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Abstract

The main goal of this work is to present a recently-invented homology theory
called persistent homology and its application on the detection of adversary examples
of neural network presented in the paper [4].
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iv Introduction

Introduction

Persistent homology is a method used in topological data analysis that studies
qualitative features of data that persist across multiple scales. This relatively new
theory has become particularly popular in these last decades given the many new
applications that has been found for it, ranging from biological systems [6] to ar-
tificial neural networks [4]. In this work we will focus on the last one, studying a
particular application presented by Thomas Gebhart and Paul Schrater in their work
Adversary Detection in Neural Networks via Persistent Homology [4].

The work here presented is divided in two segments. In the first chapter, our
objective is to define persistence. In order to do this we first define simplicial homol-
ogy, that will set the fundamental theory that we need. Also, we will present Čech
and Rips complexes, a special kind of simplicial complex that will help the intuitive
and graphic understanding of what persistence does (and also will be used in the
adversary detection methods). Finally we will define the persistent homology and
show the robustness of this theory given by the Structure theorem and the Stability
theorem.

In the second part of the work we will focus on the applications of the theory.
First, we will need a brief introduction to what a neural network and its adversary
examples are. Then, we will show how a neural network can be represented as a
weighted graph and thus, how we can use persistence to see which substructures
of the network are the most solid depending on the input. Finally, we will present
the 3 methods for adversary detection and show the results of the testing done in
[4].

Notation: During this work, we will consider every vector space as a Z2 vector
space (= Z/2Z vector space), except when we specify.



Chapter 1

Persistent Homology

Persistent homology is a tool from topological data analysis that detects the
global features of a topological space. It has a purpose similar to that of many
other homologies, since it counts the "holes" in different dimensions of a space.
But instead of just counting those features, it studies their persitence, i.e. their
lifespan in a space which "evolves" through a parameter ε. In order to study the
space in each instant ε, it uses the simplicial homology groups, and that is why we
introduce them first.

1.1 Simplicial Homology

Let’s first define some basic concepts. The standard n-simplex is the subset of
IRn+1 given by: ∆n = {(t0, ..., tn) ∈ IRn+1|∑n

i=0 ti = 1 and ti ≥ 0 ∀i}. A Simplicial
Complex is a set of simplices which satisfies the following conditions:

(a) For each simplex δ in the set, the faces of δ are also in the set.

(b) If the intersection of two simplices of the set δ1 and δ2 is non-empty, then it
is a face of δ1 and a face of δ2.

LetK be a simplicial complex. TheZ2 vector space generated by the p-dimensional
simplices of K is called Cp(K). Its elements are called p-chains and they are formal
sums c = ∑j γj ∗ σj where γj is 0 or 1 and σj’s are p-simplices of K. We also define
a boundary map ∂ which pairs a p-simplex to the sum of its (p-1)dimensional faces.
This definition can be extended linearly for chains. Consider c ∈ Cp(K):

∂(c) = ∑
j

γj ∗ ∂(σj)

The algebraic structure formed by the sequence (Cp(K))p≥0 together with the
boundary map ∂ is called the chain complex of K, and we denote it C∗(K).

1



2 Persistent Homology

Notice that, since each Cp(K) is a Z2 vector space, σj + σj = 2 ∗ σj = 0. Also,
the composition of ∂ with itself is the zero-map: ∂ ◦ ∂ = ∂2 = 0 (the proof of this
can be found at page 105 of [1] and works mutatis mutandis changing Z into Z2).

The p-cycles are those p-chains c such that their image through the boundary
map is 0: c ∈ ker(∂). The p-boundaries are those p-chains c which are the image
of a (p+1)-chain through the boundary map: c ∈ Im(∂). Finally we can define the
simplicial homology.

Definition 1.1. The p-th simplicial homology group is defined as the quocient of the
subspace of Cp formed by all the p-cycles (called Zp) and the subspace of Cp

formed by all the p-boundaries (called Bp):

Hp(K) = Zp/Bp

The ranks of these groups are called the Betti numbers of K:

βp = dimZ2 Hp(K)

Figure 1.1: This image shows 5 different simplicial complexes and their respective
Betti numbers β0, β1 and β2.

Now that we have introduced simplicial homology, we can start explaining the
idea of persistence. Consider a topological space M. The first step is to construct
a filtration of M, which we define as a set of subspaces of M, {Mi}m

0 such that
∀i ∈ {0, ..., m− 1}, Mi ⊂ Mi+1. Although this filtration can be constructed with
any kind of topological space, we will introduce it for Čech and Rips complexes,
since it is what we will use to study neural networks (in particular we will use Rips
complexes). Also, their geometric nature helps understand persistent homology
in a more intuitive and graphical way.

1.2 Čech and Rips complexes

Consider we have a collection of points {xm} in an Euclidean n-dimensional
space En representing a lower dimensional space. Since we want to study the
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features of the object, we can build and study a simplicial complex considering
that the {xm} are the vertices (0-simplices) of the complex, and connecting through
an edge (1-simplex) each pair of points which fulfills a proximity condition, for
example being at a distance smaller than a fixed ε. Then use the structure formed
by those vertices and edges as a scaffold for higher dimensional simplices. The
choice on how to fill those higher dimensional simplices in the complex allows for
different global representations. Two common methods to complete the simplicial
complex are:

Definition 1.2. Given a collection of points {xm} in an Euclidean space En, the Čech
complex, Cε, is the abstract simplicial complex whose k-simplices are determined
by unordered (k+1)-tuples of points {xm}k

0 whose closed ε/2-ball neighborhoods
have a point of common intersection.

Definition 1.3. Given a collection of points {xm} in a Euclidean space En, the Rips
complex, Rε, is the abstract simplicial complex whose k-simplices correspond to
unordered (k+1)-tuples of points {xm}k

0 that are pairwise within distance ε.

Figure 1.2: We consider 3 points in En. For ε = 1, since each pair of points stands
within a distance smaller then 1, all 3 edges are added to both the Čech and Rips
Complex, but since the 3 ε/2-balls have no point in common, the 2-simplex only is
added to the Rips complex (on the left C1, in the middle R1). If we choose ε = 1.1
instead, the 2-simplex is added to both complexes (on the right, C1.1 = R1.1).

Let’s talk about the main differences between these two complexes.
It follows the definitions that the Čech complex Cε is included in the Rips

complex Rε, Cε ⊂ Rε, since the condition of having k points whose closed ε/2-ball
neighborhoods have a point of common intersection is a stronger condition then
having those points pairwise within distance ε (see Figure 1.2).

Another important difference between the complexes is shown by the Čech
theorem, which states that Cε has the homotopy type of the union of closed radius
ε/2 n-dimensional balls centered on the points {xm}. That is why, though the defi-
nition might suggest it can be an abstract simplicial complex of higher dimension
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Figure 1.3: A filtration of Rips complexes Rε for a finite set of points representing
a disc with a hole. As we can see in the image, holes appear and disappear in
the complex while we increase the value of ε. The objective of persistence is to
distinguish between the real hole in the middle and others which are just noise.

then n, it behaves exactly like a subspace of En. This makes Čech complexes much
more reliable, in the meaning of describing the features of the object, than Rips
complexes, which in general don’t necessarily behave like an n-dimensional space
at all (see Figure 1.4).

On the other hand, Rips complexes are less expensive, computationally speak-
ing, then Čech’s, despite the first having more simplices. The fact is that the Rips
complex is a flag complex, i.e., it is maximal among all simplicial complexes with
the same 1-simplices structure. This way, the 1-skeleton (all the 1-simplices) fully
determines the complex, and it can be stored as a graph. Instead, the Čech com-
plex requires the entire boundary relation between simplices to be stored.

That is why, as we will see, persistent homology is usually calculated for Rips
complexes in order to deduct (using Lemma 1.6) the homology of the Čech com-
plexes.
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Figure 1.4: Consider the vertices A,B,C,D,E,F of a regular hexagon with edge
length = 1. Then, use those 6 points as the vertices of a Rips complex of con-
stant ε = 1, 8. The resulting complex has only 8 2-simplices, the triangles: ABF
(purple), BCD (green), DEF (blue), ACE (pink), ABC (red), CDE (yellow), AFE
(brown) and BDF (orange). The union of the first 4 2-simplices fills the whole
hexagon and so do the last 4. Hence, we can think of each of these unions as an
hemisphere of a sphere. Plus, there are no 3-simplices since no subset of 4 vertices
has all pairs of vertices within the distance 1,8. Then, Rε is homotopy equivalent
to a sphere, which cannot be embed in a plane.

1.3 Persistence

Now that we have presented a way to construct the complex, a natural question
may be which is the optimal ε to do so. If we choose an ε too small, some cycles
may show while others do not, since they require bigger simplices to be added to
the complex. But even if we take an ε large enough in order to show those "bigger"
cycles, the smaller ones might get trivialized in a higher-dimensional simplex (see
Figure 1.3). The idea is that a "perfect" ε might not exist, so asking for an optimal
value, makes no sense. A substitute for this question might be: which are those
features which persist the longer varying ε? And in order to answer this, we use
persistent homology.

Consider a filtration of Rips complexes {Ri}N
1 and for each Ri consider its

chain complex C∗(Ri) (which we will denote Ci
∗ in order to simplify the notation).

We now have a sequence of chain complexes C = (Ci
∗) together with the induced

chain maps x : Ci
∗ → Ci+1

∗ (We do not index the maps for notation reasons). We call
this algebraic structure a persistence complex. Note that the maps x are inclusions
in our case, being that the inclusion Ri ⊂ Ri+1 implies Ci

∗ ⊂ Ci+1
∗ .

Now, our goal is to see how homological classes persist throughout the filtra-
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tion. For this purpose we consider the maps:

f i,j
p : Hp(Ci

∗)→ Hp(C
j
∗)

which are induced by the inclusions Ci
∗ ⊂ Cj

∗, ∀i < j.
We then say that a class α is born at Ri if α ∈ Hp(Ci

∗) and it is not in the image
of f i−1,i

p : Hp(Ci−1
∗ ) → Hp(Ci

∗). If α is born at Ri, we say that it dies entering Rj if

the image of the map f i−1,j−1
p : Hp(Ci−1

∗ ) → Hp(C
j−1
∗ ) does not contain the image

α, but the image of f i−1,j
p : Hp(Ci−1

∗ )→ Hp(C
j
∗) does. Since α is born at the instant

ε i and dies entering the instant ε j, we say that the persistence of α is ε j − ε i. We can
finally define the persistent homology.

Definition 1.4. For i < j, the p-th (i,j)-persistent homology group Hi→j
p (C) is defined

as the image of f i,j
p : Hp(Ci

∗)→ Hp(C
j
∗), the map induced by the inclusion Ci

∗ ⊂ Cj
∗:

Hi→j
p (C) = im( f i,j

p )

The rank of the image is called p-th (i,j)-persistent Betti number of f:

β
i,j
p = rank im( f i,j

p )

Intuitively, β
i,j
p is the number of p-dimensional classes that are born before Ri

and are still a alive in Rj. In particular, if i = j, we have that Hi→j
p (C) = Hp(Ci

∗)

and β
i,j
p = βp, since the classes in Hp(Ci

∗) are born before Ri and dies after Ri.

Now that we have defined persistence, a natural question might be: is the
classification of how classes are born and die unique? (see Figure 1.5)
The answer is affirmative and it’s a direct consequence of theorem 1.5 which we
will introduce shortly.

Consider R[x] the ring of polynomials on a commutative ring R. If we com-
pute homology with coefficients in the ring R, we can give a graded R[x]-module
structure to a persistence module C = (Ci

∗) with x : Ci
∗ → Ci+1

∗ acting as a shift
map, i.e. the monomials xn ∈ R[x] (we refer to xn as the composition of n maps x)
send classes from Ci

∗ to Ci+1
∗ . We will assume that the Ci

∗’s are finitely generated.
Then, C is free as a R[x]-module but, the resulting homology H∗(C, F) =⊕N

i=0 H∗(Ci
∗, F) (We are assuming that for a given N > 0, Hp(Ci

∗, F) = 0, ∀p > N,
∀i) is not necessarily free, nor we need it to be so. The problem stands in the fact
that R[x]-module are generally very difficult to classify.

If instead we choose a field F, for example Z2 (that’s why we defined persis-
tence with it), we can use the decomposition theorem of finitely generated mod-
ules over PID’s, since the only graded ideals of F[x] are xnF[x] for n > 0. The
consequence of this are resumed in thefollowing theorem.
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Figure 1.5: Consider the filtration of simplicial complexes shown in the image
K1 ⊂ K2 ⊂ K3. K1 is an empty triangle formed by the three 1-simplices AB, BC
and CA (on the left). K2 carries the triangle from K1 and adds two 1-simplices
BD and CD (in the middle). K3 adds a 1-simplex AD and 2 2-simplices ACD and
ABD to the previous complex (on the right). It’s easy to see that H1(K1) only has
one generator α and H1(K2) has two, α and β. H1(K3) has one generator, but
how should we call it? α or β? Our intuition say that it should be α since it’s the
elder class, and theorem 1.5 proves that this is the one that respects the algebraic
structure.

Theorem 1.5. For a finite persistence module C with field F coefficients,

H∗(C, F) ∼=
⊕

i

xti ∗ F[x]⊕

⊕
j

xrj ∗ (F[x]/ (xsj ∗ F[x]))


In other words, H∗(C, F) decomposes in a free portion and a torsional portion

uniquely.
The free portion represents those homology classes which are born at the in-

stant ti and persist through all the filtration. On the other hand, the torsional
portion corresponds to those homology classes which are born at the instant rj

and dies at rj + sj.

As a last remark for this section, we present the following lemma, which is a
useful tool that helps us relate the persistent homology groups of Čech and Rips
complexes.

Lemma 1.6. Consider a collection of points {xm} in an Euclidean space En, and Rε, Cε

the Čech and Rips complexes for {xm}. For any > 0 there is a chain of inclusion maps:

Rε ↪−→ Cε
√

2 ↪−→ Rε
√

2

This implies that, for ε, ε′ > 0 such that ε′/ε ≥
√

2, if a feature of the object
persists under the inclusion Rε ↪−→ Rε′ , then it is in fact a feature of the Čech
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complex Cε′ . This way we can approximate the features of a Čexh complex with
pairs of Rips complexes. This is very useful since, as we have seen in the previous
section, Rips complexes are easier to compute while Čech complexes gives us a
more reliable description of the features of the object.

In the following section, we will introduce an intuitive way of representing
graphically the persistence of classes: the barcodes.

1.4 Barcodes

Let {Ri}i be a filtration of Rips complexes. Now, consider a plane which
horitzontal axis corresponds to the parameter ε, and the vertical axis represents
an (arbitrary) ordering of the homology generators of the filtration complexes.
For every class of the persistent homology, with birth in Ri and death at Rj, we
draw an horizontal segment with starting point on ε i and ending point on ε j. The
collection of those horitzontal segments is called barcode. When we analyze it with
more detail, we see that a barcode holds all the information about the persistent
homology of the space we are studying: we know when a class is born (the starting
point x-axis value), when it dies (the final point x-axis value) and its persistence
(the length of the segment). Also, as the following theorem states, we can easily
calculate the persistent homology groups of the space and its correspondent Betti
numbers β

i,j
p .

Theorem 1.7. The dimension of the persistent homology group Hi→j
p (R) is equal to the

number of intervals in the barcode of Hp(R) spanning the index interval [i,j]. In particular
Hp(Ri) is equal to the number of intervals which contain i.

Proof. This is a consequence of the theorem 1.5. Each barcode with finite death
instant represent a torsional element in the formula of the theorem while the bar-
codes that persist until the end of the filtration represent an element of the free
portion.

In figure 1.6 we see the representation of the barcodes for the filtration shown
in figure 1.3.

1.5 Morse functions

Although Čech and Rips complexes are what we will end up using in this
work, in the this section we present Morse functions in order to generalize the
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Figure 1.6: This image shows the persistence diagram (on the left) and the persis-
tence barcode (on the right) of the Rips complexes filtration shown in figure 1.3.
It has been computed using a software created by Fritz Pere Nobbe [7]. From this
diagrams we can deduce that the studied object has one connected component,
since only one class of H0 stand out from the others (represented by the farthest
red point from the diagonal int he persistence diagram, and the longest red bar-
code in the persistence barcode diagram). Also, for the same reasons in H1, we
can deduce it has only one cycle.

use of persistent homology. Also, the subspaces induced by those functions make
the explanation of other concepts, like the persistent diagrams or the stability of
persistence, easier and more clear. Note that the filtration we defined for Čech
and Rips complexes can be filled with any kind of topological space, and the
definition of persistent homology holds mutatis mutandis.

Let’s first remember some basic concepts. Consider f a smooth function. We
say that x is a critical point of f if the differential of f in x is zero, and f (x) is its
correspondent critical value. A critical point is non-degenerate if the Hessian matrix
of second partial derivatives is non-singular. Now we can define a Morse function.

Definition 1.8. Let M be a smooth manifold of dimension d. A smooth function
f : M → R is a Morse function if it has only non-degenerate critical points all
of which have distinct critical values. (Note that, although it takes a choice of
coordinates to define the Hessian matrix, the non-singularity is independent of
the choice).

Let f :M→ R be a Morse function, and we choose regular values {ti}m
i=0 such

that ∀i ∈ {0, ..., m− 1} ti < pi < ti+1 where {pi}m−1
i=0 are the m critical values of f.

For each tj ∈ {ti}m
i=0 we consider the sublevel set Mj = f−1(−∞, tj] ⊂ M which

contains the first j critical points. Since ∀i ∈ {0, ..., m}, Mi ⊂ Mi+1, we have a
filtration ofM:

∅ ⊂M0 ⊂M1 ⊂M2 ⊂ ... ⊂Mm ⊂M
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Morse theory tells us that Mi+1 is homotopy equivalent (and thus they have the
same homology groups) to the result of attaching a p-dimensional cell along the
boundary ofMi, where p is the index of the i-th critical point ([2]). Remember that
the index of a non-degenerate critical point x is the number of negative eigenvalues
of the Hessian in x.

Therefore, there are only two possibilities for how homology may change when
we pass fromMi toMi+1:

(a) If the rank of Hp increases by one, we call the critical point pi positive. In this
case βp(Mi+1) = βp(Mi) + 1.

(b) If the rank of Hp decreases by one, we call the critical point pi negative. In
this case βp(Mi+1) = βp(Mi)− 1.

In order to track the born and death of classes, persistence pairs some of the
positive critical points of index p (that represents the birth of a class) and some of
the negative critical points of index p+1 (that represents the death of a class). But
how exactly does persistence do this pairing?
Consider a class α. As explained in section 1.2 we can easily calculate its birth
set Mi and death set Mi by using the maps between homology groups induced
by the inclusions in the filtration. Once we now the birth and death sets of α we
pair their corresponding critical points x1 and y1, and say that the persistence of
the class is f (y1)− f (x1).

If we want to store all of this information in an efficient way, in the sense of
computability, instead of barcodes we can use the persistence diagrams, Dgmp( f ).
Each Dgmp( f ) is a set (they are sets for Morse functions since only one class can
be born or die at the same time, because critical points have all different values.
In other filtrations, persistence diagrams are multisets) which includes the point
( f (x1), f (y1)) whenever x1 is a positive critical point of index p paired with the
negative critical point y1 of index p+1. All those points live in the half-space above
the diagonal x = y and the persistence of each point can be graphically understood
as the vertical distance between the point and the diagonal. Also, we include the
essential classes of K, those classes which do not die within the filtration. To include
those, we add the pair ( f (x1), ∞), where x1 is the critical point corresponding to
the birth setMi of the class.

Note that barcodes and persistence diagrams hold the same information. There
is actually a bijection between them, and even though we defined barcodes for
Čech and Rips complexes, and persistence diagrams for Morse functions, both
can be used in the other context mutatis mutandis.The difference between them is
mainly their usage: the barcodes are a more didactic representation of persistence,
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Figure 1.7: This image was taken from [5]. On the left, a single variable (Morse)
function with 6 critical points. On the right, critical points are paired and shown
in a persistence diagram.

while the persistence diagrams is becomes useful in the context of research and
when there are too many classes to visualize them as barcodes.

1.6 Stability

The property that makes persistent homology a useful tool is its stability under
perturbations of the topological space. That means that, for little changes in the
space, little changes appear in its persistent homology. Let’s first define a distance
between persistence diagrams.

Definition 1.9. LetM be a topological space and f , g :M→ R be two Morse func-
tions. The bottleneck distance between the two diagrams Dgmp( f ) and Dgmp(g) is
defined as:

dB(Dgmp( f ), Dgmp(g)) = in f
η

sup
x
‖x− η(x)‖∞

where η is any bijection between the two persistence diagrams and ‖.‖∞ is the
∞-norm defined as ‖x‖∞ = max|xi|.

It is important to specify that the diagrams also includes copies of all points
in the diagonal. This is necessary because the number of off- diagonal points in
two different diagrams might not be the same and a bijection η between the two
would not be possible.

The following theorem shows the first step to prove the stability of persistence,
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bounding the bottleneck distance of the diagrams with the distance between func-
tions.

Theorem 1.10. LetM be a topological space and f , g :M→ R be two Morse functions.
Then, for each dimension p, the bottleneck distance between the dimension p persistence
diagrams is bounded from above by the distance between the functions,

dB(Dgmp( f ), Dgmp(g)) ≤ ‖ f − g‖∞

The infinity norm of a function is defined as ‖ f ‖∞ = sup
x∈M
| f (x)|.

Proof. The proof of this proposition can be found in [3].

Let’s now see some immediate consequences of persistence diagrams stability.

1.6.1 Homology inference

LetM0,M1 ⊂ Rd be two closed sets. For the purpose of this context, consider
we want to study the topological features ofM0 but it is much easier to calculate
the persistent homology of M1. If M0 and M1 are "similar", how can we relate
the features of those objects?

First, we will specify what we mean when we say "similar". For this purpose,
let’s define a distance between two sets, the Hausdorff distance.

Definition 1.11. LetM0 andM1 be two subsets of a metric space. We define the
Hausdorff distance betweenM0 andM1 as

dH(M0,M1) = in f {ε ≥ 0;M0 ⊂Mε
1 andM1 ⊂Mε

0}

where Mε
i = d−1

i [0, ε] and di : Rd → R is the Euclidean distance function that
maps each point to its Euclidean distance from the nearest point of Mi, for i ∈
{0, 1}.

Ultimately, we define the homological feature size of M0 as the infimum of the
positive homological critical value of d0, and we denote it h f s(M0).

The following proposition solves the initial problem:

Proposition 1.12. LetM0,M1 ⊂ Rd be two closed sets.
For any ε such that dh(M0,M1) < ε < h f s(M0) and a δ > 0 sufficiently small,

rank Hp(Mδ
0) = rank im f 3ε

ε

where f 3ε
ε : Hp(Mε

1)→ Hp(M3ε
1 ) is the map induced by the inclusionMε

1 ⊂ Hp(M3ε
1 ).
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Proof. The proof of this proposition can be found in [3] as a corollary of Theorem
1.10.

For example, we could use this property if we want to study M0, a body
bounded by a smooth surface. We can take M1 ⊂ M0 a finite point sample of
the body, and deduce the rank of the persistent homology groups of M0 from
the persistent homology of the filtration {Mε

1}ε>0. Notice that {Mε
1}ε>0 it is a

filtration of Čech complexes of the collection of pointsM1.

1.6.2 Shape comparison

Consider we have M0,M1 ⊂ R3 and we know their Hausdorff distance is
relatively small. How much can their topological features differ?

Proposition 1.13. LetMi ⊂ R3 and di : R3 → R the Euclidean distance function that
maps each point to its Euclidean distance from the nearest point in Mi, for i ∈ {0, 1}.
Then,

‖d0 − d1‖∞ ≤ dH(M0,M1)

Proof. Suppose that for given M0,M1 ⊂ R3, we have that l := ‖d0 − d1‖∞ >

dH(M0,M1). Then, by definition of Hausdorff distance, there are two possibili-
ties: M0 * d−1

1 [0, l] orM1 * d−1
0 [0, l].

We suppose the first case (The other one holds the same demonstration mutatis
mutandis exchanging M0 with M1, and d0 with d1). This means that for some
point in M0, there is no point of M1 within a distance of l. i.e. ∃p ∈ M0

such that ∀x ∈ M1, dE(p, x) > l, where d(, ) is the Euclidean distance map in
R3. Equivalently, d1(p) > l, since we have defined d1() as the Euclidean distance
function that maps each point to its Euclidean distance from the nearest point in
M1. But we also know that d0(p) = 0 since p is a point ofM0. Finally, we get the
following contradiction,

|d0(p)− d1(p)| = d1(p) > l = sup
x∈R3
|d0(x)− d1(x)|

thus proving the proposition.

If we use the last proposition in combination with Theorem 1.10, we get that
the distance between the persistence diagrams of d0 and d1 is bounded from above
by the Hausdorff distance of their corresponding setsM0 andM1.

dB(Dgmp(d0), Dgmp(d1)) ≤ ‖d0 − d1‖∞ ≤ dH(M0,M1)

Thus, a small Hausdorff distance implies similar topological features between
the shapes.
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Chapter 2

Adversary detection

The objective of this chapter is to show four methods of adversary detection
in neural networks using persistent homology. They are presented in the paper
[4]1. In order to do so, we first need to have a brief introduction to what a neural
network and its adversary examples are.

Before getting into it, i just want to remark that, since this is not a computer
science report, we are not going to get into details for what a neural network is
or the different types of construction we can make. we will just stick to the math
involved in the problem. What follows is simply a short introduction to neural
networks so the reader knows what this is all about.

2.1 Neural networks

A neural network (NN) is a function that, through a process of training, learns
how to recognize patterns that distinguish classes of a concrete type of data and
this way it is able to classify them. A common example of this is a neural network
that, when given a n x n pixels image, is able to identify which digit from 0 to 9 it
represents.

As its name says, a neural network is composed of neurons, and connections
between them that create a network, called edges. The neurons receive inputs from
other cells, process the information and store the output as a real number. Then,
they send the output to connected neurons. The edges are weighted connections
between them. They receive the output of the first cell, increase or decrease the
value proportionally to their weights, and send the result to the other cell.

The neurons are aggregated into layers. This way, the information flows from
the first layer (the input layer) to the second, from the second to the third,... succes-

1In the paper they are presented as three methods, but the last one can be thought as two different
ones, and that is why I decided to structure this way.

15
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sively, until the last layer (the output layer). The input layer receives the information
from outside the neural network, and the last shows its prediction.

The neural networks are trained by processing examples, each of which has an
input, that is given to the neural network, and the result. Once the neural network
has processed the input and has given its prediction, we compare it with the real
result. The difference is the error. The network then adjusts its weighted connec-
tions according to a learning rule and using this error value. Through a succession
of attempts and readjustments, the NN’s error keeps decreasing, and the training
can be terminated once a certain criteria is met.

Figure 2.1: A graphical conceptualization of a simple 3-layers neural network. Blue
neurons represent the input layer, white neurons form the hidden layer and green
neurons represent the output layer. Neurons from adjacent layers are connected
by edges (yellow arrows).

Now that a general idea of neural network has been given, we can show the
notation that will be used for the rest of this chapter. Consider a neural network
as a function F : Rn → Rm that sends each input x ∈ U ⊂ Rn, where U is the
collection of examples we have available, to its class prediction y ∈ Rm. The neural
network used in this work computes the result using a softmax function, forcing
each element yi of y to the range 0 ≤ yi ≤ 1, and such that ∑m

i=1 yi = 1. This way,
the result yi ∈ y can be thought as the probability of an input x to belong to the
class i. We define the predicted class of x as C(x) = argmaxi F(x)i and denote the
real class of x as C∗(x).
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2.1.1 Adversary examples

Even though we can end up with a really "well trained" neural network, there
are always some examples which get misclassified. In this work we focus on
detecting a special type of these: the adversarial examples. Consider an input
x′ ∈ U which is close to another input x ∈ U according to some distance metric.
When the input x is introduced in the neural network, it produces the correct
class prediction C∗(x). When we introduce x′ in the NN, if the class prediction
produced is C(x′) = t 6= C∗(x) and thus the input gets misclassified, we call x′ a
targeted adversarial example with target t. The goal of this work can then be resumed
as:

For a given input x ∈ U with C(x) = C∗(x) = t we want to minimize ‖x −
(x + δ)‖, for some norm ‖.‖, such that C(x + δ) = tδ 6= t with x + δ ∈ U .

Figure 2.2: These images from [4] show the persistence diagrams of 3 different
inputs (the 3 pixeled images on top). The left image gets correctly classified by
the neural network as a 1. The middle one is an adversarial image generated from
class 1 that is misclassified as a 7 by the neural network. The right one shows an
adversarial image generated from class 7 that is misclassified as a 1. As we can
see, the first and second persistence diagrams are very similar, despite the NN
classifying them as different classes. On the other hand, the first and third images
have very different persistence diagrams, but the NN makes the same classification
for both.
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2.1.2 Neural networks as graphs

"The results of this paper rely on the ability to represent a neural networks as computa-
tional graphs", as explained in [4]. One can already imagine that we will represent
the NN’s neurons as the vertices of the graph and the NN’s edges as the edges of
the graph. But, as we will see, things get a little more complicated.

Let’s resume the main points our graph needs to fulfill:

• Input depending. The graph cannot be a static representation of the neural
network, i.e. it cannot be defined only by the weights of the edges. We want
it to represent the realized information flow after an input is added, since
what we want to study is its response for different inputs.

• No sign. The graph should only represent the intensity (the absolute value)
of the information that flows through the NN, not its sign. This is because,
as we will see later, we are looking for which are the neurons and edges
that have a stronger activation (again, depending on the input), no matter if
they pass stimulant signals to the next layer (positive values) or suppressant
signals (negative values).

• Large-magnitude edges = proximity. The graph neurons proximity needs to be
higher when the NN’s edge that connects them carries a large information
activation. That is, high-weight NN’s edges implies low distance between
vertices, and thus, low-weight graph edges.

Those last 2 points are mostly motivated by our intuition on how information flow
rate should be interpreted.

Before we continue with the graph representation of the neural network we
need to specify that all this idea is well-founded because we work with convo-
lutional, recurrent and fully-forward neural networks (see [4]). Also, we assume
that the neural network has been trained such that the weight of the edges remains
fixed when we apply more inputs.

Consider the neural network F : Rn → Rm that we defined in the last section.
First, we define the the graph G as G = (V, E, w) where V is the set of vertices (the
neurons in the NN), E is the set of edges that connects them (the edges of the NN),
and w : E → R is the weight function that maps each edge to its correspondent
weight in the neural network. Now that we have a base graph to work with, we
will readjust it so it fulfills the 3 points previously explained.

First, consider an input x ∈ U . When applied in the neural network it induces
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a new weight function f : E → R based on the previous map w 2. Depending
on how the neural network is constructed, many edges may end up having zero
weight, f (e) = 0. Those edges carries no information flow, and thus, can be
neglected. That is why we define Ex ⊂ E the set of all non-zero-weighted edges of
E, Vx ⊂ V 3 and f ′ = f |Ex : Ex → R the restriction of f over Ex. We then have a
new graph Gx = (Vx, Ex, f ′) which is input-depending.

Consider then the function φ = | f ′| and the graph G∗x = (Vx, Ex, φ). This way
our new graph weights no longer carries a sign and we only need the graph to
fulfill the last point.

This can be easily accomplished by defining m as the maximum edge weight
in the graph, m = max(φ), and φ′ = m − φ as our new weight function. The
final graph G∗∗x = (Vx, Ex, φ′) fulfill all the main 3 points and we can begin the
persistent homology calculation.

2.2 Persistent homology calculation

As mentioned in the previous section, our goal is to show which are the sub-
structures of the neural network which hold a stronger activation depending on
the input. We do this using persistent homology.

First, we need a filtration of Rips complexes. This can be achieved by view-
ing G∗∗x as a geometric realization of a simplicial complex. Remember that, as
explained in section 1.2, the 1-skeleton fully determines the Rips complexes and
thus the graph G∗∗x retains all the informaion in order to construct our filtration.

Each Rips complex Rri will be build on a set of points which represent the
vertices of our graph. We then consider that the distance between each pair of
points is given by φ′(e) where e is the edge connecting the corresponding vertices
in the graph. If two vertices are not connected we will assume that their respective
points in the complex are within a distance of ∞.
This way we can build the filtration:

Rr0 ⊂ Rr1 ⊂ ... ⊂ Rrp−1 ⊂ Rrp (2.1)

2In paper [4], not much is said about how the function f is constructed. The only thing it
specifies is that f = w ◦ g where w is the previous weight function and g : Rn → E depends on the
network and the input. I’ve noticed that there is a notation problem, since the input set of g does
not correspond with the input set of f . Also a reinterpretation of g as g : E → E would not make
much sense in this context and this is why i decided to omit this part.

3In paper [4], there is no explanation about why we take a subset Vx of the original set of vertices
V. I assume that the reason is that when we take the subset of edges Ex instead of E, some neurons
might remain completely isolated from others and thus should not be considered since they have
no implication in the NN for the input x.
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Notice that for r > m, the Rips complexes in the filtration stabilize since all pair of
points are within a distance of m (remember that φ′ = m− φ) except those vertices
that are not connected.

Before getting the calculation of persistence, we need to understand what fea-
ture we want to study and what they represent. First of all, we are only interested
in H0 and H1, since the structure of neural networks implies a trivial homology
Hp for p > 1. Also, as commented in [4], "We found in our analysis that information
from H1 is not especially meaningful for adversary detection". The paper explains that
this is probably due to the fact that there are few 2-simplices4, and thus almost
all H1 components are infinitely lived. In resume we will focus on studying H0,
tracking the most solid connected components.

As explained in section 1.3, we calculate the persistent homology H0 of the
filtration 2.1 and the corresponding persistence diagram which we will denote D.
Remember that D is the set of birth-death pairs (b, d) of the classes in H0. Also,
for each class α ∈ H0 we consider the correspondent subgraph5 and denote it Gα

x .
We define a function τ : {Class subgraphs} → D that maps each subgraph with
its correspondent point in D. Now, we want to select only those subgraphs with
higher lifetime. That is why we define a treshold λ > 0 and calculate the persistent
subgraph Gλ

x =
⋃{Gλ

x | Gα
x = τ−1(b, d), b− d = l > λ} which is an actual subgraph

of G∗∗x . We will use this new graph in order to compare the response of the neural
network depending on the input.

The intuitive idea is that the subgraphs corresponding to classes with longer
lifetimes l = d − b are those most strongly associated to classification decisions,
since they hold the higher information flow given an input x. And that is why we
look for differences in those subgraphs in order to detect adversary examples.

2.3 Adversary detection

In this section we finally present the four methods of adversary detection using
the persistent subgraph that we presented in the previous section.

4The general structure of neural networks implies that 2 neurons in the same layer are not con-
nected. This way there are no three 1-simplices forming a triangle and thus no 2-simplices. The
paper says that "there are few" probably because in some special NN’s like Feedback ANN, some
connections do not follow the general structure and can connect different layers that are not consec-
utive.

5Paper [4] does not specify what the correspondent graph of a class is considered to be. I assume
it refers to the set of points and edges that started defining the class.
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First, we need to remark that usually neural networks contain million of neu-
rons and edges. This makes the calculus of persistent homology (and thus the
persistent subgraph) too expensive computationally speaking. This is why we
consider another threshold ρ ∈ [0, 1] which function is to limit the edges we con-
sider for the computation of the persistent graph to only the 100ρ% with largest
weight.

In the context of the paper, they considered ρ = 0.99, since as they explain,
most of the relevant information is retained in the top 1% of edges. The methods
are prapared with a selected subset Utrain of U , and then tested with another subset
of U which they denote Utest.

2.3.1 Maximum node matching

As explained in [4], "In this detection method, we look to detect discrepancies be-
tween the input-induced topological signature and the expected topological signature of
the predicted class". Specifically, the objective is to detect which substructures (sub-
graphs) of the neural network has a higher activation when a particular class type
of input is introduced. This way, if a given input provides an activation of the NN
similar to that of the class we studied but the NN misclassifies it, we can expect it
to be an adversary example.

Getting into details, we fix the parameters ρ and λ and compute the persistent
subgraph λ

x for each x ∈ Utrain, as explained in the previous section. Then, for each
class yi ∈ y, we consider the set of vertices that appear in the persistent subgraphs
corresponding to an input classified as yi by the NN, Vi = {v ∈ Vλ

x | Gλ
x =

(Vλ
x , Eλ

x , φ′), x ∈ Utrain, C(x) = i}. Notice that Vi ⊂ V. But we also want to keep
track of the number of appearance that each vertex has in the studied graphs. The
reason is that a vertex with a higher appearance than others, has more chances of
being representative of the class. That is why we define a function ri : Vi → Z,
which pairs each vertex with its appearance in the graphs.

Resuming, we have a set Vi and a appearance function ri for each class yi ∈
y. The hypothesis this all method is based on is that these vertex sets should
represent the most persistent semantic subgraphs used in the classification in each
class. We then want to use the information recorded with the inputs of Utrain

to create a function that assigns to each input of Utest a score proportional to
its similarity to a given class i. With this purpose, we define a new appearance
function that extends the domain of ri to all V:

mi(v) =

{
ri(v) if v ∈ Vi

0 otherwise
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Then, for each class yi ∈ y, we define its similarity score as:

si(Gλ
x ) =

∑v∈Vλ
x

mi(v)
|Vi|

We denote i∗ the class that shows higher similarity score with the tested graph,
i∗ = argmaxi(si(Gλ

x )). For a given x ∈ Utest, if the NN’s predicted class i′ =
argmaxi(y) does not coincide with i∗, we expect x to be an adversary example.
The results of this process presented in the paper [4] are shown in the table of
Figure 2.5.

2.3.2 Average node matching

"In defining the maximum node matching detection algorithm, we noticed that ad-
versarial inputs generally have higher similarity scores to all classes than non-adversarial
inputs"6, they explain in paper [4].

This new method we are about to present in this section is motivated by this
observation. First we take a new subset Uval ⊂ Utrain

7. Then, we consider that
y = (yi)

m−1
i=0 . We calculate the mean number of matches (instead of the maximum

edge class as in the previous method) as follows:

savg(Gλ
x ) =

∑m
i=0 si(Gλ

x )

m

We compute savg(Gλ
x ) for each x ∈ Uval and we use the results to compute the

mean and the standard deviation over all observations:

µm
val =

∑x∈Uval
savg(Gλ

x )

|Uval |

σm
val =

√
∑x∈Uval

(savg(Gλ
x )− µm

val)
2

|Uval | − 1

If a given input x ∈ Utest shows a mean number of matches such that savg(Gλ
x ) >

µm
val + σm

val we can consider it has a higher general similarity score with classes then
the average input and we can and tag it as an adversarial example. The results of

6The reason of this might be a consequence of the fact that the similarity score of the Maximum
node matching method is not "punished" when the graph Gλ

x has vertices that do not usually show
for inputs of the class i (i.e. mi(v) = 0). Thus, a persistence graph containing all vertices of V would
get the maximum similarity score for all classes.

7In paper [4], it is not specified why we use this new subset instead of using all Utrain. I suspect
this decision comes after the necessity of taking a specific sample which makes the following statistic
calculus more solid, but no further explanation is given by the paper.
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this process presented in the paper [4] are shown in the table of Figure 2.6.

The last two methods we presented study the similarity between node sets of
graphs. The next two, on the other hand, are focused on comparing the edge sets.

2.3.3 Edge counting

This next method is motivated by the property shown in Figure ??. We observe
that the persistent subgraphs of adversarial inputs contain many more edges com-
pared to non-adversarial subgraphs. This only happens for values of λ around 0.1
as explained in paper [4]. We use this propery defining the following method.

Figure 2.3: These images from [4] show force-directed subgraphs from all compo-
nents with lifetime > 0.1 for unperturbed MNIST images (On top) and adversarial
images (On the bottom) with same target class.

First, we define Etrain = {|Ex| | Ex is the edge set of the graph Gλ
x , x ∈ Utrain}.

We then calculate the median of this set mtrain = median(Etrain) and the πth per-
centile of edge counts in Etrain, and denote it ptrain. This way, if a given input x ∈
Utest results having a persistent graph edge count such that |Ex| > mtrain + ptrain,
we tag it as an adversarial example. The results of this process presented in the
paper [4] are shown in the table of Figure 2.7.

2.3.4 Average edge weight

Another useful property of the edge sets in persistent graphs that we can use is
the fact that "the average edge weight amongst persistent subgraphs induced by adversar-
ial images is both lower and less variable than those induced by non-adversarial images"
as explained in [4] and shown in Figure 2.4. This property is used by the following
method in a way similar to the Average node matching method.
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Figure 2.4: This graphics from [4] show the distribution of average edge weight
for non-adversarial images (On the left) and for adversarial images (On the right).

First we calculate the average edge weight of the persistent subgraphs of each
x ∈ Utrain as follows:

ravg(Gλ
x ) =

∑eλ
x

φ′(e)
|Ex|

Then, we compute the mean and the standard deviation over all observations:

µ
φ′

train =
∑x∈Utrain

ravg(Gλ
x )

|Utrain|

σ
φ′

train =

√
∑x∈Utrain

(ravg(Gλ
x )− µ

φ′

train)
2

|Utrain| − 1

If a given input x ∈ Utest shows an average edge weight such that ravg(Gλ
x ) >

µ
φ′

train + σ
φ′

train we tag it as an adversarial example. The results of this process pre-
sented in the paper [4] are shown in the table of Figure 2.8.

2.4 Results

What follows are the results of the testing for the four adversary example
detection presented in paper [4]. Each algorithm has been tested on a sample of
900 images, 450 of which were adversarial examples, and the rest were unaltered
images. ρ was set on ρ = 0.99 and tests were made with many different values
for λ. A last parameter κ was used, with values κ = 0 and κ = 20. κ controls the
confidence with which the neural network misclassifies the generated adversarial
images.

As can be seen in the following tables, this methods tend to be more successful
with κ = 20 (i.e. with adversarial inputs which the NN misclassifies with high
confidence), and in particular with λ = 0.1.
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Now, if we focus on the best results for each value of κ (in bold in Figures
2.5, 2.6, 2.7 and 2.8), we see that the F1 scores are really close to 1, showing that
those are promising methods for adversary detection. In particular, the average
edge counting method shows the best results, between those 4 methods, in both
confidence levels κ = 0 and κ = 20.

Figure 2.5: Results of the maximum node matching method in [4]. The top results
for both κ values are in bold.

Figure 2.6: Results of the average node matching method in [4]. The top results
for both κ values are in bold.

Figure 2.7: Results of the average edge counting method in [4]. The top results for
both κ values are in bold.
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Figure 2.8: Results of the average edge weighting method in [4]. The top results
for both κ values are in bold.
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Conclusions

During the process of writing this work I’ve learned many things. First, it
helped me understand homology in a more graphical way. Studying all these
different complexes and shapes helped me relate my visual intuition with the
algebraic theory that I had already learned in class.

Secondly, I learned to be more accurate in my explanations since for the first
time in my life I had to use my mathematical knowledge, not with the objective of
proving that I know something, but in order to make sure that the reader under-
stands what I try to show her/him.

Finally, and for me the most important thing, I worked in my favourite field in
mathematics, topology, and discovered many applications it has nowadays.
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