
Treball de Fi de Grau 1 Barcelona, June 2021

Machine learning for iron oxide identification from oxygen K edge in EELS spectra

Author: Marc Roset Tomàs.

Advisor: Sònia Estradé and Daniel Del Pozo Bueno

Facultat de Física, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.

Abstract: In this work we test machine learning tools such as the Support Vector Machine algorithm and neural

network models on the task of Electron Energy-Loss Spectroscopy (EELS) spectra classification. Given many sample

spectra of EELS applied on wüstite and magnetite nanocubes, we train both models to determine the oxidation state

of iron. We show that SMV exhibits a good performance on classifying clean data, and we demonstrate the capability

of neural networks of producing robust results given shifted data.

I. INTRODUCTION

Electron Energy Loss Spectroscopy (EELS) [1] is a

spectroscopic technique based on measuring the energy lost by

the electrons that pass through a given nanomaterial. It is a

very useful technique to study a whole array of properties of a

material at a nanometric scale, such as its thickness, optical

response, band structure and interband transitions, elemental

composition, bonding and oxidation state and distribution of

near neighboring atoms.

The features that are present in EELS spectra are caused by

inelastic scattering events of the sample nanomaterial with

incoming electrons. An EELS spectrum can be divided into a

low-loss region (low values of energy loss, from 0 eV to about

50-100 eV) and core-loss region (up to several keV of energy

loss). In the low-loss region we find high intensity peaks such

as the zero loss peak and the plasmon peak, from which we can

extract the specimen thickness and the characteristic resonance

frequency of the conduction band electrons, respectively. In

the core-loss region we find lower intensity features, showing

the characteristic atomic transition energy, the energy-loss

near edge structure (ELNES), which is the fine structure that

appears in a region of a few eVs near the absorption edges of

the studied material and that are related to local bonding

effects; and the extended energy loss fine structure (ExELFS)

for a given edge, from which we can extract the composition,

the bonding and oxidation state and the distribution of near

neighboring atoms, respectively. These absorption edges arise

from the required energy for an inner atomic electron to jump

to an excited level.

A typically characterized material in EELS experiments is

transition metal oxides. Transition metals are defined as

elements having a partially filled d sub-shell, or which can give

rise to cations with an incomplete d sub-shell. They are located

on the d-block of the periodic table. A characteristic of

transition metals is that they exhibit two or more oxidation

states, such as the oxidation states +2 and +3 for iron (Fe). In

the case of transition metals oxides, we find in the core-loss

region of its EELS spectrum the oxygen K-edge and L2 and L3

lines absorption edges (also known as white lines). As a part

of the O K edge ELNES, we find a narrower intensity edge,

the oxygen pre-peak.

It is useful to find the oxidation states of the transition

metals in order to identify the different type of oxides, which

will present different material properties. There are many

approaches to the extraction of oxidation states from the EELS

spectrum, such as, the calculation of the ratio of the L3 to L2

white lines, the measurement of the energy separation between

the oxygen pre-peak and the main peak in the oxygen K-edge

or the detailed analysis of the ELNES of any of the absorption

edges [1, 2, 3].

Furthermore, it is important to note that EELS experiments

generate large amounts of spectra, so it has become crucial to

find new methods to analyse the resulting information quickly

and precisely. For this reason, and to solve the problem of the

determination of oxidation states, several Machine Learning

(ML) tools have been proposed. One of these tools is Support

Vector Machines (SVM), which were used by D. del-Pozo-

Bueno et al. [4] to accurately predict the oxidation states of

iron and manganese oxides from the ELNES of the white lines

of the transition metals. Another ML strategy is to use neural

networks as done by M. Chatzidakis et al. [5], where different

neural network architectures were tested on the task of

manganese oxide classification, also focusing on the energy

regions of the EELS spectrum where the white lines are found.

In this work we will study the reliability and robustness of

both SVMs and neural networks in the determination of the

oxidation state of iron through the analysis of the ELNES of

the oxygen K-edge and the oxygen pre-peak in iron oxides. We

will be classifying iron oxide data corresponding to wüstite

(FeO, oxidation state Fe+2) and magnetite (Fe3O4, oxidation

state Fe+2Fe2
+3).

II. METHODS

 Machine learning models are mathematical models that

can predict the label or class of a given object. This prediction

takes place after the model has been exposed to many

examples of related objects (known as the training dataset) and

has extracted useful features for future predictions. ML models

can be classified into supervised (the training dataset has been

previously labelled either by a human or another model) and

unsupervised (the training dataset is unlabelled). In this work

we use two supervised learning models: SVMs and neural

networks.

Our training dataset consists of 11691 iron oxide EELS

spectra. Before implementing any model though, the dataset

must be pre-processed so as to facilitate classification.

Originally, we have a (2D) image with atomic resolution that

spans across the whole nanomaterial, with an EELS spectrum

associated to every pixel. First of all, the bundle of spectra is

all de-noised through the PCA algorithm [6], which

decomposes an input vector into many components and weeds

out the low-variance ones (related to noise signal). Then 2-

class K-means clustering is performed onto the image to

Treball de Fi de Grau 2 Barcelona, June 2021

extract the background (in other words, the data corresponding

to an electron beam that has missed or only partially interacted

with the material is discarded). Given our data comes from

different sample material and the calibration of the tooling is

not reliable, the next step is to align the spectra with a reference

peak (in our case the oxygen pre-peak located at 530 eV). We

then crop the part of the spectra that we will be using (ELNES

of oxygen K-edge and oxygen pre-peak) and remove a signal

component derived from electrons that follow a power-law.

Spikes, which are abrupt peaks caused by misfirings of the

sensor’s pixels, are eliminated through interpolation. The last

step is normalization, and it is very important since absolute

intensity is related to the sample thickness, and this is not a

feature we want our model to pick on. The resulting spectra is

30 eV wide and it is fitted to a 300 channel histogram

(presenting a dispersion of 0.1 eV per channel) resulting on

300-dimensional vectors. An example spectrum present on our

dataset can be seen in Fig. (1).

FIG 1. EELS spectrum for wüstite, cropped to the O K edge

region. The red dotted line is the energy at which the spectra are

aligned and where the oxygen pre-peak is found.

A Support-Vector Machine, SVM for short, [7] classifies

n-dimensional datapoints through the use of an n-dimensional

hyperplane that divides the feature space in halves. Therefore,

it is well suited for linearly separable, binary labelled data

(only 2 classes of data). The hyperplane is defined by its

normal vector w and its bias b, and it must satisfy the following

condition for all N xi vectors of the training dataset x (we

denote yi as the label of the xi datapoint).

{
𝑤 · 𝑥𝑖 + 𝑏 > 0 𝑖𝑓 𝑦𝑖 = +1
𝑤 · 𝑥𝑖 + 𝑏 < 0 𝑖𝑓 𝑦𝑖 = −1

Thus, the hyperplane must accurately classify all examples

from the training dataset. While there are a set of values for w

and b that satisfy this condition, the idea behind SVM is to

choose those values that achieve the greatest margin, which is

defined to be the smallest distance from the hyperplane to any

of the training datapoints. From an intuitive point of view, the

maximization of the margin gives the smallest generalization

error (in other words, it ensures accurate future predictions). It

can be shown that the maximization of the margin corresponds

to the minimization of ||w|| (we usually minimize
‖𝑤‖

2
, which

derives in the same values of w but offers a simpler expression

of the solution to the optimization problem). Although it will

not be shown here, the path to solving this problem is through

the use of Lagrange multipliers.

Once the optimal hyperplane has been solved, the way in

which we classify new data points (spectra not seen in the

example dataset) is by evaluating the sign of the following

expression:

𝑦(𝑥) = ∑ 𝑎𝑖𝑦𝑖𝑥𝑖 · 𝑥 + 𝑏

𝑁

𝑖=1

,

where ai are the lagrangian multipliers. Those xi for which

the corresponding ai are non-zero will influence the outcome

of the prediction and are referred to as support vectors.

We have worked with the SVM implementation based on

the libsvm library [8] that can be found on the scikit-learn

Python package [9]. It technically is an implementation of the

soft-margin SVM algorithm [7], which includes a parameter C

that is set by the user and that enables the misclassification of

training datapoints in order to achieve a bigger margin.

We don’t know beforehand if our data is going to be

linearly separable, so it is important to introduce the concept

of a kernel. Kernels are functions that map the original dataset

into another feature space where the data might be linearly

separable. In this work we will be using the radial basis

function (RBF) and sigmoid kernels. We also refer to the linear

kernel as that in which no transformation is applied. These

kernels are also included on the SVM algorithm of the scikit-

learn package.

Neural networks, NN for short, [7] are a variety of methods

that perform well given non-linearly separable data. They can

be understood as a sequence of complex operations that is built

in a modular fashion using layers. The whole NN architecture

is parametrized by a large set of weights but, as opposed to

SVMs, the set of weights that define our NN is not found in an

analytical manner.

A fully connected neural network (FCNN) [7] is that in

which the main operation that is performed is matrix

multiplication. In this work we have used a slightly modified

version of the FCNN proposed by M. Chatzidakis et al. [5],

shown in Fig. (2).

FIG 2. Representation of the FCNN architecture. The sequence

of operations is from left to right, starting with a 300-dimensional

spectrum and ending in class probabilities after Softmax.

The orange layers are the weight matrices, and there are

some extra layers that represent different operations. The

activation function ReLu is a function defined as 𝑓(𝑥) =
max (0, 𝑥) and is performed elementwise on the resulting

matrix. Dropout sets random elements (with a probability set

by the user) on the matrix to zero as to prevent overfitting of

Treball de Fi de Grau 3 Barcelona, June 2021

the model (that is, to ensure the model doesn’t overperform on

the training set and underperforms on real test data). Batch

normalization normalizes the layer outputs by re-centering and

re-scaling. The Softmax function is the last operation

performed and transforms a numerical output that can take any

real value into a class probability (we would obtain a

probability corresponding to Fe+2
 oxidation state and another

probability for Fe+2Fe2
+3).

On the other hand, we also have worked with a

convolutional neural network (CNN) proposed by M.

Chatzidakis et al. [5] and shown in Fig. (3). CNNs are a more

complex form of NNs that perform well on image

classification tasks. The idea behind CNNs is that weights are

not arranged in a simple matrix but rather in convolutional

filters (also known as kernels, not to be confused with SVM

kernels), which are tensors that slide through the input

performing weighted multiplications.

FIG. 3 The CNN architecture of M. Chatzidakis et al. [5]. Only

the convolutional operations and the corresponding kernel sizes are

shown, but other operations are present. In our case, the last step is

modified such that only 2 class probabilities are outputted.

The ReLu, dropout, Softmax and batch normalization

operations are also present in the CNN architecture, with the

addition of average pooling, which takes the average value

over a window with arbitrary size. This has the effect of

reducing the input tensor dimension.

It is important to note that a NN architecture is arbitrary

and a great deal of trial-and-error is required in order to find a

good one.

While operating on the training dataset, class probabilities

will be computed and compared to the correct label. We can

then calculate an error or loss known as the categorical cross-

entropy loss function, which gives an idea on how accurate the

prediction for each class was:

𝐿𝑜𝑠𝑠 = −𝑦1 · log(𝑦̂1) − 𝑦2 · log (𝑦̂2)

where y is the one-hot encoded target value (eg. y = [0, 1]

if the target value is {1}, or the second possible oxidation state)

and ŷ is the predicted probability for each oxidation state.

Through the use of error backpropagation procedure, which

enables us to calculate how each individual weight influences

the final loss, we can calculate the direction of maximum error

decrease in the weight space. With a certain weight update

policy (also known as optimizer) the value of the weights will

be changed. This will be repeated many times, and given

sufficient training data, we will be able to approach a local

minimum of the loss function and its corresponding weights.

This weight-setting procedure is identical in both NN, and

results in what we call a trained neural network. To implement

neural networks, we have worked with the keras library [10].

III. RESULTS AND DISCUSSION

Given a random partition of our training dataset as 65%

destined to training the model and 35% to test it, the results

that we have obtained on the test dataset using an SVM can be

found on Table I. As previously stated, we have worked with

Lineal, RBF and Sigmoid kernels. We also have worked with

a slightly different procedure of solving an SVM model, which

is through Stochastic Gradient Descent (SGD). It is an

optimizer used in NN training, but it can also be used to solve

SVMs in a non-analytical manner.

Kernel
Best

parameters
Accuracy

Training

time (s)

Translation

accuracy
Noise accuracy

Lineal C = 1e5 0.94 ~5 0.55 0.52

RBF
C = 2714

γ = 10
0.97 ~8 0.61 0.60

Sigmoid

C = 1e5

γ = 0.1

Coef0 = 1.0

0.82 ~4 0.52 0.57

SGD - 0.8-0.9 <1 0.58 0.76

TABLE I: The best performing parameters for each kernel, the accuracies on the test dataset, the training time and the accuracies on

translated and noisy data. While the SGD model is included in the table along other kernels for ease of presentation, it is important to

note that it is not a kernel. The hyperplane solution for the SGD case is found in a numerical procedure similar to a NN.

Treball de Fi de Grau 4 Barcelona, June 2021

The “Best Parameters” column refers to those parameters

(the soft-margin SVM’s C and other parameters that are

kernel-specific) that perform the best. They are found through

a grid-search procedure, in which the user specifies a

parameter space to be explored, and all of their combinations

are used to build and test a model. An example of this is seen

in Fig. (4).

FIG 4. Grid-search for the RBF kernel. We plot the average 10 fold

cross-validation accuracy, which is the average accuracy tested on 10

different train-test splitting of the original dataset. The search space

consists of 8 C values and 11 γ values equally spaced in logarithmic

space. From this graph the optimal parameters can be extracted, and

are shown in Table I.

Apart from the test data accuracies, we also have tracked

the training time and the accuracies given randomly shifted

spectra and spectra with added gaussian noise, in order to study

the models robustness. Fig. (5) illustrates a comparison

between a normal spectrum and the same spectrum once we

apply a translation and gaussian noise.

FIG 5. From top to bottom: Comparison between the original

spectrum (in blue) and the noisy one (in orange). Comparison

between the original spectrum (in blue) and the shifted one (in

orange).

The results obtained with NN are found on Table II. FCNN

(1) and CNN (1) denote the architectures as proposed by M.

Chatzidakis et al. [5]. CNN (2) is the same architecture as CNN

(1) but with an increased probability of neuron dropout from

0.1 to 0.5. The reasoning behind this change was the

observation of a mismatch of the accuracy between training set

and test set. This and other useful insights as to how to tweak

the model can be extracted from looking at the evolution of

training and test accuracy with respect to the epochs (number

of iterations of the error minimization NN algorithm). We see

an example of this in Fig. (6).

As in the SVM implementation, we have tested the

accuracy in the normal test set, translated data and noisy data.

We have worked with both clean, fully pre-processed data

(‘Clean’) and data where PCA has not been applied (‘Raw’).

FIG 6. Train and test data accuracy with respect to epochs for the

CNN (1) model. We see a rapid convergence of the accuracies,

implying the optimizer (Adam, in our case) has worked properly on

finding a minimum. On the other hand, while a difference on

performance between the sets is to be expected, this big gap is a signal

that the model might be overfitting.

We see that SVMs (in particular with the application of the

RBF kernel) perform quite well on normal test data. We also

notice how quickly SGD can train our model, giving a good

accuracy. Nevertheless, accuracy drops considerably when we

manipulate the data, as seen in the translated and noisy dataset

(except for the noisy accuracy in the SGD case, which is

surprisingly high). The best SVM overall is therefore the RBF

kernel one.

Treball de Fi de Grau 5 Barcelona, June 2021

TABLE II: The accuracy for normal test data, translated data and

noisy data for the 3 models, trained in both raw and clean data. We

do not believe there is any value on applying gauss noise on already

noisy, raw data, so we have not tested the accuracy for this particular

case.

NNs perform worse on the normal test set, but considerably

outperform SVMs in the shifted dataset. This is because NNs

are capable of representing much more complex functions and

tend to pick on features (such as the one that gives it translation

invariancy) that SVMs are not as capable of. On the other

hand, NNs are harder to train, and simpler classification tasks

as the one corresponding to the normal test data is better suited

to simpler models. Regarding the noisy dataset, we find it

underperforms in certain models, but achieves similar results

in others. The best NN model overall is the CNN (2), with the

FCNN (1) not too far behind, both trained on clean data (as we

would expect).

IV. CONCLUSIONS

In this work we have demonstrated the capability of soft-

margin support vector machines of accurately determining the

oxidation state of iron from O-K edge and oxygen pre-peak

data. The best performance was achieved using the radial basis

function kernel. We have shown how neural networks perform

great when the data is manipulated through random shifts of

the spectra. The best neural network on this regard was a

convolutional neural network. Finally, we have seen some

difficulty on classifying noisy data from both machine learning

models. In conclusion, both the soft-margin SVM and NN

have proven to be powerful techniques on the task of

extracting useful features from the oxygen absorption edge

region of EELS spectra.

Acknowledgements

I would like to express my gratitude towards my advisors

Sònia Estradé and Daniel Del Pozo Bueno for the guidance and

continuous feedback during the development of this TFG. I

would also like to thank my parents for the support they have

always shown.

[1] R. F. Egerton, Electron energy-loss spectroscopy in the

electron microscope. Springer 2011.cit

[2] Colliex, C.; Manoubi, T.; Ortiz, C. Electron-energy-loss-

spectroscopy near-edge fine structures in the iron-oxygen

system. Phys. Rev. B, 44, 11402–11411 (1991).

[3] Varela, M. et al. Atomic-resolution imaging of oxidation

states in manganites. Phys. Rev. B, 79, 085117 (2009).

[4] del-Pozo-Bueno, D.; Peiró, F.; Estradé, S. Support vector

machine for EELS oxidation state determination.

Ultramicroscopy, 221, 113190 (2021).

[5] Chatzidakis, M.; Botton, G.A. Towards calibration-

invariant spectroscopy using deep learning. Sci. Rep., 9, 2126

(2019).

[6] Cueva, P.; Hovden, R.; Mundy, J.A.; Xin, H.L., Muller,

D.A. Data processing for atomic resolution electron energy

loss spectroscopy, Microsc. Microanal., 18 (4), 667–675

(2012).

[7] Christopher M. Bishop Pattern Recognition and Machine

Learning. Springer 2006.

[8] Chang, C. C.; Lin, C. J. LIBSVM: a library for support

vector machines. ACM Transactions on Intelligent Systems

and Technology, 2, 1-27, (2011).

http://www.csie.ntu.edu.tw/~cjlin/libsvm

[9] Pedregosa et al. Scikit-learn: Machine Learning in Python.

JMLR, 12, p2825-2830, (2011). https://scikit-learn.org/stable/

[10] Chollet, F.; et al. Keras (2015). https://keras.io

Architecture
Training

dataset
Accuracy

Translation

accuracy

Noise

accuracy

CNN (1)
Clean 0.62 0.77 0.49

Raw 0.73 0.71 x

FCNN (1)
Clean 0.81 0.65 0.68

Raw 0.70 0.59 x

CNN (2)
Clean 0.86 0.85 0.61

Raw 0.72 0.70 x

http://www.csie.ntu.edu.tw/~cjlin/libsvm
https://scikit-learn.org/stable/
https://keras.io/

