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Abstract

We show that the problem of finding the measure supported on
a compact set K ⊂ C such that the variance of the least squares
predictor by polynomials of degree at most n at a point z0 ∈ Cd\K is
a minimum, is equivalent to the problem of finding the polynomial
of degree at most n, bounded by 1 on K, with extremal growth
at z0. We use this to find the polynomials of extremal growth for
[−1, 1] ⊂ C at a purely imaginary point. The related problem on
the extremal growth of real polynomials was studied by Erdős in
1947, [3].
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1 Introduction

In this work we consider two classical extremum problems for polynomi-
als. The first is very easy to state. Indeed, let us denote the complex
polynomials of degree at most n in d complex variables by Cn[z], z ∈ Cd.
Then for K ⊂ Cd compact and z0 ∈ Cd\K an external point, we say that
Pn(z) ∈ Cn[z] has extremal growth relative to K at z0 if

Pn = arg max
p∈Cn[z]

|p(z0)|
‖p‖K

(1)

where ‖p‖K denotes the sup-norm of p on K. Alternatively, we may nor-
malize p to be 1 at the external point and use

Pn = arg max
p∈Cn[z], p(z0)=1

1
‖p‖K

. (2)

We note that for this to be well-defined we require that K be polynomial
determining, i.e., if p ∈ C[z] is such that p(x) = 0 for all x ∈ K, then
p = 0.We refer the interested reader to the survey [2] for more about what
is known about this problem.

The second problem is from the field of Optimal Design for Polynomial
Regression. To describe it we reduce to the real case K ⊂ Rd, and note
that we may write any p ∈ Rn[z] in the form

p =
N∑
k=1

θkpk

where Bs := {p1, p2, . . . , pN} is a basis for Rn[z] and N :=
(
n+d
d

)
its dimen-

sion.
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Optimal Prediction 3

Suppose now that we observe the values of a particular p ∈ Rn[z] at a set
of m ≥ N points X := {xj : 1 ≤ j ≤ m} ⊂ K with some random errors,
i.e., we observe

yj = p(xj) + εj, 1 ≤ j ≤ m

where we assume that the errors εj ∼ N(0, σ) are independent. In matrix
form this becomes

y = Vnθ + ε

where θ ∈ RN , y, ε ∈ Rm and

Vn :=



p1(x1) p2(x1) · · · pN(x1)
p1(x2) p2(x2) · · · pN(x2)
· ·
· ·
· ·
· ·
· ·

p1(xm) p2(xm) · · · pN(xm)


∈ Rm×N

is the associated Vandermonde matrix.
Our assumption on the error vector ε means that

cov(ε) = σ2Im ∈ Rm×m.

Now, assuming that Vn is of full rank, the least squares estimate of θ is

θ̂ := (V t
nVn)−1V t

ny.

Note that the entries of 1
m
V t
nVn are the discrete inner products of the pi

with respect to the measure

µX = 1
m

m∑
k=1

δxk . (3)

More specifically,
1
m
V t
nVn = Gn(µX)

where
Gn(µ) :=

[∫
K
pi(x)pj(x)dµ

]
1≤i,j≤N

∈ RN×N (4)

3



4 Optimal Prediction

is the Moment, or Gram, matrix of the polynomials pi with respect to the
measure µ.
In general we may consider arbitrary probability measures on K, setting

M(K) := {µ : µ is a probability measure on K}.

Now set

p(z) =


p1(z)
p2(z)
·
·

pN(z)

 ∈ RN (5)

then the least squares estimate of the observed polynomial is

pt(z)θ̂.

We may compute its variance at any point z ∈ Rd to be

var(pt(z)θ̂) = σ2pt(z)(V t
nVn)−1p(z)

= 1
m
σ2pt(z)(Gn(µX))−1p(z) (6)

where µX is again given by (3). Now, it is easy to verify that for any
µ ∈M(K) with non-singular Gram matrix,

pt(z)(Gn(µ))−1p(z) = Kµ
n(z, z)

where, for {q1, · · · , qN} ⊂ Rn[z], a µ-orthonormal basis for Rn[z],

Kµ
n(w, z) :=

N∑
k=1

qk(w)qk(z)

is the Bergman kernel for Rn[z]. The function Kµ
n(z, z) is also known as

the (reciprocal of) the Christoffel function for Rn[z]. In particular, we see
that the variance (6) is proportional to KµX

n (z, z).

We may generalize easily to the complex case, K ⊂ Cd, where now the pj
form a basis for Cn[z] and

Gn(µ) :=
[∫
K
pi(z)pj(z)dµ

]
1≤i,j≤N

∈ CN×N . (7)
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In case that Gn(µ) is non-singular then the kernel is

Kµ
n(w, z) :=

N∑
k=1

qk(w)qk(z)

for {q1, · · · , qN} ⊂ Cn[z], a µ-orthonormal basis for Cn[z]. Then, for an
external point z0 ∈ Cd\K, a measure µ0 ∈M(K) is said to be an optimal
prediction (or extrapolation) measure for z0 relative to K (of order n) if
it minimizes the complex analogue of the variance (6) of the polynomial
predictor at z0, i.e., if

Kµ0
n (z0, z0) = inf

µ∈M(K)
Kµ
n(z0, z0). (8)

However, as it turns out (see Example 1 below), such optimal prediction
measures need not be definite (i.e., the associated Gram matrix need not
be non-singular). Hence we need to re-formulate so that indefinite mea-
sures are allowed. Indeed, as is well known there is a variational form for
Kµ
n(z0, z0) :

Kµ
n(z0, z0) = sup

p∈Cn[z]

|p(z0)|2∫
K |p(z)|2dµ

= sup
p∈Cn[z], p(z0)=1

1∫
K |p(z)|2dµ. (9)

Note that in the case of an indefinite measure this value may be +∞. Any
polynomial P µ,z0

n ∈ Cn[z] such that

P µ,z0
n = arg max

p∈Cn[z], p(z0)=1

1∫
K |p(z)|2dµ (10)

is said to be a prediction polynomial for µ and if µ0 is an optimal prediction
measure we call P µ0,z0

n an optimal prediction polynomial. In the case that
(9) is ∞ we interpret (10) to mean that the polynomial P µ0,z0

n is such that∫
K |P µ0,z0

n (z)|2dµ = 0.
Hence, in general, we say that µ0 ∈M(K) is an optimal prediction measure
for z0 relative to K if µ0 satisfies (8) with Kµ

n defined by (9).
We note that if µ is definite then

P µ,z0
n (z) = Kµ

n(z0, z)
Kµ
n(z0, z0)
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6 Optimal Prediction

is unique and
∫
K |P µ,z0

n (z)|2dµ(z) = 1. In the case that µ is indefinite then
P µ,z0
n need not be unique.

Example 1. Consider K = [−1, 1]2 considered as a subset of C2, z0 =
(2, 0), µ = 1

4δ(−1,0) + 3
4δ(1,0), and degree n = 1. Then it is easy to check that

any polynomial of the form P µ,z0
1 (x, y) = x/2 + cy, c ∈ C, is a prediction

polynomial for µ. We will see in the next section that µ is an optimal
prediction measure which also shows that optimal prediction measures may
be indefinite.

In the univariate case however, optimal prediction polynomials are always
definite.
Lemma 1.1 Suppose that K ⊂ C is Cn[z] determining and that z0 ∈
C\K. Then any optimal prediction measure µ is definite, i.e., the Gram
matrix Gn(µ) is non-singular.

Proof. If the support of a measure µ has n or fewer distinct points there
exists a polynomial p ∈ Cn[z] such that p ≡ 0 on the support while p(z0) =
1. Hence

1∫
K |p(z)|2dµ =∞

and µ cannot be an optimal prediction measure as taking any n + 1
points a0, ..., an in K and positive numbers w0, ..., wn with ∑n

j=0 wj = 1,
the measure ν := ∑n

j=0 bjδaj is definite. Thus Kν
n(z0, z) is a nontrivial

polynomial of degree n with

Kν
n(z0, z0) = sup

p∈Cn[z], p(z0)=1

1∫
K |p(z)|2dν <∞.

In [5] Hoel and Levine show that in the univariate case, for K = [−1, 1],
and any z0 ∈ R\K, a real external point, the optimal prediction measure
is unique and is a discrete measure supported at the n+1 extremal points
xk = cos(kπ/n), 0 ≤ k ≤ n, of Tn(x) the classical Chebyshev polynomial
of the first kind (cf. Lemma 3.1 below). In this case it turns out that

Kµ0
n (z0, z0) = T 2

n(z0). (11)
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Optimal Prediction 7

Notably, as is well known, Tn(x) is the polynomial of extremal growth for
any point z0 ∈ R\[−1, 1] relative to K = [−1, 1]. Also, Erdős (1947) [3] has
shown that the Chebyshev polynomial is also extreme relative to [−1, 1]
for real polynomials at points z0 ∈ C with |z0| ≥ 1, i.e.,

max
p∈Rn[x], ‖p‖[−1,1]≤1

|p(z0)| = |Tn(z0)|.

The problem for real polynomials and |z0| ≤ 1 or for complex polynomials
p ∈ C[z] has remained unsolved up to now.
We show in Section 2 that (11) is not an accident, and that there is a general
equivalence of our two extremum problems. In Section 3 we give a complete
and unique characterization of optimal prediction measures and polyno-
mials of extrema growth for the case of the unit interval K = [−1, 1] ⊂ C.
Finally, in Section 4 we will use this to compute the polynomials of ex-
tremal growth and the optimal prediction measures for a purely imaginary
complex point z0 ∈ C\[−1, 1].

2 A Kiefer-Wolfowitz Type Equivalence The-
orem

Kiefer andWolfowitz [6] have given a remarkable equivalence between what
are called D-optimal and G-optimal designs, i.e., probability measures that
maximize the determinant of the design matrix Gn(µ) and those which
minimize the maximum over x interior to K, of the prediction variance i.e.,
minimize maxx∈K Kµ

n(x, x). Here we give an analogous equivalence, for a
single exterior point z0 ∈ Cd\K, with the problem of extremal polynomial
growth.
Combining the definition of an optimal prediction measure (8) and the
variational form for the kernel (9), the problem of minimal variance is to
find

min
µ∈M(K)

max
p∈Cn[z], p(z0)=1

1∫
K |p(z)|2dµ.

It turns out that this can be easily analyzed using the classical Minimax
Theorem (see e.g. Gamelin [4, Thm. 7.1, Ch. II]).

7



8 Optimal Prediction

Proposition 2.1 The minimal variance is the square of the maximal poly-
nomial growth, i.e.,

min
µ∈M(K)

max
p∈Cn[z], p(z0)=1

1∫
K |p(z)|2dµ = max

p∈Cn[z], p(z0)=1

1
‖p‖2

K

.

Proof. First note that we may simplify to

min
µ∈M(K)

max
p∈Cn[z], p(z0)=1

1∫
K |p(z)|2dµ = 1/

{
max

µ∈M(K)
min

p∈Cn[z], p(z0)=1

∫
K
|p(z)|2dµ

}
.

Now, for µ ∈M(K) and p ∈ Cn[z] such that p(z0) = 1, let

f(µ, p) :=
∫
K
|p(z)|2dµ.

It is easy to confirm that f is quasiconcave in µ and quasiconvex in p and
hence by the Minimax Theorem

max
µ∈M(K)

min
p∈Cn[z], p(z0)=1

∫
K
|p(z)|2dµ = min

p∈Cn[z], p(z0)=1
max

µ∈M(K)

∫
K
|p(z)|2dµ.

However, as µ = δx ∈M(K) for every x ∈ K, it follows that

max
µ∈M(K)

∫
K
|p(z)|2dµ = ‖p‖2

K .

Consequently, the minimum variance is given by

min
µ∈M(K)

max
p∈Cn[z], p(z0)=1

1∫
K |p(z)|2dµ = max

p∈Cn[z], p(z0)=1

1
‖p‖2

K

,

as claimed.

We remark that the Minimax theorem in a similar context has been used
before to get pointwise estimates of solutions to the ∂̄-equation by Berndts-
son in [1, p. 206].

It is also possible to give a more precise relation between the extremal poly-
nomials for the two problems (of minimum variance and extremal growth).
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Optimal Prediction 9

Theorem 2.2 A measure µ0 ∈ M(K) is an optimal prediction measure
for z0 /∈ K relative to K if and only if there is an associated (opti-
mal) prediction polynomial P µ0,z0

n (z) ∈ Cn[z], (10), such that ‖P µ0,z0
n ‖K =

‖P µ0,z0
n ‖L2(µ0), i.e.,

max
z∈K
|P µ0,z0
n (z)|2 =

∫
K
|P µ0,z0
n (z)|2dµ0,

or, equivalently, if and only if there is an associated prediction polynomial
that is also a polynomial of extremal growth at z0 relative to K.

Proof. First suppose that P µ0,z0
n (z) ∈ Cn[z] is an optimal prediction

polynomial associated to µ0 such that ‖P µ0,z0
n ‖K = ‖P µ0,z0

n ‖L2(µ0). Then
for any µ ∈M(K),

Kµ
n(z0, z0) = max

p∈Cn[z], p(z0)=1

1∫
K |p(z)|2dµ

≥ 1∫
K |P

µ0,z0
n (z)|2dµ

≥ 1∫
K ‖P

µ0,z0
n (z)‖2

Kdµ

= 1
‖P µ0,z0

n (z)‖2
K

= 1∫
K |P

µ0,z0
n (z)|2dµ0

= Kµ0
n (z0, z0)

and hence µ0 is optimal.
To see that P µ0,z0

n is also a polynomial of extremal growth, let p ∈ Cn[z]
be any other polynomial for which p(z0) = 1. Then

‖P µ0,z0
n ‖2

K = ‖P µ0,z0
n ‖2

L2(µ0)

=
∫
K
|P µ0,z0
n (z)|2dµ0

≤
∫
K
|p(z)|2dµ0 (as P µ0,z0

n is a prediction polynomial)

≤ ‖p‖2
K .

9



10 Optimal Prediction

Hence
‖P µ0,z0

n ‖K = min
p∈Cn[z], p(z0)=1

‖p‖K

and P µ0,z0
n is indeed a polynomial of extremal growth.

Conversely, suppose that µ0 is optimal and let P µ0,z0
n (z) ∈ Cn[z] be a

polynomial of extremal growth for z0 relative to K, i.e., P µ0,z0
n (z0) = 1 and

for any other p ∈ Cn[z] such that p(z0) = 1,

‖P µ0,z0
n ‖K ≤ ‖p‖K .

We claim that P µ0,z0
n is an optimal prediction polynomial and that ‖P µ0,z0

n ‖K =
‖P µ0,z0

n ‖L2(µ0).

To see this note that by Proposition 2.1

max
p∈Cn[z], p(z0)=1

1∫
K |p(z)|2dµ0

= 1
‖P µ0,z0

n ‖2
K

i.e.,
min

p∈Cn[z], p(z0)=1

∫
K
|p(z)|2dµ0 = ‖P µ0,z0

n ‖2
K .

Hence

‖P µ0,z0
n ‖2

K ≤
∫
K
|P µ0,z0
n (z)|2dµ0

≤
∫
K
‖P µ0,z0

n ‖2
Kdµ0

= ‖P µ0,z0
n ‖2

K ,

i.e.,
∫
K |P µ0,z0

n (z)|2dµ0 = ‖P µ0,z0
n ‖2

K .

Moreover, then

max
p∈Cn[z], p(z0)=1

1∫
K |p(z)|2dµ0

= 1
‖P µ0,z0

n ‖2
K

= 1∫
K ||P

µ0,z0
n (z)|2dµ0

and so P µ0,z0
n is also an optimal prediction polynomial associated to µ0.

In particular, if µ0 is definite then∫
K
|P µ0,z0
n (z)|2dµ0 = ‖P µ0,z0

n ‖2
K = 1.

10
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Remark 1. It is easily confirmed that |P µ0,z0
n (z)| ≡ ‖P µ0,z0

n ‖K on the sup-
port of µ0. Consequently optimal prediction measures are always supported
on a real algebraic subset of K of degree 2n.

Example 2. Recall the situation of Example 1: K = [−1, 1]2 ⊂ C2

with the measure µ0 := 1
4δ(−1,0) + 3

4δ(1,0). We show that this is an optimal
prediction measure for the external point z0 = (2, 0) and polynomials of
degree at most 1. As mentioned in Example 1, the prediction polyno-
mials for this measure and point are p(x, y) = x/2 + cy, c ∈ C. For the
particular polynomial P µ0,z0

1 (x, y) := x/2, we have ‖P µ0,z0
1 ‖2

K = 1/4 and∫
K |P

µ0,z0
1 (x, y)|2dµ0 = 1/8 + 3/8 = 1/4. Hence by Theorem 2.2, µ0 is an

optimal prediction measure.

We now give an example showing that optimal prediction measures need
not be unique, even in the univariate situation. Let

K = D = {z ∈ C : |z| ≤ 1}

and fix z0 with |z0| > 1. Write z0 = |z0|eiφ for a fixed angle φ.

Proposition 2.3 Consider the measure

dµ(θ) :=
 ∞∑
k=−∞

|z0|−|k|eik(θ+φ)

 1
2πdθ,

i.e., dµ, the Poisson kernel for 1/z0 times dθ/(2π), supported on the unit
circle. Then µ is an optimal prediction measure for K = D and z0 /∈ D
for any degree n.

Proof. For j = 0,±1,±2, ..., let

mj(µ) :=
∫
K
zjdµ =

∫ 2π

0
eijθdµ(θ) = 1

2π

∫ 2π

0

 ∞∑
k=−∞

|z0|−keik(θ+φ)

 eijθdθ.
11



12 Optimal Prediction

It follows easily that for any j,

mj(µ) = |z0|−je−ijφ = z−j0 . (12)

Thus the Gram matrix for µ with respect to the basis {1, z, ..., zn} for C1[z]
is

Gn(µ) = G(z−1
0 ) :=


1 z−1

0 z−2
0 . . . z−n0

z̄−1
0 1 z−1

0 . . . z
−(n−1)
0

... ... . . . ...
z̄−n0 z̄

−(n−1)
0 z̄

−(n−2)
0 . . . 1

 .
More generally, we define, for |z| 6= 1,

G(z) :=


1 z z2 . . . zn

z̄ 1 z . . . z(n−1)

... ... . . . ...
z̄n z̄(n−1) z̄(n−2) . . . 1

 .

One easily verifies that

G(z)−1 := 1
|z|2 − 1



−1 z 0 . . . 0 0
z̄ −(1 + |z|2) z . . . 0 0
... ... . . . ...
0 0 . . . z̄ −(1 + |z|2) z
0 0 0 . . . z̄ −1

 .

Next, letting, for z 6= 0,

P(z) :=


1
z−1

·
·
z−n

 ∈ Cn+1, (13)

we easily verify that

P∗(z)G(z)−1P(z) = |z|−2n.

Thus we have

Kµ0
n (z0, z0) = P∗(z−1

0 )G(z−1
0 )−1P(z−1

0 ) = |z−1
0 |−2n = |z0|2n.

12



Optimal Prediction 13

But it is well-known that pn(z) = zn is a polynomial of degree n of extremal
growth at z0 relative to K (cf., [2]); thus we know from Proposition 2.1
the optimal value infν∈M(K) K

ν
n(z0, z0) is
|pn(z0)|2 = |z0|2n

and the proof is complete.

For each degree n we can produce additional optimal prediction measures
by taking any discrete measure ν that reproduces the moments of µ present
in the Gram matrix Gn(µ). Such discrete measures ν can be constructed,
e.g., by Szegö quadrature (cf., section 7 of [7]).

However, as we will see in the next section, for a real interval and a point
exterior to this interval, optimal prediction measures are unique.

3 A Complex Point External to [−1, 1]

We now consider K = [−1, 1] ⊂ C and z0 ∈ C\K. As mentioned in
Remark 1 above, the support of an optimal prediction measure in this
case is a subset of [−1, 1] where |P µ0,z0

n (z)| = 1, its maximum value. It
is not possible that |P µ0,z0

n (z)| ≡ 1 on all of [−1, 1] and hence the sup-
port of µ0 consists of at most 2n points in [−1, 1], counting multiplicities.
Any interior point, being a local maximum of |P µ0,z0

n |, must be of even
multiplicity and hence there can be at most n interior points. However,
exactly n interior (double) points would mean that z = ±1 are not max-
imum points of |P µ0,z0

n (z)|, i.e., |P µ0,z0
n (±1)| < 1. But then the fact that

limz→±∞ |P µ0,z0
n (z)| =∞ would imply that there are two other points out-

side [−1, 1] where |P µ0,z0
n (z)| attains the value 1, giving 2n+ 2 > 2n points

where the value 1 is attained, an impossibility. Hence there are at most
n − 1 interior points in the support of µ0. The fact that Gn(µ0) is non-
singular requires that there are at least n + 1 support points, and these
must therefore consist of n− 1 interior points together with the two end-
points ±1, i.e., x0 := −1, xn := +1 and n − 1 internal (double) points
−1 < x1 < · · · < xn−1 < 1. Consequently

µ0 =
n∑
i=0

wiδxi

13



14 Optimal Prediction

with weights wi > 0, ∑n
i=0 wi = 1.

Given the support points xi there is a simple recipe for the optimal weights,
given already in [5].

Lemma 3.1 (Hoel-Levine) Suppose that −1 = x0 < x1 < · · · < xn = +1
are given. Then among all discrete probability measures supported at these
points, the measure with

wi := |`i(z0)|∑n
i=0 |`i(z0)| , 0 ≤ i ≤ n (14)

with `i(z) the ith fundamental Lagrange interpolating polynomial for these
points, minimizes Kµ

n(z0, z0).

Proof. We first note that for such a discrete measure, {`i(z)/√wi}0≤i≤n
form an orthonormal basis. Hence

Kµ
n(z0, z0) =

n∑
i=0

|`i(z0)|2
wi

. (15)

In the case of the weights chosen according to (14) we obtain

Kµ0
n (z0, z0) =

(
n∑
i=0
|`i(z0)|

)2

. (16)

We claim that for any choice of weights Kµ
n given by (15) is at least as large

as that given by (16). To see this, just note that by the Cauchy-Schwartz
inequality, (

n∑
i=0
|`i(z0)|

)2

=
(

n∑
i=0

|`i(z0)|
√
wi
·
√
wi

)2

≤
(

n∑
i=0

|`i(z0)|2
wi

)
·
(

n∑
i=0

wi

)

=
n∑
i=0

|`i(z0)|2
wi

.

14



Optimal Prediction 15

Remark. We note that the optimal Kµ0
n (z0, z0) given by (16) is the

Lebesgue function squared. Hence the problem of finding the support of
the optimal prediction measure amounts to finding the n+ 1 interpolation
points −1 = x0 < x1 < · · · < xn = +1 for which the Lebesgue function
evaluated at the external point z0,

Λ(z0) :=
n∑
i=0
|`i(z0)|,

is as small as possible.

Recall that the optimal prediction polynomials P µ0,z0
n (z) = K

µ0
n (z0,z)√
K
µ0
n (z0,z0)

have
supremum norms 1 on [−1, 1].

Lemma 3.2 Suppose that the measure µ0 is supported at the points −1 =
x0 < x1 < · · · < xn = +1 with optimal weights given by (14). Then

P µ0,z0
n (z) =

n∑
i=0

sgn(`i(z0))`i(z)

where sgn(z) := z/|z| is the complex sign of z ∈ C.

Proof. Using again the fact that {`i(z)/√wi}0≤i≤n form a set of orthonor-
mal polynomials, we have

P µ0,z0
n (z) = 1

Λ(z0)

n∑
i=0

`i(z0)
√
wi

`i(z)
√
wi

= 1
Λ(z0)

n∑
i=0

(
Λ(z0) `i(z0)

|`i(z0)|

)
`i(z)

=
n∑
i=0

`i(z0)
|`i(z0)| · `i(z).

Remark. By the equivalence Theorem 2.2 the support of the optimal
prediction measure and the polynomial of extremal growth will be given
by those points −1 = x0 < x1 < · · · < xn = +1 for which

max
−1≤x≤1

∣∣∣∣∣
n∑
i=0

`i(z0)
|`i(z0)| · `i(x)

∣∣∣∣∣ = 1.

15



16 Optimal Prediction

4 A Purely Imaginary Point External to [−1, 1]

In the case of z0 = ai, 0 6= a ∈ R, a purely imaginary point, it turns out
that there are remarkable formulas for the polynomial of extremal growth
as well as for the support of the optimal prediction measure. Both of these
will depend on the point z0 (as opposed to the real case z0 ∈ R\[−1, 1]
where Hoel and Levine [5] showed that the support is always the set of
extreme points of the Chebyshev polynomial Tn(x)).

To begin we will first analyze the degrees n = 1 and n = 2 cases.

4.1 Degree n = 1

Here the support of the extremal measure is necessarily x = −1 and x1 =
+1. We will compute P µ0,z0

1 (z) using the formula given in Lemma 3.2.
Indeed in this case, `0(z) = (1− z)/2 and `1(z) = (1 + z)/2 so that

sgn(`0(ia)) = sgn
(1− ia

2

)
= 1 + ia√

a2 + 1

and
sgn(`1(ia)) = sgn

(1 + ia

2

)
= 1− ia√

a2 + 1
.

Hence,

P µ0,z0
1 (z) = 1 + ia√

a2 + 1
1− z

2 + 1− ia√
a2 + 1

1 + z

2
= 1√

a2 + 1
{1− iaz}.

Since ±1 is necessarily the support of the optimal prediction measure it
is immediate that ‖P µ0,z0

1 ‖[−1,1] = 1, as is also easily verified by a simple
direct calculation.

16
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4.2 Degree n = 2

We claim that the support of the optimal prediction measure is x0 = −1,
x1 = 0 and x2 = +1. However, this is not automatic and we will have to
verify that the norm of P µ0,z0

2 is indeed 1. Now, it is easy to see, for this
support, that

`0(z) = z(z − 1)
2 , `1(z) = 1− z2, `2(z) = z(z + 1)

2
for which

sgn(`0(ia)) = sgn
(
ia(ia− 1)

2

)
= −ia
|a|
· −ia− 1√

a2 + 1
= i sgn(a) 1 + ia√

a2 + 1
,

sgn(`1(ia)) = sgn(1 + a2) = +1,
and, after a simple calculation,

sgn(`2(ia)) = i sgn(a) ia− 1√
a2 + 1

.

From this we may easily conclude that

P µ0,z0
2 (z) =

2∑
i=0

sgn(`i(z0))`i(z)

= sgn(a)√
a2 + 1

(
−(a+ sgn(a)

√
a2 + 1)z2 − iz + sgn(a)

√
a2 + 1

)
.

The fact that ‖P µ0,z0
2 ‖[−1,1] = 1 is an immediate consequence of the follow-

ing lemma.

Lemma 4.1 For x ∈ R we have

|P µ0,z0
2 (x)|2 = 1 + (|a|+

√
a2 + 1)2

a2 + 1 x2(x2 − 1)

= 1 + (x2 − 1)R2
1(x), R1(x) := |a|+

√
a2 + 1√

a2 + 1
x.

17



18 Optimal Prediction

Proof. This follows from elementary calculations starting with the formula
for P µ0,z0

2 (x) given above.

We now define a sequence of polynomials, Qn(z), based on the above
degrees n = 1 and n = 2 cases, for which we will show that Qn(z) =
cnP

µ0,z0
n (z) for certain cn ∈ C with modulus |cn| = 1. We will also define

a sequence of polynomials Rn(x) which will play the role of R1(x) in the
Lemma for general degree n.
Now, as the formula for P µ0,z0

2 depends on the sign of a, in order to simplify
the formulas we will assume that a > 0. For a < 0, one may use the relation
P µ0,ia

2 (z) = P µ0,−ia
2 (−z).

Definition 4.2 For a > 0 we define the sequences of polynomials Qn(z)
and Rn(z) by

Q1(z) = − az + i√
a2 + 1

, (= (−i)P µ0,z0
1 (z))

Q2(z) = 1√
a2 + 1

(
−(a+

√
a2 + 1)z2 − iz +

√
a2 + 1

)
, (= P µ0,z0

2 (z))
Qn+1(z) = 2zQn(z)−Qn−1(z), n = 2, 3, · · · .

and

R0(z) = a√
a2 + 1

,

R1(z) = a+
√
a2 + 1√

a2 + 1
z,

Rn+1(z) = 2zRn(z)−Rn−1(z), n = 1, 2, · · · .

Since the recursions are both those of the classical Chebyshev polynomials
it is not surprising that there are formulas for Qn(z) and Rn(z) in terms
of these.

Lemma 4.3 We have

Qn(z) = 1√
a2 + 1

(
−(az + i)Tn−1(z) +

√
a2 + 1(1− z2)Un−2(z)

)
where Tn(z) is Chebyshev polynomial of the first kind and Un(z) := 1

n+1T
′
n+1(z)

that of the second kind.

18



Optimal Prediction 19

Proof. Let qn(z) denote the right side of the proposed identity. We
proceed by induction. For n = 1 we have

q1(z) = 1√
a2 + 1

(
−(az + i)T1−1(z) +

√
a2 + 1(1− z2)U1−2(z)

)
= 1√

a2 + 1
(−(az + i)× 1 + 0)

= Q1(z).

Similarly, for n = 2 we have

q2(z) = 1√
a2 + 1

(
−(az + i)T2−1(z) +

√
a2 + 1(1− z2)U2−2(z)

)
= 1√

a2 + 1
(
−(az + i)z +

√
a2 + 1(1− z2)

)
= 1√

a2 + 1
(
−(a+

√
a2 + 1)z2 − iz +

√
a2 + 1

)
= Q2(z).

The result now follows easily from the fact that both kinds of Chebyshev
polynomials satisfy the same recursion as used in the definition of Qn(z).

Lemma 4.4 We have

Rn(z) = 1√
a2 + 1

(√
a2 + 1zUn−1(z) + aTn(z)

)
.

Proof. Let rn(z) denote the right side of the proposed identity. We again
proceed by induction. For n = 0 we have

r0(z) = 1√
a2 + 1

(√
a2 + 1zU−1(z) + aT0(z)

)
= a√

a2 + 1
= R0(z).

Similarly, for n = 1 we have

r1(z) = 1√
a2 + 1

(√
a2 + 1zU0(z) + aT1(z)

)
19



20 Optimal Prediction

= 1√
a2 + 1

(√
a2 + 1z × 1 + a× z

)
= a+

√
a2 + 1√

a2 + 1
z

= R1(z).

The result now follows easily from the fact that both kinds of Chebyshev
polynomials satisfy the same recursion as used in the definition of Rn(z).

Now, just for the Chebyshev polynomials Tn(z) and Un−1(z) there is the
Pell identity

T 2
n(z)− (z2 − 1)U2

n−1(z) ≡ 1. (17)

We will show that for real z ∈ R, the polynomials Qn(z) and Rn−1(z)
satisfy a similar Pell identity.

Proposition 4.5 For z = x ∈ R, we have

|Qn(x)|2 − (x2 − 1)R2
n−1(x) ≡ 1.

Proof. By Lemma 4.3, z = x ∈ R, we may write

Qn(x) = 1√
a2 + 1

(
−(ax+ i)Tn−1(x) +

√
a2 + 1(1− x2)Un−2(x)

)
= 1√

a2 + 1
(
−iTn−1(x) +

{
−axTn−1(x) +

√
a2 + 1(1− x2)Un−2(x)

})

so that

|Qn(x)|2 = 1
a2 + 1

(
T 2
n−1(x) +

(
−axTn−1(x) +

√
a2 + 1(1− x2)Un−2(x)

)2
)
.

Hence, using the Chebyshev Pell identity (17),

(a2 + 1)(1− |Qn(x)|2)
= (a2 + 1)− T 2

n−1(x)− a2x2T 2
n−1(x)

−(a2 + 1)(1− x2)2U2
n−2(x) + 2a

√
a2 + 1x(1− x2)Un−2(x)Tn−1(x)

= (a2 + 1)(1− T 2
n−1(x)) + a2(1− x2)T 2

n−1(x)− (a2 + 1)(1− x2)2U2
n−2(x)

20
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+2a
√
a2 + 1x(1− x2)Un−2(x)Tn−1(x)

= (a2 + 1)(1− x2)U2
n−2(x) + a2(1− x2)T 2

n−1(x)− (a2 + 1)(1− x2)2U2
n−2(x)

+2a
√
a2 + 1x(1− x2)Un−2(x)Tn−1(x)

= (1− x2)
{

(a2 + 1)U2
n−2(x) + a2T 2

n−1(x)− (a2 + 1)(1− x2)U2
n−2(x)

+2a
√
a2 + 1xUn−2(x)Tn−1(x)

}
= (1− x2)

{
(a2 + 1)[1− (1− x2)]U2

n−2(x) + a2T 2
n−1(x)

+2a
√
a2 + 1xUn−2(x)Tn−1(x)

}
= (1− x2)

{
(a2 + 1)x2U2

n−2(x) + a2T 2
n−1(x) + 2a

√
a2 + 1xUn−2(x)Tn−1(x)

}
= (1− x2)

{√
a2 + 1xUn−2(x) + aTn−1(x)

}2

= (1− x2)(a2 + 1)R2
n−1(x).

From the Pell identity Proposition 4.5, we immediately have

Corollary 4.6 For x ∈ [−1, 1],

|Qn(x)| ≤ 1

and its maximum of 1 is attained at the endpoints x = ±1 and the zeros
of Rn−1(x).

Indeed, we claim that the endpoints together with the zeros of Rn−1(x)
form the support of the optimal prediction measure. To this end we first
prove that Rn−1(x) has n− 1 zeros in (−1, 1).

Lemma 4.7 The polynomials Rn(x) have n distinct zeros in (−1, 1) which
interlace the extreme points of Tn(x), cos(kπ/n), 0 ≤ k ≤ n.

Proof. Using the fact that T ′n(x) = nUn−1(x), we have that at an interior
extremal point of Tn(x), cos(kπ/n), 1 ≤ k ≤ (n− 1),

Rn(cos(kπ/n)) = 1√
a2 + 1

(√
a2 + 1zUn−1(cos(kπ/n)) + aTn(cos(kπ/n))

)
21



22 Optimal Prediction

= 1√
a2 + 1

(
0 + a(−1)k

)
= a√

a2 + 1
(−1)k

so that
sgn(Rn(cos(kπ/n))) = (−1)k, 1 ≤ k ≤ (n− 1).

Further, for k = 0, cos(kπ/n) = 1,

Rn(1) = 1√
a2 + 1

(√
a2 + 1Un−1(1) + aTn(1)

)
= 1√

a2 + 1
(
n
√
a2 + 1 + a

)
so that

sgn(Rn(cos(0π/n))) = +1 = (−1)0.

Similarly, for k = n, cos(kπ/n) = −1,

Rn(−1) = 1√
a2 + 1

(√
a2 + 1(−1)Un−1(−1) + aTn(−1)

)
= 1√

a2 + 1
(n
√
a2 + 1 + a)(−1)n

so that also
sgn(Rn(cos(nπ/n))) = (−1)n.

The result follows.

Suppose now that µ0 is the discrete measure supported on ±1 together
with the n−1 zeros of Rn−1(x), with optimal weights given by Lemma 3.1.

Proposition 4.8 The polynomials Qn(z) are of extremal growth at z0 = ai
relative to K = [−1, 1]. Specifically, Qn(z) = −(i)nP µ0,z0

n (z).

Proof. Let −1 = x0 < x1 < · · · < xn = +1 be the support points with
corresponding Lagrange polynomials `k(z). We will show that

Qn(xk) = −(i)nsgn(`k(ai)), 0 ≤ k ≤ n

22
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using the formula

`k(z) = ωn(z)
(z − xk)ω′n(xk)

, ωn(z) := (z2 − 1)Rn−1(z).

Our calculations will make use of the elementary facts that

Tn(ai) = (i)n
2
{

(a+
√
a2 + 1)n + (a−

√
a2 + 1)n

}
,

Un(ai) = (i)n

2
√
a2 + 1

{
(a+

√
a2 + 1)n+1 − (a−

√
a2 + 1)n+1

}
so that

Rn−1(ai) = 1√
a2 + 1

(√
a2 + 1(ai)Un−2(ai) + aTn−1(ai)

)
= (i)n−1 a√

a2 + 1
(a+

√
a2 + 1)n−1.

The endpoints are the easiest case and so we will begin with those. Specif-
ically, for k = 0, x0 = −1,

`0(ai) = ((ai)2 − 1)Rn−1(ai)
(ai− (−1))ω′n(−1)

= −(a2 + 1)Rn−1(ai)
(ai+ 1)(−2Rn−1(−1)) .

Hence

sgn(`0(ai)) = sgn(Rn−1(ai)) sgn(Rn−1(−1)) sgn
( 1
ai+ 1

)
= (−i)n−1(−1)n−1 ai+ 1√

a2 + 1
.

On the other hand

Qn(−1) = 1√
a2 + 1

(
−(a(−1) + i)Tn−1(−1) +

√
a2 + 1(1− (−1)2)Un−2(−1)

)
= 1√

a2 + 1
(a− i)(−1)n−1

= −(i)nsgn(`0(ai)),

as is easily verified.
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24 Optimal Prediction

The other endpoint xn = +1 is very similar and so we suppress the details.
Consider now, xk, 1 ≤ k ≤ (n− 1), a zero of Rn−1(x). Then

`k(ai) = ((ai)2 − 1)Rn−1(ai)
(ai− xk)(x2

k − 1)R′n−1(xk)

= −(a2 + 1)Rn−1(ai)
(ai− xk)(x2

k − 1)(R′n−1(xk))
.

Hence

sgn(`k(ai)) = sgn(Rn−1(ai)) sgn(R′n−1(xk)) sgn
( 1
ai− xk

)
= (i)n−1(−1)k ai− xk√

a2 + x2
k

as sgn(R′n−1(xk)) = (−1)n−1−k, as is easy to see.
On the other hand, from the formula for Rn−1(x) given in Lemma 4.4, we
see that Rn−1(xk) = 0 implies that

Tn−1(xk) = −
√
a2 + 1
a

xkUn−2(xk).

Substituting this into the formula for Qn given in Lemma 4.3 we obtain

Qn(xk) =
{

(axk + i)xk
a

+ (1− x2
k)
}
Un−2(xk)

=
(
a+ ixk
a

)
Un−2(xk).

But by the Pell identity of Proposition 4.5, |Qn(xk)| = 1 and so we must
have

Qn(xk) = a+ ixk√
a2 + x2

k

sgn (Un−2(xk)) .

But, as the zeros of Rn−1 interlace the extreme points Tn−1, i.e., the zeros
of Un−2, it is easy to check that sgn(Un−2(xk) = (−1)n−1−k. In other words,

Qn(xk) = (−1)n−1−k a+ ixk√
a2 + x2

k
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Optimal Prediction 25

which is easily verified to equal −(i)nsgn(`k(ai)), as claimed.

From the recursion formula for Qn(z) it is easy to see that

Qn(ai) = −(i)n
√
a2 + 1(a+

√
a2 + 1)n−1.

Hence we have

Proposition 4.9 For n = 1, 2, · · ·

max
p∈Cn[z], ‖p‖[−1,1]≤1

|p(ai)| =
√
a2 + 1(|a|+

√
a2 + 1)n−1

and this maximum value is attained by Qn(z) (for a > 0).

It is worth noting that the extremal polynomial and optimal prediction
measure, unlike the real case, depend on the exterior point z0. Moreover,
this extreme value is rather larger than |Tn(ai)|. Indeed it is easy to show
that
√
a2 + 1(|a|+

√
a2 + 1)n−1 − |Tn(ai)| = (

√
a2 + 1− |a|)|Tn−1(ai)|.

One may of course wonder if there are similar formulas for general points
z0 ∈ C\[−1, 1] (not just z0 = ai). However numerical experiments seem to
indicate that in general there is no three-term recurrence for the extremal
polynomials.

References

[1] Berndtsson, B. (1997) Uniform estimates with weights for the ∂̄-
equation, J. of Geom. Anal. 7, 195–215.

[2] Bos, L., Ma’u S. and Waldron, S. (2019) Extremal Growth of
Polynomials, to appear in Analysis Mathematica.

[3] Erdős, P., (1947) Some Remarks on Polynomials, Bull. Amer. Math.
Soc. 53, 1169 – 1176.

25



26 Optimal Prediction

[4] Gamelin, T. W., (2005) Uniform Algebras, AMS.

[5] Hoel, P.G. and Levine, A., (1964) Optimal spacing and weighting
in polynomial prediction, Ann. Math. Statist. 35, 1553 – 1560.

[6] Kiefer, J. and Wolfowitz, J., (1960) The equivalence of two ex-
tremum problems, Canad. J. Math. 12, 363 – 366.

[7] Jones, W. B., Njastad O. and Thron, W. J., (1989) Moment
theory, orthogonal polynomials, quadrature, and continued fractions as-
sociated with the unit circle, Bull. London Math. Soc. 21, 113 – 152.

26


