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Abstract: The Higgs vacuum expectation value (vev) can be determined experimentally by
measuring the muon lifetime. However, this determination can be modified by the introduction of
a new virtual particle in the muon decay, for example a Z′. This new massive vector boson can
change the mechanism by which the muon decays despite having an expression for the amplitude of
the same form as the one predicted by the SM, where the process is mediated by a W boson. These
two theories have been matched to the 4-fermion operator from a low-energy Effective Field Theory
that describes the physics at low energies, resulting in a correlation between the Higgs vacuum
expectation value and the mass of the new particle.

I. INTRODUCTION

The fundamental constants of the theories that aim at
describing nature have their numerical values computed
by fitting these theories to empirical observables. For in-
stance, the Higgs field vacuum expectation value (vev)
can be deduced from the measurement of the muon life-
time. Hence, in order to compute its value, a theoretical
relation between the fundamental constant (vev) and the
observable (muon lifetime) must be deduced. This is the
topic that will be discussed in this work.

An effective field theory (EFT)[1] is a tool conceived
to analyse phenomena at a certain low energy scale dis-
regarding the dynamics of physics at high energies. With
this in mind, one can relax the restrictions imposed by
the symmetries fulfilled at high energies and only con-
sider the ones that the low energy processes must also
obey. Hence, an effective Lagrangian is obtained that ac-
curately describes low energy processes without inquiring
into how nature behaves at the ultra-violet scale. How-
ever, the two energy ranges are not disconnected, as a
result, the Wilson coefficients or coupling constants that
couple the fields considered in the effective Lagrangian
of the EFT –namely, the fundamental couplings of the
EFT– can be matched to fundamental constants of the
high energy theory.

In this paper we will address the muon decay, thus
we must build an EFT at the muon mass energy scale.
As mentioned, this theory is determined by the Wilson
coefficients, among which, one can be fixed by the mea-
surement of the muon lifetime. In order to relate the
EFT with the valid theory at high energies, the “match-
ing” calculation must be made. If the high energy theory
at hand is the Standard Model (SM), the matching of the
Wilson coefficient of the operator relevant to the muon
lifetime in the EFT into the SM gives an expression for
the Higgs vacuum expectation value as a function of the
Wilson coefficient. However, this determination of the
Higgs vev is only valid if there is no physics beyond the
SM (BSM physics) affecting the muon lifetime. If such
is the case, the new contribution has to be taken into
account.
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FIG. 1: Diagram depicting the muon decay, as described by
the explicit operator shown in the Effective Lagrangian (1).

In this article, we discuss how to determine the Higgs
vev from an EFT at the muon mass energy scale, and how
this determination gets modified if there exists a particle
beyond the SM: a neutral massive vector boson Z ′.

II. LOW-ENERGY EFT AND MUON DECAY

A. Effective Lagrangian

The relevant theory at energy scales around the muon
mass (much lower than the EW scale) is given by an EFT
with a Lagrangian of the form:

Leff = LQED+QCD +CW (ν̄µγ
σPLµ) (ēγσPLνe) + · · · (1)

where PL = (1 − γ5)/2 is the left-handed chiral projec-
tor. We have shown only the dimension-six four fermion
operator contributing to the muon lifetime in the SM.
This 4-fermion operator is analogous to the one first in-
troduced by Fermi to describe beta-decay [2].
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B. Muon decay amplitude in the EFT

The amplitude of the process µ→ eνµν̄e at the leading
order in QED in the EFT given by Eq. (1), is given by
the Feynman diagram in Fig. 1, and reads:

iM = iCW

{
ūs

′

1 γ
σPLu

s
0 ū

r
3γσPLv

r′

2

}
, (2)

where the fields take the form of Dirac Spinors and their
indexes (0, 1, 2, 3) refer to the muon, the muon neutrino,
the electron anti-neutrino and the electron, respectively.
In this expression the spin orientation of the fermions is
encoded in the superscripts (s, s′, r, r′).

C. Total decay rate and lifetime

In order to compute the lifetime of the muon, we first
need an expression for the total decay rate, which is ob-
tained by integrating the differential decay rate over the
whole phase space. The differential decay rate for a 3-
body decay is given by [3]

dΓ =
1

(2π)3

1

32M3
|M|2dm2

13dm
2
23 , (3)

where m2
13 = (p1 + p3)2, m2

23 = (p2 + p3)2, pi is the 4-
momentum of the i daughter particle, M is the mass of
the decaying particle (the muon in our case), and |M|2
is the squared decay amplitude averaged over the spin
orientations of the decaying particle (unpolarized) and
summed over the spin orientations of the final-state parti-
cles. We thus need an algebraic expression for this quan-
tity, which in the case of muon decay reads:

|M|2 = 8 C2
W (p · k′)(p′ · k) , (4)

where p, p′, k, k′ are the 4-momenta of the muon, the
muon neutrino, the electron and the electron anti-
neutrino, respectively. With this, an expression for the
muon decay rate and lifetime can be found.

By neglecting the electron mass, and keeping only the
highest order in M = mµ, the expression for the total
decay rate is:

Γ =
C2
Wm

5
µ

1536π3
, (5)

and the muon lifetime is

τµ =
~
Γ

=
1536~π3

C2
Wm

5
µ

, (6)

where the ~ is added to recover the SI units of time.

For the explicit derivation of the equations shown in
this section, see Appendix A.
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FIG. 2: Tree-level Feynman diagram describing muon decay
in the SM, mediated by a W boson. The corresponding am-
plitude is given in Eq. (9).

D. Determination of the Wilson coefficient CW

The determination of the Wilson coefficient CW is done
by fitting the experimental measurement of the muon
lifetime [3]:

τµ = 2.1969811(22) µs (7)

to the theoretical prediction given in Eq. (6). Given the
muon mass mµ = 105.6583745(24) MeV [3], we find the
following result for the Wilson coefficient,

|CW | =

√
1536~π3

τµm5
µ

= 3.2917764(17) · 10−5 GeV−2 . (8)

III. DETERMINATION OF THE HIGGS VEV

A. Matching the EFT to the SM

At tree level in the SM, as illustrated in Fig. 2, the
amplitude of the muon decay is given by [4]

iM =
ig√

2
ūs

′

1 γ
σPLu

s
0

(
−i gσρ
k2
W −M2

W

)
ig√

2
ūr3γρPLv

r′

2 ,

where kW and MW are the W boson momentum and
mass, and the subscripts (0, 1, 2, 3) stand for the same
particles as in the previous section. By expanding the
1/(k2

W − M2
W ) factor at leading order in k2

W /M
2
W , the

amplitude reads:

iM =
−ig2

2M2
W

(
ūs

′

1 γ
σPLu

s
0

)(
ūr3γσPLv

r′

2

)
. (9)

This amplitude has the same form as the EFT amplitude
in Eq. (2) derived from the Effective Lagrangian. There-
fore, the matching of the Wilson coefficient CW and the
fundamental constants that appear in the SM amplitude
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is evident. The following expression is obtained for the
Wilson coefficient:

CW = − g2

2M2
W

. (10)

This result is the tree-level matching condition for CW
in the SM, assuming no contribution from BSM physics.

B. Determination of the Higgs vev in the SM

As aforementioned, Fermi introduced the 4-fermion op-
erator relevant for beta decay. The coupling constant
that he used was GF , the Fermi constant. This constant
plays a big role in the SM and is defined as [5]

GF ≡
√

2g2

8M2
W

=
1√
2v2

, (11)

where v is the vacuum expectation value of the Higgs
field, or Higgs vev. As a result, assuming the SM, we can
compute the Higgs vev, a fundamental constant within
the SM, as a function of CW , which is fixed by the muon
lifetime as given in Eq. (6):

v =

√
2

|CW |
= 246.490300(94) MeV . (12)

Assuming the SM, the Fermi constant can also be com-
puted from CW :

GF =
|CW |
2
√

2
= 1.16381870(60) · 10−5 GeV−2 . (13)

C. BSM contribution from a massive Z′

In this section we introduce a hypothetical new par-
ticle, a new massive vector boson Z ′ which can mediate
muon decay. This particle is electrically neutral and its
interaction with leptons is described by the following La-
grangian:

LZ′ ⊃ 1

2
M2
Z′ZµZ

µ + λ` ē /ZPLµ+ λν ν̄µ /Zνe (14)

The fact that Z ′ is uncharged makes the muon decay
into an electron at first, changing the lepton flavour (see
Fig. 3). From this diagram, and analogously to the SM
case (neglecting the particle momentum), the following
amplitude is obtained:

iM =
−iλ` λν
M2
Z′

(
ūr3γ

σPLu
s
0

)(
ūs

′

1 γσPLv
r′

2

)
. (15)

Note that the PL has been added to the left of the elec-
tron neutrino spinor (v2) because this particle is left-
handed, thus the effect of the projector is the same as
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FIG. 3: New physics diagram of the muon decay, in this
case the interaction is mediated by a virtual particle with-
out charge: Z′. This diagram illustrates the Lagrangian (14).

the identity. Finally, a Fierz transformation [6] is used in
order to recall the form of the EFT and SM amplitudes,
resulting in

iM =
iλ` λν
M2
Z′

(
ūr3γ

σPLv
r′

2

)(
ūs

′

1 γσPLu
s
0

)
. (16)

Now, we can include the contribution of this new particle
into CW , because the amplitude takes the same form. As
a result, the value of CW , fixed by the muon lifetime in
the EFT, is related to fundamental constants in the UV
theory: the Higgs vev from the SM and the Z ′ particle
mass and couplings. We can therefore write a relation
between the Higgs vev and MZ′ , given the experimental
determination of CW , assuming some canonical values for
λ`, λν ; this way, if the value of the Higgs vev should be
proven to be different from the one predicted by the SM
(Eq. (12)), we could immediately know the mass of the
Z ′ particle. The relation between the Higgs vev and MZ′

reads:

CW = − 2

v2
+
λ` λν
M2
Z′

. (17)

From the experimental determination of CW in Eq. (8)
we can extract v as a function of the Z ′ mass and cou-
plings. This is shown in Fig. 4, where we have fixed
λ` = λν = 0.1 and shown the corresponding value of the
Higgs vev v as a function of the mass of the new Z ′ boson.
We see that for large masses MZ′ � MW the value of v
approaches the SM determination, since the BSM contri-
bution becomes negligible. However, for lower values of
MZ′ the true value of v extracted from experiment would
be significantly different from that obtained assuming the
Standard Model.
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FIG. 4: Determination of the Higgs vev v as a function of
the mass of the hypothetical Z′ boson, for fixed couplings
λ` = λν = 0.1.

IV. CONCLUSIONS

The EFT we have built for the muon mass energy scale
has let us obtain an expression for the amplitude of the
muon decay which resembles a lot the amplitude the SM
predicts at Tree-level. Therefore, the matching of the
EFT to the SM is almost immediate, which lets us find a
relation between the Wilson coefficient CW and the Higgs
vev. However, this expression is modified if the SM is not
assumed. An example of this has been put forward with
the introduction of a new mechanism of decay mediated
by the virtual particle Z ′. The amplitude of the process
in this case has also the same form as the EFT and SM
amplitudes, this can modify the Higgs vev. The expla-
nation of such modification lays on the fact that the CW
of the EFT has a value that cannot be changed by the
underlying theories except when these theories add new
terms to the Effective Lagrangian, which is not the case
at hand. In the theories mentioned in the article, the
amplitude of the muon decay has the same form, this
means that both the SM and the new physics model may
contribute to the value of CW . Therefore, in order to
maintain this value, the Higgs vev has to change accord-
ingly. As a result, we have concluded that the Higgs
vev value depends on the mass of the new particle, MZ′ ,
following the relation

CW = − 2

v2
+
λ` λν
M2
Z′

We have seen that this effect can modify the determina-
tion of v at the one-per-mille level for couplings of order
0.1 and Z ′ masses of several hundred GeV. This is a rele-
vant effect given the precision with which v is determined
in the SM, given in Eq. (12).

Acknowledgments

I am really grateful to Javier Virto, my advisor, even
though the physics discussed in this paper are beyond
what is expected from an undergrad student, he has been
able to guide me through the work without making it
impossible for me to follow, and has awakened my interest
for contemporary physics, in addition to showing me how
present day research is conducted. Besides from that, I
would also like to thank all the people that has stood by
my side during this past months, such as my parents and
siblings, my roommates and friends, my cousins, and,
specially, my grandmother Mimı́, who has been of great
help during my time in Barcelona.

Appendix A: Computation of the integrated decay
rate

We first want to obtain the averaged squared ampli-
tude [7]. To do so we need:

(ū1γ
σPLu0)

†
=
(
u†1γ

0γσPLu0

)†
=

=
(
u†0P

†
Lγ

σ†γ0†u1

)
= (ū0γ

σPLu1) ,

where the last expression is obtained by using some
gamma matrices properties as well as anti-commutation
rules [7]. A similar deduction is conducted for the sec-
ond term between brackets in (2), thus obtaining for the
squared amplitude:

|M|2 =
C2
W

16
T1 T2 , (A1)

where

T1 ≡ 4

{
ū0γ

σPLu1ū1γ
ρPLu0

}
,

T2 ≡ 4

{
v̄2γσPLu3ū3γρPLv2

}
.

However, as mentioned before, we should sum over the
possible spin orientations of the involved particles in or-
der to fit the result into experiments that cannot detect
spin orientations,

The total decay rate will only depend on the spin-
averaged squared amplitude (recalling that all external
particles are spin 1/2 fermions). Precisely, we should av-
erage over the muon spins s, and sum over all final-state
particle spins s′, r, r′,

|M|2 =
1

2

∑
s

∑
s′

∑
r

∑
r′

|M(s −→ s′r′r)|2 (A2)
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The steps from here involve trace technology, and the
following relations for Dirac spinors [7]∑

s

us(p)ūs(p) = /p+m ,∑
s

vs(p)v̄s(p) = /p−m .

The steps are shown explicitly for the term T1, where in
the first expression the matrix indexes are written in the
form of Latin letter sub-indexes, so the spinors can be
freely moved:

∑
s,s′

{
ū0,a [γσ(1− γ5)]ab u1,bū1,c [γρ(1− γ5)]cd u0,d

}
=

=

{
(/p+M)da [γσ(1− γ5)]ab (/p

′) [γρ(1− γ5)]cd

}
=

= Tr

{
(/p+M)γσ(1− γ5)(/p

′)γρ(1− γ5)

}
≡ Tr1 .

Similarly,

Tr2 ≡ Tr

{
(/k
′
)γσ(1− γ5)(/k +m)γρ(1− γ5)

}
Where m is the electron mass, M , the muon mass, and
the neutrino masses have been neglected. By using Trace
technology, one arrives at:

Tr1 = 8
[
pσp′ρ + pρp′σ − gσρ(p · p′) + iεασβρpαp

′
β

]
Tr2 = 8

[
kσk

′
ρ + kρk

′
σ − gσρ(k · k′) + iεαβσρkαk

′
β

]
.

Hence,

|M|2 =
C2
W

32
Tr1Tr2 . (A3)

The following steps involve contracting the indices, and
recalling the anti-symmetry of the Levi-Civita symbol.

The final expression for the squared amplitude is:

|M|2 = 8 C2
W (p · k′)(p′ · k) , (A4)

where p, p′, k, k′ are the 4-momenta of the muon, the
muon neutrino, the electron and the electron anti-
neutrino, respectively. With this, an expression for the
muon decay rate and lifetime can be found.

From here, the decay rate can be integrated over the
phase space:

dΓ =
1

(2π)3

1

32M3
|M|2dm2

13dm
2
23 . (A5)

Recalling that m2
13 = (p1 + p3)2, m2

23 = (p2 + p3)2, pi
is the 4-momentum of the i daughter particle, M is the
mass of the decaying particle (the muon). We can express
the 4-momenta products in Eq. (A4) as a function of
m12 and m13, where (0, 1, 2, 3) refers to (µ, νµ, e, ν̄e) the
following way:

p · k′ =
M2 −m2

13

2
, (A6)

p′ · k =
m2

13

2
, (A7)

where the electron mass has been neglected. Knowing
that m2

13 goes from 0 to M2 −m2
23, and that m2

23 goes
from 0 to M2, we can integrate over m2

13 first and after-
wards over m2

23. Arriving at the following equation for
the total decay rate:

Γ =
C2
Wm

5
µ

1536π3
, (A8)

where we have only kept the dominant term. This is the
expression we were looking for.
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