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We study the superfluid-Mott insulator quantum phase transition for ultracold atoms described
by the Bose-Hubbard model. We first analyse the limiting regimes where only kinetic or interaction
energies are present, corresponding to a superfluid (delocalized) or a Mott-insulator (localized)
state, respectively. Using a variational wave-function, where the different sites are decorrelated, and
imaginay time propagation we then interpolate between these two cases, and find the full phase
diagram of the model by analysing the superfluid order parameter, and the average and variance of
density of particles per site.

I. INTRODUCTION

A quantum phase transition, opposite to an ordinary
thermal phase transition, is driven by quantum fluctua-
tions [1]. For that reason it can take place in a system
at a temperature of absolute zero where all thermal fluc-
tuations are frozen out. That transition occurs when the
microscopic quantum fluctuations, that arise as a con-
sequence of the Heisenberg’s uncertainty relation, can
induce a macroscopic phase transition of a many body-
system. The critical point is characterized by a radically
change in the nature of the ground state of the system.

A paradigmatic example exhibiting the superfluid to
Mott insulator phase transition is the Bose-Hubbard
model, describing a system of bosonic particles with
short-ranged repulsive interactions trapped in an exter-
nal periodic lattice potential. The phase transition oc-
curs since there are two non-commuting terms in the cor-
responding Hamiltonian. The competition of these two
terms determines the exact nature of the ground state
and the critical point of the quantum phase transition.

This model was first theoretically studied in the con-
text of superfluid-to-insulator transitions in liquid helium
[2]. Its implementation with ultracold atoms trapped in
optical lattices was proposed in [3], and first experimen-
tally observed in 2002 [4]. Ultracold atoms are systems
prepared at very low temperatures for which the quan-
tum mechanical properties become relevant. An optical
lattice is an artificial crystal of light, resulting from the
interference patterns of two or more counterpropagating
laser beams. The wavelengths of the laser beams deter-
mine the spatial periodicity of the crystal [4, 6]. The
bosons will be confined in the potential wells generated
by this optical lattice. Due to their high degree of tun-
ability and controllability these systems have been pro-
posed as ideal quantum simulators of other more com-
plex quantum systems, like high-temperature supercon-
ductors and other condensed-matter systems. Another
great application of these systems is quantum computa-
tion and metrology.

Here we study the Bose-Hubbard model and the
superfluid-Mott Insulator transition occurring in this sys-
tem. The work is organized as follows. First, we analyse

the Hamiltonian and the limiting cases where only one
of the two non-commuting terms is present. Then, we
consider the complete Hamiltonian and propose a varia-
tional wave function that interpolates between the limit-
ing regimes. Using this variational ansatz we derive an-
alytically and perturbatively the critical point between
the two phases. Finally, using imaginary time propaga-
tion we obtain numerically the complete phase diagram
by evaluating the superfluid order parameter and the lo-
cal density fluctuations of the system.

II. THE MODEL

We study a system of ultracold bosonic atoms with
repuslive short-range interactions that are trapped in a
periodic potential. We consider the case where no ad-
ditional external potential is present, and thus all sites
are equivalent (homogeneous system) and assume the pe-
riodic potential is deep enough compared to the other
parameters of the system (temperature and interaction-
strength) so that the atoms can be described via the
lowest energy band of the periodic potential. In this sit-
uation the physics are described by the Bose-Hubbard
Hamiltonian, that takes the following expression:

ĤBH = −t
∑
〈i,j〉

(
b†i bj + b†jbi

)
+
U

2

M∑
i=1

n̂i(n̂i − 1), (1)

where b†i and bi correspond to the bosonic creation and
annihilation operators of atoms on the ith lattice site

and n̂i = b†i bi is the number operator that counts the
number of bosons on the ith lattice site. The first sum
extends over all possible pairs of first neighbours (each
pair counted once) while the second sum is performed
over all lattice sites. We have assumed periodic boundary
conditions.

The first term of the Hamiltonian multiplied by the
positive tunneling parameter t represents the kinetic and
potential energy of a single boson in the presence of the
lattice, and it is also known as hoping energy. This term
annihilates a localized boson and creates it on a neigh-
bouring site, and thus, it represents the capacity of the
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bosons to go to adjacent sites by tunneling. The second
term multiplied by the interaction parameter U , which
will be positive in our case as we are considering repulsive
interactions, is the many-body interaction. This term
only operates on a single site at the same time, and rep-
resents the energy cost of having more than one repulsive
particle at the same lattice site.

For convenience, we will work from now on in the
macrocanonical ensemble for which the atom number is
not fixed, but only its average value through the chemical
potential. Then the Hamiltonian reads:

Ĥ = ĤBH − µ
M∑
i=1

n̂i. (2)

In our final Hamiltonian Eq.(2) we have three indepen-
dent parameters: t, U and µ. It is common to choose one
of them and rescale the other magnitudes in units of this
parameter. In our case we will work in units of U .

As previously mentioned, the kinetic and the inter-
atomic potential term (now also including the chemical
potential) do not commute with each other, as it does
not exist a common basis that diagonalizes both terms
simultaneously. The ground state of the Hamiltonian
will be determined by the competition between these two
terms, leading to a quantum phase transition that will be
studied in the next sections.

Finally, let us briefly discuss on the implementation
of the model with ultracold atoms optically trapped. An
optical lattice can be generated by the constructive inter-
ference of two counter-propagating laser beams, yielding
a periodic potential which for three dimensions can be
written as Vlat = V0

[
sin2(k0x) + sin2(k0y) + sin2(k0z)

]
,

with k0 = 2π/λ and the lattice constant d = λ/2. The
lattice depth V0 is given by the laser intensity. For a deep
lattice, the parameters t and U are given by [5]:

t ≈ 4√
π
V

3/4
0 e−2

√
V0 , U ≈

√
8

π
k0asV

3/4
0 . (3)

Here as is the scattering length which characterizes the
short-range atomic interactions. Therefore, we observe
that the tunneling parameter decreases with the optical
depth V0, while the interaction parameter increases with
V0 and also depends on the scattering length a0 and k0.
Therefore, the ratio t/U is increased by decreasing the
lattice depth V0.

III. RESULTS

In the following, we will first analyze the ground state
in the two limiting cases of vanishing tunneling (t/U →
0) and no interaction between the particles (U/t → 0).
We will then propose a variational ansatz that contin-
uously interpolates between these two cases and obtain
the full phase diagram.

A. Mott insulator limiting regime

In the limit t/U → 0 (in absence of the hoping term),
occurring for very deep lattices, or equivalently, when the
interactions dominate the Hamiltonian, we find the sys-
tem in the Mott-insulator phase. In this case the Hamil-
tonian reads:

Ĥpot =
U

2

M∑
i=1

n̂i(n̂i − 1)− µ
M∑
i=1

n̂i. (4)

The interaction term accounts for the energy penalty of
having n̂i particles repulsively interacting on the same i-
th lattice site. In addition, the chemical potential repre-
sents the energetic cost (if negative) or decrease in energy
(if positive) when adding a particle to the system.

In this limit Eq.(4) is separable as a sum of local

Hamiltonians per each lattice site, Ĥpot =
∑
i ĥi, with

ĥi = (U/2)n̂i(n̂i − 1) − µn̂i. The eigenstates of this lo-
cal Hamiltonian have a well defined number of particles
n per lattice site. For the ground state, the exact value
of n is determined by the balance between the U and µ
terms. By imposing simultaneously that the energy per
site with n particles εn = (U/2)(n(n−1)−µn) is smaller
than the corresponding one for n+ 1 and n− 1 particles,
we arrive at the condition:

εn < εn+1, εn−1 ⇒ n− 1 <
µ

U
< n. (5)

This inequality determines the range of µ/U for which the
ground state is a Mott-insulator phase with n particles
per site.

Thus, the many-body ground state for the homoge-
neous system can be written as product state

|ψMI〉 =

M∏
i

1√
n!

(b†i )
n|0〉, (6)

where the product runs over the M sites of the lattice.
This state is an insulator, as particles are frozen at a

fixed position, and the amount of energy required for cre-
ating an excitation is large and given by the interaction
strength U . Finally, it is interesting to observe that the
reduction of fluctuations in the atom number on each site
leads to increased fluctuations in the phase. Thus in the
state with a fixed atom number per site phase coherence
is lost.

B. Superfluid limiting regime

In the limit t/U → ∞, for which no interaction term
is present, we find the system in a superfluid phase. In
this case the Hamiltonian reads,

Ĥtun = −t
∑
<i,j>

(b†i bj + b†jbi) (7)
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where the sum runs over all pairs of first neighbours. For
simplicity, we will consider here the one-dimensional case
with an even number M of lattice sites. An eigenstate
for a single particle is a delocalized state over all lattice
sites given by

|ψ1
SF〉q =

1√
M

M∑
j=1

eiqj |j〉, (8)

where q is the quasi-momentum of the particle. Its value
can be calculated considering periodic boundary condi-
tions. These conditions make the system invariant under
a discrete translation of M lattice sites, for which the
system returns to the same state. With these conditions
we obtain q = 2πn/M , being n = 0,±1, · · · ,±(M −
1)/2,M/2, so we can find M independent states.

By inserting Eq.(8) into the Hamiltonian Eq.(7) we
find indeed that it is an eigenfunction of the tunneling
term with energy,

Htun|ψ1
SF〉q = −t 1√

M

M∑
j=1

[
eiq(j+1)|j〉+ eiq(j−1)|j〉

]
=

= −2t cos q|ψ1
SF〉q. (9)

Hence, we obtain that the energy is E1,q
SF = −2t cos q,

which takes a value between −2t and 2t depending on q.
As t > 0, the ground state (minimum value) corresponds
to q = 0. The dispersion relation also tells us that for low
values of t, in the deep lattice regime, the energy bands
will be almost flat (and the states almost degenerate)
while for a large value of t, they will be very broader.

We can now define new creation and annihilation op-
erators in the delocalized basis

c(†)q =
1√
M

M∑
j=1

eiqjb
(†)
j (10)

with q = 2πn/M (n = 0,±1, · · · ,±(M − 1)/2,M/2).
The Hamiltonian can then be rewritten as

Ĥtun = −2t
∑
q

cos qc†qcq (11)

where the sum extends over all the possible quasi-
momentum values.

Since we are dealing with non-interacting bosons, the
many-body ground state is found by occupying with N
particles the same single particle ground state previously
found:

|ψNSF〉 =
1√
N !

(b†q=0)N |0〉

=
1√
N !

 1√
M

M∑
j=1

b†j |0〉

N

. (12)

In the grand canonical ensemble, the total number of
particles per site is not fixed, and only its average value n̄

is determined from the chemical potential µ. The ground
state with average particle per site n̄ can be constructed
as:

|ψMC
SF 〉 = ce

√
Mn̄b†q=0 |0〉 = c

M∏
i

e
√
n̄b†i |0〉, (13)

with normalization constant c2 = exp(Mn̄). This state
is a product of coherent states at each lattice site, and
every well has a Poissonian probability distribution to
be filled with n particles [4], in other words, the vari-
ance is given by Var[n̂i] = 〈n̂i〉 = n̄. Unlike the Mott
insulator phase, this wave function exhibits long-range
phase coherence due to the fixed relative phase between
sites (given by the quasi-momentum value q = 0). Fur-
thermore, opposite to the Mott insulator phase, where
on-site density fluctuations were completely suppressed,
this limit is characterized by on-site density fluctuations
and the particles are delocalized over the whole lattice.

C. The Gutzwiller Ansatz

In order to obtain the phase diagram when all terms
are simultaneously present in the Hamiltonian Eq.(2), we
propose a variational mean-field wave-function called the
Gutzwiller (GW) ansatz:

|ψGW〉 =

M∏
i=1

(
f0 + f1b

†
i + f2

(b†i )
2

√
2

+ ...+ fn
(b†i )

n

√
n!

)
|0〉

=

M∏
i=1

nmax∑
n=0

f (i)
n |n〉i, (14)

with normalization condition
∑Nmax

i |fi|2 = 1. For an
homogeneous system the amplitudes will be necessary

the same for all sites, therefore, f
(i)
n = fn.

With this variational state, we first have checked that
the limiting cases studied previously are recovered and
have found the specific values that the coefficients take.
For the Mott-insulator limiting regime with n particles
per well we find

fj = δn,j . (15)

That is, only the coefficient of the GW-ansatz Eq.(14)
that accompanies the operator which creates n particles
in a well is different than 0 and equal to 1. For the super-
fluid regime, expressing the ground state in the second
form from Eq. (13), we find the values for the coefficients
of the GW to be

fj =

√
n̄
j

√
j!
. (16)

We will now study the transition point and the full
phase diagram using this variational ansatz. In order
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to do this, we first have expressed the kinetic and the
potential energy in terms of the coefficients, finding:

Ekin = −tz
∣∣∣(f1f

∗
0 +
√

2f2f
∗
1 + · · ·+

√
nfnf

∗
n−1)

∣∣∣2 (17)

where z is the number of first neighbours of a given lattice
site (coordination number).

Epot = −µ|f1|2 + (−2µ+ U) |f2|2 + · · ·

+

(
−nµ+

U

2
n(n− 1)

)
|fn|2 (18)

Perturbative analysis.– We can do a perturba-
tive analysis to find the critical point of the quantum
phase transition. We consider a point close to the Mott
insulator-superfluid transition, for which the GW ansatz
consists mostly on the n-th component, plus a small con-
tribution of the n− 1 and n+ 1-th components, while all
the remaining terms vanish:

fn =
√

1− 2α2, fn+1 = fn−1 = α (19)

with α being a small parameter that tends to zero if we
approach the Mott insulator regime and takes a different
value in the superfluid regime. If we fix µ= U(n− 1

2 ) (cor-
responding to the middle point of the insulating phase
with n atoms, as we have find in Eq. (5)) the energy of
the system up to the second order in α is given by:

Etot =
(
−zt

∣∣√n+
√
n+ 1

∣∣2 + U
)
α2, (20)

that is, the energy is parabolic in α. This expression tells
us that if the prefactor in front of the parameter α is pos-
itive, the energy will be minimized by α = 0, which cor-
responds to the Mott-insulating transition with n atoms
per well. Instead, as soon as the prefactor becomes neg-
ative, α = 0 is now a maximum, and the Mott-insulating
phase becomes unstable, indicating that we enter into the
superfluid phase. This transition occurs when

U = zt
∣∣√n+

√
n+ 1

∣∣2 , (21)

the point where the kinetic and the interaction energy
have the same contribution to the total energy of the
system. It reflects the competition of the two non-
commuting terms in the Hamiltonian. If we have a higher
value of U , the interatomic potential energy is dominant,
so we will find the system in a Mott insulator phase,
while for a smaller U the kinetic term will be the domi-
nant and we will find the system in the superfluid phase.
Therefore, it gives the critical point for the fixed value
µ/U chosen.

For large value of n the critical value of t/U reduces
to:

lim
n→∞

t

U
∼ 1

4zn
. (22)

This means that for an increasing n the transition will
take place for smaller value of t, so the Mott insulator

regime will occupy a smaller space in the phase diagram.

Numerical results.– Finally, we have numerically
obtained the complete phase diagram using the imagi-
nary time propagation method on the variational state
given by Eq.(14) (see the Appendix for the description of
the method and convergence). We have evaluated three
different observables: the order parameter, the density
and the variance of the number of particles per site.

The order parameter, which corresponds to the ex-
pected value of the boson anihilation operator for a site,
is given in terms of the amplitudes of the GW ansatz by

〈b〉 = (1/M)

M∑
i=1

〈Ψ(t)|bi|Ψ(t)〉

= f∗0 f1 +
√

2f1f
∗
2 + ...+

√
nf∗n−1fn. (23)

The density of the system, is obtained from the expec-
tation value of the number operator at each site of the
lattice:

n̄ ≡ (1/M)

M∑
i

〈Ψ(t)|n̂i|Ψ(t)〉 =

= |f0|2 + |f1|2 + 2|f2|2 + ...+ n|fn|2. (24)

Finally, the variance of the number of particles per well
is given by

Var[n̂i] = 〈n̂2
i 〉 − 〈n̂i〉2 =

nmax∑
n=0

n2|fn|2 − n̄2. (25)

From Eq. (15) and Eq. (16) we see that in the Mot
insulator phase, the order parameter and the variance
will be exactly zero and the density will take an integer
value, contrary to the superfluid phase where the order
parameter and the density can take arbitrary values and
the variance of n will be equal to n̄ due to the Poissonian
probability distribution explained in Section III B.

The numerical results are shown in Figure 1. We can
appreciate the Mott-insulator regime inside the dark blue
lobes where the order parameter and the variance of the
number of particles per site is exactly zero and in the case
of the density has a constant and integer value. These
lobes take the range given by (5), that is, the first lobe
extends for the µ/U values where have ni = 1 particles
per well is favorable than have more or less, the second
lobe for ni = 2, etc. Moreover, we see reflected the an-
alytical result given by Eq. (22) in the decreasing lobes
width with n̄. Outside the lobes the system is find in the
superfluid regime where the order parameter is continu-
ous, and increases its value with µ/U and ρ.

Outside the Mott-insulator lobes the system is found
in the superfluid phase where the order parameter and
the density are continous increasing their value with µ/U
and t/U . For the variance of ni, we find in the superfluid
regime that there are separated regions where this ob-
servable is constant but not an integer. That is because
in the superfluid phase the number of particles per site
doesn’t need to be an integer.
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FIG. 1: Phase diagram of the Bose-Hubbard model. From left to right: order parameter, average density per site and variance
of number of particles per site. We have considered a maximum number of particles per site ni,max = 6 and coordination
number z = 6 (cubic lattice). The dark lines represent constant values of the magnitudes plotted in the z-axis.

IV. CONCLUSIONS

We have studied the Bose-Hubbard model and the
Superfluid-Mott insulator transition. We first analyse
the ground state for the two non-commuting terms of
the Hamiltonian independently. In the Mott insulator
limiting regime the wave function is a Fock state in the
localized basis, consisting of a product state with the
same number of particles at each lattice site. The range
of values of µ/U determining the Mott insulator lobes
amplitude in the phase diagram is found by minimiz-
ing the energy of the system. For the superfluid phase
we find a delocalized state over all the lattice sites, con-
sisting of all particles in the same Bloch function with
well definied quasimomentum q = 0 (assuming periodic
boundary conditions). Observing the differences between
the two regimes we conclude that phase coherence and
local density are mutually exclusive and conjugated vari-
ables. That is, when one increases the other decreases,
since they are related by the uncertainty principle.

In the second part we have considered a variational
Gutzwiller ansatz for which the different sites are decor-
related. This allows us to interpolate between the two
limiting regimes and find the ground state when the two
non-commuting terms are simultaneously present in the
Hamiltonian. After recovering the previously studied
limiting regimes, we have performed a perturbative anal-

ysis to find the critical point of the phase transition for a
fixed value of µ/U = n+ 1/2 (center of a Mott-insulator
lobe). At this point the approximated interaction and
kinetic energy become equal, indicating that as the value
of n increases, the critical value of t/U decreases.

Finally, we have performed imaginary time propaga-
tion to find the variational ground state of the system
for a continuous range of values of t/U and µ/U across
the phase transition. We obtain the phase diagram in
terms of the superfluid order parameter, the density and
the variance of number of particles per site. All the pre-
vious studied features are reflected in the obtained phase
diagram. For instance, we observe the Poissonian prob-
ably distribution in the superfluid regime, the constant
density in the Mott insulator phase and the decreasing
lobes with n̄.
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APPENDIX

The imaginary time propagation method

To find the ground state of the many-body system
modeled with the Bose-Hubbard Hamiltonian, we per-
form an imaginary time evolution starting with a random
state, that has the form of the GW ansatz. Starting with
a random state we make sure that the overlap with the
ground state highly probably is different than zero and
let the method converge to it.

Generally, the evolution in real space is given by the
Schrödinger equation (in units of ~):

i
∂

∂t
|Ψ〉 = Ĥ|Ψ〉 (26)

If we work in a proper basis, the hamiltonian can be

writen as: Ĥ =
∑
n

En|n〉〈n|, and we can also decompose

the state in a lineal combination in this basis: |Ψ〉 =
e−iE0ta0|0〉 + e−iE1ta1|1〉 + ... + e−iEntan|n〉, therefore,
for a time-independent hamiltonian Eq. 26 is solved like:

|Ψ(t)〉 = e−iĤt|Ψ(t = 0)〉 = e−i
∑

n En|n〉〈n|t|Ψ(t = 0)〉
(27)

Where the eigenvalues En will company the overlap of
the generic state |Ψ〉 with the eigenstates |n〉.

If we now replace t by an imaginary time, the state
will evolve like:

|Ψ(τ)〉 = e−
∑

n En|n〉〈n|τ |Ψ(τ = 0)〉 (28)

Observe, that now the exponential is real and negative,
so first of all, the norm of the state is losed. Secondly,
for a long time Ψ(τ) will tend to zero. Nevertheless, the
bigger term of the sum will be the corresponding to the
ground state because it has the minimum energy, so the
bigger exponential. Therefore, at the end, all the excited
states will tend to zero more rapidly than the ground
state, so we will be able to recognise it and consequently
determine the phase where the system is found.

An equivalent formulation of the Schrödinger equation
is obtained by minimizing the action of the system, given

by S =

∫
dtL. The Lagrangian of the system in the

quantum state |Ψ〉 is given by [8]:

L =
〈Ψ|Ψ̇〉 − 〈Ψ̇|Ψ〉

2i
− 〈Ψ|Ĥ|Ψ〉 (29)

Where |Ψ̇〉 is the time derivative of the wave function.
Putting on |Ψ〉 the variational mean field function, GW
ansatz,

〈Ψ̇|Ψ〉 =

M∑
i

nmax∑
n=0

ḟ∗nfn (30)

and the quantum Lagrangian reads:

L = − i
2

M∑
i

nmax∑
n

(ḟ∗nfn − ḟnf∗n)−

− tz
M∑
i

|f∗0 + f1 +
√

2f∗1 f2 +
√

3f∗2 f3 + ..+ f∗n−1fn|−

− µ|f1|2 + (U − 2µ)|f2|2 + ...+

+ (
U

2
n(n− 1)− µn)|fn|2

(31)

We can minimize the action with respect the variational
parameters fn or f∗n. Choosing the complex one we ob-
tain for each site i :

i
d

dt
fn = −tz(

√
nfn−1ϕ+

√
n+ 1fn+1ϕ

∗)+[
U

2
n(n−1)−µn)]fn

(32)
In units of ~. Where zϕ =

∑
<j>i

ϕj is an effective field
that in each site i depends on the nearest neighbours, in
our case takes an easy expression due to the system is
homogeneous, therefore,

ϕ =

nmax∑
n

= f∗nfn+1

√
n+ 1 (33)

The equations described in 32 are of mean-field type,
because they are written for a single site i and the ”field”
ϕi represent the influence of neighboring sites on the site
i , and have to be determined self-consistently. We can
write these equations for all the amplitudes in a matrix
form like:

i
d

dt
~f =M~f (34)

Where ~f is a vector containing all the parameters f0, f1,
..., fn. and the matrix M reads,

M =


0 −tzϕ∗ 0 · · · · · · 0

−tzϕ −µ −tz
√

2ϕ∗ 0 · · · 0

0 −tz
√

2ϕ U − 2µ −tz
√

3ϕ∗ · · · 0
... 0

. . .
. . .

. . .
...


(35)

Where the rows are for the same n and the columns for
the variational parameters fn. As we could deduce from
Eq. (32) the M matrix is tridiagonal. Also, notice that
the M matrix depend on the parameters through ϕ, so

the evolve in time of ~f involves the evolve in time ofM.
It is a self-consistent method, so, we have to discretize

time in steps ∆t and for each step find ~f with the lastM
matrix and then actualize with the new ~f theM matrix.
It is, integrating Eq. 34:

~f(ts+1) = e−iM[~f(ts),µ,U,t]∆t ~f(ts) (36)
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FIG. 2: Dynamic evolution of the GW Ansatz amplitudes
for nmax=6 with the imaginary time method. Above for the
Mott insulator phase, (t/U, µ/U)=(0.01, 0.5) and under for
the superfluid phase, (t/U, µ/U)=(0.07, 2).

Obtaining the dependence on time of the amplitudes.
Then, if we change the variable for the time for an imag-
inary one, -iτ instead of t, the amplitudes evolve like:

~f(τs+1) = e−M[~f(τs),µ,U,t]∆τ ~f(τs) (37)

Remembering that the norm is losed, we will have to
renormalize in each step of time and as we have said, for
a large τ we will obtain the amplitudes corresponding to
the ground state.

Method convergence

In 2 we can observe how the amplitudes in the two
phases converge to the values calculated in Eqs 15 and
16 respectively. In the Mott insulator phase all coef-
ficients go to zero except the one f1 because for (t/U,
µ/U)=(0.01, 0.5) we are in the first lobe of the phase di-
agram that corresponds to have one particle per site. In
the superfluid phase all coefficients take a different value
than zero as expected.

With this figure we conclude that the method con-
verges to the correct values of the amplitudes and it is
faster in the superfluid regime than for the Mott-insulator
regime.
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