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1 Introduction

Risk is typically defined as the possibility of suffering future losses, where these losses are

represented by a non-negative random variable, X. This risk can then be quantified using risk

measures, which encapsulate the risk associated with the loss distribution in one single value.

In calculating the solvency requirements of financial institutions, such risk measures are applied

to determine their economic capital, i.e. the amount they need to hold to ensure that future

liabilities are covered with an acceptable degree of confidence [McNeil et al., 2005], and, in so

doing, they are influenced by the occurrence of extreme losses located in the right tail of the

loss distribution.

Here, our goal is to analyze the influence of extreme losses in the risk value computed using

a particular risk measure, specifically, the family of distortion risk measures [Denneberg, 1990;

Wang, 1995, 1996]. Distortion risk measures (DRMs) are based on a function that distorts

the probability measure applied to all subsets of a sample space. The class of DRMs includes

the most frequently used quantile-based risk measures in finance and insurance, most notably

value-at-risk (VaR) and tail value-at-risk (TVaR). We evaluate the importance of the tail in

the risk values of distortion risk measures. It is our belief that this should help decision makers

anticipate the impact of an extreme loss on the risk estimate and, therefore, on other amounts

derived from it, such as economic capital and premium loadings. Finally, we investigate the

aggregation properties of the tail contributions when several risks are considered.

Tail behavior of risks has gained much attention in the literature in recent years [Liu and

Wang, 2019; Belles-Sampera et al., 2014; Landsman et al., 2016; Cai and Li, 2005; Yin and

Zhu, 2016]. Belles-Sampera et al. [2013, 2014] defined a new class of distortion risk measures,

named GlueVaR, and examined their tail aggregation properties. Authors pointed out that

subadditivity might be a tough requirement on the determinations of premiums and regulatory

capitals. Instead of subadditivity, they introduced a weaker concept of tail subadditivity and

showed that this property is satisfied as long as the distortion function is concave in the common

tail region. Cai et al. [2017] generalized the concept of common tail region considered by Belles-

Sampera et al. [2014] and gave sufficient and necessary conditions for a distortion risk measure to

be tail subadditive. These two theoretical articles analize mathematically the tail subadditivity

condition in the field of non-additive measure theory [Denneberg, 1994].

The approach we adopt here, however, differs from previous works. This article investigates

how the theoretical concept of tail subadditivity can be evaluated in practice. This is made

in two steps. First, we show how to assess the contribution of the tail of the distribution of

the random variable on the value reported by the DRM. Closed-form expressions are given to

compute the contribution of the tail to the risk value for a set of distortion risk measures (VaR,

TVaR and GlueVaR). Second, we show that if two risks are aggregated, the contributions of the
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tails to the DRM values satisfy the tail subadditivity property. To our knowledge, this practical

analysis of the contribution of the tail on the value of these DRM’s and the evaluation of their

tail aggregation properties providing closed-form expressions has not been previously performed.

We argue that our approach helps to provide a deeper understanding of the theoretical concept

of tail subadditivity. This is a convenient property because it implies that tail risk can be

diversified.

An interesting approach to investigate the behavior of the tail distribution is developed by

Liu and Wang [2019] who define tail risk measures as those in which the risk measure value is

solely determined by the distribution of the risk beyond its quantile. They define the generator

of a tail risk measure as a law-invariant risk measure applied to the conditional distribution of

the tail and analyze if some properties often required to risk measures are transferred from the

generator to the tail risk measure. They showed that subadditivity and convexity can be passed

when accompanied by other properties. Quantile based distortion risk measures, as VaR, TVaR

and GlueVaR, would be a class of tail risk measures [Liu and Wang, 2019, Ex. E.2, pag.26].

Non-quantile based distortion risk measures such as the Dual Power or the Proportional Hazard

Transform would be not covered by the class of tail risk measures.

Although both approaches focus on the tail of the distribution, our approach is different.

The analysis carried out by Liu and Wang [2019] is based on the conditional distribution of the

tail. Our analysis is based on the impact of the tail on the unconditional distorted distribution

of the risk. We investigate how to measure the contribution of the tail of the distribution on the

risk measure value and evaluate from a practical viewpoint the tail subadditivity property. As

we deal with the unconditional distribution, the contribution of the tail to the value of the risk

measure cannot be interpreted as a risk measure itself. We focus on DRM’s and their properties

from an axiomatic approach have been widely investigated (for instance, Balbás et al. [2009];

Wirch and Hardy [2002]; Kou and Peng [2016]). Our analysis covers all distortion risk measures,

including the Dual Power and the Proportional Hazard Transform, as we show in an example.

Our practical approach has the advantage that the results are easily interpretable. Decision

makers obtain information about the contribution of extreme losses to the risk value reported

by a specific risk measure so that, when risks are aggregated, the part of the diversification

benefit attributable to the tails of the loss distributions can be identified. DRMs are often used

to compute the economic capital. For instance, Basel Committee on Banking Supervision sets

the TVaR at 97.5% confidence level for computing the minimum capital requirements [BIS,

2019]. Decision makers could be interested in knowing the impact of the q% of highest losses

on the value reported by the TVaR97.5%, with 0 < q < 0.025, and the part of the diversification

benefit attributable to these losses when risks are aggregated. In this article we show how to

compute these.
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The rest of the article is structured as follows. In Section 2 risk measures are introduced. In

Section 3, we analyze the influence of tails on distortion risk measures and study tail aggregation

properties, with particular attention to quantile-based risk measures. Finally, in Section 4, we

present an example based on motor insurance claims to illustrate our results.

2 Risk quantification

2.1 Risk measures

Non-negative random variables are often deemed suitable for defining losses in the context of

enterprise risk quantification. Let X be a non-negative random variable (r.v.) with finite

expectation, called a ’loss’. The cumulative distribution function of X, denoted by FX , is

defined by FX (x) = P (X ≤ x) and it is often referred to as the ’loss distribution’. The survival

function is denoted by SX (x) = P (X > x). The mathematical expectation can be written as

E(X) =

∫ +∞

0
xdFX(x)

We follow standard notation, so that the derivative function of FX , when it can be defined,

is the density function fX , so dFX(x) = fX(x)dx. In general, the mathematical expectation

can also be obtained from the survival distribution as,

E(X) =

∫ +∞

0
SX(x)dx.

The inverse function of FX , F−1
X , is known as the quantile function, i.e. F−1

X (α) = inf {x | FX(x) ≥ α}

where α ∈ (0, 1). The mathematical expectation can be obtained from the quantile function as,

E(X) =

∫ 1

0
S−1
X (u)du

=

∫ 1

0
F−1
X (1− u)du.

(1)

A risk measure ρ assigns a value to X. Let Γ be the set of all random variables defined for

a given probability space (Ω,A, P ). A risk measure is a mapping ρ from Γ to R, so ρ (X) is a

real value for each X ∈ Γ. The goal of any risk measure is to summarize the risk associated

with the loss distribution [McNeil et al., 2005].

The most frequently used risk measures in finance and insurance are the VaR and TVaR.

The VaR at confidence level α ∈ (0, 1) is defined as VaRα(X) = F−1
X (α). The mathematical

expectation can then be represented as E(X) =
∫ 1

0 VaR1−u(X)du. The TVaR at confidence level

α is defined as

TVaRα(X) =
1

1− α

∫ 1−α

0
VaR1−u(X)du

The TVaR can be understood as the mathematical expectation beyond VaR and expressed

as TVaRα(X) = E [X | X > VaRα(X)] . Interpreted in this way, TVaR is sometimes known as
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the ’expected shortfall’ [McNeil et al., 2005]. Many other risk measures have been defined in

literature, some of them can be found, for instance, in Denuit et al. [2005] and Furman et al.

[2017].

2.2 Distortion risk measures

Distortion risk measures were first introduced by Denneberg [1990] and further developed by

Wang [1995, 1996]. This class of risk measure is closely related to the distortion expectation

theory [Yaari, 1987]. A key element in defining a DRM is its associated distortion function g,

which can be defined as a left-continuous non-decreasing function g : [0, 1] → [0, 1] such that

g (0) = 0 and g (1) = 1.

Consider a non-negative random variable X and its survival function SX , the function ρg

defined by

ρg (X) =

∫ +∞

0
g (SX (x)) dx (2)

is called a DRM.

A DRM can be understood as the distorted expectation of X. The mathematical expectation

is a distortion risk measure whose distortion function is the identity function, that is, ρid (X) =

E (X) [Denuit et al., 2005]. DRMs can be expressed in terms of the quantile function with the

Lebesgue-Stieltjes integral representation.

The distortion risk measure ρg is represented with the Lebesgue-Stieltjes integral as follows,

ρg(X) =

∫ 1

0
F−1
X (1− u)dg(u). (3)

Note that g (SX (x)) =
∫ SX(x)

0 dg(u). Later, Fubini’s theorem is applied to change the

order of integrals [Dhaene et al., 2012, Theorem 6]. In case that the distortion function g is

right-continuous, the DRM can be represented with the Lebesgue-Stieltjes integral in terms of

F−1+
X (α), where F−1+

X (α) = sup {x | FX(x) ≤ α} [Theorem 4 Dhaene et al., 2012; Wang et al.,

2018, Lemma 2.6].

The VaR and TVaR risk measures can be represented as DRMs. A flexible family of four-

parameter DRMs, known as GlueVaR risk measures, was introduced by Belles-Sampera et al.

[2014]. GlueVaR risk measures includes VaR and TVaR as specific particular cases. The asso-

ciated distortion function of the VaR, TVaR and GlueVaR risk measures are shown in Table

1.

The equivalence of (2) and (3) is illustrated graphically for the case of the TVaR measure

in Figures 1 to 3. Figure 1 shows the functions involved in the computation of the TVaRα(X)

when the risk measure is expressed as a DRM in (2). The value of the TVaRα(X) corresponds

to the area under the solid-line function shown in Figure 1(c).
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•
••

V aRα(X)

1− α

SX(x)

x

(a)

• •

•

1

1− α

g(u)

u

(b)

• •

•

1

V aRα(X)

g(SX(x))

x

A

(c)

Figure 1: Functions associated with TVaR
(a) Survival distribution
(b) Distortion function
(c) Distorted survival distribution [TV aRα(X) = Area A]
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Table 1: Examples of distortion functions

Risk measure Distortion function

VaR ψα (u) =

{
0 if 0 ≤ u ≤ 1− α
1 if 1− α < u ≤ 1

TVaR γα (u) =

{ u

1− α
if 0 ≤ u ≤ 1− α

1 if 1− α < u ≤ 1

GlueVaR κh1,h2β,α (u) =



h1

1− β
u, if 0 ≤ u ≤ 1− β

h1 +
h2 − h1

β − α
[u− (1− β)] , if 1− β < u ≤ 1− α

1, if 1− α < u ≤ 1

where α, β ∈ [0, 1] such that α ≤ β, h1 ∈ [0, 1] and h2 ∈ [h1, 1].

Figure 2 shows the functions involved in the computation of the TVaRα(X) when the risk

measure is expressed as the DRM defined in (3). The value of the TVaRα(X) corresponds to

the area under the solid-line function shown in Figure 2(c). The equivalence between the two

forms to compute the TVaR is shown in Figure 3.

Many articles have examined DRMs [Zhu and Li, 2012; Belles-Sampera et al., 2014; Tsanakas

and Millossovich, 2016; Goovaerts et al., 2012; Balbás et al., 2009], while the relationship between

these measures and distortion expectation theory is investigated in Tsanakas and Desli [2005].

3 Tail contributions and their aggregation properties

in distortion risk measures

In this section we analyze the role of the tail in distortion risk values. In other words, we study

the contribution of the tail to the magnitude of a DRM.

3.1 Tail contribution to risk value

We refer to the Lebesque q−tail contribution in DRMs as a part of the risk measure value that

can be associated to values located in the right tail of the loss distribution. Let us consider

expression (3) and focus only on just one part of the integral. We define the Lebesgue q−tail

contribution in distortion risk measures as follows.

Definition 3.1 (q−tail contribution). Given a q ∈ [0, 1], the q−tail contribution of a distortion
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• •

• •

V aRα(X)

1− α

S−1
X (u) = F−1

X (1− u)

u1
(a)

•

• •

•1
1−α

1− α

g′(u)

u1
(b)

•

• •

•1
1−αV aRα(X)

1− α

B

g′(u)F−1
X (1− u)

u1
(c)

Figure 2: Functions associated with TVaR represented with the Lebesgue-Stieltjes integral
(a) Inverse survival distribution
(b) Derivative of the distortion function
(c) Product of the (a) and (b) [TV aRα(X) = Area B]
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•

•

•V aRα(X)

1

A

S−1
X (g−1(u))

u

(a)

•

• •

•1
1−αV aRα(X)

1− α

B

g′(u)F−1
X (1− u)

u1

(b)

Figure 3: Equivalence of Area A and Area B
(a) Rotation (and re-escalation) of Figure 1(c)
(b) Figure 2(c)
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risk measure cqρg is represented by the Lebesgue-Stieltjes integral as,

cqρg(X) =

∫ q

0
F−1
X (1− u)dg(u). (4)

The information provided by expression (4) is of relevance to decision makers, because it

serves as an indicator of the importance of the tail on the risk value. Computing the risk value

according to the DRM defined in (3), the expression (4) provides information about the part of

the risk value attributable to the q right tail of the loss distribution. The tail contribution can

be then interpreted as an indicator of the sensitivity of the risk measure value to the q-right

tail of the loss distribution. In calculating the solvency requirements of financial institutions,

the selection of the DRM to apply in the computation of the economic capital is often set

by regulators. In this context, risks managers will be interested in evaluating the part of the

the economic capital estimate attributable to the q% of the highest losses of the loss distribution.

Proposition 3.1. Given a random variable X, if the left-continuous function g is not differ-

entiable at points in a countably finite set (u1, u2, ..., un), the risk value of the distortion risk

measure ρg can be expressed as

ρg (X) =

∫ q

0
F−1
X (1− u)dg(u) +

∫ 1

q
F−1
X (1− u)dg(u),

regardless of the allocation of (u1, u2, ..., un), for q ∈ [0, 1].

Proof. Given a r.v. X, the risk value of the DRM ρg is computed as (3). When g is a left-

continuous function, the following equivalence holds,∫ 1

0
F−1
X (1− u)dg(u) =

∫ 1

0
F−1
X (u)dg(u),

where g(u) = 1 − g(1 − u) is a right-continuous function [Dhaene et al., 2012]. For a right-

continuous increasing function g that is differentiable on R except at points in a countably

finite set (u1, u2, ..., un), the Lebesgue-Stieltjes integral can be computed as follows,

∫ 1

0
F−1
X (u)dg(u) =

∫ u1

0
F−1
X (u)g′(u)du+

∫ u2

u1

F−1
X (u)g′(u)du+ ...

+

∫ 1

un

F−1
X (u)g′(u)du+

n∑
i=1

F−1
X (ui)∆g(ui),

where g′ is the derivative of g and ∆g(ui) = g(ui)− g(ui
−). For any given q ∈ [0, 1], it is easy

to check that the risk measure ρg can be represented with the Lebesgue-Stieltjes integral as∫ 1−q

0
F−1
X (u)dg(u) +

∫ 1

1−q
F−1
X (u)dg(u),
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or, equivalently, as

∫ 1

q
F−1
X (1− u)dg(u) +

∫ q

0
F−1
X (1− u)dg(u).

Remark 3.1. The first term on the right-hand side in proposition (3.1) can be interpreted as

the part attributable to the q right-tail in the risk value returned by the risk measure ρg. In

case of a jump of g in (1 − q), then (1 − q) contributes F−1
X (1 − q)

(
g(1− q)− g((1− q)−)

)
to∫ 1−q

0 F−1
X (u)dg(u) (or, equivalently, to

∫ 1
q F

−1
X (1−u)dg(u)) and F−1

X (1−q)
(
g((1− q)+)− g(1− q)

)
to
∫ 1

1−q F
−1
X (u)dg(u) (or, equivalently, to

∫ q
0 F

−1
X (1 − u)dg(u)). The function g(u) is right-

continuous, so the difference
(
g((1− q)+)− g(1− q)

)
is zero.

Example 3.1. Consider X is a uniform r.v. between 0 and 1. Assume that the proportional

hazard transform distortion function is applied gph(u) = ur where 0 ≤ r ≤ 1. The value

of the risk measure is equal to ρgph =
∫ 1

0 (1 − u)rdu = 1
r+1 . The q-tail contribution to the risk

measure cqρgph (X) is equal to cqρgph (X) =
∫ q

0 F
−1
X (1−u)dg(u) =

∫ q
0 (1−u)rur−1du = qr− r

r+1q
r+1.

3.2 Tail importance in quantile-based risk measures

We analyze the Lebesgue q−tail contribution for the three DRMs shown in Table 1.

VaR

We fix q in [0, 1− α]. In the case of the VaR, the distortion function ψα is zero in [0, q]. So, it

holds that

cqV aRα(X) =

∫ q

0
F−1
X (1− u)dψα(u) = 0.

Here, it can be seen that expression (4) reflects the importance of the tail on the risk value.

The VaRα value does not take into account the q-tail of the random variable if q ≤ 1 − α, so

the impact of the q-right-tail on the risk value is null.

It is interesting to analyze the case q > 1 − α. Now, the q-tail contribution defined in (4)

is exactly the VaRα. Note that ψα is a step function. If the q-tail includes the point value in

which ψα has the step, then the solution of the Lebesgue-Stieltjes integral is F−1
X (α). That is,

the q−tail contribution is the total value of VaRα. So, only the value located in the α-quantile

(step point) matters to determine the value of the risk measure.

An alternative interpretation when considering VaRα risk measure is that q−tail contribu-

tions provide information about the extremes beyond a certain threshold in the right-tail of
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interest (the 1− α right tail). In larger tails, i.e. when q > 1− α, then the q−tail contribution

is equal to the value of the risk measure, VaRα.

TVaR

In the case of the TVaR, the distortion function γα takes the value u
1−α , ∀u, when q ∈ [0, 1−α].

Therefore, the q-tail contribution to the risk value of the TVaRα is computed as,

cqTV aRα(X) =

∫ q

0
F−1
X (1− u)dγα(u) =

1

1− α

∫ q

0
F−1
X (1− u)du.

Now, we replace
1

1− α
=

q

1− α
1

q
, then the tail contribution can be expressed as,

cqTV aRα(X) =
q

1− α
TVaR1−q (X)

As in the previous case, when q > 1 − α, the Lebesgue q-tail contribution in the risk

value of the TVaRα is then
1

1− α

∫ 1−α

0
F−1
X (1 − u)du. Note that this is the definition of the

TVaR. This means, when q ≥ 1 − α, the Lebesgue q-tail contribution to the risk value of the

TVaRα represents the complete risk value. Let us recall that TVaRα can be understood as

the mathematical expectation beyond VaRα. So, the q-tail contribution explains the whole risk

value when the q-tail includes the (1 − α)-tail. Similarly to VaRα, it can be interpreted as

if our definition of q−tail contribution has an embedded threshold right tail of interest when

considering the TVaRα measure.

Figure 4 shows the Lebesgue q-tail contribution to the risk value of the TVaRα when q <

1 − α. The Lebesgue q-tail contribution corresponds to the area labeled C. Note that the size

of area C in Figure 4 is always smaller or equal to the size of area B in Figure 2(c).

•

••
•

• •

•1
1−αV aRα(X)

1
1−αV aR1−q(X)

1− αq

C

g′(u)F−1
X (1− u)

u1

Figure 4: q−tail contribution to TV aRα(X) [Area C].
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GlueVaR

Finally, the Lebesgue q−tail contribution to GlueVaR measures is analyzed. As shown in

Table(1), the distortion function for GlueVaR has an additional confidence level β. The shape

of the GlueVaR distortion function is determined by the distorted survival probabilities h1 and

h2 at levels 1−β and 1−α, respectively. Parameters h1 and h2 are the heights of the distortion

function.

Let us consider the following notation,


ω1 = h1 −

(h2 − h1) (1− β)

β − α
ω2 =

h2 − h1

β − α
(1− α)

(5)

Belles-Sampera et al. [2014] showed that

GlueVaRh1,h2
β,α (X) = ω1TVaRβ (X) +

ω2TVaRα (X) + ω3VaRα (X) ,
(6)

where ω3 = 1− ω1 − ω2.

We analyze the q−tail contribution to GlueVaR measures when 1−β < q ≤ 1−α. The following

proposition is shown.

Proposition 3.2. The q-tail contribution of the GlueVaRh1,h2
β,α when 1− β < q ≤ 1−α is equal

to

cq
GlueVaR

h1,h2
β,α

(X) = ω1TVaRβ (X) + ω2
q

1− α
TVaR1−q (X) .

Note that when q = 1− α, then cq
GlueVaR

h1,h2
β,α

(X) = ω1TVaRβ (X) + ω2TVaRα (X) .

Proof. The q−tail contribution of the GlueVaRh1,h2
β,α when 1− β < q ≤ 1− α can be expressed

as,

cq
GlueVaR

h1,h2
β,α

(X) =

∫ q

0
F−1
X (1− u)dκh1,h2β,α (u) =

h1

1− β

∫ 1−β

0
F−1
X (1− u)du+

h2 − h1

β − α

∫ q

1−β
F−1
X (1− u)du,

where,
h2 − h1

β − α

∫ q

1−β
F−1
X (1− u)du =

h2 − h1

β − α

(∫ q

0
F−1
X (1− u)du−

∫ 1−β

0
F−1
X (1− u)du

)
.

Therefore,
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cq
GlueVaR

h1,h2
β,α

(X) =(
h1 −

(h2 − h1)(1− β)

β − α

)
1

1− β

∫ 1−β

0
F−1
X (1− u)du+

(h2 − h1)(1− α)

β − α
q

1− α
1

q

∫ q

0
F−1
X (1− u)du.

This can be expressed as follows,

cq
GlueVaR

h1,h2
β,α

(X) =(
h1 −

(h2 − h1)(1− β)

β − α

)
TVaRβ(X)+(

(h2 − h1)(1− α)

β − α

)
q

1−αTVaR1−q(X).

And following notation (5), this is equivalent to

cq
GlueVaR

h1,h2
β,α

(X) = ω1TVaRβ (X) + ω2
q

1− α
TVaR1−q (X) .

To conclude, the q-tail contribution of the GlueVaRh1,h2
β,α can be easily derived when q ≤ 1−β

and q > 1−α. If q ≤ 1− β, then cq
GlueVaR

h1,h2
β,α

(X) = h1
q

1−βTVaR1−q (X) . As in previous cases,

if q > 1− α, then the q-tail contribution of the risk measure is equal to the risk measure value.

3.3 Tail subadditivity

DRMs satisfy a set of properties, including positive homogeneity, translation invariance, comono-

tonic additivity and monotonicity [Balbás et al., 2009]. These properties of the DRMs are

desirable in many contexts of risk quantification.

When aggregating risks, risk measures are often required to satisfy the subadditivity prop-

erty, because the risk of the sum can be bounded by the sum of risks.

Definition 3.2. Let X,Y be non-negative random variables. A distortion risk measure ρg is

subadditive for X,Y if

∫ +∞

0
g (SZ(z)) dz ≤

∫ +∞

0
g (SX(x)) dx+

∫ +∞

0
g (SY (y)) dy

where Z = X + Y .

In other words, a risk measure is subadditive if ρg(X + Y ) ≤ ρg(X) + ρg(Y ). Subadditivity

distinguishes between VaR and TVaR measures, since this property is only satisfied by the

latter. Embrechts et al. [2015] show several ways to demonstrate that the TVaR risk measure is

subadditive. Based on the expression (6), the GlueVaR measure satisfies subadditivity property

if -and only if- a null weight is given to the VaR and the TVaR’s are not-negatively weighted.
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The subadditivity property of DRMs is guaranteed when the distortion function g is concave

in [0, 1] [Denneberg, 1994; Wang and Dhaene, 1998; Wirch and Hardy, 2002]. Based on (3), the

subadditivity property of a risk measure ρg can be expressed as,

∫ 1

0
F−1
Z (1− u)dg(u) ≤

∫ 1

0
F−1
X (1− u)dg(u) +

∫ 1

0
F−1
Y (1− u)dg(u).

where Z = X + Y .

Subadditivity is an appealing property for decision makers. Suppose a risk manager holds

a pair of risks X and Y . A subadditive risk measure considers that the risk of holding X

and Y together is lower than the risk of holding X and Y individually. Hence, subadditivity

means that diversification benefits are reflected in the risk measure. Subaddtitivity in the whole

domain is a strong condition. When dealing with fat tail losses (i.e. low-frequency and large-

loss events), risk managers are especially interested in the tail region. Fat right-tails have been

extensively studied in insurance and finance [Wang, 1998; Embrechts et al., 2009a,b; Degen

et al., 2010; Nam et al., 2011; Chen et al., 2012]. Belles-Sampera et al. [2014] introduced a

weaker concept of tail subadditivity and proved mathematillcy that this property is satisfied

if the distortion function is concave in the common tail region. Later, Cai et al. [2017] gave

sufficient and necessary conditions for a distortion risk measure to be tail subadditive. These

two articles do not analyze how tail subadditivity can be evaluated for frequently used DRM’s.

We here introduce the definition of q−tail subadditivity for a pair of risks in terms of the tail

contribution to the risk measure value, as follows:

Definition 3.3 (q−tail subadditivity). Given q ∈ [0, 1] and non-negative random variables

X,Y , a distortion risk measure ρg is q−tail subadditive if∫ q

0
F−1
Z (1− u)dg(u) ≤

∫ q

0
F−1
X (1− u)dg(u) +

∫ q

0
F−1
Y (1− u)dg(u),

where Z = X + Y or, equivalently,

cqρg(X + Y ) ≤ cqρg(X) + cqρg(Y ).

The q− tail subadditivity property is useful for decision makers to know the aggregate

behavior of the loss distributions of a pair of risks in tails. If a subadditive risk measure is

fixed as the regulatory risk measure in the computation of the economic capital, when risks X

and Y are aggregated, decision makers may identify the portion of the diversification benefits

attributable to the q− tails of the loss distributions of both risks. If the regulatory risk measure

is not subadditive but it is q−tail subadditive, diversification benefits of the q% of the extreme

losses of both risks are captured by the risk measure even if the total diversification benefit can

not be guaranteed to be positive.
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Proposition 3.3. Under the corresponding q−tail subadditivity property conditions, the q−tail

subadditivity property is satisfied when the distortion function g is concave in [0, q].

The proof of proposition 3.3 is provided in the Appendix.

Example 3.2 (Continuation). Consider X and Y two independent uniform r.v.’s between 0

and 1. The density function of Z = X + Y is

f(z) =

{
z if 0 ≤ z ≤ 1
2− z if 1 < u ≤ 2.

The proportional hazard transform distortion function is applied. Assume that r = 0.5, the

value of the risk measure for Z is equal to ρgph(Z) =
∫ 1

0 (1− u2

2 )0.5du+
∫ 2

1 (u
2

2 − 2u+ 2)0.5du =√
1
2

(
1 + arcsin

(√
1
2

))
. From Ex.(3.1) we know that for X and Y the risk value is equal

to ρgph(X) = ρgph(Y ) = 1
1.5 and the q-tail contribution to the risk measure value is equal

to cqρgph (X) = cqρgph (Y ) = q0.5 − 0.5
1.5q

1.5. Subadditivity is satisfied since ρgph(X) + ρgph(Y ) −

ρgph(Z) = 0.07. If q ≤ 0.5 the tail contribution to the risk measure cqρgph (Z) is equal to

cqρgph (Z) =
∫ q

0 (2 − 20.5u)0.5u0.5−1du = 2(q0.5) − 0.5
√

2q. Then, tail subadditivity is satisfied

since cqρgph (X) + cqρgph (Y )− cqρgph (Z) = 0.5
√

2q − q1.5

1.5 is positive for any 0 ≤ q ≤ 0.5.

3.4 Tail subadditivity for quantile-based distortion risk mea-
sures

We analyze the q−tail subadditivity property for the three risk measures shown in Table 1.

VaR

In the case of VaR, the distortion function ψα is concave in [0, 1− α]. Given a q in [0, 1− α], it

holds that for non-negative random variables X,Y , we can write,∫ q

0
F−1
Z (1− u)dψα(u) ≤

∫ q

0
F−1
X (1− u)dψα(u) +

∫ q

0
F−1
Y (1− u)dψα(u).

where Z = X + Y .

The VaRα measure satisfies q-tail subadditivity when q is lower than or equal to 1 − α. It

is straightforward to note that the integrals are equal to zero on both sides of the inequality.

TVaR

The distortion function of TVaR, γ, is concave in the whole interval [0, 1]. Therefore, from

Proposition 3.3, for non-negative random variables X,Y , it holds that∫ q

0
F−1
Z (1− u)dγα(u) ≤

∫ q

0
F−1
X (1− u)dγα(u) +

∫ q

0
F−1
Y (1− u)dγα(u),
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where Z = X + Y , for any q in [0, 1]. In other words, TVaR is q−tail subadditive for any q in

[0, 1].

Given q ∈ [0, 1− α],

1

1− α

∫ q

0
F−1
Z (1− u)du ≤

1

1− α

∫ q

0
F−1
X (1− u)du+

1

1− α

∫ q

0
F−1
Y (1− u)du,

is equivalent to,

q

1− α
TVaR1−q(Z) ≤ q

1− α
TVaR1−q(X) +

q

1− α
TVaR1−q(Y ),

where
q

1− α
is non-negative. Therefore, the inequality holds since TVaR1−q(Z) ≤ TVaR1−q(X)+

TVaR1−q(Y ).

When q ∈ [1− α, 1], then TVaR1−q(X) = TVaRα(X).

GlueVaR

The q−tail subadditivity of GlueVaR measures is now analyzed. In Figure 5, two examples of

distortion functions of GlueVaR measures are shown.

Let us consider κh1,h2β,α in Figure 5(a). The distortion function has a discontinuity in 1 − α.

Note that κh1,h2β,α (1−α) = h2 where h2 < 1 and lim
u→(1−α)+

κh1,h2β,α (u) = 1. This distortion function

is concave in the interval [0, 1− α]. However, the great flexibility of GlueVaR measures allows

us to define a distortion function κh1,h2β,α that is convex in the interval [0, 1−α]. This is the case

of the distortion function in Figure 5(b).

We fix q = 1− α, so that for non-negative random variables X,Y , it holds that∫ 1−α

0
F−1
Z (1− u)dκh1,h2β,α (u) ≤∫ 1−α

0
F−1
X (1− u)dκh1,h2β,α (u) +

∫ 1−α

0
F−1
Y (1− u)dκh1,h2β,α (u).

where Z = X + Y , if the distortion function κh1,h2β,α is concave in [0, 1− α].

Our starting point is that∫ 1−α

0
F−1
X (1− u)dκh1,h2β,α (u) = ω1TVaRβ (X) + ω2TVaRα (X) .

Therefore, q−tail subadditivity is ensured if ω1 and ω2 are positive. The weights ω1 and ω2

are positive if and only if the distortion function κ is concave in [0, 1−α]. Indeed, ω1 is positive

if and only if
h1

1− β
≥ (h2 − h1)

β − α
. The distortion function κ is concave in [0, 1] if ω1 is positive

and h2 = 1.

When q is in (1 − β, 1 − α), it can be shown that q−tail subadditivity is satisfied if g is

concave in [0, q] (see Proposition 3.2). Finally, q−tail subadditivity when q ≤ 1− β is directly

derived.
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•
0

1

11− β 1− α

(a)

h1

h2

•
0 11− β1− α

(b)

h1

h2 = 1

Figure 5: Examples of GlueVaR distortion functions
(a) Distortion function is concave in [0, 1− α]
(b) Distortion function is convex in [0, 1− α]

4 Illustration

To illustrate the quantification of the tail contribution, we use the insurance data described in

Belles-Sampera et al. [2017]. The data comprise three types of claim: property damage (X1),

bodily injuries (X2) and medical expenses (X3). The sample contains n = 350 observations

of the cost of individual claims expressed in thousands of euros. The cost of bodily injuries

contains compensation for bodily injuries. It is relatively low compared to that of property

damage, because it does not include that part already covered by public health insurance.

In Table 2 a set of quantile-based risk measures, including three different GlueVaR, are

shown. These GlueVaR measures reflect different risk attitudes. The GlueVaR
11/30,2/3
99.5%,95% corre-

sponds to a balanced attitude between TVaR99.5%, TVaR95% and VaR95%. Indeed, h1 = 11/30

and h2 = 2/3 corresponds to ω1 = ω2 = ω3 = 1/3. The GlueVaR0,1
99.5%,95% has associated

weights ω1 = −1/9, ω2 = 10/9 and ω3 = 0. It corresponds to a extreme scenario in which the

lowest feasible ω1 is allocated to TVaR99.5% and the highest ω2 to TVaR95% . A zero weight

is allocated to VaR95%, ω3 = 0. Finally, GlueVaR
1/20,1/8
99.5%,95% assigns a high weight to VaR95%
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Table 2: Quantile-based risk measures and subadditivity in a motor insurance claims data set

X1 X2 X3 X1 + X2 + X3 Difference(∗)

(a) (b) (c) (d) (a+b+c-d)

VaR95% 2.5 0.6 1.1 5.9 -1.7
TVaR95% 12.5 8.0 1.3 19.7 2.1

GlueVaR
11/30,2/3
99.5%,95% 18.6 16.9 1.4 35.6 1.3

GlueVaR
1/20,1/8
99.5%,95% 4.9 2.9 1.1 10.2 -1.3

GlueVaR0,1
99.5%,95% 9.4 4.2 1.2 12.9 1.9

(∗) Benefit of diversification.

X1 = property damage claims costs, X2 = bodily injury claims costs and
X3 = additional medical expenses claims. All three are measured in thou-
sands of euros.

(ω3 = 21/24) and low weights to TVaR99.5% and TVaR95% (ω1 = 1/24 and ω2 = 1/12). Risk

measures are estimated based on the empirical survival function.

Table 2 shows that GlueVaR
11/30,2/3
99.5%,95% returns higher risk values than the other two selected

GlueVaR measures. This result can be generalized to any random variable because the associ-

ated distortion function of GlueVaR
11/30,2/3
99.5%,95% is greater than the other two distortion functions

in the whole domain. It is also observed in Table 2 that GlueVaR
1/20,1/8
99.5%,95% ≤ GlueVaR0,1

99.5%,95%.

Note that this outcome is a feature of this data set and cannot be generalized. We now analyze

the subadditivity property. The only risk measure with a concave distortion function is the

TVaR. The other risk measures shown in Table 2 do not have concave distortion functions in

[0, 1]. The last column of Table 2 records the difference between the sum of risk values and

the risk value of the sum. A negative value indicates that the risk value of the sum is higher,

so the subadditivity is not satisfied, i.e. there is no benefit of diversification. The VaR95%

and the GlueVaR
1/20,1/8
99.5%,95% fail to be subadditive for X1, X2 and X3 since 2.5 + 0.6 + 1.1 < 5.9

and 4.9 + 2.9 + 1.1 < 10.2, respectively. The fact that risk values are subadditive for the

GlueVaR
11/30,2/3
99.5%,95% and GlueVaR0,1

99.5%,95% is a characteristic attributable to this data set but

cannot be generalized to all contexts.

In Table 3, the q-tail contribution to the risk values and tail subadditivity is analyzed for

q = 5% and q = 0.5%. We focus on column (d) containing the 5%- and 0.5%-tail contributions

to the aggregate risk value, ρg(X1 +X2 +X3). The tail contribution indicates the sensitivity of

the risk measure value to the q-right tail of the loss distribution. Both contributions are equal

to zero when the VaR95% is analyzed. The contribution of the 5% of the most extreme losses

to the VaR95% is null. The same occurs when the contribution of the 0.5% of the most extreme

losses is considered, see lower part of Table 3. In other words, the information provided by the

tail contribution to the VaR95% is that the 5% and 0.5% right tails of the loss distribution have
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not impact on the risk value.

In the case of the TVaR95%, losses located in the 5%−right tail of the distribution contribute

the whole amount to the risk value, 19.7. As argued above, this is expected because the

5%−tail is, precisely, the threshold right-tail embedded in our q−tail contribution definition

for TVaR95%. However, if we only consider the 0.5%−right tail of the loss distribution, the

tail contribution is of 8.1 thousands of euros over 19.7 thousands of euros. That is, 0.5% of

the highest aggregate losses contribute 41% (8.1/19.7) of the total risk value. This information

is worthy in risk management. Mandatory reserves are often computed according to a risk

measure set by regulators. Let consider that regulatory reserves must be computed based on

the TVaR95%. Risk managers will know that the 41% of the regulatory reserve value is due to

the 0.5%−right tail of the loss distribution. The same interpretation can be made for individual

risks. If risks X1, X2 and X3 are individually analyzed, losses located at the 0.5%−right tails

of their loss distributions represent 33% (4.1/12.5), 52% (4.2/8.0) and 15% (0.2/1.3) of the

TVaR95% risk values, respectively. The tail contribution for the rest of risk measures can be

interpreted in the same fashion.

Tail-subadditivity is now investigated. Non-negative values of the last column of the Table 3

reflect the part of the diversification benefit captured by the risk measures when the 5% and the

0.5% of the most extreme losses of all risks are considered. When looking at subadditivity in

the tail, the associated distortion functions of VaR95%, GlueVaR
11/30,2/3
99.5%,95% and GlueVaR

1/20,1/8
99.5%,95%

are concave in [0, 0.05]. Concavity of the distortion functions of the GlueVaR
11/30,2/3
99.5%,95% and

GlueVaR
1/20,1/8
99.5%,95% in [0, 0.05] is held because

h1

0.005
≥ (h2 − h1)

0.995− 0.95
. The distortion func-

tions of these three risk measures have a discontinuity at the point 0.05, i.e., ψ0.05(0.05) =

0 and ψ0.05(0.05+) = 1 for VaR95%, κ
11/30,2/3
99.5%,95%(0.05) = 2/3 and κ

11/30,2/3
99.5%,95%(0.05+) = 1 for

GlueVaR
11/30,2/3
99.5%,95%, and κ

1/20,1/8
99.5%,95%(0.05) = 1/8 and κ

1/20,1/8
99.5%,95%(0.05+) = 1 for GlueVaR

1/20,1/8
99.5%,95%.

Finally, the associated distortion function of GlueVaR0,1
99.5%,95% is convex in the interval [0, 0.05].

In this case, concavity of the distortion function is only satisfied in the interval [0, 0.005] where

the distortion function κ0,1
99.5%,95% is equal to 0. So, only the 0.5%−tail subadditivity of the

GlueVaR0,1
99.5%,95% can be guaranteed.

If we look at the TVaR95%, the proportion of the benefit of diversification associated to the

0.5% of the most extreme losses of all risks is the 19% of 2.1 millions of euros. In the case of

the GlueVaR
11/30,2/3
99.5%,95%, a total diversification benefit of 1.3 millions of euros is considered when

risks are aggregated (Table 2). The diversification benefit raises to 1.9 millions of euros when

only the 5%-right tail of the loss distribution is considered (Table 3). The net diversification

benefit in the region (0.05, 1] is then equal to −0.6 millions of euros. If the focus is on the 0.5%

of the highest losses, the diversification benefit is again 1.3 millions of euros. The information

provided to decision makers is that a diversification benefit of 1.9 millions of euros is considered
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Table 3: q-tail contribution and tail-subadditivity

X1 X2 X3 X1 + X2 + X3 Difference(∗)

(a) (b) (c) (d) (a+b+c-d)

q = 5%
VaR95% 0 0 0 0 0
TVaR95% 12.5 8.0 1.3 19.7 2.1

GlueVaR
11/30,2/3
99.5%,95% 17.8 16.7 1.0 33.6 1.9

GlueVaR
1/20,1/8
99.5%,95% 2.7 2.4 0.1 5.0 0.2

GlueVaR0,1
99.5%,95% 9.4 4.2 1.2 12.9 1.9

q =
0.5%

VaR95% 0 0 0 0 0
TVaR95% 4.1 4.2 0.2 8.1 0.4

GlueVaR
11/30,2/3
99.5%,95% 15.0 15.4 0.7 29.7 1.3

GlueVaR
1/20,1/8
99.5%,95% 2.0 2.1 0.1 4.1 0.2

GlueVaR0,1
99.5%,95% 0 0 0 0 0

(∗) Benefit of diversification.

by the risk measure in the region that the distortion function is concave [0, 0.05], and the main

part of this diversification benefit is due to the 0.5% of the highest losses, 1.3 (out of 1.9). This

means that a relatively low weight is given to the likelihood of occurrence of the 0.5%− highest

losses of all three individual risks at the same time.

An interesting result is observed in the case of the GlueVaR
1/20,1/8
99.5%,95%. The total diversification

benefit is negative, −1.3 millions of euros. However, the diversification benefit associated to the

5% and the 0.5% of the highest losses is 0.2 millions of euros. The risk measure considers

that there are benefits of diversification in the 5%-right tail of the loss distribution and these

benefits are concentrated in the most extreme adverse scenarios (the 0.5% of the highest losses).

To conclude, diversification benefits considered by the VaR and the GlueVaR0,1
99.5%,95% in the

regions that tail subadditivity is guaranteed, 5% and 0.5% respectively, are equal to zero.

5 Concluding remarks

We report a method for analyzing the influence of the tail in calculations of distortion risk

measures. By concentrating on the tail, we define the q−tail contribution as being the size

of the risk measure estimate that is attributable to the tail of the distribution. As such, the

q−tail contribution represents the weight of the tail in the risk measure. For the VaRα, TVaRα

and GlueVaRh1,h2
β,α measures, these weights are below 100% if the q−tail is smaller than some

embedded threshold right tail (the (1 − α)−tail for each of these three quantile-based risk

measures).

The tail contribution is a valuable information provided to decision makers. It reports the
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impact of the q% extreme losses on the risk measure value. The selection of the risk measure -

and risk aversion coefficient- to compute economic reserves is often set by regulators. The q−tail

contribution will inform to decision makers about the part of the regulatory reserve estimate

attributable to the q% of the highest losses.

Under straightforward conditions, we have proven that tail subadditivity holds and that

q−tail contributions satisfy the subadditivity property. So, if a subadditive distortion risk

measure is fixed in the computation of the aggregate regulatory reserve, decision makers will

identify the part of the diversification benefits attributable to the q% of the highest losses. If the

regulatory risk measure is not subadditive but it is q−tail subadditive, diversification benefits

due to the q−right tail of the loss distributions will be captured by the risk measure. In other

words, even in the case that the total diversification benefit could be negative, the risk measure

makes contemplate diversification benefits for extreme losses (in the q−right tail region), and

decision makers are provided with an instrument to quantify the size of this diversification

benefit in the tail.

In our example based on motor insurance claims, an examination of the risk of the severity

of claims related to three dimensions - namely, property damage, bodily injury and additional

medical expenses - allows us to conclude that the weight of the tail of each dimension of the final

risk estimate can be assessed. Moreover, since subadditivity holds for that part of the domain,

we can identify the role of each type of cost in the final risk. For instance, the contribution

of additional medical expenses to risk is almost negligible compared to the contribution of

the claims costs of property damage and bodily injury. This holds for all the distortion risk

measures analyzed herein. However, because not all these DRMs satisfy subadditivity in general,

the overall diversification of risk could not be analyzed.

Appendix

Proof. Tail subadditivity is first showed by means of the Choquet integral as previously done

by Belles-Sampera et al. [2014] and Cai et al. [2017]. Later, we represent the result of the set

theory in terms of the tail contribution to the risk measure value. Let us introduce the notion

of measure and the Choquet integral. A measure µ is an σ-additive set function on an σ-algebra

S ⊂ 2Ω where Ω denotes the basic set and µ (∅) = 0.

Let µ be a monotone measure on 2Ω. The Choquet integral of a µ-measurable function

X : Ω→ R+ ∪ {0} is denoted as

∫
Xdµ and is equal to

∫
Xdµ =

∫ +∞

0
Sµ,X(x)dx,

if µ (Ω) <∞, where Sµ,X (x) = µ ({X > x}) is a decreasing function of X with respect to µ. A

µ-measurable function X is, widely speaking, a function defined on Ω such that expressions like
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µ ({X > x}) or µ ({X ≤ x}) make sense. In the case that µ (Ω) = 1 then the measure µ is a

probability measure and Sµ,X (x) denotes the survival distribution function [Denneberg, 1994].

Let us consider the two µ measurable functions X,Y : Ω → R being µ-essentially> −∞.

Subadditivity is satisfied if ∫
(X + Y ) dµ ≤

∫
Xdµ+

∫
Y dµ.

Denneberg [1994] showed that submodularity of the monotone measure µ is sufficient for sub-

additivity of the integral.

Let us provide at this stage of the proof some definitions. X is µ-essentially> −∞ if

limx→−∞ Sµ,X(x) = µ (Ω). A set function µ is submodular if µ (A ∪B) + µ (A ∩B) ≤ µ (A) +

µ (B). A set function µ is monotone if µ (A) ≤ µ (B) for any A ⊆ B in 2Ω.

From the previous definitions, it is straightforward to see that for any random variable X,

ρg (X) is the Choquet integral of X with respect to the measure µ = g ◦ P , where P is the

probability function associated with the probability space in which X is defined [Furman et al.,

2017; Wang et al., 2018]. Let us define function gq such that gq(u) := min(g(q), g(u)) for u in

[0, 1], so the measure µq = gq ◦ P is µq = min(g(q), µ), with µ = g ◦ P .

If µq is monotone and submodular and X and Y are µq-essentially> −∞, then the subad-

ditivity is satisfied. Let us consider a probability measure P on a σ-algebra S ⊂ 2Ω . Given

A,B ∈ 2Ω suppose, without loss of generality, that A ⊆ B. Let us rename a := P (A),

b := P (B), i := P (A ∩B) and u := P (A ∪B). Because P is monotone then it holds that

i ≤ a ≤ b ≤ u due to A∩B ⊆ A ⊆ B ⊆ A∪B. The modularity of P implies that i+ u = a+ b,

i.e. [i, u] and [a, b] have common centers,
i+ u

2
=
a+ b

2
. Then, when gq is concave in [i, u] it is

satisfied that gq (u) + gq (i) ≤ gq (a) + gq (b) or, equivalently, that gq ◦ P is submodular. Note

that µq(Ω) = g(q) = limx→−∞ Sµq ,X(x), so X and Y are µq-essentially bounded below.

Therefore, it is satisfied that∫
(X + Y ) dµq ≤

∫
Xdµq +

∫
Y dµq.

To conclude the proof, note that∫
Xdµq =

∫ +∞

0
gq (SX(x)) dx,

where ∫ +∞

0
gq (SX(x)) dx =

∫ q

0
F−1
X (1− u)dgq(u),

and ∫ q

0
F−1
X (1− u)dgq(u) =

∫ q

0
F−1
X (1− u)dg(u).
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