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Abstract: In this work we test machine learning tools such as the Support Vector Machine algorithm and neural 

network models on the task of Electron Energy-Loss Spectroscopy (EELS) spectra classification. Given many sample 

spectra of EELS applied on wüstite and magnetite nanocubes, we train both models to determine the oxidation state 

of iron. We show that SMV exhibits a good performance on classifying clean data, and we demonstrate the capability 

of neural networks of producing robust results given shifted data.

 

I. INTRODUCTION 

Electron Energy Loss Spectroscopy (EELS) [1] is a 

spectroscopic technique based on measuring the energy lost by 

the electrons that pass through a given nanomaterial. It is a 

very useful technique to study a whole array of properties of a 

material at a nanometric scale, such as its thickness, optical 

response, band structure and interband transitions, elemental 

composition, bonding and oxidation state and distribution of 

near neighboring atoms.  

 

The features that are present in EELS spectra are caused by 

inelastic scattering events of the sample nanomaterial with 

incoming electrons. An EELS spectrum can be divided into a 

low-loss region (low values of energy loss, from 0 eV to about 

50-100 eV) and core-loss region (up to several keV of energy 

loss).  In the low-loss region we find high intensity peaks such 

as the zero loss peak and the plasmon peak, from which we can 

extract the specimen thickness and the characteristic resonance 

frequency of the conduction band electrons, respectively. In 

the core-loss region we find lower intensity features, showing 

the characteristic atomic transition energy, the energy-loss 

near edge structure (ELNES), which is the fine structure that 

appears in a region of a few eVs near the absorption edges of 

the studied material and that are related to local bonding 

effects; and the extended energy loss fine structure (ExELFS) 

for a given edge, from which we can extract the composition, 

the bonding and oxidation state and the distribution of near 

neighboring atoms, respectively. These absorption edges arise 

from the required energy for an inner atomic electron to jump 

to an excited level.   

 

A typically characterized material in EELS experiments is 

transition metal oxides. Transition metals are defined as 

elements having a partially filled d sub-shell, or which can give 

rise to cations with an incomplete d sub-shell. They are located 

on the d-block of the periodic table. A characteristic of 

transition metals is that they exhibit two or more oxidation 

states, such as the oxidation states +2 and +3 for iron (Fe). In 

the case of transition metals oxides, we find in the core-loss 

region of its EELS spectrum the oxygen K-edge and L2 and L3 

lines absorption edges (also known as white lines). As a part 

of the O K edge ELNES, we find a narrower intensity edge, 

the oxygen pre-peak.  

 

It is useful to find the oxidation states of the transition 

metals in order to identify the different type of oxides, which 

will present different material properties. There are many 

approaches to the extraction of oxidation states from the EELS 

spectrum, such as, the calculation of the ratio of the L3 to L2 

white lines, the measurement of the energy separation between 

the oxygen pre-peak and the main peak in the oxygen K-edge 

or the detailed analysis of the ELNES of any of the absorption 

edges [1, 2, 3]. 

 

Furthermore, it is important to note that EELS experiments 

generate large amounts of spectra, so it has become crucial to 

find new methods to analyse the resulting information quickly 

and precisely. For this reason, and to solve the problem of the 

determination of oxidation states, several Machine Learning 

(ML) tools have been proposed. One of these tools is Support 

Vector Machines (SVM), which were used by D. del-Pozo-

Bueno et al. [4] to accurately predict the oxidation states of 

iron and manganese oxides from the ELNES of the white lines 

of the transition metals. Another ML strategy is to use neural 

networks as done by M. Chatzidakis et al. [5], where different 

neural network architectures were tested on the task of 

manganese oxide classification, also focusing on the energy 

regions of the EELS spectrum where the white lines are found.  

 

In this work we will study the reliability and robustness of 

both SVMs and neural networks in the determination of the 

oxidation state of iron through the analysis of the ELNES of 

the oxygen K-edge and the oxygen pre-peak in iron oxides. We 

will be classifying iron oxide data corresponding to wüstite 

(FeO, oxidation state Fe+2) and magnetite (Fe3O4, oxidation 

state Fe+2Fe2
+3). 

II. METHODS 

 Machine learning models are mathematical models that 

can predict the label or class of a given object. This prediction 

takes place after the model has been exposed to many 

examples of related objects (known as the training dataset) and 

has extracted useful features for future predictions. ML models 

can be classified into supervised (the training dataset has been 

previously labelled either by a human or another model) and 

unsupervised (the training dataset is unlabelled). In this work 

we use two supervised learning models: SVMs and neural 

networks.  

 

Our training dataset consists of 11691 iron oxide EELS 

spectra. Before implementing any model though, the dataset 

must be pre-processed so as to facilitate classification. 

Originally, we have a (2D) image with atomic resolution that 

spans across the whole nanomaterial, with an EELS spectrum 

associated to every pixel. First of all, the bundle of spectra is 

all de-noised through the PCA algorithm [6], which 

decomposes an input vector into many components and weeds 

out the low-variance ones (related to noise signal). Then 2-

class K-means clustering is performed onto the image to 
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extract the background (in other words, the data corresponding 

to an electron beam that has missed or only partially interacted 

with the material is discarded). Given our data comes from 

different sample material and the calibration of the tooling is 

not reliable, the next step is to align the spectra with a reference 

peak (in our case the oxygen pre-peak located at 530 eV). We 

then crop the part of the spectra that we will be using (ELNES 

of oxygen K-edge and oxygen pre-peak) and remove a signal 

component derived from electrons that follow a power-law. 

Spikes, which are abrupt peaks caused by misfirings of the 

sensor’s pixels, are eliminated through interpolation. The last 

step is normalization, and it is very important since absolute 

intensity is related to the sample thickness, and this is not a 

feature we want our model to pick on. The resulting spectra is 

30 eV wide and it is fitted to a 300 channel histogram 

(presenting a dispersion of 0.1 eV per channel) resulting on 

300-dimensional vectors. An example spectrum present on our 

dataset can be seen in Fig. (1). 

 

 

 

 

 

 

 

 

 

 

 

 
FIG 1. EELS spectrum for wüstite, cropped to the O K edge 

region. The red dotted line is the energy at which the spectra are 

aligned and where the oxygen pre-peak is found. 

 

A Support-Vector Machine, SVM for short, [7] classifies 

n-dimensional datapoints through the use of an n-dimensional 

hyperplane that divides the feature space in halves. Therefore, 

it is well suited for linearly separable, binary labelled data 

(only 2 classes of data). The hyperplane is defined by its 

normal vector w and its bias b, and it must satisfy the following 

condition for all N xi vectors of the training dataset x (we 

denote yi as the label of the xi datapoint). 

 

{
𝑤 · 𝑥𝑖 + 𝑏 > 0     𝑖𝑓 𝑦𝑖 = +1
𝑤 · 𝑥𝑖 + 𝑏 < 0     𝑖𝑓 𝑦𝑖 =  −1

 

 

Thus, the hyperplane must accurately classify all examples 

from the training dataset. While there are a set of values for w 

and b that satisfy this condition, the idea behind SVM is to 

choose those values that achieve the greatest margin, which is 

defined to be the smallest distance from the hyperplane to any 

of the training datapoints. From an intuitive point of view, the 

maximization of the margin gives the smallest generalization 

error (in other words, it ensures accurate future predictions). It 

can be shown that the maximization of the margin corresponds 

to the minimization of ||w|| (we usually minimize 
‖𝑤‖

2
, which 

derives in the same values of w but offers a simpler expression 

of the solution to the optimization problem). Although it will 

not be shown here, the path to solving this problem is through 

the use of Lagrange multipliers.  

 

Once the optimal hyperplane has been solved, the way in 

which we classify new data points (spectra not seen in the 

example dataset) is by evaluating the sign of the following 

expression: 

𝑦(𝑥) = ∑ 𝑎𝑖𝑦𝑖𝑥𝑖 · 𝑥 + 𝑏

𝑁

𝑖=1

, 

where ai are the lagrangian multipliers. Those xi for which 

the corresponding ai are non-zero will influence the outcome 

of the prediction and are referred to as support vectors.  

 

We have worked with the SVM implementation based on 

the libsvm library [8] that can be found on the scikit-learn 

Python package [9]. It technically is an implementation of the 

soft-margin SVM algorithm [7], which includes a parameter C 

that is set by the user and that enables the misclassification of 

training datapoints in order to achieve a bigger margin. 

 

We don’t know beforehand if our data is going to be 

linearly separable, so it is important to introduce the concept 

of a kernel. Kernels are functions that map the original dataset 

into another feature space where the data might be linearly 

separable. In this work we will be using the radial basis 

function (RBF) and sigmoid kernels. We also refer to the linear 

kernel as that in which no transformation is applied. These 

kernels are also included on the SVM algorithm of the scikit-

learn package. 

 

Neural networks, NN for short, [7] are a variety of methods 

that perform well given non-linearly separable data. They can 

be understood as a sequence of complex operations that is built 

in a modular fashion using layers. The whole NN architecture 

is parametrized by a large set of weights but, as opposed to 

SVMs, the set of weights that define our NN is not found in an 

analytical manner.  

 

A fully connected neural network (FCNN) [7] is that in 

which the main operation that is performed is matrix 

multiplication. In this work we have used a slightly modified 

version of the FCNN proposed by M. Chatzidakis et al. [5], 

shown in Fig. (2). 

 

 
FIG 2. Representation of the FCNN architecture. The sequence 

of operations is from left to right, starting with a 300-dimensional 

spectrum and ending in class probabilities after Softmax. 
 

The orange layers are the weight matrices, and there are 

some extra layers that represent different operations. The 

activation function ReLu is a function defined as 𝑓(𝑥) =
max (0, 𝑥) and is performed elementwise on the resulting 

matrix. Dropout sets random elements (with a probability set 

by the user) on the matrix to zero as to prevent overfitting of 
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the model (that is, to ensure the model doesn’t overperform on 

the training set and underperforms on real test data). Batch 

normalization normalizes the layer outputs by re-centering and 

re-scaling. The Softmax function is the last operation 

performed and transforms a numerical output that can take any 

real value into a class probability (we would obtain a 

probability corresponding to Fe+2
 oxidation state and another 

probability for Fe+2Fe2
+3). 

 

On the other hand, we also have worked with a 

convolutional neural network (CNN) proposed by M. 

Chatzidakis et al. [5] and shown in Fig. (3). CNNs are a more 

complex form of NNs that perform well on image 

classification tasks. The idea behind CNNs is that weights are 

not arranged in a simple matrix but rather in convolutional 

filters (also known as kernels, not to be confused with SVM 

kernels), which are tensors that slide through the input 

performing weighted multiplications.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIG. 3 The CNN architecture of M. Chatzidakis et al. [5]. Only 

the convolutional operations and the corresponding kernel sizes are 

shown, but other operations are present. In our case, the last step is 

modified such that only 2 class probabilities are outputted.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The ReLu, dropout, Softmax and batch normalization 

operations are also present in the CNN architecture, with the 

addition of average pooling, which takes the average value 

over a window with arbitrary size. This has the effect of 

reducing the input tensor dimension. 

 

It is important to note that a NN architecture is arbitrary 

and a great deal of trial-and-error is required in order to find a 

good one.  

 

While operating on the training dataset, class probabilities 

will be computed and compared to the correct label. We can 

then calculate an error or loss known as the categorical cross-

entropy loss function, which gives an idea on how accurate the 

prediction for each class was: 

 

𝐿𝑜𝑠𝑠 =  −𝑦1 · log(𝑦̂1) −  𝑦2 · log (𝑦̂2) 

 

where y is the one-hot encoded target value (eg. y = [0, 1] 

if the target value is {1}, or the second possible oxidation state) 

and ŷ is the predicted probability for each oxidation state. 

Through the use of error backpropagation procedure, which 

enables us to calculate how each individual weight influences 

the final loss, we can calculate the direction of maximum error 

decrease in the weight space. With a certain weight update 

policy (also known as optimizer) the value of the weights will 

be changed. This will be repeated many times, and given 

sufficient training data, we will be able to approach a local 

minimum of the loss function and its corresponding weights. 

This weight-setting procedure is identical in both NN, and 

results in what we call a trained neural network. To implement 

neural networks, we have worked with the keras library [10]. 

III. RESULTS AND DISCUSSION 

Given a random partition of our training dataset as 65% 

destined to training the model and 35% to test it, the results 

that we have obtained on the test dataset using an SVM can be 

found on Table I. As previously stated, we have worked with 

Lineal, RBF and Sigmoid kernels. We also have worked with 

a slightly different procedure of solving an SVM model, which 

is through Stochastic Gradient Descent (SGD). It is an 

optimizer used in NN training, but it can also be used to solve 

SVMs in a non-analytical manner.  

 

 

 

 

 

 

Kernel 
Best 

parameters 
Accuracy 

Training 

time (s) 

Translation 

accuracy 
Noise accuracy 

Lineal C = 1e5 0.94 ~5 0.55 0.52 

RBF 
C = 2714 

γ = 10 
0.97 ~8 0.61 0.60 

Sigmoid 

C = 1e5 

γ = 0.1 

Coef0 = 1.0 

0.82 ~4 0.52 0.57 

SGD - 0.8-0.9 <1 0.58 0.76 

TABLE I: The best performing parameters for each kernel, the accuracies on the test dataset, the training time and the accuracies on 

translated and noisy data. While the SGD model is included in the table along other kernels for ease of presentation, it is important to 

note that it is not a kernel. The hyperplane solution for the SGD case is found in a numerical procedure similar to a NN. 
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The “Best Parameters” column refers to those parameters 

(the soft-margin SVM’s C and other parameters that are 

kernel-specific) that perform the best. They are found through 

a grid-search procedure, in which the user specifies a 

parameter space to be explored, and all of their combinations 

are used to build and test a model. An example of this is seen 

in Fig. (4). 

 

FIG 4. Grid-search for the RBF kernel. We plot the average 10 fold 

cross-validation accuracy, which is the average accuracy tested on 10 

different train-test splitting of the original dataset. The search space 

consists of 8 C values and 11 γ values equally spaced in logarithmic 

space. From this graph the optimal parameters can be extracted, and 

are shown in Table I. 

 

Apart from the test data accuracies, we also have tracked 

the training time and the accuracies given randomly shifted 

spectra and spectra with added gaussian noise, in order to study 

the models robustness. Fig. (5) illustrates a comparison 

between a normal spectrum and the same spectrum once we 

apply a translation and gaussian noise. 

FIG 5. From top to bottom: Comparison between the original 

spectrum (in blue) and the noisy one (in orange). Comparison 

between the original spectrum (in blue) and the shifted one (in 

orange). 

 

 

The results obtained with NN are found on Table II. FCNN 

(1) and CNN (1) denote the architectures as proposed by M. 

Chatzidakis et al. [5]. CNN (2) is the same architecture as CNN 

(1) but with an increased probability of neuron dropout from 

0.1 to 0.5. The reasoning behind this change was the 

observation of a mismatch of the accuracy between training set 

and test set. This and other useful insights as to how to tweak 

the model can be extracted from looking at the evolution of 

training and test accuracy with respect to the epochs (number 

of iterations of the error minimization NN algorithm). We see 

an example of this in Fig. (6). 

 

As in the SVM implementation, we have tested the 

accuracy in the normal test set, translated data and noisy data. 

We have worked with both clean, fully pre-processed data 

(‘Clean’) and data where PCA has not been applied (‘Raw’). 

 

FIG 6. Train and test data accuracy with respect to epochs for the 

CNN (1) model. We see a rapid convergence of the accuracies, 

implying the optimizer (Adam, in our case) has worked properly on 

finding a minimum. On the other hand, while a difference on 

performance between the sets is to be expected, this big gap is a signal 

that the model might be overfitting.  

 

We see that SVMs (in particular with the application of the 

RBF kernel) perform quite well on normal test data. We also 

notice how quickly SGD can train our model, giving a good 

accuracy. Nevertheless, accuracy drops considerably when we 

manipulate the data, as seen in the translated and noisy dataset 

(except for the noisy accuracy in the SGD case, which is 

surprisingly high). The best SVM overall is therefore the RBF 

kernel one. 
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TABLE II: The accuracy for normal test data, translated data and 

noisy data for the 3 models, trained in both raw and clean data. We 

do not believe there is any value on applying gauss noise on already 

noisy, raw data, so we have not tested the accuracy for this particular 

case. 
 

NNs perform worse on the normal test set, but considerably 

outperform SVMs in the shifted dataset. This is because NNs 

are capable of representing much more complex functions and 

tend to pick on features (such as the one that gives it translation 

invariancy) that SVMs are not as capable of. On the other 

hand, NNs are harder to train, and simpler classification tasks 

as the one corresponding to the normal test data is better suited 

to simpler models. Regarding the noisy dataset, we find it 

underperforms in certain models, but achieves similar results 

in others. The best NN model overall is the CNN (2), with the 

FCNN (1) not too far behind, both trained on clean data (as we 

would expect). 

IV. CONCLUSIONS 

In this work we have demonstrated the capability of soft-

margin support vector machines of accurately determining the 

oxidation state of iron from O-K edge and oxygen pre-peak 

data. The best performance was achieved using the radial basis 

function kernel. We have shown how neural networks perform 

great when the data is manipulated through random shifts of 

the spectra. The best neural network on this regard was a 

convolutional neural network. Finally, we have seen some 

difficulty on classifying noisy data from both machine learning 

models. In conclusion, both the soft-margin SVM and NN 

have proven to be powerful techniques on the task of 

extracting useful features from the oxygen absorption edge 

region of EELS spectra. 
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dataset 
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CNN (1) 
Clean 0.62 0.77 0.49 

Raw 0.73 0.71 x 
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CNN (2) 
Clean 0.86 0.85 0.61 

Raw 0.72 0.70 x 
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