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Abstract: Hyperfine structure of heavy quarkonium hybrids is ruled by two potentials which
behaviours is only known at short and long distances. In this paper, these potentials are realistically
interpolated and fitted with existing theoretical data for charmonium hybrids. Then, the spectrum
of charmonium and bottomonium hybrids is calculated with a preexisting program and the hyperfine
splittings are found.

I. INTRODUCTION

Some charmonium and bottomonium resonances that
do not fit into the quark model spectrum have been dis-
covered. These are called XYZ states. This identification
of some exotic hadrons, tetraquark and pentaquark, that
were always thought to be only a theoretical possibility
has been fulfilled due to the large masses of charm and
bottom quarks (mc,mb � ΛQCD). Their huge masses
are responsible for their slow movement and, in conse-
quence, they see an instantaneous potential as the effec-
tive interaction. Most of the study is centered around
heavy charmonium and bottomonium hybrids (cc and bb
states with a non-trivial gluon content).

The work will primarily focus in the hyperfine splitting
of the spectrum in hybrid quarkonium.

A. Quarkonium and hybrids

Quarkonium is a flavourless meson formed by a heavy
quark and an its corresponding antiquark. However,
when a field with a non-trivial gluon content is bond-
ing the quarks, they are called hybrids. To describe their
motion and energy levels, we use a non-relativistc ap-
proach due to their large masses. Moreover, making use
of the Born-Oppenheimer approximation, quarkonium
states can be described with the Schrödinger equation
matching a stationary potential to each state of the gluon
field (the gluon interaction is approximated to an instan-
taneous one).

To be able to calculate the hybrid spectrum it is nec-
essary to know the hybrid potentials. Fig. 1 shows the
quarkonium (Σ+

g ) and the rest of the hybrid potentials.
Being only interested in the lower lying states for each
potential, at leading order, we can neglect the interaction
with other hybrid states with an energy & ΛQCD above
or below the low lying state. We are only going to con-
sider the Σ−u and Πu hybrid interactions and, of course,
Σ+

g .
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FIG. 1: Energy spectrum in the static limit for nf = 0.
Source: [5]

The Lagrangian chosen is [2]:

L = tr
(
Hi† (δiji∂0 − hHij)Hj

)
(1)

hHij =

(
− ∇

2

mQ
+ VΣ−u

(r)

)
δij + (δij − r̂ir̂j)

[
VΠu

(r)− VΣ−u
(r)
]

We label the states with the combination of:

• NLJ : Spin multiplets. Were N is the principal
quantum number; L the quark-antiquark orbital
angular momentum; and J is the total angular mo-
mentum of the gluons Lg = 1 plus L.

• J PC : In each multiplet, the different states are
J PC . J is the total angular momentum of the
system (J = J + S) and its third component is
M; S is the quark-antiquark spin; P = (−1)L+1

and C = (−1)L+S+1 are the parity and the charge
conjugation (strong coupling symmetries).

In heavy quarkonium, at leading order, the spin effect
could be neglected as well as in hydrogen-like atoms. But,
in the next subsection, hyperfine splitting, we will take it
into account as its effect is the main focus of this research.
Also, we will not consider the mixing between hybrid
states and quarkonium.
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B. Hyperfine structure

Including the spin of the quarks into the states breaks
the degeneration of each multiplet. Hyperfine splittings
appear at O(1/mQ) in hybrids rather than at O(1/m2

Q)
as in quarkonium. At leading order, they are controlled
by two terms in the Lagrangian due to the P , C and T
symmetries [6]:

Lhf =iεijkVhf (r)tr
(
Hi† [σk, Hj

])
+

+ iriεijkVhf2(r)tr
(
riHi† [σk, Hj

])
+H.c.

(2)

There are two potentials and their form allows us to
separate a global factor −2Vhf (r) and −2Vhf2(r) from
its corresponding Hamiltonian Hhf and Hhf2. In the
|(S = 1)LJJM〉 basis:

For J > 1 we can separate the 9x9 matrix intro two
boxes. The five dimensional box corresponds to the sub-
space spanned by ((P−−1JM, P

+−
1JM, P

00
1JM, P

−+
1JM, P

++
1JM),

and it reads:
For the first potential [7]:

1 0 0 0 0

0 −J−1
J

J+1
J

√
2J−1√
2J+1

0 0

0 J+1
J

√
2J−1√
2J+1

− 1
J (J+1)

J
J+1

√
2J+3√
2J+1

0

0 0 J
J+1

√
2J+3√
2J+1

−J+2
J+1 0

0 0 0 0 1

 (3)

For the second one [6]:

2(2−J )
−3+6J V −−2 V −0

2 0 0

V −−2
2(1−J 2)
3J−6J 2 V +−

2 0 0

V −0
2 V +−

2 − 2
3J (1+J ) V 00

2 V +0
2

0 0 V 00
2

2J (2+J )
9+15J+6J 2 V −+

2

0 0 V +0
2 V −+

2 − 2(3+J )
9+6J


(4)

with,

V −0
2 = J+1

J (2J−1)(2J+1)

V −−2 = 3J−2

2(2J−1)
√
J (J−1)

V +−
2 = J 2−J−2

3J
√

4J 2−1

V 00
2 = J (J+3)

3(J+1)
√

4J (J+2)+3

V −+
2 = −

√
2+J

(3+2J )
√

1−J

V +0
2 = J

√
(2+J )

(1+J )(1+2J )(3+2J )

The four dimensional box corresponds to the subspace
spanned by ((P 0−

1JM, P
−0
1JM, P

+0
1JM, P

0+
1JM), and it reads:

For the first potential [7]:
1
J

√
J 2−1
J 0 0

√
J 2−1
J − 1

J 0 0

0 0 1
J+1

√
(J+2)J
J

0 0

√
(J+2)J
J − 1

J+1

 (5)

For the second one [6]:
2

3J V 0−−0
2 V 0−+0

2 0

V 0−−0
2 − 2

3J + 2
1+2J V −0+0

2

J
√

1+ 1
1+J

1+2J
V 0−+0

2 V −0+0
2 − 2(2+J )

3+9J+6J 2 V +00+
2

0
J
√

1+ 1
1+J

1+2J V +00+
2 − 2

3+3J

 (6)

with,

V 0−−0
2 =

√
J 2−1
3J +

√
J−1
J (1+J )

1+2J

V 0−+0
2 =

(1+J )
√

1− 2
1+2J

3J

V −0+0
2 =

√
J

1+J −
√
J+1
J

1+2J

V +00+
2 =

√
J (2+J )(J−1)

3(J+1)(2J+1)

If J = 1, P−−1JM and P 0−
1JM do not ex-

ist and the matrices are 7x7. If J = 0,
P−−1JM, P

+−
1JM, P

00
1JM, P

0−
1JM, P

−0
1JM, P

+0
1JM do not exist

and the system is reduced to 3x3 matrices for both po-
tentials.

II. DEVELOPMENT

A. Identifying r0

The form of Vhf (r) and Vhf2(r) is different at short
and long distances.

Following [4], the potential can be rewritten in (1/m)
terms with spin-dependent and spin-independent parts.
If the subdominant (1/m)2 terms are neglected, the non-
perturbative part is a series in powers of r: V np =
V np(0) + V np(1)r2 + ....

In our case, at short distances:

V s
hf = A+O(r2) V s

hf2 = Br2 +O(r4) (7)

At long distances the energy spectrum of a static QQ̄
pair is well described by the QCD effective string theory.
It has been obtained in [8]:

V l
hf = −1

6

gcFπ
2Λ′′′

mQκr3
V l
hf2 = ± gcF Λ′π2

2mQ

√
2πκ

1

r2
(8)

The parameters gΛ′ ∼ ΛQCD and gΛ′′′ ∼ ΛQCD which
have been calculated in [2].

gΛ′ ∼ −59MeV ; gΛ′′′ ∼ ±230MeV (9)

κ is the string tension and cF ≈ 1.

First, it is necessary to find the distance r0 at witch
the potential changes from short distances to long dis-
tances behaviour. To do so, we need to know the shape
of VΣ−u

and VΠu
(the only hybrid interactions that we are
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considering). They can be approximated by simple func-
tions that have the correct behavior at short and long
distances. The form we have taken is the same used in
[2], were VΣ−u

(r) is a Cornell-like potential, whereas for

VΠu
(r) this type of potential does not fit the lattice data

well at intermediate distances. Hence, a slightly more
complicated form is taken:

VΣ−u
(r) =

σs
r

+ κsr + EQQ̄
s (10)

VΠu(r) =
σp
r

(
1 + b1r + b2r

2

1 + a1r + a2r2

)
+ κpr + EQQ̄

p (11)

Applying Taylor to Eq. (11), we find its behaviour at
short and long distances:

V s
Πu

(r) =
σp
r

+ [σp(b1 − a1) + EQQ̄
p ] + [σp(a2

1 − a1b1 + b2−

−a2) + κp]r +O(r2) (12)

V l
Πu

(r) = σp
b2
a2

1

r
+ EQQ̄

p + κpr +O(1/r2) (13)

r0 is defined as the distance in where V s
Πu

(r) to O(r) and

V l
Πu

(r) to O(1/r) are equal. Consequently,

r0 =
σp(b1 − a1)±

√
[σp(b1 − a1)]2 + 4κpσp
2κp

(14)

The coefficients are required to satisfy the following sys-
tem of equations:

σp(b1 − a1) + (EQQ̄
p − EQQ̄

s ) = 0 (15)

a2
1 − a1bb + b2 − a2 +

κp
σp

= 0 (16)

σpb2 =
11π

12
(17)

Eq. (15) results out of the coincidence of V s
Πu

(r), at
short distances, with VΣ−u

(r), which also implies σs = σp.
At short distances, the correction of the constant term
of VΠu is O(r2), therefore, O(r) = 0 (16). In (17) we
are matching the O(1/r) term of the potential at long
distances to its theoretical prediction in string theory.

From [2] we obtain:

σs = σp = σ = 0.061

κs = κp = κ = 0.187GeV 2r (18)

Ecc̄
s = 0.559GeV, Ebb̄

s = 0.573GeV

Fitting potential (11) to lattice data with coefficients
(18), we found:

a1 = 0GeV, a2 = −0.0662GeV 2

b1 = 11.9GeV 2, b2 = −3.131913GeV 2 (19)

Ecc̄
p = −0.1666899GeV, Ebb̄

p = −0.1529GeV

And

r0 = 3.964GeV −1 (20)

FIG. 2: Fitting of VΠu(r) with lattice data in MATLAB
with the coefficients of (18) and (19). The magenta line
is our fit, and the blue one is the fit done in [2] of the
lattice data. Axis: x = r(GeV −1) and y = V (GeV )

B. Interpolation of the potentials

To precisely calculate the spectrum including hyperfine
splitting of charmonium, we need to find an interpolation
of Vhf (r) and Vhf2(r) that could work for all the range.
We also will be able to calculate the spectrum of bot-
tomonium. But, as we do not have lattice data to check
it, we would only be doing predictions and we can not
find the accuracy of our interpolations with it. Hence,
the fitting of the interpolations will be done only with
charmonium lattice data.

We need to find smooth functions that show proper
behaviour at short and long distances. Having (7) and
(8) in mind and knowing that the change of behaviour is
done approximately at r0 (20), we model the hyperfine
potential making explicit the signs of gΛ′′′ and gΛ′ as Eq.
(21).

Vhf =
A±

(
r
r0

)2
1
r1

1 +
(

r
r0

)5 Vhf2 =
Br2 ±

(
r
r0

)4
1
r2

1 +
(

r
r0

)6 (21)

1

r1
=

(
|gΛ′′′|cFπ2

6mQκ

)
1

r3
0

1

r2
=

(
|gΛ′|cFπ2

2mQ

√
2πκ

)
1

r2
0

C. Spectrum

To calculate the best fits for A and B, we run a program
and check different values while searching for the lowest
χ2/dof comparing the spectrum obtained with lattice
data from [3]. We repeat this procedure with each sign
combination of (21) to find the most suitable signs and
values.

The formula used to calculate χ2 is (22). Dof are the
degrees of freedom of each calculation (number of values
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calculated − number of unknown factors).

χ2 =
∑
i

[(our value)i–(lattice data)i]
2

(uncertaintyi)
2

(22)

The lattice data used is the masses for charmonium spec-
trum computed by [3]. We only utilize the states identi-
fied as hybrid mesons. Red states are the group formed
by the lightest multiplet; and blue states are the first-
excited supermultiplet. (Table I)
The Hadronic Spectrum Collaboration has calculated
the charmonium spectrum including hybrid states, where
smaller quark masses are taken for up and down. There-
fore, the order of the lowest lying hybrid multiplets in [3]
is the same as ours, from lighter to heavier: 1(s/d)1, 1p1,
1(p/f)2 and 1p0; but, their numbers are larger than our
spin averages calculated with (11) and (10). This incom-
patibility can be solved subtracting respectively in each
multiplet: 381 MeV, 326 MeV, 392 MeV and 151 MeV.

Our aim is to find if taking into account the long dis-
tance behaviour of the hyperfine potential improves the
results, to do so we compute the spectrum with and with-
out it.

First, we use as Vhf and Vhf2 their short distances
shape (7). We calculated the spectrum with Vhf = A
and Vhf2 = 0; Vhf = 0 and Vhf2 = Br2; Vhf = A and
Vhf2 = Br2. In the last combination we utilize, to find
the constants, two procedures: fitting only with the red
states and fitting with the red and blue states. With
the last method, which should be the most accurate, we
obtain the spectrum shown in Table II and the following
fits: A = 0.0699GeV , B = 0.0008GeV 3 with χ2/dof =
1.1927.

Then, the calculus are repeated using the interpola-
tions made for Vhf and Vhf2 (21). All the possible signs
combination are tested. First, only with Vhf , then only
with Vhf2, and, lastly, with both interpolations and fit-
ting with red states and then red and blue states. We
obtain that the sign combination that gives the best
(lowest) χ2/dof is (23). And the best fits are A =
0.1175GeV , B = 0.0057GeV 3 with χ2/dof = 0.67583
and the spectrum of Table III.

The main difference between our calculus and [4] reside
in this spectrum where we are taking into account the
long distance behaviour of the potentials Vhf and Vhf2

correctly.

Vhf =
A−

(
r
r0

)2
1
r1

1 +
(

r
r0

)5 Vhf2 =
Br2 −

(
r
r0

)4
1
r2

1 +
(

r
r0

)6 (23)

1

r1
=

(
|gΛ′′′|cFπ2

6mQκ

)
1

r3
0

1

r2
=

(
|gΛ′|cFπ2

2mQ

√
2πκ

)
1

r2
0

1. Bottomonium

There is no lattice data of hyperfine spectrum of bot-
tomonium hence if we calculate it, it will only be a pre-

diction.
Knowing the best fits for the constants A and B

for charmonium, we can now calculate the spectrum
for bottomonium. The constants in this case are
A′ = Amc/mb = 0.035398GeV and B′ = Bmc/mb =
0.001717GeV 3 (mc = 1.4702GeV and mb = 4.8802GeV ).
We obtain the spectrum of Table IV.

State J PC M (GeV) Uncertainty (GeV)

Red (s/d)1 1−− 4.030 0.018

(s/d)1 0−+ 3.898 0.019

(s/d)1 1−+ 3.929 0.024

(s/d)1 2−+ 4.075 0.022

Blue p1 0+− 4.111 0.028

p1 2+− 4.176 0.019

(p/f)2 2+− 4.239 0.027

p0 0−+ 4.440 0.047

p1 1+− 4.112 0.024

(p/f)2 1+− 4.179 0.028

p0 1+− 4.514 0.054

p1 1++ 4.144 0.026

(p/f)2 2++ 4.231 0.033

(p/f)2 3+− 4.252 0.035

TABLE I: Charmonium. Upper table: shows the mass of
the red states used as lattice data. Lower table: shows
the mass of the blue states. The values are the ones in
[3] corrected to equal the spin average of [2].

State J PC M (GeV)

Red (s/d)1 1−− 4.011

(s/d)1 0−+ 3.920

(s/d)1 1−+ 3.965

(s/d)1 2−+ 4.054

Blue p1 0+− 4.091

p1 2+− 4.144

(p/f)2 2+− 4.238

p0 0−+ 4.486

p1 1+− 4.082

(p/f)2 1+− 4.198

p0 1+− 4.442

p1 1++ 4.145

(p/f)2 2++ 4.232

(p/f)2 3+− 4.169

χ2/dof = 1.1927

TABLE II: Charmonium. First table: shows the mass of
the red states. Second table: shows the mass of the blue
states. Both calculated with (7) and A = 0.0699GeV ,
B = 0.0008GeV 3. Third table: χ2/dof obtained (χ2 =
14.3124 and dof = 12) fitted with red and blue states.
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State J PC M (GeV)

Red (s/d)1 1−− 4.011

(s/d)1 0−+ 3.899

(s/d)1 1−+ 3.956

(s/d)1 2−+ 4.061

Blue p1 0+− 4.095

p1 2+− 4.148

(p/f)2 2+− 4.234

p0 0−+ 4.486

p1 1+− 4.098

(p/f)2 1+− 4.196

p0 1+− 4.462

p1 1++ 4.145

(p/f)2 2++ 4.232

(p/f)2 3+− 4.260

χ2/dof = 0.67583

TABLE III: Charmonium. First table: shows the mass of
the red states. Second table: shows the mass of the blue
states. Both calculated with (23) and A = 0.1175GeV ,
B = 0.0057GeV 3. Third table: χ2/dof obtained (χ2 =
8.1100 and dof = 12) fitted with red and blue states.

III. CONCLUSIONS

We have accomplished the calculus of hyperfine spec-
trum of charmonium with a considerably low χ2/dof
in relation to the results of [3]. Comparing results
of Table II and Table III, it is clear that taking into
account the large distances behaviour of the hyperfine
potentials significantly improves the results. With the
potentials found (23) it has been possible to calculate
the bottomonium spectrum in Table IV including the

hyperfine splittings.

State J PC M (GeV)

Red (s/d)1 1−− 10.690

(s/d)1 0−+ 10.679

(s/d)1 1−+ 10.684

(s/d)1 2−+ 10.696

Blue p1 0+− 10.755

p1 2+− 10.764

(p/f)2 2+− 10.817

p0 0−+ 11.300

p1 1+− 10.760

(p/f)2 1+− 10.819

p0 1+− 11.012

p1 1++ 10.761

(p/f)2 2++ 10.819

(p/f)2 3+− 10.823

TABLE IV: Bottomonium. Upper table: shows the mass
of the red states. Lower table: shows the mass of the blue
states. Both calculated with the potentials (23) and the
constants A′ = 0.035398GeV and B′ = 0.001717GeV 3
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