
Bachelor’s Thesis

Double bachelor’s degree in Mathematics and
Computer Science

Facultat de Matemàtiques i Informàtica
Universitat de Barcelona

Out of distribution image
detection

Author: Raül Villalba Rodríguez

Directors: Dr. Santi Seguí

Dr. Xavier Guitart

Developed in: Departament de matemàtiques

i informàtica (Universitat de Barcelona)

Barcelona, 21st June 2020

Contents

Introduction 1

1. Motivation and planification 3
1.1. Objectives . 4
1.2. Planification . 5
1.3. Out of distribution . 6

1.3.1. How does it work? . 6

2. Artificial neural networks 7
2.1. Definitions . 7
2.2. Why is it called "neural" network? . 8
2.3. Mathematical model . 8

2.3.1. Activation functions . 9
2.4. Types of ANN . 12
2.5. CNN architecture . 13

2.5.1. Layers . 13
2.6. Learning algorithm . 18

2.6.1. Backpropagation . 18
2.6.2. Gradient descent . 20

3. Out-of-distribution detection 23
3.1. Implementation environment . 23

3.1.1. Colab specifications . 23
3.2. Method . 24

3.2.1. Key points . 24
3.3. Network . 25

3.3.1. Fully connected network . 25
3.3.2. Resnet . 25

3.4. Training activation . 29
3.5. Testing activation (score) . 29

i

3.5.1. Softmax: Temperature scaling 30
3.5.2. Cosine similarity . 32
3.5.3. Inner-product . 33

3.6. Input processing strategy: perturbations 34
3.7. Hyperparameters . 34
3.8. Parameter tuning . 35

3.8.1. Temperature . 35
3.8.2. Perturbation . 37
3.8.3. Threshold . 39

4. Results 41
4.1. Results analysis . 41

4.1.1. MNIST . 41
4.1.2. GLF-SB2 . 42

4.2. Size influence and conclusions . 45

5. Further work 47

Bibliography 49

Resum

En els darrers anys, de la mà de l’evolució de la tecnologia i la intel·ligència
artificial, el camp de la medicina ha viscut un canvi de paradigma, i altres ciencies
s’han introduït directement a la medicina. En el cas d’aquest projecte, es treba-
lla amb un conjunt d’imatges, obtingudes mitjançant una pildora endoscòpica, la
qual el pacient s’empassa, i va transmetent imatges dels intestins a un dispositiu
extern. Aquest conjunt d’imatges ja ha estat tractat, però un element important en
la prevenció de malalties és l’existència d’hemorragies, sang o altres elements als
intestins. L’objectiu d’aquest projecte és el d’automatitzar la cerca d’elements ex-
tranys en les imatges preses per aquestes càmeres inalambriques, per així estalviar
feina als doctors. Per tal de fer això, s’aplica un algorisme de detecció d’imatges
de fora de la distribució. En altres paraules, mitjançant l’entrenament d’una xarxa
neuronal, es determina si una imatge pertany al mateix tipus d’imatges amb les
quals s’ha entrenat la xarxa, o no. Això es fa mitjançant una modificació de la fun-
ció de classificació original de la xarxa, aplicant un llindar, el qual determina si la
imatge pertany o no a la distribució d’entrenament, a més a més d’un tractament
previ de les imatges. En aquesta memòria, es fa una descripció del funcionament
i l’estructura de les xarxes neuronals, fent un incís en les xarxes neuronals con-
volucionals, les quals són les més utilitzades per al tractament d’imatges, i per
tant són les que s’utilitzen en aquest projecte, es descriu el mètode de classificació
implementat, així com es descriu la seva configuració i els resultats obtinguts amb
la implementació donada.

2010 Mathematics Subject Classification. 68T20

2 Introduction

Resumen

En los últimos años, de la mano de la evolución de la tecnología y la inteli-
gencia artificial, el campo de la medicina ha vivido un cambio de paradigma, y
otras ciencias se han introducido directement a la medicina. En el caso de este
proyecto, se trabaja con un conjunto de imágenes, obtenidas mediante una píldo-
ra endoscópica, la cual el paciente traga, y transmite imágenes de los intestinos
a un dispositivo externo. Este conjunto de imágenes ya ha sido tratado, pero un
elemento importante en la prevención de enfermedades es la existencia de hemo-
rragias, sangre u otros elementos en los intestinos. El objetivo de este proyecto es
el de automatizar la búsqueda de elementos extraños en las imágenes tomadas por
estas cámaras inalámbricas, para así ahorrar trabajo a los doctores. Para hacer esto,
se aplica un algoritmo de detección de imágenes fuera de la distribución. En otras
palabras, mediante el entrenamiento de una red neuronal, se determina si una
imagen pertenece al mismo tipo de imágenes con las que se ha entrenado la red, o
no. Esto se hace mediante una modificación de la función de clasificación original
de la red, aplicando un umbral, el cual determina si la imagen pertenece o no a la
distribución de entrenamiento, además de un tratamiento previo de las imágenes.
En esta memoria, se hace una descripción del funcionamiento y la estructura de
las redes neuronales, haciendo un inciso en las redes neuronales convolucionales,
las cuales son las más utilizadas para el tratamiento de imágenes, y por lo tanto
son las que se utilizan en este proyecto, se describe el método de clasificación im-
plementado, así como se describe su configuración y los resultados obtenidos con
la implementación dada.

2010 Mathematics Subject Classification. 68T20

2 Introduction

Abstract

In recent years, with the evolution of technology and artificial intelligence, the
field of medicine has undergone a paradigm shift, and other sciences have been
introduced directly into medicine. In the case of this project, we work with a
set of images, obtained by a wireless capsule endoscopy, which the patient swal-
lows, and transmits images of the intestines to an external device. This set of
images has already been treated, but an important element in disease prevention
is the existence of bleeding, blood or other elements in the intestines. The aim of
this project is to automate the search for strange elements in the images taken by
these wireless cameras, in order to save work for doctors. To do this, an out-of-
distribution image detection algorithm is applied. In other words, by training a
neural network, it is determined whether an image belongs to the same type of
images with which the network has been trained, or not. This is done by a modifi-
cation of the original classification function of the network, applying a threshold,
which determines whether the image belongs to the training distribution or not,
in addition to a pre-processing of the images. In this report, a description of the
functioning and structure of the neural networks is made, making a section on the
convolutional neural networks, which are the most used for image treatment, and
therefore are the ones used in this project. The classification method implemented
is described, as well as its configuration and the results obtained with the given
implementation.

2010 Mathematics Subject Classification. 68T20

2 Introduction

Chapter 1

Motivation and planification

Capsule endoscopy [1] is a procedure that uses a tiny wireless camera to take
pictures of the patient digestive tract. A capsule endoscopy camera sits inside
a vitamin-size capsule the patient swallow. As the capsule travels through the
digestive tract, the camera takes thousands of pictures that are transmitted to an
external device.

Figure 1.1: Wireless capsule endoscopy composition example

The research group on Data Science of the University of Barcelona works with
a data set of images taken with a wireless capsule endoscopy.

3

4 Motivation and planification

The data set (GLF-SB2) has images previously classified into seven categories:

1. Bubbles

2. Clear blob

3. Dilated

4. Turbid

5. Undefined

6. Wall

7. Wrinkles

1.1. Objectives

The aim of this project is to create a new category (other). A supervised model
is trained with a limited labeled data set. In the medical field, data sets may be
limited, due to economical or legal concerns. A model trained with a certain data
set is only able to classify images from the same sample. When a different im-
age is evaluated, the prediction is random. For this reason, is interesting to be
able to detect whether an image belongs to the training distribution or not. In the
problem faced on this project, it is important to detect images different from the
training distribution, since a "new" image could denote the appearance of a new
pathology, which must be considered as crucial information.

Figure 1.2: Dataset categories

1.2 Planification 5

1.2. Planification

The initial planning consisted of using some method of classification to achieve
this objective. The first task was to study which possible classification methods or
strategies would be the most appropiate for the project. The student began a
process of basic training[2], in which he studied from the elementary level to a
fairly high level in the field of neural networks.

After a few weeks of research, the goal shifted to detect out-of-distribution
images (Initially the aim was to detect images with blood).

Figure 1.3: Gantt chart

The work was done first on a simple dataset (MNIST[3]),to later work with the
project dataset, more complex, so the workload was also divided into these two
steps.

6 Motivation and planification

1.3. Out of distribution

1.3.1. How does it work?

In order to explain how it works, one definition is needed:

Definition 1.1. A data set distribution is data obtained from the same source. Images
of the same object, obtained from different sources, are images from different distributions.
For example: pictures and drawings of an object, even if they represent the same object,
cannot be considered to be from the same distribution.

In out-of-distribution detection, the objective is to define a model, train it with
some data and then evaluate the model with data from the same distribution and
data from different distributions, and detect whether an image belongs to the same
distribution that has been used to train the model, or not.

Figure 1.4: ODD detection scheme. Red arrow: training. Green arrow: evaluation.
Blue arrow: output

Chapter 2

Artificial neural networks

2.1. Definitions[4]

Definition 2.1. An artificial neuron is a mathematical function conceived as a model
of biological neurons, a neural network. Artificial neurons are elementary units in the
artificial neural network.

Definition 2.2. An artificial neural network (ANN) is the piece of a computing system
designed to simulate the way the human brain analyzes and processes information. It is
composed of artificial neurons.

Definition 2.3. A neural network layer is a collection of neurons operating together at a
specific depth within a neural network. Three different types of layers can be distinguished:
Input layer, which contains the raw data, the hidden layers, and the output layer, which is
the simplest, usually consisting of a single output.

Definition 2.4. The ANN parameters are the coefficients of the model, which are chosen
by the model itself. This means that the parameters of the model are learnable (during
training the model learns which parameters minimize error).

Definition 2.5. ANN hyperparameters are elements that affect model performance, but
they have to be pre-set. During parameter tuning scientists choose the best hyperparam-
eters.

7

8 Artificial neural networks

2.2. Why is it called "neural" network?

It is because of the similarities it has with the biological neurons. As shown
in figures 2.1 and 2.2, it is possible to define the following relationship between a
biological neuron, and the mathematical model (artificial neuron):

1. Dentrites - inputs

2. Nucleus - transfer function

3. Axon - activation

Figure 2.1: Animal neuron Figure 2.2: Artificial neuron

Once a neuron is described, it is possible to describe the network. Each neuron
receives inputs from other neurons, i.e. the output of one neuron is the input of a
related neuron and so on.

The relationships described above are of form meaning. In a more functional
sense, it is possible to describe the inputs/activations as the electric signals sent
and received by the biological neurons.

2.3. Mathematical model

Figure 2.2 represents an artificial neuron. This section will describe each of its
components.

1. Inputs: Neuron inputs are basic pieces of information which are used to
generate an output.

2. Weights: The weights are multiplied by the inputs. Their function is to
decide whether each input should be stimulated or inhibited. The weights
are trainable elements.

2.3 Mathematical model 9

3. Transfer function: The transfer function collects all the products into a single
input for the activation function.

4. Activation function: The activation function computes the activation of the
neuron (output). There are some common activation functions in ANN.

2.3.1. Activation functions

Binary step function:

A binary step function is a threshold-based activation function. If the input
value is less than a threshold value, it returns a fixed value, as well as if the
input value is above the threshold. This means that the neuron can only send two
different values, which makes the binary step function not useful in a wide range
of problems.

f (x) =

{
a if x ≤ λ

b if x > λ
(2.1)

Usually a = 0, b = 1, and threshold λ = 0

Figure 2.3: Binary step function for a = 0, b = 0.25 and λ = 0

Linear activation function:

A linear activation function takes the inputs, multiplied by the weights for each
neuron, and creates an output signal proportional to the input. It is better than the
binary step function in the sense that it can send different values, but this function
has two major problems: It is not possible to apply gradient descent [Section 2.6.2]

10 Artificial neural networks

since its derivative is constant, and as its name indicates, it is a linear function, so
its use implies that the last layer of the network is a linear function of the first
layer, causing all the layers of the network to collapse into a single layer.

f (x) = c · x (2.2)

Figure 2.4: Linear activation function for c = 1

Modern models of neural networks use non-linear activation functions. They al-
low the model to create complex mappings between network inputs and outputs,
which are essential for learning and modeling complex data.
Non-linear functions address the problems of a linear activation function:

1. They allow backpropagation and gradient descent because its derivative
function is related to the inputs.

2. They allow multiple layers of neurons to create a deep neural network. Mul-
tiple hidden layers of neurons are needed to learn complex datasets with
high levels of accuracy.

The following activation functions are some examples of non-linear activation
functions:

Sigmoid

The output of the sigmoid function is bounded by (0,1). An important char-
acteristic of this function is it has a smooth gradient, which makes the outputs
similar for similar inputs. Another characteristic is this function makes very clear
predictions, as for inputs below -2 its output is very close to 0, and for inputs
above 2 its output is very close to 1.

f (x) =
1

1 + e−x (2.3)

2.3 Mathematical model 11

Figure 2.5: Sigmoid activation function

By the definition of derivative of the exponential function, the sigmoid deriva-
tive (equation 2.4) can be easily computed by reusing the values obtained by the
computation of the validation.

f ′(x) =
ex

(ex + 1)2 = f (x)(1− f (x)) (2.4)

Hyperbolic tangent

Hyperbolic tangent function has some similarities with sigmoid, but it also has
some important differences: This function maps its inputs into a range (-1,1) (it is
zero centred) which also makes its slope to be higher.

f (x) = tanh(x) =
ex − e−x

ex + e−x (2.5)

Figure 2.6: Hyperbolic tangent activation function

12 Artificial neural networks

Its derivative can also be computed by reusing previous computations:

f ′(x) = 1− f (x)2 (2.6)

ReLU (Rectified Linear Unit)

The ReLU represents an almost linear function and therefore retains the prop-
erties of linear models that made them easy to optimize with gradient descent
method.

f (x) = max(0, x) (2.7)

Figure 2.7: ReLu activation function

2.4. Types of ANN

Depending on which is the purpose of the ANN, there are some different
types of network, more efficient for certain goals. Among some other types and
specializations of them, it is possible to distinguish three main types of networks:
Feedforward neural network, Recurrent neural network and Modular neural net-
work. Each of these comes in many variants, depending on the type and number
of layers, strategies or connections between layers. In feedforward neural net-
wotks, information moves only from the input layer directly through the hidden
layers to the output layer.

A Recurrent Neural Network (RNN) is a type of neural network that contains
loops, allowing information to be stored within the network. In summary, RNN
use their reasoning from previous experiences to inform the upcoming events.

2.5 CNN architecture 13

RNN are the most common networks used in speech and handwriting recogni-
tion. A modular neural network consists on a series of independent neural net-
works moderated by some intermediary. Each independent neural network serves
as a module and operates with separate inputs to perform some sub-task of the
task the network expects to perform.

The type of network used for image recognition and classification (and this
project) are the Convolutional neural networks (CNN), which are a variation of
feedforward neural networks. The name "convolutional" neural networks indi-
cates that the network employs a mathematical operation called convolution. Con-
volution is a specialized type of linear operation. Convolutional networks are
simply neural networks that use convolution in at least one of their layers.

2.5. CNN architecture

A convolutional neural network consists of an input layer and an output layer
(with a classification function, usually a softmax classifier [Def. 2.6] , as well as
multiple hidden layers. The hidden layers of a CNN typically consist of differ-
ent layers such as convolutional layers, pooling layers, fully connected layers and
normalization layers, followed by a final classification layer.

2.5.1. Layers

The main components of ANN are the neurons, but these components can
be combined to create more complex structures. These combinations of neurons
are called layers [Def. 2.3]. Neurons in one layer connect only to neurons in the
immediately before and immediately after them. The layer that receives external
data is the input layer. The layer that produces the final result is the output layer.
Between them there are zero or more hidden layers.

The following are some different types of layers:

Convolutions

The objective of the Convolution Operation is to extract the high level features,
such as edges or shapes, from the input image. The convolution operation is
performed by sliding a size n2 filter over the image and computing the element-
wise multiplication of its elements by the images on each pixel, as shown in the
figure 2.8.

14 Artificial neural networks

Figure 2.8: Convolution of a 3x3 filter

The following are examples of filters that can detect edges:

Figure 2.9: 3x3 edge detector filters

And they work as follows:

Figure 2.10: Vertical edge 3x3 filter detector

2.5 CNN architecture 15

As shown on figure 2.10, on a greyscale case, where higher values indicate
whitish colors and smaller values indicate darker colors, when applying the filter,
the output image highlights a vertical edge, which is evident from the input image.

Convolutional layers have the following hyperparameters: Number of filters,
as each layer can apply different filters to the images, filters size, stride and
padding.

Stride is the number of pixels skipped in each computation. For example,
figure 2.10 has a stride 1: the first central pixel is the element (starting at 0) (1, 1),
and the second one is (1, 2). After completing the first row, the pixel (0, 1) of the
result is computed by applying the filter to the input image with central pixel the
element (1, 2). However, with a stride 2, the first pixel would also be (1, 1), but the
second one would be (1, 3) and so on. One reason of using stride is to "blur" the
effect of the input pixels. With a stride other than 1, the number of output pixels
where an input pixels affects decreases.

When applying the convolution, the edge elements are used to compute fewer
elements. For example, with a 3x3 filter, a center pixel will provide information (it
will be used in the computation) of 9 pixels. In contrast, a corner element will be
used in the computation of one pixel. This can be fixed using padding. Padding
consists on adding neutral pixels around the image, so that the edge pixels become
more important. Zero-padding is the most common.

Figure 2.11: zero-padding = 2 example application, stride 1

16 Artificial neural networks

As shown on figure 2.11, when padding is applied, the size of the output
changes in relation to the size obtained without padding. This is the other reason
for using padding and stride, changing the size of the output.

The parameters of the convolutional layer are the filters. Convolutional layers
do not use fixed filters. During training, the network decides which filters are the
best. The number of parameters for a convolutional layer is then: n2 · f · c, where f
is the number of filters and c is the number of channels (c = 3 in the case of RGB
images).

Pooling

Pooling is a form of non-linear sample reduction. It divides the input image
into a set of non-overlapping rectangles and, for each of these sub-regions, pro-
duces a single element. There are various non-linear functions for implementing
pooling such as max pooling, average pooling, min pooling or stochastic pooling.
The aim of pooling is to reduce the number of parameters, memory usage and
amount of computations in the network, and therefore also to control overfitting.1

Figure 2.12: Downsampling representation and 2x2 max-pooling operation

As shown in figure 2.12, a 2x2 pooling, downsamples the input image by a
factor of 2.
Pooling layers are normally applied after convolutions, in order to suppress noise
and reduce the dimension.

Fully connected

The fully connected, or dense layers in CNN are used at the end of the net-
work, to reason at a high level the neural network. Fully connected layers are

1overfitting appears when the model learns too well the training set, but it does not generalize,
and fails to classify correctly new data, different from the training set

2.5 CNN architecture 17

regular (non-convolutional) layers, made up of neurons. Neurons in a fully con-
nected layer have connections to all activations in the previous layer. So, if an
earlier layer has n neurons and the current layer has m neurons, the number of
connections between the two layers is n · m. In fully connected layers, each con-
nection has a weight, which is a learnable parameter. When working with large
images, this number of parameters increases to a point where it is unsustainable
in terms of memory and computation. This is why convolutional layers are used
before applying fully connected layers. After some convolutional layers and pool-
ing layers, the network has already learned, and the number of fully connected
layers (and parameters) is substantially less than in a regular non-convolutional
network.

Figure 2.13: Fully connected layer example

18 Artificial neural networks

2.6. Learning algorithm

Since the data used during this project is labeled and the goal is to find new
categories, only supervised learning will be explained. The learning is supervised
if the training data is classified into different categories, so that the algorithm will
compare the correct output with the actual output, obtaining an error. Unsuper-
vised learning trains with unlabeled data.

Learning is the adaptation of the network to better handle a task by consider-
ing sample observations. Learning is the process of adjusting the weights of the
network to improve the accuracy of the results. The goal of the algorithm is to
minimize observed errors. Learning ends when the accuracy does not improve
after training. If after learning, the error rate is too high, the network typically
must be redesigned.

The most commonly used algorithm in training feedforward neural networks
for supervised learning is backpropagation.

2.6.1. Backpropagation

In this learning algorithm, first the inputs are propagated forward to get the
cost of the error (or loss) and then backpropagate the errors from the output to the
input, making each layer rectify its weights for a proportional part of its error. The
most common algorithm used for this purpose is gradient decent[Section 2.6.2].

Loss function

The loss function calculates the difference between the network output and its
expected output, after a training example has propagated through the network.
The loss function must fulfill two properties in order to be used by the learning
algorithm:

1. It has to be possible to express it as an average over the individual loss
functions for each training example:

C =
1
n

xn

∑
x=x0

Cx (2.8)

Since the backpropagation algorithm calculates the gradient of the loss func-
tion for each single training example. Afterwards, it has to be generalized to
the general loss function.

2. It has to be expressed as a function of the outputs.

2.6 Learning algorithm 19

There are several types of loss functions. Four of them, are the most used
in the field: Mean Squared Error (MSE), Binary Crossentropy (BCE), Categorical
Crossentropy (CC) and Sparse Categorical Crossentropy (SCC).

1. Mean Squared Error: it is calculated by taking the mean of squared differ-
ences between actual and predicted values. MSE loss is used for regression
tasks.

L =
1
2

n

∑
i=0

(xi − yi)
2 (2.9)

Where xi is the output value and yi is the actual value.

2. Binary Crossentropy: it is used when the classification is done over two
categories. It adds the log probability of the prediction being incorrect. In
binary classification, generally the target labels are 1 and 0. Since there are
only two categories, the probability of each category is the complementary
probability of the other one (p2 = 1− p1).

L = −yi · log(xi)− (1− yi) · log(1− xi) (2.10)

When the predicted label is close to 1, its log is close to 0 and log(1− xi)

is close to −∞. Then, if the target label is 1, the loss has to be close to
0 (since the prediction is correct), and if it is 0, the loss has to be large
(incorrect prediction, big loss), so it is multiplied by yi or 1− yi respectively.
Its contrary is symmetrical.

3. Categorical Crossentropy: it is a generalization of BCE to C possible cate-
gories.

L =
C

∑
i=1

yi · log(f (x)i) (2.11)

Where C is the number of categories and f is the softmax [Def. 2.6] activation
function.

Definition 2.6. Softmax activation function is a function that takes as input a
vector of C real numbers, and normalizes it into a probability distribution consisting
of C probabilities proportional to the exponentials of the input numbers:

f (x)i =
ex

i

∑C
j es

j

(2.12)

All the resulting elements add up to 1. It is applied to the output scores.

20 Artificial neural networks

4. Sparse Categorical Crossentropy: it is a notation modification of CC. In CC
the actual categories are represented with one-hot encoded vectors, i.e. vec-
tors of zeros except for the index of the target category. On the other hand,
SCC categories are represented by indexes (integers).

Example 2.7. Four possible categories:
Labels: 1,2,3,4
One-hot encoding: [1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1].

The results must be the same for CC and SCC, with its respective encodings.

2.6.2. Gradient descent2

The goal of the learning algorithm is to minimize the loss function. Gradient
descent consists on updating all the network learnable parameters with the aim of
producing an output for the network that minimizes the error. A learning rate (α)
is set, and each network parameter is updated with an α-proportion of the loss for
this parameter:

wij = wij − α
δL

δwij
(2.13)

Where δL
δwij

is the gradient of the loss with respect to the weight wij. This
gradient can be computed with the chain rule as follows:

δL
δwij

=
δL

δoutputj
·

δoutputj

δlayerj
·

δlayerj

δwij
(2.14)

Since δlayerj
δwij

is the output of the following layer, this output must be known.
This is the reason backpropagation is used: in order to get one layer gradient, the
output of the following layer needs to be known, so the error is backpropagated
from the last layer to the first one.

Nowadays, this method is not used, since it requires the whole dataset to
be forwarded and backpropagated at once. Nowadays datasets are so huge that
makes this impossible. In order to fix this, Stochastic Gradient Descend and mini-
batch gradient descent were designed, and consist on submitting the input one by
one (Stochastic), or submitting the input by mini-batches (small groups of data).
On the last years, some gradient descent optimization algorithms[5] have been
designed, in order to improve performance with respect to gradient descent, such
as gradient descent with momentum, RMSprop Optimizer or Adam optimizer.

2Note that for all the following methods, the same than for weights is done for biases.

2.6 Learning algorithm 21

Momentum

Stochastic gradient descent has problems navigating areas where the surface
curves much more sharply in one dimension than in another, which are common
around the local optimal. In these scenarios, stochastic gradient descent oscillates
through the slopes while it only advances hesitantly along the bottom towards the
local optimum.

Figure 2.14

Momentum is a method that helps accelerate stochastic gradient descent in the
relevant direction.

Figure 2.15

It is done by adding a fraction β of the update vector of the previous steps to
the current update vector:

vdw = βvdw + (1− β)
δL

δwij
(2.15)

It is also known as exponentially decaying average of past gradients.
Then, the parameter update is done as so:

wij = wij − αvdw (2.16)

β is usually set to 0.9. The momentum term increases for dimensions whose
gradients point in the same directions and reduces updates for dimensions whose
gradients change directions.

22 Artificial neural networks

RMSprop

RMSprop (Root Mean Square Propagation) face the same problem than mo-
mentum, but it faces it by updating the learning rate.

Learning rate is updated by dividing by the root of the squared gradient. Since
the gradient is only the gradient for a single input (or a mini-batch) the moving
average is used:

Sdw = βSdw + (1− β)(
δL

δwij
)2 (2.17)

Then, depending on the gradient, the leaning rate changes: when the gradi-
ent (in absolute value) is bigger (> 1) the learning rate decreases, and when the
gradient is smaller (< 1) the learning rate increases, speeding up the learning.

wij = wij −
α√
Sdw
· δL

δwij
(2.18)

Adam

Adam (adaptive moment estimation) is a combination of momentum and RM-
Sprop. Adam also computes adaptive learning rates for each parameter. In addi-
tion to storing an exponentially decaying average of past squared gradients like
RMSprop, it also keeps an exponentially decaying average of past gradients simi-
lar to momentum:

Vdw = β1Vdw + (1− β1)(
δL

δwij
) (2.19)

Sdw = β2Sdw + (1− β2)(
δL

δwij
)2 (2.20)

In addition, those vectors are corrected depending on the number of iterations
(t) done:

Vcorrected
dw =

Vdw

1− βt
1

(2.21)

Scorrected
dw =

Sdw

1− βt
2

(2.22)

Then, the update is done as follows:

W = W − α√
Scorrected

dw

·Vcorrected
dw (2.23)

Chapter 3

Out-of-distribution detection

3.1. Implementation environment

Due to the characteristics of this project, computational power as well as large
memory capacities are required. Only the memory amount needed to store the
images data set is 22GB.

Deep learning algorithms are generally executed over GPU. The main reason
for this, is that unlike CPUs, which are designed for more general computing
workloads, GPUs are less flexible, but they are so efficient for matrix multiplication
and convolution.

Due to the GPU limitations on commercial computers, specialized platforms
are usually needed for deep learning work. Google colaboratory (colab) is the
environment chosen for this project. As shown on this [6] colab notebook, GPU
speedup over CPU is 35x.

Tensorflow 2.2.0 with python 3.6 has been selected as development platform.
TensorFlow is a widely used end-to-end open source platform for machine learn-
ing development. Keras is also used. Keras is an open-source neural-network
library written in Python, which is capable of running on top of TensorFlow.

3.1.1. Colab specifications

The Google colab hardware specifications[7] are the following:

GPU: Tesla K80

CPU: Intel(R) Xeon(R) CPU @ 2.00GHz

RAM: 13 GB

23

24 Out-of-distribution detection

Disk: 34 GB

This specifications depend on availability and change many times during a
year. Google colab also has available the GPUs Tesla T4 and Tesla P100. In terms
of RAM, after a crash due to limit reach, colab extends RAM up to 25GB.

3.2. Method

The aim of this method is to detect which images are in-distribution (the train-
ing distribution) and out-of-distribution (a distribution different from the training
distribution).

For this project, as will be shown later, the training has been done with 4 dif-
ferent categories (Clear blob, undefined, wall and wrinkles). Then, with a softmax
activation function, the outputs will be 4 probabilities, one for each category. The
output category will then be the category with the highest probability. For exam-
ple, if the softmax output is: [0.1, 0.2, 0.68, 0.02], the category will be ’wall’, with
a confidence probability of 68%.

This higher probability will also be considered as an indicator of whether or
not it belongs to the training distribution. Initially, this does not seem to make any
sense, as this probability only indicates the confidence of the prediction. In this
project, this probability will be changed for a score S (no probability) which will
widen the gap between in-distribution and out-of-distribution images. Finally a
threshold δ will be set, and images with scores above the threshold will belong to
the distribution, and images with scores below the threshold will be the out-of-
distribution images.

OOD(S(x)) =

{
1 if S(x) ≤ δ

0 if S(x) > δ
(3.1)

ODD (Out-of-distribution) where S(x) = maxi f (x) and f (x) is the activation
function.

3.2.1. Key points

There are two key points for the method implementation: adding perturbations
to the input images and using a different activation function in the prediction.
The implementation will then consist on defining an input processing strategy,
and defining two models, one for training and one for testing (predict) with a
different activation function: Softmax with temperature scaling, cosine similarity
or inner-product.

3.3 Network 25

3.3. Network

For this project 2 networks have been used. For the MNIST data set, a fully
connected network has been used. The chosen optimizer is Adam with the default
Keras parameters.

3.3.1. Fully connected network

Figure 3.1: Fully connected network

For the GLF-SB2 dataset the network chosen is a Resnet50. The network used
is the keras Resnet50 with an extra fully connected layer, which will be different
depending on the method. For training, the layer is fully connected with softmax
activation.

3.3.2. Resnet

Since the data set is more complex, a deeper network is needed. Deeper net-
works have to face learning problems: During back propagation, the weights are
updated with a proportional part the partial derivation of the loss function. When
the network gets deeper, this update can decrease to very small values, making
the learning very slow, and can even stop the learning. This can intuitively be
understood as data disappearing through too many layers of the network.

A 2015 paper by Microsoft researchers [8], found a solution for this problem:
Residual networks.

ResNet is a deep CNN model with residual blocks. In order to understand
what a residual block is, first of all the residual operation has to be explained: the
residual operation, also known as identity shortcut connection, or skip connection,

26 Out-of-distribution detection

consists on adding the original input to the output of the convolution block. When
a residual operation is added to the network, the layers covered by this shortcut
are known as a residual block.

Figure 3.2: Residual block. Residual operation applied to a 3 convolution layers
block

Since the input and output are matrices, the residual operation can only be
done if the input and the output have the same shape. In order to ensure this, the
shortcut passes through a convolution layer chosen in such a way that the output
of this layer has the same dimension as the output from the convolution block.

Residual blocks mitigate the problem of vanishing gradients, and in addition
they allow the model to learn an identity functions which ensure that the higher
layer will perform at least as good as the lower layer, and not worse.

The model chosen for this project is ResNet50, which is a 50 layer Resnet. On
the following images its complexity is shown. The chosen optimizer is Adam with
the default Keras parameters, except for the learing rate, which is set at α = 0.0001.

3.3 Network 27

Figure 3.3: Resnet50 model architecture 1/2

28 Out-of-distribution detection

Figure 3.4: Resnet50 model architecture 2/2

3.4 Training activation 29

Training and accuracy

The model described above has been trained during 10 epochs of 53413 iter-
ations each. After 534k iterations, the test accuracy of the model is 94.59% for 4
classes classification (Clear blob, undefined, wall and wrinkles).

Figure 3.5: Model accuracy and loss during 10 training epochs

3.4. Training activation

During training, the activation function is a softmax classifier [Def. 2.6] for
both networks, with 10 classes for the MNIST data set, and 4 classes for the GLF-
SB2 data set.

3.5. Testing activation (score)

In order to classify between in-distribution and out-of-distribution, the output
activation can be modified. If it is not modified, i.e. softmax is used, as will be
shown later on the results analysis, the performance of the method is quite poor,
roughly 25% for MNIST and 20% for GLF-SB2, for a 5% FPR1, whereas the optimal
performances are 85% and 44 % respectively.

1False positive ratio (FPR) is the probability of classifying as positive a negative event. The false
positive rate is calculated as the ratio between the number of negative events wrongly categorized
as positive (false positives) and the total number of actual negative events

30 Out-of-distribution detection

3.5.1. Softmax: Temperature scaling

Temperature scaling is applied in the softmax classification:

ODDs(x) = So f tmax(x/T) = maxi
exp(fi(x)/T)

∑C
j=1 exp(f j(x)/T)

(3.2)

Where f is the neural network and C is the number of categories.

The predictions are the same for every value of T:

Example 3.1. Classification of an image with different activations:

Output for T=1:

[2.3787636e-07 1.3238816e-09 1.7010921e-08 7.4349166e-11 1.0913569e-10 4.3010269e-
03 1.9239084e-07 1.9822845e-02 1.0024667e-08 9.7587568e-01]

label predicted = 9 (higher value = 9.7587568e-01)

Output for T=1000:

[0.09990302 0.09938575 0.09963983 0.09909996 0.09913801 0.10088714 0.09988182
0.10104141 0.09958715 0.10143589]

label predicted = 9 (higher value = 0.10143589)

Temperature scaling: Theoretical justification

As shown in parameter tuning [Section 3.8.1] , large temperature yields better
detection performance although the effect diminish when T is too large. When T
is sufficiently large, the Taylor expansion 2 of the softmax score is:

2Taylor polynomials are approximations of a function, which becomes generally better when n
increases:

∞

∑
n=0

f (n)(a)
n!

(x− a)n (3.3)

where f (n)(a) denotes the nth derivative of f evaluated at the point a.

3.5 Testing activation (score) 31

ODDs(x) =
exp(f (x)/T)

∑C
i=1 exp(fi(x)/T)

=
1

∑C
i=1 exp(fi(x)/T)
exp(f (x)/T)

=
1

∑C
i=1 exp(fi(x)− f (x)

T)

=
1

∑C
i=1[1 +

fi(x)− f (x)
T + 1

2!
(fi(x)− f (X))2

T2 + o(1
T2)]

≈ 1
C− 1

T ∑i[f (x)− fi(x)] + 1
2T2 ∑i[f (x)− fi(x)]2

(3.4)

Where f (x) is the network output for the predicted label, and fi(x) are the
network outputs for each class.

Since f (x) = f j(x) for some j ∈ {0, ..., C}, for simplicity of the notations, let
∆i = f j(x)− fi(x). Then:

Mean(∆) = ∆̄ =
1

C− 1 ∑
i 6=j

∆i (3.5)

And:

1
C− 1 ∑

i 6=j
∆2

i =
1

C− 1 ∑
i 6=j

(∆i − ∆̄ + ∆̄)2

=
1

C− 1 ∑
i 6=j

[(∆i − ∆̄)2 − 2(∆i − ∆̄)∆̄ + ∆̄2]

=
1

C− 1 ∑
i 6=j

[∆i − ∆̄]2 − 2∆̄
C− 1 ∑

i 6=j
[∆i − ∆̄] + ∆̄2

= Variance2(∆) + Mean2(∆), since ∑
i 6=j

(∆i − ∆) = 0

(3.6)

Now, rewriting the Taylor approximation:

32 Out-of-distribution detection

ODDs(x) ≈ 1
C− 1

T ∑i[f (x)− fi(x)] + 1
2T2 ∑i[f (x)− fi(x)]2

=
1

C− C−1
T Mean(∆) + C−1

2T2 [Var2(∆) + Mean2(∆)]
(3.7)

The mean measures how much the largest output diviates from the remaining
outputs, while the variance measures how much diviate the remaining outputs
from each other. Due to the fact that neural networks tend to make more confi-
dent predictions on in-distribution images, the mean is higher for in-distribution
images, and the variance is higher for out-of-distribution.

Example 3.2.

If the prediction is very accurate, the outputs are p ≈ [1,0,0,0]. Then, the
mean is: 1

3 ∑i 6=0(1− pi) =
1
3 (1 + 1 + 1) = 1, and the variance is: 1

3 ∑i 6=0[(1−
pi)− ∆̄] = 0

If the prediction is almost arbitrary, one example of output could be: p =
[0.4,0.3,0.2,0.1]. Then, the mean is 0.2 and its variance is 0.2.

Their effect in the scores are positive for Mean(∆) while are negative for
[Var2(∆) + Mean2(∆)], since they belong to the denominator of the Taylor ap-
proximation for the score. Then, the higher the value of T is, the lower [Var2(∆) +
Mean2(∆)] affects to the score.

Hence, for higher values of T, the gap between in-distribution and out-of-
distribution scores increases, making the two groups more separable. This can
be observed on parameter tuning [Section 3.8.1], because when adding tempera-
ture scaling with T = 10, although it is small, its effect is notable.

3.5.2. Cosine similarity

A different score function is introduced: cosine similarity.

ODDc(x) =
f (x) · w

‖ f (x)‖ · ‖w‖ (3.8)

Where w are the weights of the last layer (trainable parameters), and f is the out-
put of the previous layer.

3.5 Testing activation (score) 33

This function outputs a value for each class, which also works as classifier, but
it also allows to have a different ODD score, which can provide different out-of-
distribution detection.

The predictions are the same for training activation than for cosine similarity
activation:

Example 3.3. Classification of an image with different activations:

Softmax activation:

[2.3787636e-07 1.3238816e-09 1.7010921e-08 7.4349166e-11 1.0913569e-10 4.3010269e-
03 1.9239084e-07 1.9822845e-02 1.0024667e-08 9.7587568e-01]

label predicted = 9 (higher value = 9.7587568e-01)

Cosine similarity activation:

[-0.06442402 -0.0919809 -0.08047021 -0.11144653 -0.10545421 -0.00931601 -0.06646427
-0.00185291 -0.0816487 0.02404125]

label predicted = 9 (higher value = 0.02404125)

3.5.3. Inner-product

Another score function is introduced: inner-product.

ODDi(x) = f (x) · w + b (3.9)

Where w and b are the weights and the bias of the last layer (trainable parame-
ters), and f is the output of the previous layer.

The predictions are the same for training activation than for inner-product
activation as well:

Example 3.4. Classification of an image with different activations:

Softmax activation:

[2.3787636e-07 1.3238816e-09 1.7010921e-08 7.4349166e-11 1.0913569e-10 4.3010269e-
03 1.9239084e-07 1.9822845e-02 1.0024667e-08 9.7587568e-01]

label predicted = 9 (higher value = 9.7587568e-01)

34 Out-of-distribution detection

Inner-product activation:

[-11.364547 -16.555729 -14.002443 -19.435282 -19.051462 -1.5619336 -11.576769
-0.03395233 -14.531249 3.8625479]

label predicted = 9 (higher value = 3.8625479)

3.6. Input processing strategy: perturbations

Before feeding the image x into the neural network, the input is preprocessed
by adding small perturbations to it. The preprocessed image is given by:

x̃ = x− εsign(−∇xODDj(x)) (3.10)

Where ODDj can either be softmax score, cosine similarity score or inner-
product score, and ε being a perturbation parameter.

This has been shown to have important effect on performance for some data
sets. On the 2018 paper [10] by Liang, Li & Srikant, some results are exposed on
different data sets, about the impact of this input processing. On the same paper, is
shown that for MNIST data set perturbations does not provide improvement. On
this project this will be checked, and the performance will be tested for GLF-SB2
data set. [Section 3.8.2]

3.7. Hyperparameters

In addition to the network hyperparameters themselves, there are hyperpa-
rameters inherent to the method. Those are temperature (T), noise magnitude
(epsilon) and the threshold (δ).

1. Temperature: it is the value used for temperature scaling on softmax classi-
fication. [Section 3.8.1]

2. Epsilon: it determines the amount of noise added to the input images. It has
to be tuned for each network and data set. For this project it has been tuned.
It will be more easily understood after having some results to compare, so
the parameter tuning is explained in a further section.[Section 3.8.2]

3. Threshold: it determines which images are detected as out-of-distribution.
It can change depending on the admitted error.

3.8 Parameter tuning 35

3.8. Parameter tuning

3.8.1. Temperature

In order to get the best value for the hyper parameter T, fixing a configuration,
some different values are tested in order to find which one has a better perfor-
mance.

Mnist

Configuration:

Network: 1 fully connected layer [def.]. Accuracy 88%.

Tested over 10k in-distribution and 10k out-of-distribution data set.

Comparison done for a false rate positive of 5%. For each T value, a thresh-
old that yields the 5% FPR is found.

Epsilon = 0.

Results:

T = 1, correct = 2426/10000
T = 10, correct = 6023/10000
T = 100, correct = 6388/10000
T = 1000, correct = 6414/10000
T = 10000, correct = 6406/10000

Figure 3.6: Accuracy over 10k elements for different temperature values.MNIST
data set

Hence, the hyper parameter T is set at T=1000.

36 Out-of-distribution detection

GLF-SB2

Configuration:

Network: Resnet50 [def.]. Accuracy 94%.

Tested over 3695 in-distribution images and 2928 out-of-distribution data set.

Comparison done for a false rate positive of 5%. For each T value, a thresh-
old that yields the 5% FPR is found (185 in-distribution images detected as
out-of-distribution).

Epsilon = 0.

Results:

T=1, correct 589/2928 −→ 20%

T=10, correct 1206/2928 −→ 41, 1%

T=100, correct 1272/2928 −→ 43, 4%

T=1000, correct 1275/2928 −→ 43, 5%

T=10000, correct 1275/2928 −→ 43, 5%

Figure 3.7: Accuracy over 2928 elements for different temperature values. GLF-
SB2 data set

3.8 Parameter tuning 37

3.8.2. Perturbation

MNIST

As the best performance without perturbation is found with inner-product
classifier, the tuning for epsilon is done with inner-product activation. The thresh-
old is set at δ = 2.175 which gives a 5% FPR for epsilon = 0.

Figure 3.8: Accuracy over 10k elements for different epsilon values. MNIST data
set

As found by Facebook researchers on this paper [10] (Appendix A.2), pertur-
bations does not give better results when working with MNIST data set, so the
optimal epsilon value on this project is ε = 0 as well.

GLF-SB2

As the best performance without perturbation is found with inner-product
classifier, at first try the tuning for epsilon is done with inner-product activation.
The threshold is set at δ = 6.37 which gives a 5% FPR for epsilon = 0.

Perturbation calculation requires high computation power and a lot of memory.
Since the resources are limited, at the first attempt testing is done over a sample
of 200 images. (Testing over the whole test set takes longer than 100 minutes, and
without splitting the data set, the program crashes due to lack of memory).

Data sample: 35 clear blob images, 29 undefined images, 12 wall images, 42
wrinkles images, 36 bubbles images and 46 turbid images: in-dist 118, out-of-dist
82 images.

Results:
ε = 0 : 40 correct / 10 incorrect −→ 49%/8.5%

38 Out-of-distribution detection

ε = 0.001 : 29 correct / 8 incorrect −→ 35.4%/6.8%
ε = 0.002 : 28 correct / 4 incorrect −→ 34.1%/3.4%
ε = 0.003 : 28 correct / 4 incorrect −→ 34.1%/3.4%
ε = 0.004 : 26 correct / 4 incorrect −→ 31.7%/3.4%
ε = 0.005 : 25 correct / 3 incorrect −→ 30.4%/2.5%

Since it seemed that could be room for improvement between 0.001 and 0.002,
the following epsilon values where tried:

ε = 0.0011 : 29 correct / 7 incorrect −→ 35.4%/5.9%
ε = 0.0012 : 29 correct / 7 incorrect −→ 35.4%/5.9%
ε = 0.0013 : 29 correct / 6 incorrect −→ 35.4%/5.1%
ε = 0.0014 : 29 correct / 5 incorrect −→ 35.4%/4.2%
ε = 0.0015 : 29 correct / 5 incorrect −→ 35.4%/4.2%
ε = 0.0016 : 28 correct / 5 incorrect −→ 34.1%/4.2%

As the results where not clear, a new sample was selected: 101 in-dist and 99
out-of-dist.

Results:
ε = 0 : 46 correct / 6 incorrect −→ 46%/6%
ε = 0.001 : 38 correct / 3 incorrect −→ 38%/3%
ε = 0.002 : 37 correct / 3 incorrect −→ 37%/3%
ε = 0.003 : 36 correct / 2 incorrect −→ 36%/2%
ε = 0.004 : 36 correct / 2 incorrect −→ 36%/2%

Smaller values for epsilon were also tried, for a bigger sample and with differ-
ent threshold, with the following results:

ε = 0 : 167 correct / 39 incorrect −→ 52.3%/9.3%
ε = 0.0001 : 164 correct / 39 incorrect −→ 51.4%/9.3%
ε = 0.0002 : 116 correct / 29 incorrect −→ 36.4%/6.9%
ε = 0.0003 : 116 correct / 25 incorrect −→ 36.4%/5.9%
ε = 0.0004 : 116 correct / 24 incorrect −→ 36.4%/5.7%
ε = 0.0005 : 116 correct / 24 incorrect −→ 36.4%/5.7%
ε = 0.0006 : 116 correct / 24 incorrect −→ 36.4%/5.7%
ε = 0.0007 : 116 correct / 24 incorrect −→ 36.4%/5.7%
ε = 0.0008 : 116 correct / 24 incorrect −→ 36.4%/5.7%
ε = 0.0009 : 116 correct / 24 incorrect −→ 36.4%/5.7%

3.8 Parameter tuning 39

With these results, finally was decided to test through the whole test set for
values epsilon = 0.002 and epsilon = 0.003:

ε = 0.002, δ = 6.7: 1090 correct / 167 incorrect −→ 37.2%/4.5%
ε = 0.003, δ = 6.9: 1131 correct / 189 incorrect −→ 38.6%/5.1%

The conclusion is that as happened with MNIST, perturbations does not im-
prove the results for GLF-SB2 data set with ResNet50. Hence, for all the results
epsilon is set at 0. (input preprocessing is not applied)

3.8.3. Threshold

As has been said several times during the parameter tuning, different thresh-
olds are set depending on the desired accuracy and depending on the activation
function.

40 Out-of-distribution detection

Chapter 4

Results

4.1. Results analysis

Different experimental results of the application of the method are shown:

4.1.1. MNIST

With perturbation ε = 0. Softmax with temperature T=1000. See [Section 3.8]
for parameter tuning.

5% FPR

Softmax : 6414/10000 correct at threshold δ = 0.100664

Cosine similarity : 7520/10000 correct at threshold δ = 0.000246

Inner-product : 8373/10000 correct at threshold δ = 2.175

95% Correct detection

Softmax : 6205/10000 incorrect at threshold δ = 0.1015111

Cosine similarity : 5603/10000 incorrect at threshold δ = 0.000825

Inner-product : 3139/10000 incorrect at threshold δ = 4.944

41

42 Results

4.1.2. GLF-SB2

With perturbation ε = 0. Softmax with temperature T=1000. See [Section 3.8]
for parameter tuning.

5% FPR

Softmax : 1275/2928 −→ 43.5% correct at threshold δ = 0.2501372

Cosine similarity : 1146/2928 −→ 39.1% correct at threshold δ = 0.1106

Inner-product : 1289/2928 −→ 44.0% correct at threshold δ = 6.37

Hence, the best method is inner-product.

Error evolution

Figure 4.1

For 0% of false positive, a 10% of images are correctly detected. This give a
high confidence on those correctly detected images. So in a scenario where trust
is demanded, a small sample of out-of-distribution images can be detected within
the GLF-SB2 data set.

For a 9.7% of false positive, more than a half of the out-of-distribution is
detected (51.6%). In a scenario where human supervision is complementary to

4.1 Results analysis 43

the automatic detection, an important amount of out-of-distribution images is de-
tected, for an acceptable amount of false positive, which can be removed by the
supervisor.

From this point of around 50% of correct detection, the model shows an error
exponential growth, which makes the method to be almost useless.

This is in contrast to the good performance showed on MNIST data set. In the
next section, answers to this fact are searched.

Difference of performance depending on data set

T-distributed Stochastic Neighbor Embedding (t-SNE) is a machine learn-
ing algorithm for visualization. It is a nonlinear dimensionality reduction tech-
nique well-suited for embedding high-dimensional data for visualization in a low-
dimensional space of two or three dimensions. It models each high-dimensional
object by a two or three dimensional point in such a way that similar objects are
modeled by nearby points and dissimilar objects are modeled by distant points
with high probability.

In order to try to find some answers to the difference of accuracy between the
two data sets tested, some points of each data set are plotted. It is not an absolute
proof of all the reasons, but it may give a hint.

Plot legend:

1. Blue dots: actual out-of-distribution, detected as out-of-distribution

2. Yellow dots: actual in-distribution, detected as out-of-distribution

3. Green dots: actual in-distribution, detected as in-distribution

4. Red dots: actual out-of-distribution, detected as in-distribution

Then, the actual out-of-distribution are the blue and red dots, and the actual
in-distribution are the yellow and green dots.

44 Results

Figure 4.2: t-SNE plot for a 1000 images sample of MNIST data set

Figure 4.3: t-SNE plot for a 1000 images sample of GLF-SB2 data set

4.2 Size influence and conclusions 45

As shown on figure 4.2, MNIST data set and the out-of-distribution data set
are clearly separables, since even with a straight line (figure 4.4), a pretty accurate
separation could be done between both data sets.

Figure 4.4: t-SNE plot for a 1000 images sample of MNIST data set, with a linear
separation

On the other hand, GLF-SB2 data set is not separable in the same sense. In and
out-of-distribution images are plotted interspersed along the plot, without a clear
possible separation between them.

4.2. Size influence and conclusions

One important observation to do is the influence of the data set sizes. Testing
has been done with similar data sizes between in and out of distribution, but it has
been shown that the smaller is the out-of-distribution data set, the higher is the
accuracy of out-of-distribution detection. For example with the MNIST data set,
those are the results depending on the sizes: For a 5% FPR and a 10k-10k images
data sets, the accuracy is of a 83.7%, while for a 10k-1k images, the accuracy grows
up to 87.1%, and for a 10k-100 images, the accuracy is 89%, i.e., only 11 images
are not detected.

Since different pathologies are not very common among the endoscopy images,
on a real scenario, the accuracy of "other" images, when "other" means out-of-

46 Results

distribution may be higher than the expected here, only by the fact of set sizes,
which should be confirmed in further work.

Chapter 5

Further work

The first goal of this project was to create a new category for the GLF-SB2 data
set. A method to detect out-of-distribution images has been applied to the data
set. This detection method depends on the training set chosen to train the model,
and the model itself. Then, the two natural next steps are:

Training the model with the whole data set, and test with data where other
images are among them, being the other images the out-of-distribution set,
in order to check the real performance in a real scenario.

Try different models. Resnet50 has been used on this project, but many other
architectures are widely used on pattern recognition and neural networks in
general, so a check over different architectures should be done in order to
find which one fits better for the goal and with the data set.

Finally, depending on the real scenario where this method would be used, dif-
ferent parameters should be chosen. Two different possibilities seem the more
realistic: Decreasing the FPR, i.e., having a smaller rate detection, but with high
confidence, in order to give consistent data to the doctor, or detecting the most
possible images. As shown on figure 4.1, this method is well-suited for the first
scenario, more than for the second. Hence, in further work, after having a con-
sistent architecture, and a good training process, a good threshold selection is a
must.

In addition, once having an optimal architecture and a trained model, could
be interesting testing the effects of input preprocessing [Section 3.6], since it could
have positive effects with the new data sets (other images as out-of-distribution).

47

48 Further work

Bibliography

[1] Wireless Capsule Endoscopy
https://pubmed.ncbi.nlm.nih.gov/24119509/

[2] DeepLearning.ai
https://www.deeplearning.ai/

[3] MNIST dataset
https://www.tensorflow.org/datasets/catalog/mnist

[4] Machine learning google glossary
https://developers.google.com/machine-learning/glossary

[5] Gradient descent
https://ruder.io/optimizing-gradient-descent/index.html#fn4

[6] Google colab notebook. GPU performance
https://colab.research.google.com/notebooks/gpu.ipynb (run same
commands in our own project)

[7] Google colab notebook. System specs
https://colab.research.google.com/drive/151805XTDg--dgHb3-AXJCpnWaqRhop_
2

[8] Deep Residual Learning for Image Recognition. Kaiming He, Xiangyu
Zhang, Shaoqing Ren, Jian Sun
Dec. 2015
https://arxiv.org/pdf/1512.03385.pdf

[9] Generalized ODIN: Detecting Out-of-distribution Image without Learn-
ing from Out-of-distribution Data. Yen-Chang Hsu, Yilin Shen, Hongxia
Jin, Zsolt Kira.
Mar. 2020
https://arxiv.org/pdf/2002.11297.pdf

49

https://pubmed.ncbi.nlm.nih.gov/24119509/
https://www.deeplearning.ai/
https://www.tensorflow.org/datasets/catalog/mnist
https://developers.google.com/machine-learning/glossary
https://ruder.io/optimizing-gradient-descent/index.html#fn4
https://colab.research.google.com/notebooks/gpu.ipynb
https://colab.research.google.com/drive/151805XTDg--dgHb3-AXJCpnWaqRhop_2
https://colab.research.google.com/drive/151805XTDg--dgHb3-AXJCpnWaqRhop_2
https://arxiv.org/pdf/1512.03385.pdf
https://arxiv.org/pdf/2002.11297.pdf

50 BIBLIOGRAPHY

[10] ENHANCING THE RELIABILITY OF OUT-OF-DISTRIBUTION IMAGE
DETECTION IN NEURAL NETWORKS. Shiyu Liang, Yixuan Li, R.
Srikant
Feb. 2018
https://arxiv.org/pdf/1706.02690.pdf

https://arxiv.org/pdf/1706.02690.pdf

	Introduction
	Motivation and planification
	Objectives
	Planification
	Out of distribution
	How does it work?

	Artificial neural networks
	Definitions
	Why is it called "neural" network?
	Mathematical model
	Activation functions

	Types of ANN
	CNN architecture
	Layers

	Learning algorithm
	Backpropagation
	Gradient descentNote that for all the following methods, the same than for weights is done for biases.

	Out-of-distribution detection
	Implementation environment
	Colab specifications

	Method
	Key points

	Network
	Fully connected network
	Resnet

	Training activation
	Testing activation (score)
	Softmax: Temperature scaling
	Cosine similarity
	Inner-product

	Input processing strategy: perturbations
	Hyperparameters
	Parameter tuning
	Temperature
	Perturbation
	Threshold

	Results
	Results analysis
	MNIST
	GLF-SB2

	Size influence and conclusions

	Further work
	Bibliography

