Brain neurotransmitters and hippocampal proteome in pigs under stress and intrauterine growth restriction

Anna Bassols

Departament de Bioquímica i Biologia Molecular Facultat de Veterinària Universitat Autònoma de Barcelona Spain

UAB

FATTENING PIGS ARE SUBJECTED TO SEVERAL TYPES OF STRESS

STRESS BIOMARKERS (IN PLASMA)

UAB

BUT WE ALL KNOW THAT STRESS AND WELFARE ARE MAINLY A "BRAIN ISSUE"

Saikali et al. (2010)

THE PIG MAY BE A GOOD MODEL FOR HUMANS:

- The pig brain is large
- The pig brain is more similar to the human brain (i.e. It has convolutions)

COMMUNICATION BETWEEN BRAIN AREAS IS CARRIED OUT BY CHEMICAL NEUROTRANSMITTERS

NORADRENALINE

By CYL - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=18074053

U	A	B

Noradrenalin	Dopamine	Serotonin
pathways	patways	pathways
Stress	Reward (motivation) Pleasure Motor functions Compulsion Perseveration	Mood Memory processing Sleep Cognition

Amygdala	PFC	Hippocampus	Striatum	Hypothalamus
Emotions	Cognitive	Memory	Reward	Connection with
Fear	behaviour	Spatial coding	Addiction	the organism
Stress	Decision-making	Stress		Neuroendocrine
Decision-	Social			signalling
making	interactions			Stress
Memory	Stress			Appetite

TH = Tyrosine hydroxylase

AADC = Aromatic L-amino acid decarboxylase

DBH = Dopamine β-hydroxylase

PNMT = Phenylethanolamine N-methyltransferase

MAO = Monoamine oxidase

COMT = Catechol-O-methyltranferase

DIFFERENT BRAIN AREAS ARE CHARACTERIZED BY THEIR NEUROTRANSMITTER PROFILE

UAB

Variables	Load	dings
NA	0.23	0.97
L-DOPA	0.22	0.97
DOPAC	0.90	0.28
DA	0.95	0.11
HVA	0.93	0.18
5-HIAA	0.82	0.46
5-HT	0.91	0.26

PROTEOMICS

UAB

TWO MAIN STRATEGIES

Biochemical parameters

	t 0					t 2			Handling	Time	Handling*Time
	NI	H	PI	I	NH PH						
	Mean	SE	Mean	SE	Mean	SE	Mean	SE	Р	Р	Р
Hair Cortisol (pg/mg)	24.70	2.05	19.80	1.35	20.80	2.00	17.61	1.53	0.208	0.007	0.852
Serum Cortisol (ng/mL)	23.50	2.22	17.57	1.77	24.21	2.09	21.20	2.09	0.094	0.252	0.410
Saliva Cortisol (ng/mL)	3.47	0.30	4.25	0.57	3.57	0.21	3.60	0.27	0.604	0.172	0.826
Haptoglobin (mg/mL)	0.64	0.07	0.86	0.07	0.39	0.06	0.43	0.04	0.166	<0.0001	0.047

In collaboration with Dr Antonio Velarde (IRTA)

Brain neurotransmitters

Table 3

Brain serotonin (5-HT) concentration (ng/g tissue) in the prefrontal cortex and amygdala of pigs subjected to PH or NH.

UAB

Brain area	NH		Pl	Р	
	Mean	SE	Mean	SE	
Prefrontal cortex	200.45	12.90	229.18	10.19	0.093
Amygdala	683.86	22.46	627.61	20.90	0.073

DIGE: Differential labeling gel electrophoresis

UAB

Immunomodulatory

DIGE: 1180 spots analyzed 54 differential proteins in the comparison t2 vs t0

Gene expression

Oxidative stress

Cytoskeletal

CONCLUSIONS

Stress biomarkers as hair cortisol indicate that the stress degree decreases

throughout the time in farm

Mild indications of the benefits of positive handling

In the proteomic approach, many of the identified proteins are targets of GCs and, hence, indicate that changes in the PBMC proteome mirror the variations of endogenous cortisol and the degree of stress, since they vary concomitantly with hair cortisol and APPs.

Taken together, these findings suggest that changes in the PBMC proteome may

be sensitive indicators of animal stress.

11x2 piglets BARREN

Control conditions: 0,7 m²/pig slat

> 11x2 piglets ENRICHED

44 piglets

Transport to the slaughterhouse

4 weeks

UAB

Enriched conditions: 1,2 m²/pig straw

In collaboration with Dr Antonio Velarde (IRTA)

Arroyo et al. Neurobiology of environmental enrichment in pigs: changes in monoaminergic neurotransmitters in several brain areas and in the hippocampal proteome. J Proteomics 2020 Oct 30;229:103943

Biochemical serum stress markers

IR

Parameter	Treatment	Post-treatment	
CK(U)(m)	Enriched	2,34 ± 0,29	
	Barren	3,41 ± 0,61	
$l_{actata}(m)$	Enriched	89,33 ± 2,79 *	
	Barren	99,60 ± 2,79 *	
Cortical (ng/ml)	Enriched	16,77 ± 2,03 *	
	Barren	26,42 ± 3,38 *	
Hantaglahin (mg/ml	Enriched	0,37 ± 0,05	
naprogropin (mg/mL	Barren	0,46 ± 0,10	

PIGS IN BARREN CONDITIONS SHOW A HIGHER DEGREE OF STRESS

Arroyo et al. Neurobiology of environmental enrichment in pigs: changes in monoaminergic neurotransmitters in several brain areas and in the hippocampal proteome. J Proteomics 2020 Oct 30;229:103943

MANY EFECTS ON NEUROTRANSMISSION IN PFC, AMYGDALA, HYPOTHALAMUS AND STRIATUM

B

PIGS IN BARREN CONDITIONS "FEEL" "LESS REWARDED"

Arroyo et al. Neurobiology of environmental enrichment in pigs: changes in monoaminergic neurotransmitters in several brain areas and in the hippocampal proteome. J Proteomics 2020 Oct 30;229:103943

THE HIPPOCAMPUS

Involved in:

- Memory processes
- Spatial coding
- Learning capacities
- Motor abilities
- Stress

Hippocampus and seahorse Professor Laszlo Seress- CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid= 9451294

Drawing by Camillo Golgi of a hippocampus stained using the silver nitrate method

Public Domain,

https://commons.wikimedia.org/w/index.php?curid=391548

PROTEOMIC ANALYSIS OF THE HIPPOCAMPUS: iTRAQ 8-plex

UAB

Isobaric tag for relative and absolute quantitation

GENE ONTOLOGY ANALYSIS (Panther)

MOLECULAR FUNCTION

Arroyo et al. Neurobiology of environmental enrichment in pigs: changes in monoaminergic neurotransmitters in several brain areas and in the hippocampal proteome. J Proteomics 2020 Oct 30;229:103943

UAB

Uniprot	Identification	Fold change E vs E	3
A0A0B8RT95	Ribosomal protein L4	1,50	up
A1XQU3	60S ribosomal protein L14	1,55	up.
A1XQU9	40S ribosomal protein S20	1,66	up
B0FWK5	Ribosomal protein L5	1,58	up
F1RQ91	40S ribosomal protein S4	1,54	up
F1S2E5	40S ribosomal protein S24	1,81	up
F1SEG5	40S ribosomal protein S16	1,72	up
F2Z512	40S ribosomal protein S23	1,49	up
F2Z522	60S ribosomal protein L23a	1,69	up
F2Z5G8	40S ribosomal protein S25	1,59	up
F2Z5Q6	40S ribosomal protein S6	1,58	up
I3L5B2	40S ribosomal protein S7	1,47	up
I3L6F1	60S ribosomal protein L18	1,66	up
I3LBH4	60S ribosomal protein L12	1,45	up
13LJ87	40S ribosomal protein S2	1,44	up
P46405	40S ribosomal protein S12	1,60	up
P62901	60S ribosomal protein L31	1,72	up
P67985	60S ribosomal protein L22	1,62	up
Q29194	Ribosomal protein S2 (Fragment)	1,65	up
Q4GWZ2	40S ribosomal protein SA	1,94	up
Q6QAS9	60S ribosomal protein L7	1,93	up
Q95281	60S ribosomal protein L29	1,77	up
F1RGD9	HistidinetRNA ligase	0,73	down
13L8P7	PhenylalaninetRNA ligase beta	1,33	qu

Uniprot	Identification	Fo chan vs	ld ge E B
F1SNK9	ELAV-like protein	1,81	ир
F1S6M7	Tubulin beta-3 chain	1,40	ир
F2Z571	Tubulin beta-4B chain	1,61	ир
F2Z5K5	Tubulin beta-4A chain	1,44	ир
F2Z5S8	Tubulin alpha-4A chain	1,44	ир
P02550	Tubulin alpha-1A chain	1,40	ир
P02554	Tubulin beta chain	1,40	ир
Q2HPK3	Tubulin alpha-3 chain (Fragment)	1,53	ир
F1SSA6	Myosin-10	1,43	ир
I3LNV3	Isoform 4 of Unconventional myosin-XVIIIa	2,47	ир

Arroyo et al. Neurobiology of environmental enrichment in pigs: changes in monoaminergic neurotransmitters in several brain areas and in the hippocampal proteome. J Proteomics 2020 Oct 30;229:103943

Uniprot	Identification	Fold change	
		E vs B	
F1SIS9	NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 10	1,50	ир
F1SL07	NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9	1,39	up
I3LDC1	Succinate dehydrogenase [ubiquinone] iron- sulfur subunit	1,44	ир
13LQ34	Mitochondrial import receptor subunit TOM70	1,67	ир
A0A0B8RT		0.52	down
H9		0,52	
A8U4R4	Transketolase	0,79	down
F1RWM4	Protein phosphatase 1 regulatory subunit 1B	1,92	ир
F1SB62	Acetyl-CoA acetyltransferase	0,72	down
F1SEN4	Adipogenesis regulatory factor	0,68	down
F1SUH8	V-type proton ATPase proteolipid subunit	0,47	down
I3L656	ADP-sugar pyrophosphatase	0,68	down
K7GQV5	Maleylacetoacetate isomerase	0,75	down
F1RFF5	Protein NipSnap homolog 1	1,51	ир
F1RG61	TBC1 domain family member 10B	1,42	ир
I3LSU1	Non-POU domain-containing octamer-binding protein	1,42	up
I3LUP6	Nucleophosmin	1,54	ир
P04574	Calpain small subunit 1	1,34	ир
P63246	Receptor of activated protein C kinase 1	1,51	ир
A5GFR8	Breast carcinoma amplified sequence 1	0,63	down
A0A0A0M Y58	Immunoglobulin lambda-like polypeptide 5	0,59	down
L8B180	IgG heavy chain	0,61	down
I3LEH4	Amine oxidase [flavin-containing]	1,46	ир
I3LKS6	Dihydropteridine reductase	0,79	down
I3LCN6	Transcriptional activator protein Pur-alpha	1,33	ир

UMB

NETWORK ANALYSIS BY STRING

Structural Proteins (tubulins)

Arroyo et al. Neurobiology of environmental enrichment in pigs: changes in monoaminergic neurotransmitters in several brain areas and in the hippocampal proteome. J Proteomics 2020 Oct 30;229:103943

PATHWAY ANALYSIS WITH REACTOME

Fig. 4. Reactome diagram of Metabolism of proteins and Vesicle-mediated transport pathways in the hippocampus of pigs raised in EE-conditions with overrepresented reactions highlighted in black.

Arroyo et al. Neurobiology of environmental enrichment in pigs: changes in monoaminergic neurotransmitters in several brain areas and in the hippocampal proteome. J Proteomics 2020 Oct 30;229:103943

CONCLUSIONS

PIGS IN BARREN CONDITIONS SHOW A HIGHER DEGREE OF STRESS

PIGS IN BARREN CONDITIONS "FEEL" "LESS REWARDED"

THE "ENRICHED" HIPPOCAMPUS POTENTIALLY HAS:

- Increased capacity for protein synthesis
- Increased capacity for axonal / dendrite transport
- Increased oxidative phosphorylation (ATP)

Arroyo et al. Neurobiology of environmental enrichment in pigs: changes in monoaminergic neurotransmitters in several brain areas and in the hippocampal proteome. J Proteomics 2020 Oct 30;229:103943

- IUGR is due to nutritional o placentary conditions in the mother, which restrain the availability of nutrients and/or oxygen to the foetus.
- IUGR provokes the birth of low birthweight offspring (LBW)
- Asymmetric foetal development
- Brain sparing (but not normal SNC development)
- Porcine model for IUGR: nutritional restriction of the mothers during the last two thirds of pregnancy, multiparous, LBW and NBW piglets from the same litter

S INTRAUTERINE GROWTH RESTRICTION (IUGR)

Medical problems associated to intrauterine exposure to undernutrition

Potential prevention: supplementation of the maternal diet with antioxidants

Reproduction (2014) 148 R111-R120

UAB

3 INTRAUTERINE GROWTH RESTRICTION (IUGR)

Objective 1: analyze the effects of supplementation of the maternal diet with the antioxidant hydroxytyrosol (HTX) on the SNC of the offspring

In collaboration with Dr Antonio González-Bulnes (INIA, Madrid)

Yeste et al. Polyphenols and IUGR Pregnancies: Effects of the Antioxidant Hydroxytyrosol on Brain Neurochemistry and Development in a Porcine Model. Antioxidants 2021, 10, 884

ΑB

100-days-old fetuses

ochemistry of the hippocampus In CA1, 100-day-old fetuses in the HTX-group showed a higher number of mature ns neuronal cells (immunopositive to NeuN), whereas the immunostaining of immature neurons (immunopositive to DCX) was lower, indicating that HTX induced a faster neuron differentiation process in this layer. B) HTX CA1 A similar but milder effect was observed in the GD 1. 1. 2 . 1 b2 1-month-old pigs C) Control The effects of the supplementation of the maternal diet with HTX are only visible in 100days foetuses, but not postnatally Imm c2 D) HTX CA1 d1 GD

Yeste et al. Polyphenols and IUGR Pregnancies: Effects of the Antioxidant Hydroxytyrosol on Brain Neurochemistry and Development in a Porcine Model. Antioxidants 2021, 10, 884

d2

UAB

PROTEOMIC ANALYSIS OF THE HIPPOCAMPUS: TMT 10-plex

Tandem mass tagging

PROTEOMIC ANALYSIS OF THE HIPPOCAMPUS: TMT 10-plex *Tandem mass tagging*

3 more abundant in HTX: ECHDC1 (Ethylmalonyl-CoA- decarboxylase), TXNDC5 (Thioredoxin5), NRGN (Neurogranin)

8 more abundant in Ctrl: 4 ribosonal proteins (RPL7, RPL7A, RPL36, FAU), HSPE1, TARS1 (ThrtRNA synthase), RBMX (RNA binding protein), HADHA (3-hydroxyacyl-CoA dehydrogenase)

Objective 2: Since the effects of HTX were only visible in 100-days foetuses, an analysis was performed on the effects of IUGR (LBW, NBW)

			NBW	LBW	Treatment	<i>p</i> -Values Body Weight	Interaction
	Cell Count	CTRL HTX	► 143.06 ± 9.02 ^{Aa} 170.86 ± 9.69 ^{Ba}	$\begin{array}{c} 87.25 \pm 11.40 ^{\rm Ab} \\ 162.00 \pm 6.04 ^{\rm Ba} \end{array}$	< 0.001	0.004	0.035
CA1	Mean size (µm²)	CTRL HTX	1352.44 + 247.19 ^{Aa} 817.85 ± 61.87 ^{Aa}	$\frac{2961.48 \pm 676.06}{834.88 \pm 44.94} \frac{\text{Ab}}{\text{Ba}}$	<0.001	0.013	0.015
	Area (%)	CTRL HTX	33.48 ± 1.29 Aa 30.07 ± 0.99 Aa	$\begin{array}{c} 41.63 \pm 2.76 \; ^{\rm Ab} \\ 31.07 \pm 1.14 \; ^{\rm Ba} \end{array}$	< 0.001	0.007	0.033
	Cell Count	CTRL HTX	$\begin{array}{c} 79.91 \pm 2.25 \ ^{\rm Aa} \\ 86.50 \pm 3.64 \ ^{\rm Aa} \end{array}$	$\begin{array}{c} 79.33 \pm 4.55 \ {}^{\rm Aa} \\ 88.75 \pm 6.03 \ {}^{\rm Aa} \end{array}$	0.045	0.831	0.719
-		CTRL	1449.37 ± 51.72 ^{Aa}	1620.75 ± 116.92 Aa			

The differences observed between NBW and LBW Control groups, disappear when comparing HTX-treated groups

Yeste et al., Polyphenols and IUGR Pregnancies: Intrauterine Growth Restriction and Hydroxytyrosol Affect the Development and Neurotransmitter Profile of the Hippocampus in a Pig Model. Antioxidants 2021, 10, 1505

Neurotransmitter profile: There were almost no differences between NBW and LBW animals, but there is an interaction between treatment and bodyweight in the hippocampal concentration of 5-HT (and total indoleamines)

UAB

Again, the differences observed between NBW and LBW in the Ctrl group disappeared in the HTX group

Yeste et al., Polyphenols and IUGR Pregnancies: Intrauterine Growth Restriction and Hydroxytyrosol Affect the Development and Neurotransmitter Profile of the Hippocampus in a Pig Model. Antioxidants 2021, 10, 1505

GENERAL CONCLUSIONS

- Pigs are a good model for human pathologies and conditions, due to their similar physiology, anatomy and development
- ✓ Pigs are a good model to study the CNS, because the pig's brain is large, gyrencephalic and has a development rate similar to the human brain
- ✓ Stress and welfare can be approached with traditional techniques quantifying biomarkers (stress hormones, acute phase proteins) in serum/plasma and other sample types (hair, PBMCs,....)
- The neurotransmitter profile in several brain areas can detect subtle changes caused by the environmental conditions
- Proteomic approaches are useful to provide new perspectives and interpretation of stressful conditions

ACKNOWLEDGEMENTS

FESTA DE SANT ANTONI CALDES DE MONTBUI

LAURA ARROYO DANIEL VALENT NA

NATALIA YESTE

Departament de Bioquímica i Biologia Molecular. UAB. Laura Arroyo, Daniel Valent, Natalia Yeste Servei de Bioquímica Clínica Veterinària. Facultat de Veterinària. UAB. Raquel Pato, Raquel Peña, Yolanda Saco Institut de Neurociències (INc, UAB). Josefa Sabrià, Susana Benitez IRTA. Antonio Velarde, Ricard Carreras INIA. Antonio Gonzalez-Bulnes Facultat de Veterinària. UAB. Martí Pumarola Proteomics Platforms. Marina Gay, Marta Vilaseca, Francesc Canals, Montse Carrascal

