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Abstract: We live surrounded by ecosystems made up of a large number of interacting species.
In ecological models it is very improbable to obtain the stable coexistence of all these species. To
make it possible, we have to consider that ecosystems are only the remaining part of a much larger
community after their dynamics has evolved sufficiently. Here we analyze the coexistence of a given
number of species that interact randomly according to different prescriptions of current interest.

I. INTRODUCTION

One of the fundamental questions in ecology is in what
way different species coexist in a given area and how they
are maintained through time. Answering this question
will not only help in understanding nature but it will
also provide us with tools to predict how will ecosystems
respond to the loss of a specie, to human-induced alter-
ations such as fragmentations, or the loss of a especie.

A population model is a dynamic system which aims to
predict the temporal evolution of the number of individu-
als for a set of species. Interactions between populations
can have different degrees of intensity and can be benefi-
cial for some species and detrimental for others. There-
fore, a totally general population needs an extraordinary
complex formulation and in some cases may exceed the
scope of current analytical and computational methods.

Lotka and Volterra equations are one of the first pop-
ulation models which has been studied and refined by
countless studies [1-8]. This model assumes that the rate
of increase or decrease per individual in each popula-
tion is a linear function of the number of existents. This
linearity assumption could be criticized. Though as dis-
cussed in [7], it can be shown that non-linear models
have the same qualitative behavior as the Lotka-Volterra
model for the same ecosystem.

The majority of models that can be solved analytically
are of one, two or three interacting populations and only
for some specific cases. These are not useful to explain
the behavior of large and complex ecosystems. For this
reason, we will have to resort to computational methods.
As we will see, in Lotka-Volterra model is extremely im-
probable to obtain the coexistence of all species in a large
community. We attempt to predict the number of species
we obtain when starting from a community of n species,
and let the dynamics evolve.

This report is organized as follows: In section II we
introduce Lotka-Volterra equations and we define some
fundamental concepts. In section III we analyze an ana-
lytical particular case: the prey-predator model. Section
IV consists on a statistical approach on the equations
using random parameters. Section V aims to model the
movement of wild animals in a simple way and to corrob-
orate the previous section results.

II. THE LOTKA-VOLTERRA MODEL

We take the model proposed by Lotka [1] and Volterra
[2]. Early models attempted to explain the interaction
between two species such as the prey-predator, competi-
tive or mutualism interactions. These simple models have
been generalised with the computational improvement in
order to describe larger ecosystems. In general, Lotka-
Volterra equations for n populations are a set of n cou-
pled ODE’s of the form:

ẋi = xi

ri +

n∑
j=1

aijxj

 ; i = 1, 2, . . . , n, (1)

where˙denotes d/dt, xi = xi(t) represents the number (or
density) of individuals for each specie in a given instant of
time, {ri} are the growth or death rates (ri > 0 or ri < 0,
respectively) and coefficients {aij} describe interactions
between species.

The matrix A = (aij) is called interaction matrix. The
off-diagonal coefficients (aij , i 6= j) are the inter-specific
interactions and they represent the effect that j-th specie
has on i-th specie. Mutual interaction of individuals of
the same specie is described by the diagonal coefficients
aii, called intra-specific interactions. In general, A is not
symmetric since the interaction of i on j is not the same
as of j on i. If aij > 0, the presence of j specie favors the
growth of i. If aij < 0, the presence of j inhibits i. Diag-
onal elements aii are taken as zero in the simplest models
(where mutual interaction is not considered). When self-
interactions are contemplated, self-regulating terms have
to be added since any species can only interact in a detri-
mental way with itself, i.e. aii < 0.

The n-dimensional space, whose axis are the xi vari-
ables, is called phase space. Solutions of Lotka-Volterra
equations are trajectories in this space. Note that only
those solutions with xi ≥ 0 are acceptable considering
that xi < 0 implicate a negative number of individuals.

A point x∗i is a fixed point of the system if

x∗i

ri +

n∑
j=1

aijx
∗
j

 = 0; i = 1, 2, . . . , n. (2)

These points represent equilibrium solutions of Eq. (1).
A fixed point is locally stable if, following any sufficiently



Coexistence of species in complex ecological communities Marçal Taberner Cortell

small perturbation of the number of individuals, the sys-
tem returns to the fixed point. The fixed point is globally
stable (or attractive) if the system eventually returns to
it, starting from any positive initial condition within a
finite domain. A fixed point is feasible if x∗i > 0 for every
population. For convenience, we collect the coefficients
xi and ri into the column vectors x and r, respectively.
From Eq. (2), if a feasible fixed point exists, it is given
by the solution of

Ax∗ = −r. (3)

If A is invertible, then

x∗ = −A−1r. (4)

In order to study the stability of the fixed points
it is sufficient to linearize the Lotka-Volterra equations
around x∗. If we define the right term of Eq. (1) as Fi(x)
and we consider the definition of fixed point (F (x∗) = 0)
we can get:

ẋ = J(x∗)(x− x∗), (5)

where J(x∗) is the Jacobian of F (x) evaluated at x∗.
Hartman-Grobman theorem introduced in [5] states that
stability is ensured when all the real parts of the eigen-
values of J(x∗) are strictly negative. If any of them is
positive, the fixed point is unstable. If any of the eigen-
values is zero, this theorem does not ensure stability or
instability and we would need to apply more complete
methods. Note that this criterion tells us nothing about
the type of stability.

III. PARTICULAR CASE: PREY-PREDATOR
MODEL WITH INTRA-SPECIFIC

COMPETITION

Prey-predator model is one of the simplest, but it is
also one of the most illustrative. It describes the in-
teraction between two populations, which are prey and
predator. We denote them with x(t) and y(t), respec-
tively. This model is one of the few that can be solved
analytically. Lotka-Volterra equations in this particular
case are:

ẋ = x (rx − axxx− axyy) ,

ẏ = y (−ry + ayxx− ayyy) ,
(6)

where rx is the intrinsic growth rate of the prey popu-
lation in absence of predators, ry is the intrinsic death
rate of the predator population in absence of preys and
aij the interaction matrix. All constants are defined as
positive.

One can find fixed points by solving the system ẋ =
ẏ = 0. Solutions are:

x∗1 = 0, y∗1 = −ry/ayy,
x∗2 = rx/axx, y∗2 = 0,

x∗3 =
axyry + rxayy
axyayx + axxayy

, y∗3 =
rxayx − ryaxx
axyayx + axxayy

.

(7)

It is obvious that the first solution is not acceptable since
it is not found in the first quadrant of the phase plane
(2D phase space). Following the analysis made in [5], we
can find three different scenarios:

1. rx/ry > axx/ayx: In this case, the fixed point
(x∗3, y

∗
3) lies in the first quadrant of the phase plane,

so it is the feasible fixed point. As you can see in
Figure 1 (left), all solutions converge at this point
regardless of the initial conditions. Consequently,
it is a globally stable fixed point. When steady
state is reached, the two species coexist.

2. rx/ry = axx/ayx: In this case, the fixed points
(x∗2, y

∗
2) and (x∗3, y

∗
3) coincide and are located at

the boundary of phase plane, above the x-axis. As
shown in Figure 1 (right), all solutions reach the
equilibrium with predator extinction for any initial
conditions, so it is also a globally attractive point.

3. rx/ry < axx/ayx: Now (x∗3, y
∗
3) is located outside

the first quadrant so it is not an acceptable solution.
Thus, (x∗2, y

∗
2) is the only fixed point and we find a

case analogous to 2.
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FIG. 1: Population evolution in phase space for a prey-
predator model. Trajectories for different initial conditions
are shown in different colours. To solve Eq. (6) we have used
the 4th-order Runge-Kutta method. Values of the parameters
taken in left are: rx = 4, axy = 0.2, ry = 3, ayx = 0.025, axx =
0.01, ayy = 0.1; and right: rx = 1, axy = 0.05, ry = 3, ayx =
0.03, axx = 0.01, ayy = 0.1.

Figure 2 shows the temporal dependence of the number
of individuals for each specie. A variation of the popu-
lation is observed over time until its equilibrium state is
reached.

IV. RANDOM INTERACTIONS

In this section we study the behavior of ecological mod-
els in which the parameters are randomly drawn from
fixed distributions. From a biological point of view, this
means that species have not had time to evolve or adapt.
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FIG. 2: Dependence of population over time for each specie.
Values of the parameters are the same as those in Figure 1.

On the one hand, we will focus to study the interactions
between species and not on the intra-specific parame-
ters. On the other hand, we will study the effect of ri
and aii also randomly distributed, which is a more rela-
tivistic case. The system of study in this section will be
4-dimensional, made of four interacting species.

In order to carry out the following analysis, compu-
tational tools have been used. The program consists
on finding the fixed points solving Eq. (2) for a given
A. We have used the multidimensional Newton-Raphson
method. It also computes the Jacobian matrix for each
numerical solution found and returns its eigenvalues.
Once stable fixed points are obtained, it sorts them ac-
cording to the number of coexisting species (nonzero el-
ements of x∗). To make the statistics possible, we have
repeated this process 1000 times with different A.

A. Random inter-specific interactions

From now, we consider that all species have a positive
growth rate and negative logistical term. For simplicity,
we take ri = −aii = 1. We sample the inter-specific
interactions (aij , i 6= j) from a distribution that is sym-
metric around zero. For example, we could draw them
from a Normal distribution with zero mean.

Figure 3 shows the probability of obtaining a stable so-
lution and a certain number of coexisting species hinging
on the deviation of the Normal distribution, Ps(σ) and
P i
s(σ), respectively. Deviation is closely related to the

probability of obtaining a zero element of the interaction
matrix. The higher the σ value, the lower the probabil-
ity of a parameter being zero (aij = 0 + δx), and the
greater the absolute values of aij are (more influence of
one population over another).

We can see that the probability of obtaining a stable
solution (Ps), decreases for high values of σ (see Figure
3 (a)). In order to explain this behavior, we will take
advantage of the work done by May [3]. May’s theorem

deals with an interaction matrix in which the diagonal
is aii = −d and the off-diagonal coefficients are drawn
from a Normal distribution N(µ = 0, σ) with probabil-
ity C and zero otherwise. For large n, May proved that
the probability of stability is close to zero whenever the
“complexity” K ≡ σ

√
nC > d. For our particular case:

n = 4, C = 1 and d = 1, so the fact that n is large is not
satisfied. However, there is approximately good agree-
ment with our results. May’s stability criterion gives a
stability transition in σ = d/

√
nC = 0.5. As we can

see in Figure 3 (a), σ = 0.5 corresponds to the value in
which the probability goes from being 100% to a lower
value. If n is large enough, the width of the transition
from high to low probability of stability would be zero
and the decrease of stability would be very abrupt. As
a consequence of working with finite and small values of
n, such as n = 4, we observe a gradual and slow drop of
stability.
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FIG. 3: (a) Probability of obtaining a stable solution depend-
ing on the deviation of the Normal distribution. (b) Proba-
bility of obtaining one, two, three or four coexisting species in
terms of σ. In this graphic only aij is randomly distributed.

As we can see in Figure 3 (b), the number of coex-
isting species is also directly related to σ. For σ ≤ 0.2,
system tends to decorrelate and behaves like four uncou-
pled subsystems of one single specie, which are stable
by construction since x∗i = −ri/aii = 1 and then J(x∗)
is a diagonal matrix with all the terms equal to −1, so
the probability of obtaining four coexisting species is the
maximum. To explain the behavior for σ > 0.2 we will
base on the results obtained in section III, where we saw
that when there are more than one possible fixed points
(with x∗i ≥ 0), the stable solution is the one with maxi-
mum number of coexisting species. The same holds for
systems with larger dimensionality: as σ increases, the
probability that solutions of Eq. (2) have one element
x∗i < 0 increases, so the probability that the feasible fixed
point is acceptable decreases with σ. Also, the probabil-
ity of obtaining three coexisting species increases. For
higher σ, the same happens for the coexistence of three
and two species, as well as for two and one. When one
starts to go down, the other one grows.
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B. Adding random intra-specific parameters

Now we introduce ri and aii also randomly distributed.
We set aii by summing a mean-zero symmetric random
variable and a constant di < 0. Note that di is the mean
of the aii distribution. We sample aij and ri as in the
previous section with N(µ = 0, σ).

Figure 4 shows the same type of representation as Fig-
ure 3 but for these generalized parameters. As before,
we observe that for greater values of σ the probability of
obtaining a stable solution becomes smaller (see Figure 4
(a)). However, the dependence on the coexisting species
changes radically (see Figure 4 (b)). Doing the same pro-
cedure with aii constant for all i (i.e. aii = di = −d), no
appreciable changes are observed in the results. For this
reason, the changes that we have obtained regarding the
previous section are solely due to ri sampling. We have
considered d = 1 and we have kept di of the order of −1
for all i. Note that May’s stability criterion remains ac-
ceptable using |di| ∼ d = 1, since the stability transition

continues at σ = |di|/
√
nC = 0.5.
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FIG. 4: (a) Probability of obtaining a stable solution depend-
ing on the deviation of the Normal distribution. (b) Proba-
bility of obtaining one, two, three or four coexisting species
in terms of σ. In this graphic ri, aij and aii are all randomly
distributed.

We call P (k|n) the probability of observing k species
stably coexisting when we start with a pool of n interact-
ing populations and let the dynamics evolve. When in-
teractions between species are not contemplated (σ ≈ 0),
the probability that Eq. (4) has n positive entries is
P (n|n) =

∏n
i=1 pi, where pi is the probability of ri > 0.

Since the distribution of ri is symmetric around zero,
pi = 1/2 independently of the distribution of aii < 0.
Thus, P (n|n) = 1/2n for any particular system. This re-
sult is consistent with our numerical analysis as P (4|4) =
0.063 (see Figure 4 (b)).

In [4] the same situation is studied with the strong
assumption that the real matrix A is negative definite,
i.e. all the eigenvalues of A + AT are negative. Under
this hypothesis, Lotka-Volterra model has a single glob-

ally stable equilibrium. This requisite implies that the
parameters are such that K < |di| is always satisfied,
since it ensures stability. One can meet this condition by
choosing a sufficiently negative di. In [4] it is shown that
the number of coexisting species follows the binomial dis-
tribution with probability 1/2, and neither the network
structure nor the exact shapes of the distributions (for
example its σ value) have any effect. Hence,

P (k|n) =

(
n

k

)
1

2n
. (8)

If k = n, we recover the same result of the particular case
computed above.

This beautiful simple result is admissible provided that
A is strongly stable (i.e. A is negative definite). This as-
sumption is not always true in real ecosystems. As we can
see in Figure 4 (b), when σ is such that K(σ) >∼ |di| the
coexistence deviates from its binomial behavior and sta-
bility begins to fall down. The way in which the system
loses its stability is similar to the behavior described in
the previous section. Stability first drops in the feasible
solutions, then in three coexisting solutions, etc. Figure
5 shows a histogram where this aspect is shown clearly.
For σ = 0, we are in strongly stable conditions and the
distribution fits a binomial as we expected. For σ = 1.5,
we are not under the conditions mentioned above and we
observe a drop in stability of 19%, 37% and 47% with
respect to the binomal with k = 2, 3, 4, respectively.
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FIG. 5: Frequency histogram of stable solutions with k per-
sistent species for σ = 0 and σ = 1.5. Points superimposed
on histogram represent the binomial distribution with param-
eters n = 4 and p = 1/2, B(4, 1/2).

V. MODELING THE MOVEMENT OF WILD
ANIMALS

In the previous section we have sampled the parame-
ters randomly following a Normal distribution. Neverthe-
less, real ecosystems are influenced by their composition,
by the way these species move, by the number of indi-
viduals in each population, etc. Our goal here is to build
the interaction matrix from a very simple lattice model
that represents animal movement in 2D and to study its
stability and coexistence.
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We consider the simplest case in which all species move
isotropically following a random walk. This movement is
diffusive as far as it satisfies

〈
(~r − ~r0)2

〉
= 2d′Dt, where

t is the time elapsed since the individual begins to move
from ~r0, d′ is the dimensionality and D is the diffusion
coefficient. The absolute values of the aij are directly re-
lated to the number of encounters with near neighbors of
different species. Both the sign of the interaction and the
initial distribution of individuals in the motion lattice are
uniformly sampled. Furthermore, we consider the intrin-
sic parameters invariant with movement. Intra-specific
interactions are fixed, and growth (death) rates are ran-
domly distributed. To avoid finite size effects, periodic
boundary conditions have been imposed.

We have performed the same coexistence analysis as
in section IV for different times, t. For small t, individu-
als only explore their closest environment in such a way
that they have not had time to interact at all or their
interaction is very weak. In this case, the distribution
of aij peaks at zero (small σ and K). As t increases,
the greater the space explored by the individuals and the
greater the interactions become. Now the distribution
does not have a peak at zero but it is still symmetric
(moderate σ and K). For large t, all individuals have
interacted with nearly equal intensity, although favoring
or disfavoring their existence. Finally, the distribution
contains two symmetric peaks (large σ and K).

After generating 1000 interaction matrices with differ-
ent random seeds, we expect the number of coexisting
species follows a binomial distribution. However, as t
increases, K(σ) gets closer to the fixed |aii| = d value
and the strong stability constraint relaxes. What we can
see in Figure 6 is that the stability of this “real” ecosys-
tem falls in the same way that we have seen when the
parameters are sampled at random.

VI. CONCLUSIONS

Implementing and analysing Lotka and Volterra equa-
tions we have first seen how is the coexistance of two par-
ticular populations. Coexistence or extinction between
prey and predator is only given by the ratio between
growth and death rates (rx/ry) as well as the ratio be-
tween the effect that preys exerts on the predators and
onto itself (axx/ayx). In addition, when inter-specific in-

teractions are randomly sampled, we have verified May’s
criterion seeing that stability is strongly linked to com-
plexity (K) and intra-specific interactions (di). Introduc-
ing ri and aii sampled at random but keeping di ∼ −1,
we have not observed appreciable changes in the total
stability of the system. However, the number of species
that coexist changes radically and follows the binomial
distribution with probability 1/2 in strongly stable con-
ditions. This result is only due to the ri sampling and
network structure has no influence on it. In all cases,
the stability is first lost for n coexisting species, then for
n − 1, etc. Finally, we have verified that the results ob-
tained with random interaction matrices are applicable
to diffusive species in a heterogeneous ecosystem.
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FIG. 6: Frequency histogram of stable solutions with k per-
sistent species for different K/d values as a function of time.
Points superimposed on histogram represent the binomial dis-
tribution with parameters n = 10 and p = 1/2, B(10, 1/2).

Our results show that large ecosystems can stably co-
exist when we start from a much larger species pool and
let the dynamics evolve. We conclude that stability and
coexistence can be studied separately since they depend
on the independent parameters di and ri, respectively.
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cional. Trabajo final de máster. Universidad Nacional de

Educación a Distancia (2011).
[6] Sastre, C. Stability of biodiversity in complex ecosys-

tems: the Lotka-Volterra equations. Thesis. Universitat de
Barcelona (2021).

[7] Goh, B. S. & Jennings, L. S. Feasibility and stability
in randomly assembled Lotka-Volterra models. Ecological
Modelling 3, 63–71 (1977).

[8] Grilli, J. et al. Feasibility and coexistence of large ecological
communities. Nature Communications 8 (2017).

Treball de Fi de Grau 5 Barcelona, June 2021


