary mixture (3), we
can arrive at the corresponding equations of motion with
a similar procedure as in the single component case:

i~
∂Ψiα(t)

∂t
= Ψiα(t)

[
E0
iα +Niα(t)Uiiα+

+Njα(t)Uijα
]
−Ψiβ(t)Ki ,

where

E0
jα =

~2

2mj

∫
dr|~∇Φjα|2 +

∫
drΦ2

jαVext ,

Kj = − ~2

2mj

∫
dr~∇ΦjL · ~∇ΦjR −

∫
drΦjLVextΦjR ,

Uijα = gij

∫
drΦ2

iαΦ2
jα ,

∆Ei,j =
E0
iL − E0

iR

~
+
UiiL − UiiR

2~
Ni +

UijL − UijR
2~

Nj ,

with i, j = a, b and α, β = L,R [6]. Since we considered a
system where the two components have the same atomic
mass, ma = mb, then gaa = gbb and gab = gba. As the
single component case, we use a symmetric double-well
potential for each component. Hence, we can write:

ΦL(R) ≡ Φa,L(R) = Φb,L(R) ,

E ≡ E0
aL = E0

bL = E0
aR = E0

bR ,

U ≡ UaaL = UbbL = UaaR = UbbR ,

Ũ ≡ UabL = UbaL = UabR = UbaR ,

K ≡ Ka = Kb ,

∆Ea,b = ∆Eb,a = 0 .

The new variables that will describe the dynamics in the
two-mode ansatz are again the population imbalance and
the phase difference, one for each component:

zi(t) =
NiL(t)−NiR(t)

Ni
, δφi = δφiR(t)− δφiL(t) .

In this case, an interaction term between the atoms
of different components appears in the GP equation,
which leads to new parameters: Λ = NU/ (~ωR) and

Λ̃ = NŨ/ (~ωR). The first one is the ratio between the
intra-species interaction (Uii) with the coupling, and the
second one, between the inter-species interaction (Uij)
and the coupling, where i, j = a, b and i 6= j. The frac-
tion of the population for each component is defined as
fi = Ni/N [6].

Eventually, we arrive at the equations of motion in
units of the Rabi frequency, ωR = 2K/~:

ża(t) = −
√

1− z2a(t) sin δφa(t) , (10)

δφ̇a(t) = faΛza(t) + fbΛ̃zb(t) +
za(t)√

1− z2a(t)
cos δφa(t) ,

(11)

żb(t) = −
√

1− z2b (t) sin δφb(t) , (12)

δφ̇b(t) = fbΛzb(t) + faΛ̃za(t) +
zb(t)√

1− z2b (t)
cos δφb(t) .

(13)

These equations represent two non-rigid coupled pendu-
lums [9].

B. Results

A stationary point is described by żi = 0 and δφ̇i =
0 [6]. Therefore, we arrive at sin δφi = 0. The initial
conditions about the phase difference have to be δφi =
0, π. An obvious stationary point is z0a = z0b = 0. In
Ref. [10], they study other stationary points, and they
found a condition for the z0 values. We are going to focus
on small oscillations around z0i = δφ0i = 0. There are two
different interesting behaviours to study: the strongly
polarized and the non-polarized case.

FIG. 4: Time evolution of population imbalance and phase
difference for the two components of a strongly polarized mix-
ture: fa = 0.99, fb = 0.01, z0a = 0.1, z0b = −0.2 and Λ = 0.5.

The strongly polarized case occurs when a component
is much more populated than the other, for example
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fa ∼ 1 and fb ∼ 0. The dynamics of the most populated
component (a) is similar to the single component case and
it drives the time evolution of the under-populated com-
ponent (b). Fig. 4 shows the time evolution of the popula-
tion imbalance and the phase difference of the two com-
ponents in this situation. It corresponds to fa = 0.99,
fb = 0.01, z0a = 0.1, z0b = −0.2 and Λ = 0.5 values. The
initial condition z0b is negative, so if there wasn’t an in-
teraction with the other component (a), zb would tend
to rise to reach equilibrium (zb = 0). On the contrary,
initially, its population imbalance goes down, making its
absolute value grow. This is produced by the interaction
between the two components [9]. It appears a new fre-
quency for the under-populated component much lower
than the frequency shared by the two components. This
last one is similar to the single component case. The

FIG. 5: Same as in Fig. 4 but for a non-polarized mixture:
fa = fb = 0.5, z0a = −z0b = 0.1 and Λ = 2.

non-polarized case happens when both populations are
nearly the same fa ' fb ' 0.5. If we consider the ini-
tial conditions of the population imbalance z0a = −z0b , we
can represent the evolution of the two variables with the
equations of motion (10-13). We can see its behaviour in
Fig. 5. In this case, both components oscillate with the
same frequency caused by Josephson tunneling [9].

V. CONCLUSIONS

In this work, we have studied the tunneling dynamics
of a system of N bosons in a double-well potential. Our
theoretical framewok is the Gross-Pitaevskii equation for
a single component and for a binary mixture.

We have started investigating the single component
case. By using a two-mode approximation we have ob-
tained the analytical equations of motion described by
two conjugate variables: the population imbalance and
the phase difference. We have also derived the expres-
sion of the Hamiltonian as a function of these variables.
To analyze the evolution of the system, we have repre-
sented z and δφ as a function of time for two interesting
regimes; the Josephson dynamics and the macroscopic
quantum self-trapping. For small oscillations, we have
recovered the expression of a harmonic oscillator for the
z variable. In addition, we have represented the tempo-
ral mean value of the population imbalance for different
values of Λ, which has been used for the experimental
demonstration of the different dynamical regimes [8].

Furthermore, we have studied the binary mixture case.
As the single component situation, from the Gross-
Pitaevskii equation we have derived, with a two-mode
approach, the equations of motion with the same vari-
ables, one for each component: za, zb, δφa and δφb. We
have described two relevant behaviours for small oscilla-
tions around z0i = δφ0i = 0 : the strongly polarized and
the non-polarized mixture. Finally, we have character-
ized each case presenting the evolution of the conjugate
variables.
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