
Fluctuation-dissipation theorem with applications in the electromagnetic field

Author: Joan Salas Llabrés.
Facultat de F́ısica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Catalunya, PPCC.∗

Advisor: Agust́ı Pérez Madrid

Abstract: Not so far from equilibrium, a powerful relation exists between the dissipation of
energy (or equivalently entropy production) of a given system out of equilibrium and its fluctuations.
Moreover, dissipation is nothing but a measure of how intrinsic randomness and chaos affect the
transport properties of a system out of equilibrium. This relation is manifested in the fluctuation-
dissipation theorem (FDT), which is derived here, along with its quantum extension and an overview
of the theory of linear response. The quantum version permits a way to understand its application
to electromagnetic radiation (radiative heat transfer and an attractive force at the nanoscale), and
will show how fluctuations of the electromagnetic field persist even at zero temperature.

I. INTRODUCTION

The fluctuation-dissipation theorem is ubiquitous in
non-equilibrium statistical physics as well as the partition
function is in equilibrium statistical thermodynamics.
Roughly speaking, the FDT relates response functions
of a thermodynamic system to its equilibrium proper-
ties. Hence, in the sense that it yields a relation between
energy fluctuations and the heat capacity, one could say
that Einstein’s theory of fluctuations already offers us
an earliest version of the FDT. After this, it followed
Nyquist result relating voltage fluctuations and the re-
sistance of a conductor [1]. Nyquist result was general-
ized by Callen and Welton [2] to establish the relation
between instantaneous equilibrium fluctuations and the
response to a driving force.

Fluctuations are caused by perturbations of the given
equilibrium system, and they originate from internal and
external constraints, like the presence of a heat bath,
that thermally excites the constituents; or external ran-
dom forces as random electromagnetic fields (a case we
will deal with in the applications). We will show that
the behaviour of these fluctuations can be modelled by
random fields, and it is just the statistical correlation of
this random field with itself at different times that con-
stitute the FDT. Moreover, from the extension of the
theorem to quantum mechanics, we will see how even in
vacuum itself there are fluctuations, due to the existence
of a zero-point energy which persists in the fundamental
state, i.e. in zero temperature.

Historically, the natural framework of approach to this
problem is Brownian motion, that is, the erratic mo-
tion of, for example, pollen grains in a liquid medium.
Langevin was the first to relate macroscopic motion, with
Newton’s laws on one hand; and microscopic random
forces, on the other, in a mesoscopic point of view that
constituted the basis of the theory of stochastic processes.
Then, the Brownian motion can be understood as the
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continuous relaxation of the velocity of the mesoscopic
particle, which diffuses through the chaotic and inces-
sant impacts with the other particles of the medium, be-
ing their random motion a consequence of the molecular
chaos. The response function of the Brownian particle,
the mobility, is computed with the aid of the FDT, lead-
ing to a Green-Kubo -like relation involving the velocity
correlation function. Thus, a useful application of the
FDT is that it allows one to compute and understand
the transport coefficients of very different systems.

This article is structured as follows: in section II we
will derive the FDT from the Generalized Langevin equa-
tion along with an overview of the theory of linear re-
sponse. In section III we will deal with how to apply
this results to electromagnetic radiation in a system of
charges, deriving the quantum extension of the FDT.
Finally in section IV we will provide the final remarks
and conclusions about this fundamental problem in mod-
ern physics. An appendix is added with a description of
the probability distribution of the Gaussian noise (which
models the random field) in terms of functionals.

II. FLUCTUATION-DISSIPATION THEOREM

A. Classical derivation of the
fluctuation-dissipation theorem through generalized

Langevin equation (GLE)

Intuitively one could think of the motion of the Brow-
nian particle as modelled by a Newtonian equation in
which the erratic motion is caused by a random force
field F (t). In the majority of applications there is also
an external deterministic field (gravity, in sedimentation
of particles; or electromagnetic) that drives the motion
of the particle and results in friction −γv(t), a resistive
force which will turn out to be due to the multiple im-
pacts with the surrounding particles.

Friction corresponds to the viscous drag B = 1/γ, the
drift velocity acquired by the particle due to the unit
external force. So, the response of the particle to the
incessant collisions is reflected in a systematic part, the
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friction force for the forced motion, as well as the ran-
dom force that originates the stochastic trajectory, which
of course averages to zero after long times in statistical
thermal equilibrium [4]. Additionally in a first approxi-
mation, the nature of the random field is independent of
the presence of the external field [4] (linear effect), but
results in friction. Then the connection between the re-
sponse of a given system to an external disturbance (like
friction) and the internal fluctuation of the system in ab-
sence of the disturbance will be given by FDT [4].

Proceeding as in Ref. [5] and [6], it is clear that in
Langevin’s original approach, friction is modelled by the
classical term −γv(t). This corresponds to an instanta-
neous response of the surrounding fluid to the changes in
the coordinates of the mesoscopic particle. A more real-
istic description needs the friction to have some memory,
as the fluid itself has a given inertia and depends on the
motion of the particle in the past (from the time it was
put in contact with the thermal bath) [5].

In general one can now consider a system which can be
characterized by two coupled Brownian degrees of free-
dom α(t) and β(t):

dα

dt
= β(t) (1)

dβ

dt
= −

∫ t

−∞
K(t− t′)β(t′) dt′ +X(t) + F (t) (2)

This last equation is the generalized or retarded
Langevin equation (GLE), as it contains the retarded na-
ture of the friction through the memory kernel K(t); an
external systematic force X(t) is also considered. Tak-
ing into account the Central Limit theorem, the random
force F (t) corresponds to a stationary stochastic process
with zero mean, a Gaussian and Markovian process. We
assume as an hyphothesis:

〈β(0)F (t)〉 = 0 (3)

The solution for the velocity can be obtained by using
Laplace transforms:

β(t) = β(0)R(t) +

∫ t

0

R(t− t′)[X(t′) + F (t′)] dt′ (4)

where we have introduced the memory function R(t) =

L−1

[
1

s+ K̃(s)

]
. Now the contribution of the external

field can be embedded into the dynamical variable β re-
defining it as a purely diffusive process (without any ex-
ternal driving field):

β̃(t) = β(t)−
∫ t

0

R(t− t′)X(t′) dt′ (5)

which satisfies the equality:

β̃(t) = β̃(0)R(t) +

∫ t

0

R(t− t′)F (t′) dt′ (6)

For the FDT, we are trying to find a relationship be-
tween the autocorrelation function of the stochastic field
〈F (t′)F (t)〉 ≡ CF (t, t′) = CF (t− t′) (assuming stationar-
ity) and the memory kernel K(t). Let us notice that:

〈(β̃(t)− β̃(0)R(t))2〉 =

=

∫ t

0

dτ

∫ t

0

dτ ′R(τ)R(τ ′)CF (τ ′ − τ) (7)

And also:

〈(β̃(t)− β̃(0)R(t))2〉 =

= 〈β̃2(t)〉+ 〈β̃2(0)〉R(t)− 2R(t)〈β̃(0)β̃(t)〉 (8)

Both expressions are nothing but the variance of
the random variable β̃(t), i.e. its deviations from the
averaged-equilibrium value, which considers the evolu-
tion only deterministic. Being the random process Gaus-
sian and Markovian, we are only concerned with its sec-
ond moment. If the system is in statistical thermal equi-
librium, one can substitute the averages of the velocity
β̃(t) for the equipartition theorem value kBT and make
use of the result (8):

〈(β̃(t)− β̃(0)R(t))2〉 = (1−R(t)2)kBT (9)

To obtain this, the equality
〈β̃(0)β̃(t)〉
〈β̃(0)2〉

= R(t) has

also been used, obtained from the generalized velocity
equation (6). Using (7) we finally get:

kBT (1−R(t)2) =

∫ t

0

dτ

∫ t

0

dτ ′R(τ)R(τ ′)CF (τ ′ − τ)

(10)
Now we can derive with respect to t both sides of this

last expression. On one hand we get for the left side:

d[kBT (1−R(t)2)]

dt
= −2kBTR(t)

dR

dt
=

= −2kBT
R(t)

〈β̃2(0)〉

〈
β̃(0)

d

dt
β̃(t)

〉
(11)

where the average is over the stationary noise, so the
time derivative can be put into it. Now making use of
the GLE to render the derivative of β(t) we have:
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d[kBT (1−R(t)2)]

dt
= 2kBTR(t)

∫ t

0

K(t− s)R(s) ds

(12)
On the other hand, the time derivative of the right

side of (10) can be computed using the Leibniz’s formula
for differentiating integrals that depend on parameters,
giving [3]:

d

dt

[∫ t

0

dτ

∫ t

0

dτ ′R(τ)R(τ ′)CF (τ ′ − τ)

]
=

= 2R(t)

∫ t

0

R(τ)CF (t− τ) dτ (13)

Comparing (12) with (13) gives, for any value of the
time integration variable:

kBTK(t) = CF (t) = 〈F (0)F (t)〉 (14)

which is known as the second fluctuation-dissipation
theorem for the generalized Langevin equation. It re-
lates the internal thermal fluctuations of an equilibrium
quantity of the system, characterized by a correlation
function, to the dissipative process connected to it, char-
acterized by the response function K(t) [3], [4], as we
stated in the introduction. It is also remarkable that the
GLE naturally deals with coloured noise [5], that is, the
time dependence of the friction introduces an spectrum
of frequencies to the autocorrelation function (somewhat
form of the Wiener-Khintchine theorem [3]). Obviously,
an instantaneous friction kernel K(t) = γδ(t) recovers
the more common form of the Langevin equation.

B. Linear response

In the first subsection the effect of the external field
which drives the system from one equilibrium state to
another was not fully taken into account but absorbed
into β̃(t). Now one can deal with its effects in some
dynamical variable xj(t) of the system (analogous to
α(t)), which will accordingly fluctuate from the equilib-
rium value due to the application of a generalized field
Xj(t) as δxj(t) = xj(t)− 〈xj〉 . In this way we can write
the interaction Hamiltonian for a small perturbation [8]:

δH(t) = −cjxjXj(t) (15)

which expresses the coupling between the perturba-
tion and the significant fluctuating quantity (generalized
displacement) xj , proper to systems not far from equi-
librium. Later on (15) will be taken into account when
dealing with the electromagnetic field.

Proceeding as in Ref. [9], in statistical mechanics we
can deal with the evolution of the quantities describing an
ensemble of systems by means of the known distribution
ρ at t = 0. Then the expectation value of the dynamical
variable xj(t), which is determined by the phase space
coordinates denoted [rN (t);pN (t)] ≡ s, will be given at
later time by:

xj(s, t) =

∫
ρ(s)xj(s, t) ds∫

ρ(s)ds
(16)

In view of the applications, one shall consider now the
special case of a field F (t) switched off at t = 0 from
a constant value in the past. It is remarkable to notice
that the system is in equilibrium with the applied per-
turbation, so one can deal here with the relaxation of
the system from one equilibrium state to the other, ex-
periencing a change of inertia. Considering the canonical
equilibrium distribution for the particles prior to the re-
laxation, with H(t) = H0 + δH(t) the total Hamiltonian,
and being the perturbation small, one has:

ρ(t) ∝ e−[H0+δH]/kBT = ρ0e
−δH/kBT =

= ρ0

[
1− 1

kBT
δH +O(δH)2

]
(17)

where ρ0 is the distribution function of the “equilib-
rium” state, i.e. the unperturbed one. With this equa-
tion in mind, the expectation value of the dynamical vari-
able (16) reads:

xj(t) = 〈xj〉−β[〈δHxj(t)〉−〈xj(t)〉〈δH〉]+O(δH)2 (18)

where 〈〉 denotes the average for the unperturbed state.

After rearranging, we can take into account δxj(t) =

xj(t)− 〈xj〉 and due to the time-translational invariance
of the Hamiltonian, we can take t = 0, when the pertur-
bation stops. And thus, we obtain:

δxj(t) = βcjXj [〈xj(0)xj(t)〉 − 〈xj(0)〉〈xj(t)〉] (19)

The term in brackets is nothing but the component
(0, t) of the covariance tensor for the generalized displace-
ment, that can be written as:

δxj(t) = βcjXj〈δxj(0)δxj(t)〉 (20)

This result equates the time dependence of the decay
of a prepared perturbation to the time dependence of
the autocorrelation function in the unperturbed system,
which can be interpreted as a response function. Now,
for a general F (t), an according relationship shall be ex-
pected between the response or susceptibility function
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and the deviations due to the external field. The linear
response now states:

δxj(t) =

∫ ∞
−∞

χjk(t, t′)Xk(t′) dt′ (21)

as in [9] and [10]. χjk(t, t′) has the important property
of stationariety. Combining this with the expression for
the step function field turned off at t′ = 0 we arrive at
the classical Kubo expression [9]:

χjk(t) = − 1

kBT
Θ(t)

d

dt
〈δxk(0)δxj(t)〉 (22)

where the Heaviside step function Θ(t) is introduced
to ensure causality (χjk(t) = 0 for t < 0) [10].

III. APPLICATIONS. ELECTROMAGNETIC
RADIATION

A. Quantum extension

In view of an interesting and practical application of
FDT we will consider next, we shall give its quantum ex-
tension, as to apply it to a collection of charged particles
in equilibrium with a thermal bath where the action of
an electromagnetic field is considered. This perturbation
drives the charges locally out of equilibrium, provoking
both charge and current fluctuations, exciting fluctuating
multipoles. Note that the relaxation due to the external
driving field adds an extra source of fluctuations to the
system, besides the thermal origin.

These fluctuations in turn induce a stochastic elec-
tric field which interacts with the multipoles and closes
the circle. In first approximation we will consider
only dipoles, being the interaction Hamiltonian δH =
−µ(s, t)E(t), as in (15). So, in computing the contri-
bution to the force acting on a polarizable particle, as
Novotny presents, it should be considered that both field
and dipole moment have fluctuating and induced parts
[10].

〈F (r0)〉 = 〈µ(in)
i (t)∇E(fl)

i (r0, t)〉+ 〈µ(fl)
i (t)∇E(in)

i (r0, t)〉
(23)

As it is clear from equilibrium statistical mechanics,
due to the external perturbation E(r, t) the instanta-
neous expectation value of the dipole moment will de-
viate from its equilibrium average δµ = µ − 〈µ〉, as in
last section. So it plays the role of the random field in
our framework (or better said, it is a stochastic process
caused by the random force exerted on the system) and
we could expect that its correlation will be related to
some dissipative property. According to the linear re-
sponse theory we just developed, i.e. assuming a small
deviation that depends linearly on the external pertur-
bation, (21) adopts the form [10]:

δµj(t) =
1

2π

∫ t

−∞
α̃jk(t− t′)Ek(t′) dt′ (24)

With α̃jk(t− t′) the polarizability that expresses, like
in the GLE framework, that the system does not respond
instantaneously to the perturbation. From here, follow-
ing previous procedures we can arrive at an equivalent
Kubo expression (22) [10]:

α̃jk(t) = − 2π

kBT
Θ(t)

d

dt
〈δµk(0)δµj(t)〉 (25)

This is often referred as the time-domain FDT, and it
states that the system’s response to a weak external field
can be expressed in terms of the system’s fluctuation of
the equilibrium state, i.e. in absence of the external field
[10] (recall that the average is computed using the equi-
librium distribution). Furthermore, it is more practical
to express the theorem in the frequency domain, for it
we can use the Fourier transform of the above quantities
and the Wiener-Khintchine theorem, which connects the
time autocorrelation function to its power spectrum for
a random process (see [3] for more detail and discussion
on the theorem). We obtain [10]:

[αjk(ω)−α∗jk(ω)]δ(ω−ω′) =
2πiω

kBT
〈δµ̂j(ω)δµ̂k(ω′)〉 (26)

The spectral representation of the FDT, valid in clas-
sical mechanics. Now we should take into account the
fact that, according to quantum mechanics, the modes
of oscillation can only assume discrete energy values; so
the continuous average energy per degree of freedom kBT
(as expressed by the equipartition theorem) should be re-

placed by
~ω

exp (~ω/kBT )− 1
+ ~ω, which corresponds to

the mean energy of the quantum oscillator plus the zero-
point energy, respectively [10]. Substituting into (26)
renders:

〈δµ̂j(ω)δµ̂k(ω′)〉 =

=
1

2πiω

[
~ω

1− e−~ω/kBT
[αjk(ω)− α∗jk(ω)]

]
δ(ω − ω′)

(27)
the quantum version of the FDT. Notice that purely

quantum fluctuations of the electromagnetic field are al-
lowed at zero temperature.

Furthermore, (27) can be generalized for a fluctuating
current density in an isotropic and homogeneous medium
with dielectric complex constant ε(ω) = ε′ + iε′′ [10]:

〈δĵj(r, ω)δĵk(r′ω′)〉 =

=
ωε0
π
ε′′(ω)

[
~ω

1− e−~ω/kBT

]
δ(ω−ω′)δ(r−r′)δjk. (28)
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B. Molecular attractive forces and radiative heat
transfer

The result of charge and current correlations create a
fluctuating electromagnetic field that mediate in between
neutral bodies in the nanoscale, giving rise to dispersion
forces and radiative heat transfer between them when the
spacing is comparable to the wavelength of the dominant
vacuum fields involved. Novotny and Hecht provide an
overview of this effects in the case of the force between
two little polarizable particles (the Van der Waals and
Casimir forces) and the dissipation of energy by a body
made up of these fluctuating point sources, and reaches
the Planck blackbody formula [10].

Lifshitz, along with Polder and Van Hove, respectively
in [11] and [12] derived the expressions for the general
case of two different bulk materials at an arbitrary tem-
perature (the same for both bodies in the first) with the
aid of the FDT. In both ideal scenarios thermal equi-
librium of the sources of the individual bodies (charges)
with the electromagnetic radiation field is required, as it
is the case for closed systems.

On account of this, the authors proceed in a purely
macroscopic fashion [11], adding to Maxwell’s equations
an inhomogeneous extra term for the thermally fluctu-
ating currents. This gives rise to a local stochastic elec-
tric field [10], analogous to the random field in the GLE
framework. The microcurrents in the substance consti-
tute the noise sources of the force and thermal radiation,
in the form of evanescent propagating waves which inter-
act with each other in vacuum. This explains the strong
dependence on the separation of the two bodies, that is,
the interaction phenomena are enhanced if the gap dis-
tance is sufficiently small [12]. Also, it is important to
notice the dependence on the specific dielectric properties
of the materials encapsulated in the complex ε(ω).

The random source corresponds to a Gaussian vari-
able, so a FDT is expected for the random fields in order
to compute the statistical averages leading to the expres-
sions of the force and heat transfer. This is done in the
form of equation (28) for the current density j(r, t) de-

rived in the last subsection. In the first case it is applied
to the Maxwell stress tensor [11] and in the second, to
the averaged Poynting vector. The latter is not zero in
each body, permitting transport between them to reach
and maintain thermal equilibrium [12].

Clearly, this results match the limiting case discussed
by Novotny for sufficiently rarified bodies (like gases), in
which the individual interactions between atoms can be
taken into account.

IV. CONCLUSIONS

To conclude, it should be emphasized how the FDT
gives a deep understanding on why there exist friction,
electric resistance or even forces acting on the nanoscale,
and are nothing but the response of a system to the dissi-
pative processes operating when it is not far from equilib-
rium. This has been explicitly seen on the basis of linear
response theory, in the way as we have only dealt with
perturbations up to linear order in the significant vari-
able. The source of fluctuations has also been discussed,
and when extending the theorem to quantum mechanics
it has revealed how not all of them are of thermal origin.

Furthermore, it is remarkable to mention that efforts
are made to generalize it to systems far away from equi-
librium. That can be done introducing properly the con-
cept of effective temperature [6].
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Appendix

A. Description in terms of functionals. Gaussian
noise distribution functional

In this article we have dealt with a random force F (t),
the correlation at different times of which was expressed
by the second FDT (14). From here, considering it as
a Gaussian noise distribution, our goal is to express its
distribution functional in Dirac notation (bras and kets).

The random force takes values in time from 0 to in-
finity, so technically it pertains to a space of functions
defined in the interval 0 ≤ t < ∞ and can symbolically
be represented by a ket |F 〉. In this form, it is easier to
deal it with Dirac notation, which naturally provides a
way to generalize a vector in conventional 3-dimensional
space to any dimension vector space as a function space.

Every value the random force takes can be thought of
a random variable, each component of a infinite length
element |F 〉 pertaining to the function space (which is
no more than a vector space of infinite dimension), cor-
responding to the projection of the element on the canon-
ical base. This is easily identified with every value of the
time parameter, F (t) = 〈t|F 〉, which is continuous.

The FDT we derived says:

F (t′)F (t) = kBTK(t− t′) ≡ H(t, t′) (29)

from we can identify H(t, t′) as the (t, t′) component
of the covariance tensor H, 〈t|H|t′〉 (notice the change
of notation for the equilibrium average). Using the ex-
pression for the components of the force we can write:

|F 〉〈F | = H (30)

The Gaussian distribution of a single random variable
x with zero average is as follows:

f(x) = N−1 exp

{
−1

2

x2

σ2

}
(31)

being N the normalization constant. We know that
for a single variable, Cov(x, x) = σ2 ≡ H, i.e. the
covariance equals the variance. Here we can identify
x2

σ2
= x · 1

σ2
· x = x · H−1 · x and thus, analogously

〈x|H−1|x〉 = xi(H
−1)ijxj . Then the functional gen-

eralization can be done by replacing the single random
variable x with the random function F :

f(|F 〉) = N−1 exp

{
−1

2
〈F |H−1|F 〉

}
(32)

With the term into brakets given by:

〈F |H−1|F 〉 =

∫ ∞
0

dt

∫ ∞
0

dt′〈F |t〉〈t|H−1|t′〉〈t′|F 〉 =

=

∫ ∞
0

dt

∫ ∞
0

dt′F (t)H−1(t, t′)F (t) =

=

∫ ∞
0

dt

∫ ∞
0

dt′F (t)
K(t, t′)−1

kBT
F (t) (33)

where we have used the FDT, the identity complete-
ness relation and the fact that due to the function space
is real we can write 〈F |t〉 = 〈t|F 〉∗ = 〈t|F 〉.

Rendering this into (32) gives the common represen-
tation of the functional, here the Gaussian noise distri-
bution, and we will refer to it as f{F (t)}. The normal-
ization constant can be computed with aid of the path
integral [5]:

N =

∫
f{F (t)} DF (t) (34)

where the integral is performed over all (infinite) values
of the function F (t), with the differential given by:

DF (t) = lim
n→∞

dF1dF2 . . . dFn−1. (35)

B. Mobility of the Brownian particle

The second FDT offers an easy way to compute the
mobility of the Brownian particle. From (14) we know:

K(t− t′) =
1

kBT
〈F (t′)F (t)〉 (36)

Integrating both sides:

∫ ∞
−∞

K(t− t′) dt′ =
1

kBT

∫ ∞
−∞
〈F (t′)F (t)〉 dt′ (37)

we can identify, with the aid of (2) and analogous to
the original Langevin equation, the left side of (37) as
the inverse of the mobility B:

1

B
=

1

kBT

∫ ∞
−∞
〈F (t′)F (t)〉 dt′ (38)

And now, from [3] we know the useful relation:

∫ ∞
−∞
〈v(t′)v(t)〉 dt′

∫ ∞
−∞
〈F (t′)F (t)〉 dt′ = (kBT )2 (39)

that substituted into (38) yields the relation:

B =
1

kBT

∫ ∞
−∞
〈v(t′)v(t)〉 dt′ (40)

the Green-Kubo relation for the mobility B.
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