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Abstract

This bachelor’s thesis revolves around the connection between stochastic processes and the
heat equation. The main goal is to carry out a thorough study of the transition from the
classical to the stochastic one-dimensional heat equation. In order to develop the mathe-
matical framework for linear stochastic partial differential equations, we use tools of basic
probability theory, calculus and functional analysis. We start with a concise study of the
classical deterministic heat equation, from its physical derivation to the search for explicit
solutions under specific conditions. Then, we describe the mathematical foundations of the
stochastic version of this partial differential equation, focusing on Gaussian stochastic pro-
cesses. On that basis, we define the stochastic heat equation on R. Finally, we conclude this
project with a comprehensive analysis of its solutions’ continuity properties.
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Chapter 1

Introduction

The interplay between physics and mathematics has been known and studied for centuries.
Many physics problems have drawn the attention of mathematicians, who seek to solve them
by applying their mathematical background. This has given rise to the field of mathematical
physics and, in particular, to physical evolution problems governed by partial differential
equations. Within this area, one of the most widely studied topics is the (classical) heat
equation, also known as diffusion equation, originally developed by Fourier in the early 19th
century.

In the first half of the 20th century, the field of probability theory saw remarkable progress
when it became rigorously formulated with the language of the recently developed field of
measure theory, thanks to Kolmogorov, among others. With this established framework,
the area of probability expanded and new fields were born, including stochastic processes.
Therefore, new evolution problems involving randomness were proposed, leading the way to
stochastic ordinary and partial differential equations such as the stochastic heat equation.

The overall goal of this bachelor’s thesis is to describe the transition from the classical
to the stochastic heat equation and study the latter’s continuity properties, choosing the
simplest case, which corresponds to one dimension. While the classical equation is a deter-
ministic evolution problem, the stochastic has a random component and requires a different
framework that we aim to develop. We will carry this out with the following structure:

• First, compute explicit solutions to the classical deterministic heat equation, focusing
on a particular solution of great importance.

• Next, give a description of the mathematical concepts of stochastic analysis, with an
emphasis on Gaussian processes, that allow us to formulate a linear stochastic PDE.

• Finally, define the stochastic heat equation on R and analyze its continuity properties.

To this end, we draw on basic probability theory and calculus. In addition, we consider a few
physical principles to derive the heat equation, and we make use of elementary functional
analysis.

This thesis is structured in four chapters. Following the introduction, in Chapter 2 we
begin with a brief historical account of the classical heat equation, based on [17]. Then, we
give a physical derivation and we compute explicit solutions under specific conditions, both
for the homogeneous and inhomogeneous cases. This chapter provides an introduction to
the deterministic heat equation that will be necessary to study the stochastic case in the
last chapter. For this reason, we focus on the features that will be used later in the thesis,
particularly on the fundamental solution to the heat equation and how this notion enables
us to obtain solutions to the corresponding initial-value problem. In this context, we prefer
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not to dig deeper into qualitative properties of solutions, such as existence or unicity. We
refer the interested reader to [22, 7]. Due to the limited extent of this project, we do not
illustrate our computations with examples either.

The next chapter introduces the probabilistic framework in which we will develop the
subsequent chapters. We start by introducing the notion of stochastic processes in continu-
ous time, and we give a characterization. Then, we briefly define one of the central concepts
of this thesis, namely Gaussian random vectors. Next, we describe characteristic functions
together with their properties, and we use them to characterize Gaussian random vectors.
The last section is an introduction to another key notion: Gaussian stochastic processes.
The main references for stochastic processes are [23, 25], and for characteristic functions and
Gaussian random vectors, [12, 1, 18].

Chapter 4 outlines the types of Gaussian processes that we will deal with in the study
of the stochastic heat equation. In the first section we give an extended description of
Brownian motion. After a brief overview of the historical roots of this process, we show
one of its possible mathematical constructions. The historical account is based for the most
part in [10], which we strongly recommend to anyone interested in this topic. Paul Lévy’s
construction was the most appealing for me, because of my interest in functional analysis,
an area which was practically unknown to me prior to this semester. The main references for
this section are [23, 13, 15, 14, 16, 3]. For further reading, the book [20] contains a general
description of processes related to Brownian motion along with some interesting examples.
In the remaining sections, we expand the notion of Gaussian processes to a wider range of
index sets, including Hilbert spaces and Borel sets. This will allow us to define the stochastic
heat equation on R. In these sections we follow [5] and, to a lesser extent, [2].

Finally, we apply the probabilistic and analytical tools developed in the previous chapters
to give a meaning to the stochastic heat equation on R with additive noise, obtained by
replacing the deterministic external forcing in the classical heat equation by a stochastic
space-time white noise. We then focus on the continuity properties of the sample paths of
its solutions, proving that they are locally Hölder continuous under certain conditions. In
doing so, we introduce an example of SPDEs, a relatively modern and still developing field
of mathematics. The basic reference for this chapter is [5].
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Chapter 2

Classical Heat Equation

Throughout this thesis, we will consider the heat equation to be one-dimensional.

2.1 Brief History

The heat equation (or diffusion equation) traces its roots back to the early 19th century,
when the French mathematician and physicist Jean Baptiste Joseph Fourier (1768-1830)
presented in his 1807 manuscript Théorie de la Propagation de la Chaleur dans les Solides a
formula describing the conduction of heat in solids. After an early unsuccessful attempt at
formulating heat conduction in terms of action at a distance, he assumed that the tempera-
ture in an infinitesimal lamina was only dependent on the conditions at the lamina and its
endpoints, thus formulating heat diffusion in a continuum. The property of linearity enabled
Fourier to apply the concept of superposition, which together with separation of variables,
generated general solutions in terms of infinite trigonometric series and, eventually, integral
transforms that would be named after him. However, skepticism on trigonometric series
by some of the most renowned mathematicians of the time resulted in his manuscript not
being well received. It would take 15 years for his theories to be accepted by the scientific
community, when in 1822 he published Théorie Analytique de la Chaleur [9] which brought
him international recognition and expanded his concepts to a wider audience. Fourier’s
method started to be applied as a mathematical framework in other fields such as economics
or biology.

2.2 Homogeneous Heat Equation

2.2.1 Physical Derivation

Consider a homogeneous and isotropic cylindrical metal rod lying on the x-axis from the
origin to x = L > 0 with non-uniform temperature. We assume that the mass density ρ,
specific heat at constant volume cυ, thermal conductivity κ and cross-sectional area σ are
all constant. In addition, we dictate that the sides of the rod are perfectly insulated and
the length of the rod is much larger than σ. We may suppose that heat moves only down
the length of the rod and that its transfer intensity is uniformly distributed in each section
of the rod. Since heat is thermal energy, we can use the law of conservation of energy as
follows:

Let V = (x, x+∆x) be an arbitrary control length inside the rod. The time rate
of change of thermal energy in V equals the net flux of heat through the boundary
∂V of V , due to the conduction.
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Denote by e = e(x, t) the thermal energy per unit mass. The total amount of thermal energy
contained in V is given by the function

H(t) =

∫
V
e(x, t)ρ dx.

Therefore, its time rate of change is

dH

dt
=

d

dt

∫
V
e(x, t)ρ dx

=

∫
V
et(x, t)ρ dx.

Let F be the heat flux vector. If dσ is an area element in ∂V with outward pointing unit
normal vector ν, then the net heat flux through ∂V is given by

−
∫
∂V

F · ν dσ = −
∫
V
divF dx

according to the Divergence Theorem1.

Thus, conservation of energy requires∫
V
et(x, t)ρ dx = −

∫
V
divF dx. (2.2.1)

Since V is arbitrary, the identity (2.2.1) leads to a basic law of heat conduction, mathemat-
ically expressed as the pointwise relation

etρ = −divF. (2.2.2)

In order to find e and F, we apply the following two physical principles:

• Fourier’s law of heat conduction. The heat flux is a linear function of the negative
temperature gradient :

F = −κux

where u = u(x, t) is the absolute temperature and κ is strictly positive2.

Since κ is constant, we obtain

divF = −κuxx. (2.2.3)

This law states that heat flows from hotter to cooler regions at a rate proportional to
the temperature gradient.

• The thermal energy is a linear function of the absolute temperature:

e = cυu. (2.2.4)

Inserting (2.2.3) and (2.2.4) in (2.2.2) yields the homogeneous heat equation

ut = kuxx (2.2.5)

where the coefficient k = κ
cυρ

is called thermal diffusivity.

In the remainder of this section, we will consider the heat equation to be homogeneous.
1In one dimension, it is equivalent to integration by parts.
2In this document, "positive" means "non-negative", hence the word "strictly" to make the distinction.
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2.2.2 Initial and Boundary Conditions

In order to predict the existence of a unique solution to equation (2.2.5), we need to prescribe
some conditions:

(i) Initial Condition (IC). We set

u(x, 0) = g(x) (2.2.6)

where g is a real-valued function that models the initial temperature distribution.

(ii) Boundary Conditions (BCs). To determine a unique evolution, it is necessary to
specify the interaction with its surroundings. The most common boundary conditions
are the following:

• Dirichlet boundary conditions: The temperature is prescribed at both ends
of the rod:

u(0, t) = h1(t) , u(L, t) = h2(t)

for any t > 0.
• Neumann boundary conditions: From Fourier’s law we have

inward heat flow at x = 0 : −κux(0, t),

inward heat flow at x = L : κux(L, t).

We assign the heat flux at the endpoints through the conditions

ux(0, t) = h1(t) , ux(L, t) = h2(t)

at any time t > 0.
• Robin boundary condition: Assume that the inward heat flux from one ex-

tremity of the rod, say x = L, depends linearly on U − u, where U is the temper-
ature of the surroundings. Thus,

κux = γ(U − u) , γ > 0.

Setting α = γ
κ and h = γU

κ , the condition at x = L is

ux + αu = h.

This condition is also called radiation boundary condition.
• Mixed boundary conditions: They are given by equations involving the tem-

perature and heat flux at the boundaries. For example, one endpoint with the
Dirichlet condition and the other with the Neumann condition.

Thus we obtain the initial/boundary-value problem
ut = kuxx , 0 < x < L, t > 0

u(x, 0) = g(x) , 0 ≤ x ≤ L
+ BCs , t > 0.

(2.2.7)

In the sequel we will refer to (2.2.7) as the homogeneous local Cauchy problem.

If the rod is of infinite length, there are no longer any boundaries and the only necessary
requirement is that the initial condition has a controlled growth at infinity. This case will
be considered later in this section.
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2.2.3 Solution by Separation of Variables

The technique of separation of variables involves seeking a non-trivial explicit solution of
the form

u(x, t) = X(x)T (t)

where X and T are functions to be determined.

Taking the relevant partial derivatives

uxx = X ′′(x)T (t) and ut = X(x)T ′(t),

the heat equation in (2.2.7) becomes

XT ′ − kX ′′T = 0

from which, separating the variables,

T ′

kT
=
X ′′

X
. (2.2.8)

Note that the left hand side depends only on time, whereas the right hand side only does on
space. The equality must hold for any t > 0 and x ∈ (0, L), therefore both sides are equal
to a common constant, say λ. Hence, (2.2.8) becomes

T ′

kT
=
X ′′

X
= λ.

In order for u to satisfy the designated boundary conditions, we must find the solutions of
the following boundary-value problem for X:{

X ′′(x) = λX(x) , 0 < x < L

X satisfies the BCs.

In this context, this problem is called an eigenvalue problem. The values of λ are the
eigenvalues and the solutionsX are the associated eigenfunctions. Moreover, it is an example
of a Sturm-Liouville problem3.

We now turn our attention to the time evolution. For a given value of u(x, 0), we obtain
the related Cauchy problem for ordinary differential equations{

T ′(t) = kλT (t) , t > 0

T satisfies the IC.

The general solution is clearly

T (t) = T (0)ekλt.

Thus, for each eigenfunction Xn with corresponding eigenvalue λn we have a solution Tn
such that the function

un(x, t) = Xn(x)Tn(t) (2.2.9)

3A second order linear differential equation on a finite interval [a, b] of the form

− d

dx

[
p(x)

d

dx

]
y + q(x)y = λω(x)y

with p, q and ω specified such that p(x), ω(x) > 0 for x ∈ (a, b), subject to boundary conditions at a and b,
is called a Sturm-Liouville problem.
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is a solution to the heat equation on the interval where the boundary conditions are satisfied.

The linearity of the problem allows us to construct a solution by applying the principle
of superposition to the family of solutions {un}n≥1 given by (2.2.9). To solve the initial
condition, we will need the whole set of solutions un, giving rise to a full solution of the form

u(x, t) =
∞∑
n=1

un(x, t).

In particular,

u(x, t) =
∞∑
n=1

Xn(x)Tn(t) =
∞∑
n=1

Xn(x)Tn(0)ekλnt.

In order to find the coefficients Tn(0), we often use the orthogonality property of eigenfunc-
tions. Examples with Dirichlet boundary conditions can be found in [22, pp. 24–31],[11].

2.2.4 Steady State

This subsection briefly treats the asymptotic behavior of the solution.

When the temperature is independent of time, the solution is known as the steady-state (or
equilibrium) solution ueq. Since by definition ueq = ueq(x), it must satisfy the equation
u′′eq = 0 with our BCs. An elementary computation gives

ueq(x) = ueq(0) +
[
ueq(L)− ueq(0)

]x
L

which corresponds to a uniform heat flux along the bar.

Let us introduce the function

U(x, t) = ueq(x)− u(x, t).

This function represents a transient regime that must converge to 0 as t → ∞ with a rate
that shows how fast the temperature distribution reaches equilibrium.

2.2.5 Fundamental Solution

The heat equation has a privileged solution that enables us to construct general solutions.
In order to find an explicit solution, it is convenient to explore properties of symmetry and
invariance. We present hereunder the main transformations that preserve the heat equation.

Let u = u(x, t) be a solution to the homogeneous heat equation on R

ut = kuxx , x ∈ R , t > 0. (2.2.10)

• Space and time translation: For y ∈ R and s > 0 fixed, the function ũ defined on
R× (s,∞) as

ũ(x, t) = u(x− y, t− s)

is also a solution to (2.2.10).

• Parabolic dilations: The heat equation is invariant under the combined stretching

x 7→ λx , t 7→ λ2t (2.2.11)

for λ > 0.
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• Derivation and integration: Any derivative (ux, ut, uxx, etc.) and integral (assuming
proper convergence) of a solution is still a solution.

The transformation given by (2.2.11) leaves the expression x√
kt

unchanged and suggests that
we look for solutions of the form

u(x, t) = v

(
x√
kt

)
(2.2.12)

for some function v : R 7→ R to be determined. These solutions belong to the class of
self-similar solutions4.

The fundamental solution Φk(x, t) to (2.2.10) is defined as the positive, spatially even,
self-similar solution, with a singularity at the origin, such that∫

R
Φk(x, t) dx = 1 ∀t > 0. (2.2.13)

We will follow two different approaches to compute Φk. In the first one we will develop the
idea behind (2.2.12), while the latter is based on the Fourier transform.

Let ξ = x√
kt
. Differentiating the partial derivatives that appear in the heat equation

yields

ut(x, t) = −1

2

(
x

t
√
kt

)
v′
(

x√
kt

)
,

uxx(x, t) =

(
1

kt

)
v′′
(

x√
kt

)
.

Hence

ut − kuxx = −1

t

[
v′′(ξ) +

ξ

2
v′(ξ)

]
and we see that for u to be a solution to (2.2.10) the function v must be a real solution to
the ordinary differential equation

v′′(ξ) +
ξ

2
v′(ξ) = 0. (2.2.14)

Let φ = v′. We can rewrite (2.2.14) as

φ′(ξ) +
ξ

2
φ(ξ) = 0

and it is clear that the general solution is

φ(ξ) = ce−
ξ2

4 , c ∈ R. (2.2.15)

Notice that φ happens to be a Gaussian function. Selecting the constant c such that (2.2.15)
is normalized gives us5

φ(ξ) =
1√
4π
e−

ξ2

4 . (2.2.16)

4A solution to an evolution problem is called self-similar if its graph at a fixed time remains similar to
itself at all times during the evolution. One-dimensional self-similar solutions have the general form

u(x, t) = a(t)F (x/b(t)).

5Recall that
∫
R e
−x2 dx =

√
π.
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We can think of the expression above as the probability density function of a random variable
with N(0, 2) law. Since (2.2.16) is positive, continuous and vanishes at ±∞, it is integrable
and thus the function

v(ξ) =

∫ ξ

−∞
φ(z) dz =

1√
4π

∫ ξ

−∞
e−

z2

4 dz

is the corresponding cumulative distribution function of φ.

For every fixed x ∈ R>0, t→ 0+ implies that ξ → +∞, thus

lim
t→0+

v(ξ) = 1.

On the other hand, if we fix x ∈ R<0, we have

lim
t→0+

v(ξ) = 0.

By definition, a distribution function is right continuous6. Therefore we can formulate the
initial condition for u in terms of the Heaviside function H(x) as follows:

lim
t→0+

u(x, t) = H(x) =

{
1 if x ≥ 0

0 if x < 0.
(2.2.17)

Differentiating u(x, t) = v
(

x√
kt

)
with respect to x gives

ux(x, t) =

(
1√
kt

)
v′
(

x√
kt

)
=

(
1√
kt

)
φ

(
x√
kt

)
=

(
1√

4πkt

)
e−

x2

4kt , (2.2.18)

which solves the heat equation for t > 0.

This is the fundamental solution Φk that we sought. Indeed, it verifies the properties
of positiveness, even parity in space, and self-similarity. In a similar way to φ, it is the
probability density function of a Normal random variable, parametrized with time, with
mean zero and variance 2kt. This implies (2.2.13). It follows from (2.2.18) that u(x, t) is
the associated cumulative distribution function, also parametrized with time. Furthermore,
since

lim
t→0+

Φk(x, t) = 0 for any fixed x 6= 0,

lim
t→0+

Φk(0, t) =∞,

the fundamental solution behaves as the Dirac distribution at the origin δ(x) when t→ 0+.
Eventually, the whole probability density is concentrated at x = 0. This is consistent with
(2.2.17) because∫ x

−∞
lim
t→0+

Φk(y, t)dy = lim
t→0+

∫ x

−∞
Φk(y, t)dy = lim

t→0+
u(x, t) = H(x),

the first equality resulting from the integrability of Φk. Thus, we can define our fundamental
solution as follows:

Φk(x, t) =

 1√
4πkt

e−
x2

4kt , x ∈ R , t > 0

δ(x) , x ∈ R , t = 0.
(2.2.19)

6Recall that a function F : R→ R is right continuous if limy→x+ F (y) = F (x) for all x ∈ R.
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Consider now the initial-value problem{
ut = kuxx , x ∈ R , t > 0

u(x, 0) = g(x) , x ∈ R
(2.2.20)

where g ∈ C0(R) ∩ L∞(R)7 is the initial condition (2.2.6). We will refer to (2.2.20) as the
homogeneous global Cauchy problem.

The space translation invariance of the solutions of the heat equation implies that the
function (x, t) 7→ Φk(x− y, t) solves the heat equation for every fixed y ∈ R. Therefore, the
convolution

u(x, t) = (Φk,t ∗ g)(x) :=

∫
R

Φk(x− y, t)g(y) dy =
1√

4πkt

∫
R
e−

(x−y)2
4kt g(y) dy (2.2.21)

must be another solution on R×R>0. Under these hypotheses on the initial condition, this
solution is C∞ on R× R>0 - see [7, Section 2.3.1.b]. In fact, if g grows at infinity no more
than cea|x| for two constants a, c > 0, it is the unique solution to (2.2.20). This is shown in
[22, Section 2.8]. The notation (Φk,t ∗g)(x) is adopted in order to emphasize the convolution
operation in space.

Observe that if the initial condition g is bounded, continuous and non-zero somewhere, then
at any later time, the solution Φk,t∗g preserves the sign of the initial condition everywhere in
space. We can interpret this as the instantaneous diffusion of heat with infinite propagation
speed.

We now present a different approach. We will introduce beforehand the definition of the
Fourier transform along with some basic properties.

If u ∈ L1(Rn), we define its Fourier transform at a point y ∈ Rn by

û(y) =
1√
2π

∫
Rn
e−i〈x,y〉u(x) dx (2.2.22)

and its inverse Fourier transform at y ∈ Rn by

ǔ(y) =
1√
2π

∫
Rn
ei〈x,y〉u(x) dx.

We can extend these definitions to the functional space L2(Rn) by means of

Plancherel’s theorem. Assume u ∈ L1(Rn) ∩ L2(Rn). Then û, ǔ ∈ L2(Rn) and

‖û‖L2(Rn) = ‖ǔ‖L2(Rn) = ‖u‖L2(Rn).

Let u ∈ L2(Rn). We approximate u by a sequence of functions {uk}∞k=1 ⊂ L1(Rn) ∩L2(Rn)
such that

‖uk − u‖L2(Rn) → 0 as k → +∞.

According to Plancherel’s theorem,

‖ûk − ûj‖L2(Rn) = ‖ûk − uj‖L2(Rn) = ‖uk − uj‖L2(Rn) → 0 as k, j → +∞

and thus {ûk}∞k=1 is a Cauchy sequence in L2(Rn). Therefore, this sequence converges to
some û ∈ L2(Rn), which we define to be the Fourier transform of u. This definition does
not depend on the choice of {ûk}∞k=1. We similarly define ǔ.

Properties of the Fourier transform. Assume u, v ∈ L2(Rn). Then
7See Example (ii) in Section B.1.
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(i)
∫
Rn u(x)v̄(x) dx =

∫
Rn û(y)¯̂v(y) dy, where ¯ denotes the complex conjugate.

(ii) ∂̂αixi u(y) = (iy)αi û(y).

(iii) (̂u ∗ v) =
√

(2π)nûv̂ if u, v ∈ L1(Rn) ∩ L2(Rn).

(iv) u = ˇ̂u.

For more information on Fourier analysis we refer the reader to [8].

Let us apply the above results to the heat equation. We consider again (2.2.20) and now we
apply the Fourier transform to the spatial variable x of the heat equation:

ût = kûxx = k(ix)2û = −kx2û for t > 0

with initial condition

û = ĝ.

Solving this Cauchy problem we obtain

û(x, t) = ĝ(x)e−ktx
2
.

Consequently

u =
(
ĝe−ktx

2
)̌

=
g ∗ F√

2π
(2.2.23)

where F (x) =
(
e−ktx

2
)̌
. But then

F̌ (y) =
1√
2π

∫
R
eixy−ktx

2
dx =

1√
2kt

e−
y2

4kt .

The last equality derives from complex analysis results (for a proof, see [7, pp. 191-192]).
Using (2.2.23) we reach the solution to (2.2.20), given by

u(x, t) =
1√

4πkt

∫
R
e−

(x−y)2
4kt g(y) dy , x ∈ R , t > 0.

We have obtained the same expression as in (2.2.21), from which we can deduce the funda-
mental solution Φk.

2.3 Inhomogeneous Heat Equation

In this section, we assume the existence of an external heat source (for example, an electrical
current) or, more generally, any source of what the variable u is modeling.

Let r = r(x, t) be the time rate per unit mass of heat supply by the source. The contribution
to the total heat flux due to the source is given by∫

V
r(x, t)ρ dx.

Thus, conservation of energy is now formulated as∫
V
et(x, t)ρ dx = −

∫
V
divF dx+

∫
V
r(x, t)ρ dx

11



and the pointwise relation (2.2.2) becomes

etρ = −divF + rρ.

Applying Fourier’s law of heat conduction and heat’s linear dependence on absolute tem-
perature in the same fashion as in Subsection 2.2.1 yields the inhomogeneous (or forced)
heat equation

ut = kuxx + f

where f = r
cυ

is the source term.

2.3.1 The Inhomogeneous Problem. Duhamel’s Principle

We now focus on the inhomogeneous global Cauchy problem{
ut = kuxx + f(x, t) , x ∈ R , t > 0

u(x, 0) = g(x) , x ∈ R.
(2.3.1)

As shown earlier, the solution to the homogeneous global Cauchy problem (2.2.20) for any
real-valued function g ∈ C0(R) ∩ L∞(R) is given by

u(x, t) =

∫
R

Φk(x− y, t)g(y) dy =
1√

4πkt

∫
R
e−

(x−y)2
4kt g(y) dy , x ∈ R , t > 0.

Duhamel’s principle affirms that we are able to construct a solution to an inhomogeneous
global Cauchy problem at a point (x, t) ∈ R× (0,∞) out of its homogeneous solutions. His
method consists in the following two steps:

1. Construct a family of solutions to homogeneous global Cauchy problems for different
initial times s ∈ [0, t] and initial data f(x, s).

2. Integrate the above family with respect to s, over (0, t).

Therefore, under weak hypotheses on f (for instance, f belongs to C2
1 (R × [0,∞))8 and is

compactly supported) the function

u(x, t) =

∫
R

Φk(x− y, t)g(y) dy +

∫
R

∫ t

0
Φk(x− y, t− s)f(y, s) dy ds , x ∈ R , t > 0

(2.3.2)

is a solution to (2.3.1).

The above ideas and formulas can be applied in an analogous way to the inhomogeneous
local Cauchy problem 

ut = kuxx + f(x, t) , 0 < x < L, t > 0

u(x, 0) = g(x) , 0 ≤ x ≤ L
+ BCs , t > 0.

8Following the notation on [7, p. 702],

C2
1 (R× [0,∞)) = {f : R× [0,∞)→ R | f, fx, fxx, ft ∈ C0(R× [0,∞))}.
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Chapter 3

Fundamental Elements of Gaussian
Stochastic Processes

3.1 Stochastic Processes in Continuous Time

Definition 3.1.1. A stochastic process is a family of random variables {Xt | t ∈ T} defined
on a common probability space {Ω,F ,P}, where t is a parameter running over a suitable
index set T , often called the parameter set or domain of definition of the stochastic process.
Stochastic processes are also characterized by their state space {S,L }. Here, S contains the
range of possible values of the process, and L is a σ-algebra of subsets of S. Furthermore,
they are distinguished by the dependence relations between the random variables.

Henceforth we will consider continuous parameter stochastic processes with index set
T ⊆ [0,∞) representing time and state space S ⊆ R (either countable or uncountable)
equipped with L = B(S), the Borel σ-algebra of S, where B(Ω) denotes the σ-algebra
generated by the open sets of a topological space Ω.

3.1.1 Finite-Dimensional Distributions

Definition 3.1.2. Given a stochastic process {Xt | t ∈ T} , the finite-dimensional distri-
butions are the multidimensional probability laws of any finite family of random variables
{Xt1 , . . . , Xtm}, where t1, . . . , tm ∈ T and m ∈ Z>0.

The law of a stochastic process is said to exist when all its finite-dimensional distribution
functions are given.

Any finite-dimensional distribution function must verify the following consistency con-
ditions:

(i) For any permutation {k1, . . . , kn} of {1, . . . , n},

Ftk1 ,...,tkn (xk1 , . . . , xkn) = Ft1,...,tn(x1, . . . , xn).

(ii) For any k ∈ {1, . . . , n} and x1, . . . , xk ∈ R,

Ft1,...,tk(x1, . . . , xk) = Ft1,...,tn(x1, . . . , xk,∞, . . . ,∞).

Definition 3.1.3. A stochastic process can be represented as a random vector X : Ω→ RT ,
where RT is the set of real-valued functions defined on T . Moreover, with a suitable σ-algebra
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of events in RT (for instance, the Borel σ-algebra B
(
RT
)
which generalizes the Borel subsets

of Rn), the law of the process can be defined similarly to random vectors as follows:

PX(B) = P
(
X−1(B)

)
, B ∈ B

(
RT
)
.

To conclude this subsection, we will state the following theorem by Kolmogorov (1933)
that ensures the existence of a stochastic process when given a family of consistent distri-
bution functions. For further details, we refer the reader to [13].

Theorem 3.1.4 (Kolmogorov Consistency Theorem). Consider a family of multidi-
mensional distribution functions

{Ft1,...,tn(x1, . . . , xn) | t1 < . . . < tn, n ≥ 1, ti ∈ T} (3.1.1)

satisfying both consistency conditions. There exists a stochastic process such that its finite-
dimensional distribution functions are given by (3.1.1).

3.1.2 Sample Paths

If we fix the elements of Ω, we obtain functions defined on T of the form X·(ω), where ω ∈ Ω.
This approach gives rise to the next definition.

Definition 3.1.5. A sample path (or trajectory) of a stochastic process {Xt | t ∈ T} is a
function indexed by an element ω ∈ Ω and defined on the parameter set T by

X·(ω) : T → S

t 7→ Xt(ω).

3.1.3 Main Classes of Stochastic Processes

We are interested in the different stochastic structures of a process and the properties of its
finite-dimensional distributions. We present hereunder three important classes of random
processes, each of them having particular features.

Definition 3.1.6. A stochastic process {Xt | t ∈ T} is said to have independent increments
if for any finite subset {t0, . . . , tn} of T such that t0 < . . . < tn, the increments Xt1 −
Xt0 , . . . , Xtn −Xtn−1 are independent random variables.

It follows that any finite-dimensional distribution is completely determined by the laws of
Xt and Xt2 −Xt1 for all t1, t2 ∈ T such that t1 < t2.

Definition 3.1.7. If for any t1, t2 ∈ T such that t1 < t2 , the law of the increment Xt2−Xt1

is a function depending only on t2 − t1, then the process has stationary increments.

Definition 3.1.8. When the finite dimensional distributions have time-shift invariance,
{Xt | t ∈ T} is a strictly stationary process.

3.2 Multivariate Normal Distribution

Let n ∈ Z>0 throughout this section.
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3.2.1 Preliminaries

This subsection is contained in Appendix A. Here we will only give the definition of the
multivariate Normal distribution (Definition A.2.3), a central concept of this thesis. This
definition is chosen according to [12].

Definition 3.2.1. A real random vector X = (X1, . . . , Xn) has a multivariate Normal
(or Gaussian) distribution if every linear combination of its components has a (univariate)
Normal distribution.

We denote by N(µ,Q) its law, where µ = (µ1, . . . , µn) ∈ Rn is the mean vector and Q is the
covariance matrix.

3.2.2 Characteristic Functions

Definition 3.2.2. The Fourier transform of a probability measure µ is a complex-valued
function defined on Rn given by

µ̂(t) =

∫
Rn
ei〈t,x〉µ(dx).

Remark 3.2.3. We have already encountered a definition of a Fourier transform in this
document - see (2.2.22). Definition 3.2.2 extends this notion to probability measures.

Remark 3.2.4. Note that

ei〈t,x〉 = cos(〈t, x〉) + i sin(〈t, x〉)

and in particular ∣∣∣ei〈t,x〉∣∣∣ = 1.

We can then rewrite the Fourier transform as

µ̂(t) =

∫
Rn

cos(〈t, x〉)µ(dx) + i

∫
Rn

sin(〈t, x〉)µ(dx).

The last expression is well-defined since both cos(·) and sin(·) are bounded and Borel mea-
surable functions, hence integrable in the sense of Lebesgue.

Definition 3.2.5. The characteristic function of a probability measure µ on Rn is defined
as its Fourier transform. We denote it by ϕµ(t).

Likewise, real random vectors also possess characteristic functions defined in an analo-
gous fashion.

Definition 3.2.6. LetX be a real n-dimensional random vector. The characteristic function
of X is given by the characteristic function of its probability distribution:

ϕX(t) =

∫
Rn
ei〈t,x〉PX(dx) = E

[
ei〈t,X〉

]
. (3.2.1)

Proposition 3.2.7 (Fundamental Properties of Characteristic Functions). Let µ be
a probability measure on Rn. Then

(i) ϕµ(0) = 1.

(ii) |ϕµ(t)| ≤ 1 ∀t ∈ Rn.

(iii) ϕµ(−t) = ϕµ(t) ∀t ∈ Rn, where ϕµ denotes the complex conjugate function of ϕµ.
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(iv) ϕµ is uniformly continuous.

(v) Let X be a random vector in Rn. Let A be a m× n real matrix and b ∈ Rm. Then

ϕAX+b(t) = ei〈t,b〉ϕX
(
AT t

)
(3.2.2)

where AT denotes the transpose of A.

Remark 3.2.8. Property (ii) shows that ϕµ is a bounded function, while property (iii)
implies that ϕµ is Hermitian.

Characteristic functions of random variables are also related with their independence.
The next proposition establishes two properties concerning this linkage.

Proposition 3.2.9 (Independence Properties). Let X = (X1, . . . , Xn) be a real-valued
random vector.

(i) The random variables X1, . . . , Xn are independent if and only if

ϕX(t1, . . . , tn) = ϕX1(t1) · · ·ϕXn(tn).

(ii) If X1, . . . , Xn are independent random variables, then

ϕX1+...+Xn(t) = ϕX1(t) · · ·ϕXn(t).

Proof. It follows from the linearity of the expectation operator.

The following theorem provides a notable relation between characteristic functions and
finite moments. For a proof, see [12, Theorem 13.2].

Theorem 3.2.10. Let X be a random vector in Rn. Suppose E
[
|X|m

]
<∞ for some strictly

positive integer m. Then, ϕX has continuous partial derivatives up to order m and

∂m

∂tj1 · · · ∂tjm
ϕX(t) = imE

[
Xj1 · · ·Xjme

i〈t,X〉].
Equivalently, replacing ϕX and E

[
Xj1 · · ·Xjme

i〈t,X〉] by ϕµ and
∫
Rn tj1 · · · tjme

i〈t,x〉µ(dx),
respectively, produces the same result for any probability measure µ.

Corollary 3.2.11. In the one-dimensional case, we obtain the following formulae:

(i) ϕ(k)
X (0) = ikE

[
Xk
]
.

(ii) ϕ(k)
µ (0) = ik

∫
R t

kµ(dx).

Remark 3.2.12. These expressions provide a direct method to calculate the moments of
random variables. For the first two moments, we have

E[X] = iϕ′X(0) if E[|X|] <∞,
E
[
X2
]

= −ϕ′′X(0) if E
[
|X|2

]
<∞.

where X is a real-valued random variable.

The next statement is a sort of reciprocal of the previous theorem for n = 1.

Theorem 3.2.13. Let µ be a probability measure in (R,B(R)). Suppose ϕµ is k times
differentiable in a neighborhood of 0. Then µ has moments up to order 2m, where m ∈ Z>0

and 2m ≤ k.
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We will now apply the above results to the Normal distribution. To this end, we will
previously work out the characteristic function of the standard Normal distribution and then
make a change of variables for the general case.

Example 3.2.14. It is well known that the density function of a standard Normal random
variable is given by

f(x) =
1√
2π
e−

x2

2 .

Thus, for µ = N(0, 1),

ϕµ(t) =

∫
R
eitx

1√
2π
e−

x2

2 dx.

Since the function x 7→ sin(tx)e−
x2

2 is odd and integrable over the real line for any t ∈ R,
we have that

ϕµ(t) =
1√
2π

∫
R

cos(tx)e−
x2

2 dx.

By Theorem 3.2.10, we can differentiate both sides with respect to t and commute the
derivative with respect to t with the integral over R, yielding

ϕ′µ(t) = − 1√
2π

∫
R
x sin(tx)e−

x2

2 dx.

Integrating by parts gives us an ordinary differential equation of the form

ϕ′µ = −tϕµ.

Setting Fundamental Property (i) as the initial condition of the Cauchy Problem, the unique
solution is therefore

ϕµ(t) = e−
t2

2 .

Note that this is a real-valued function. In fact, it is both cause and consequence of the
symmetry of the standard Normal law. A nice proof can be found in [26, pp. 77-78].

Moreover, it is clear that ϕµ is C∞. By Theorem 3.2.13, µ has finite moments of every
order. More precisely, the series expansion

e−
t2

2 =

∞∑
n=0

(−1)nt2n

n!2n

yields

ϕ(k)
µ (0) =

{
0 if k = 2n+ 1

(−1)n(2n)!
n!2n if k = 2n

for any choice of n ∈ Z≥0. Hence, by Corollary 3.2.11,

E
[
Xk
]

=

{
0 if k = 2n+ 1

(2n)!
n!2n if k = 2n

(3.2.3)

for X ∼ N(0, 1)1.
1As stated in Section A.1, X ∼ N(0, 1) means that the distribution of X is N(0, 1). This notation will

be used throughout this document for any random variable and distribution.
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Let X be a random variable with the standard Normal law. Let Y be the random
variable given by the transformation

Y = µ̃+ σX (µ̃ ∈ R, σ > 0).

Then, by Proposition A.1.3, Y has a Normal distribution with expectation µ̃ and variance
σ2. To compute its characteristic function, we use (3.2.2). We obtain

ϕY (t) = eitµ̃−
σ2t2

2 . (3.2.4)

3.2.3 Characterization of the Multivariate Normal Distribution

Our aim is to determine a probability distribution with the information given by the associ-
ated characteristic function. In this subsection we will show that the characteristic function
serves as a label for the distribution function of a random variable. In addition, we will
apply these results to Gaussian random vectors.

The following theorem provides a formula to obtain a distribution function from a char-
acteristic function.

Theorem 3.2.15 (Inversion Formula). Let µ be a probability measure on (R,B(R)) with
characteristic function ϕ and distribution function F . Let a, b be two continuity points of F
(i.e. they belong to the dense subset D = {x ∈ R | F (x−) = F (x)} ⊂ R ) such that a < b.
Then

F (b)− F (a) = lim
σ↓0

1

2π

∫
R
ϕ(t)e−

σ2t2

2
e−ita − e−itb

it
dt. (3.2.5)

Proof. Let X,Yσ be two independent random variables with laws µ and N(0, σ2), respec-
tively. Applying property (ii) in Proposition 3.2.9 we deduce that the characteristic function
of the sum Zσ = X + Yσ is given by

ϕZσ(t) = ϕX(t)ϕYσ(t) = ϕ(t)e
−σ2t2

2 .

We denote by Fσ the distribution function of Zσ, and we assume the following equality
holds:

Fσ(b)− Fσ(a) =
1

2π

∫
R
ϕ(t)e−

σ2t2

2
e−ita − e−itb

it
dt. (3.2.6)

Letting σ ↓ 0, we notice that Zσ → X in L2 from the fact that E[(Zσ −X)2] = E(Y 2
σ ) =

σ2 → 0. This implies the convergence in distribution of Zσ toX. In particular, Fσ(b)−Fσ(a)
converges pointwise to F (b)− F (a).

It remains to show the identity (3.2.6). On one hand,

Fσ(b) = µ(X + Yσ ≤ b)

=

∫
x+y≤b

1√
2πσ2

e−
y2

2σ2 µ(dx) dy

=

∫
R

(∫ b−x

−∞

1√
2πσ2

e−
y2

2σ2 dy

)
µ(dx) ,

thus,

Fσ(b)− Fσ(a) =
1√

2πσ2

∫
R

∫ b−x

a−x
e−

y2

2σ2 dy µ(dx).
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On the other hand,

1

2π

∫
R
ϕ(t)e−

σ2t2

2
e−ita − e−itb

it
dt =

1

2π

∫
R

∫ b

a
ϕ(t)e−

σ2t2

2 e−itx dx dt.

Moreover,

1

2π

∫ b

a

∫
R
ϕ(t)e−

σ2t2

2 e−itx dt dx =
1

2π

∫ b

a

∫
R

(∫
R
eity µ(dy)

)
e−

σ2t2

2 e−itx dt dx.

It is clear that the function (t, y) 7→ eit(y−x)−σ
2t2

2 is Lebesgue integrable with respect to the
product measure µ(dy) dt. Hence, we can apply Fubini’s theorem to obtain

1

2π

∫ b

a

∫
R
ϕ(t)e−

σ2t2

2 e−itx dt dx =
1

2π

∫ b

a

∫
R

(∫
R
eit(y−x)−σ

2t2

2 dt

)
µ(dy) dx

=
1√

2πσ2

∫ b

a

∫
R
e−

(y−x)2

2σ2 µ(dy) dx

=
1√

2πσ2

∫
R

∫ b−y

a−y
e−

u2

2σ2 duµ(dy).

Remark 3.2.16. The factor e−
σ2t2

2 ensures convergence of the improper integral in (3.2.5).

Theorem 3.2.17 (Multidimensional Inversion Formula). Let µ be a probability mea-
sure on (Rn,B(Rn)) with characteristic function ϕ. Let a, b ∈ Rn, a < b.
If {x ∈ Rn | a < x < b} is a continuity set of µ, then

µ({a < x < b}) =
1

(2π)n
lim

M1→∞
· · · lim

Mn→∞

∫ M

−M

n∏
i=1

(
e−itiai − e−itibi

iti

)
ϕ(t)λ(dt) (3.2.7)

where M = (M1, . . . ,Mn), t = (t1, . . . , tn) ∈ Rn and λ denotes the Lebesgue measure on Rn..

Proof. We refer the reader to [4, Theorem 2.3.1].

This leads to the following essential property.

Corollary 3.2.18 (Injectivity Property). If µ and ν are two probability measures on
(Rn,B(Rn)) that admit the same characteristic function, then they are identical. In other
words, a probability measure on (Rn,B(Rn)) is completely determined by its characteristic
function.

Proof. We give the proof only for the case n = 1.

Theorem 3.2.15 implies that for any pair of continuity points a, b ∈ R such that a < b, the
following equality holds:

Fµ(b)− Fµ(a) = Fν(b)− Fν(a),

where Fµ and Fν are the distribution functions of µ and ν, respectively.

If a→∞ then Fµ(b) = Fν(b) in a dense subset of R, hence Fµ ≡ Fν .

In the case where the characteristic function ϕ is integrable according to Lebesgue, the
Inversion Formula can be written as a simpler connection between the characteristic function
and the density function of a random variable.
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Proposition 3.2.19 (Inversion Formula for Fourier transforms). Suppose ϕ is the
characteristic function of a probability measure µ on (R,B(R)). If ϕ is integrable according
to Lebesgue, then it is also absolutely continuous and the associated density function is given
by the formula

f(x) =
1

2π

∫
R
e−itxϕ(t) dt.

Remark 3.2.20. Absolute continuity of µ with respect to Lebesgue measure does not imply
integrability of ϕ.

We now have all the necessary ingredients to fully characterize an Rn-valued Normal
random variable, as well as the independence of its components.

Theorem 3.2.21. X is an Rn-valued Normal random variable if and only if its characteristic
function is given by

ϕX(t) = ei〈t,µ〉−
1
2
〈t,Qt〉, (3.2.8)

where µ is the mean vector and Q is the covariance matrix.

Proof. Let Y =
∑n

j=1 ajXj = 〈a,X〉 be a linear combination of all of the components of X.

Sufficient condition. Assume (3.2.8) holds. Formula (3.2.2) implies that for any v ∈ R,

ϕY (v) = ϕX(va) = eiv〈a,µ〉−
v2

2
〈a,Qa〉.

Notice that this expression represents the characteristic function of a Normal random vari-
able with mean 〈a, µ〉 and variance 〈a,Qa〉. Thus, by Corollary 3.2.18, Y is Normal and, by
definition, X is also Normal.

Necessary condition. Suppose now X is Gaussian. If Q = Cov(X), then E[Y ] = 〈a, µ〉 and
Var(Y ) = 〈a,Qa〉. Since Y is Normal by hypothesis, using (3.2.4) we have

ϕY (v) = eiv〈a,µ〉−
v2

2
〈a,Qa〉.

Lastly, choosing v = 1 yields

ϕY (v) = ϕY (1) = ϕ〈a,X〉(1) = E
[
ei〈a,X〉

]
= ϕX(a).

Corollary 3.2.22. Let X = (X1, . . . , Xn) be a real-valued Gaussian random vector. The
components of X are Normal and independent random variables if and only if the covariance
matrix Q is diagonal.

In particular, two components Xj and Xk are independent if and only if they are uncorrelated.

3.2.4 Fundamental Properties of the Multivariate Normal Distribution

1. Let X be a random vector in Rn with mean vector µ. Then there exists

(a) a family of independent Normal random variables Y1, . . . , Yn such that

Yj ∼ N(0, λj) ∀j ∈ {1, . . . , n},

where λj ≥ 0 ∀j ∈ {1, . . . , n};
(b) an orthogonal matrix A such that

X = µ+AY.
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2. A Gaussian random vector X in Rn has a probability density if and only if the asso-
ciated covariance matrix Q is non-degenerate, that is, det(Q) 6= 0.

If such a density exists, it is given by

fX(x) =
1√

(2π)n det(Q)
e−

1
2
〈x−µ,Q−1(x−µ)〉. (3.2.9)

Remark 3.2.23. This property shows that for n > 2 there exist non-constant random
variables without associated densities.

Example 3.2.24. Let us examine the case n = 2. Suppose X ∼ N
(
µX , σ

2
X

)
, Y ∼

N
(
µY , σ

2
Y

)
and let ρ be the correlation coefficient. Then

Q =

(
σ2
X ρσXσY

ρσXσY σ2
Y

)
and

det(Q) > 0 ⇐⇒ |ρ| < 1.

By (3.2.9), the density of the random vector (X,Y ) is

f(X,Y )(x, y) =
1

2πσXσY
√

1− ρ2
e
− 1

2(1−ρ2)

[
(x−µX )2

σ2
X

−2ρ
(x−µX )(y−µY )

σXσY
+

(y−µY )2

σ2
Y

]
.

3. Let X be a random vector in Rn with law N(µ,Q). Let A be a r × n real matrix.
Then

AX ∼ N
(
Aµ,AQAT

)
.

4. Let X and Y be Gaussian random vectors in Rn and Rm, respectively. If X and Y
are independent, then Z = (X,Y ) is a Gaussian random vector in Rn+m.

Remark 3.2.25. A random vector in Rn might not be Gaussian despite having marginal
Normal distributions.

We will illustrate this with an example [12, Example 2, p. 134].

Example 3.2.26. Let Y ∼ N(0, 1). Let Z = Y 1|Y |≤a − Y 1|Y |≥a. Then Z is also N(0, 1)
but Y + Z = 2Y 1|Y |≤a is not Normal, since P(Y + Z > 2|a|) = 0 and Y + Z is not a.s.
equal to a constant. Thus, the random vector (Y, Z) is not Gaussian, even though its two
components are Normal.

3.3 Gaussian Stochastic Processes

Definition 3.3.1. A stochastic process {Xt | t ∈ T} is said to be Gaussian if any of its
finite-dimensional distributions is Gaussian.

The existence of this kind of processes is a consequence of Theorem 3.1.4. One can find
a nice proof in [23, pp. 6–7]
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3.3.1 Characterization

Let m ∈ Z>0. Let {t1, . . . , tm} be a subset of T such that t1 < . . . < tm. The law of the
random vector Xt1,...,tm = (Xt1 , . . . , Xtm) is characterized by the following two parameters:

(i) Mean vector :

µt1,...,tm = E
[
Xt1,...,tm

]
=
(
E
[
Xt1

]
, . . . ,E

[
Xtm

])
.

(ii) Covariance matrix :

Qt1,...,tm =
(

Cov
(
Xti , Xtj

))
1≤i,j≤m

.

As previously stated, if det(Qt1,...,tm) > 0, then the random vector Xt1,...,tm has a density
function given by

ft1,...,tm(x) =
1√

(2π)m det(Qt1,...,tm)
e−

1
2
〈x−µt1,...,tm ,Q

−1
t1,...,tm

(x−µt1,...,tm )〉.

These parameters can be extended to the whole family of random variables that constitute
the stochastic process by means of the functions

µ(t) = E[Xt]

and

Q(s, t) = Cov(Xs, Xt) = E
[
(Xs − µ(s))(Xt − µ(t))

]
called, respectively, the mean function and the covariance function of the stochastic process
{Xt | t ∈ T}.

3.3.2 Centered Gaussian Processes

Definition 3.3.2. We say that a Gaussian process {Xt | t ∈ T} is centered if for all
t1, . . . , tk ∈ T , k ∈ Z>0, the random vector (Xt1 , . . . , Xtk) is centered Normal, that is,

E
[
(Xt1 , . . . , Xtk)

]
= 0.

This is equivalent to the simpler condition

E
[
Xt

]
= 0 ∀t ∈ T.

The finite-dimensional distributions of such a stochastic process are completely determined
by its covariance function

Q(s, t) = E
[
XsXt

]
.
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Chapter 4

Examples of Gaussian Processes

4.1 Brownian Motion

4.1.1 A Little History

What is nowadays known as Brownian motion dates back to the Summer of 1827, when a
Scottish botanist called Robert Brown observed a "rapid oscillatory motion" of microscopic
pollen grains suspended in water. Although he was not the first person to observe it directly,
he stood out for repeating the experiment of observing the irregular, erratic, ceaseless motion
of suspended particles, as well as demonstrating its presence in inorganic and organic matter.
A similar phenomenon was apparent whenever very small particles were suspended in a
fluid medium. He described an experiment in which a minute drop of water containing one
single particle, immersed in oil, exhibits the motion unabated, thus refuting some physical
explanations such as fluid currents or interactions between particles. He believed matter is
composed of small particles moving at an irregular rapid pace due to the particles themselves
and not the surrounding fluid.

A successful explanation had to wait until 1905, when Albert Einstein published an
article explaining with probabilistic tools the displacements of suspended particles by the
collisions with the molecules composing the surrounding liquid. In the years between, not
many discoveries were made, mainly because the conducted experiments were incomplete
and too qualitative. There was a general lack of interest among physicists, and the statistical
methods of kinetic theory of gases were not yet sufficiently developed. Moreover, the inter-
pretations on the origin of Brownian motion differed, among which were the kinetic theory
of gases (also called atomic hypothesis) which Einstein would later develop. Nevertheless,
some interesting results were published, such as Siegmund Exner’s observation of the corre-
lation between the liquid’s temperature and the motion’s intensity, or Louis Georges Gouy’s
indication that the atomic hypothesis violates the second principle of thermodynamics.

One of Einstein’s Annus Mirabilis papers was an article on Brownian motion in which he
obtained two major results: the relation between the diffusion coefficient and the properties
of the medium, and the correspondence between Brownian motion and diffusion. His purpose
was to present a test for the validity of the kinetic theory of gases. To this end, he defined a
measurable quantity, namely the mean of the squares of displacements, formally written as

λx =

√
RT

NA

1

3πµa

√
t

where R is the gas constant, T the temperature, NA Avogadro constant, µ the fluid’s vis-
cosity, and a the radius of a particle.
His reasoning followed three steps: first, he related the diffusion coefficient to the properties
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of the medium with two physical ingredients: the viscous force from Stokes’ law and the
van ’t Hoff law which relates the pressure increase with the concentration of particles. He
obtained the prototype of the fluctuation-dissipation theorem by considering the two afore-
mentioned forces at equilibrium. Secondly, he studied the irregular movement of particles
suspended in a liquid and, under a series of hypotheses on the particle’s motion, he derived
the diffusion equation by using probability distributions in the statistical mechanics’ way.
Lastly, combining the results from the previous steps, he obtained a formula for the mean
of the squares of displacements, which is probably the most famous result on Brownian mo-
tion. Further to this, he computed its numerical value. Einstein’s argument did not provide
a dynamical theory of Brownian motion. Instead, he determined the motion’s nature and
the value of the diffusion coefficient under a series of assumptions. His key idea was the
introduction of Brownian motion as a stochastic process. A noteworthy application was to
estimate Avogadro’s constant.

The description of Brownian motion as a physical concept also included two notable
works subsequent to Einstein’s. In 1906, Marian von Smoluchowski published a stylistically
different article in which he independently obtained a diffusion coefficient comparable to
Einstein’s. He took into account the experimental work done on the subject and he built
his theory to account for these observations. Unlike Einstein, his calculations were directly
based on collisions between particles, and he introduced stochasticity by the mean of av-
erage quantities. His model consisted on a random walk in which the suspended particle
traveled on a straight line at constant velocity between two collisions. Two years later, the
French physicist Paul Langevin published his only article on the subject, in full knowledge of
Einstein’s and Smoluchowski’s works. Instead of constructing a deterministic equation with
probability distributions as unknowns, he used a probabilistic equation with a fluctuation
force described by a random variable, now known as Langevin’s equation. Mathematically,
it can be written as

m
d2x

dt2
= −6πa

dx

dt
+X

where X is a stochastic fluctuation force. His derivation was simpler and innovative for the
time, since it contains a stochastic equation.

A rigorous mathematical treatment of Brownian motion would not appear until 1921,
when Norbert Wiener, a young American mathematician, published his first article on the
subject. Previously, he became interested in integration theory and decided to apply his
ideas on this field to Brownian motion after an unsuccessful attempt at turbulence theory.
A pioneer in the field, he remained interested for a decade, being joined eventually by
remarkable mathematicians such as Kolmogorov or Lévy. Having studied Einstein’s and
Smoluchowski’s theories, he considered them lacking of the mathematical properties of the
curves followed by single particles. His work was guided by the study of trajectories and
its functions. We can divide his work into three periods, for each of which he developed a
different model of Brownian motion.

The first period occurs from 1920 to 1922, when he developed his ideas on functional
averages, along with an axiomatic theory of integration without measure theory, which was
not yet fully developed. Percy John Daniell, in 1918, proposed an axiomatic theory of inte-
gration independent from measure theory. Wiener adopted his ideas to explicitly compute
functional averages over function spaces. His 1920 article exposed his progress on Daniell’s
integration and established the foundations of his axiomatic theory which he would later
apply to Brownian motion. The following year he published two articles in which he devel-
oped Einstein’s work on Brownian motion. In the first one he explicitly addressed Brownian
motion for the first time. He referenced Einstein’s work and constructed an idealization of
the Brownian motion considering infinitesimally sized molecules and continuously described
collisions, thereby obtaining a simplified probability distribution for the position of the par-
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ticles. This mathematical model extended the range of validity of the Gaussian distribution.
Furthermore, he defined general functionals of functions describing Brownian trajectories, as
well as functional means computed with means of functions. The next article was the only
one that did not offer mathematical innovations. He took a different position with respect
to his other articles by assuming that the velocities of Brownian particles were well-defined.
His target was to show that Einstein’s hypothesis on the independence of increments over
time was not necessary. In 1922, Wiener’s ideas on axiomatic integration culminated. He
deduced that all bounded, continuous functionals defined on Brownian trajectories were
summable.

It was in 1923 when Wiener set forth the modern mathematical foundation of Brownian
motion, which would eventually be named as Wiener process. In his seminal article Differ-
ential Space, he proved the existence of standard Brownian motion and provided the first
argument of non-differentiability of Brownian trajectories. After a series of exchanges with
Paul Lévy, he took an approach based on the French mathematician, in which the averages
of functionals were defined as the limit of averages of sphere volumes. Assuming that the
increments over regular and disjoint time intervals are independent, Wiener measured the
inner region of the spheres from Lévy’s formulation, thus giving a prototype of what today
is known as Wiener measure. Since it had the same form as his probability distribution from
1921, it illustrated the usefulness of Lévy’s spheres as a tool to study Brownian trajectories.

The following decade saw more advancements in Brownian motion. Wiener published
a thesis in 1930 on harmonic analysis describing Brownian motion in terms of Lebesgue
measure. Three years later, along with fellow mathematicians Paley and Zygmund, they
published an article aiming to unify their ideas on randomness in analysis. Interestingly, the
definition they gave of the displacement carried by moving particles was similar to the way
stochastic processes are currently defined. The most important result of the article was the
proof of non-differentiability of Brownian trajectories.

4.1.2 Definition and Characterization

The terms Brownian motion and Wiener process will be used interchangeably.

Definition 4.1.1. Let x0 ∈ R. A real-valued stochastic process {Bt | t ≥ 0} defined on
a probability space (Ω,F ,P) is a one-dimensional Brownian motion starting at x0 if the
process is centered Gaussian with covariance function given by

Q(s, t) = E
[
BsBt

]
= s ∧ t := min{s, t}. (4.1.1)

We say that {Bt | t ≥ 0} is a one-dimensional standard Brownian motion if x0 = 0.

Remark 4.1.2. One can define a one-dimensional Brownian motion {Wt | t ≥ 0} starting
at an arbitrary point x ∈ R in terms of the one-dimensional standard Brownian motion
{Bt | t ≥ 0} as follows:

Wt := x+Bt.

Unless otherwise stated, we will consider Brownian motion to be one-dimensional stan-
dard.

Proposition 4.1.3 (Characterization of Brownian Motion). A real-valued stochastic
process B = {Bt | t ≥ 0} is a Brownian motion if and only if the following holds:

(i) B0 = 0 and for any given t > 0, the distribution of Bt is N(0, t).

(ii) The process has independent increments: for any 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn, the incre-
ments Btn −Btn−1 , Btn−1 −Btn−2 , . . . , Bt2 −Bt1 are independent random variables.
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(iii) For any 0 ≤ s ≤ t , the increment Bt − Bs has the same distribution as that of the
random variable Bt−s. Therefore, the process has stationary increments.

Proof. Necessary condition. Let B be a Brownian motion.

(i) Using (4.1.1) we deduce that E
[
B2

0

]
= 0 and for any t > 0, E

[
B2
t

]
= t. Thus, B0 = 0

and Bt ∼ N(0, t).

(ii) Let 0 ≤ ti ≤ tj ≤ tk ≤ tl ≤ tn. Again, using (4.1.1) we have

E
[ (
Btj −Bti

)
(Btl −Btk)

]
= tj ∧ tl − tj ∧ tk − ti ∧ tl + ti ∧ tk = tj − tj − ti + ti = 0.

Since B is centered, this implies

E
[ (
Btj −Bti

)
(Btl −Btk)

]
= E

[
Btj −Bti

]
E
[
Btl −Btk

]
.

The independence follows from the Gaussian nature of the finite-dimensional distribu-
tions of B.

(iii) Using (i), we only need to show that Bt−Bs ∼ N(0, t− s). We know that finite linear
combinations of Normal random variables are also Normal. Since E

[
Bt − Bs

]
= 0 by

linearity, we have

E
[

(Bt −Bs)2
]

= t− 2s+ s = t− s

and thus Var
(
Bt −Bs

)
= t− s.

Sufficient condition. Assume that (i), (ii) and (iii) hold. Let 0 ≤ t1 ≤ t2 ≤ . . . ≤
tn. By Fundamental Property 4 of the Gaussian distribution, the random vector Z =(
Bt1 , Bt2 −Bt1 , . . . , Btn −Btn−1

)
is Gaussian. Moreover, Fundamental Property 3 of this

same distribution implies that any linear transformation of Z preserves the law. Therefore,
the finite-dimensional distributions of any linear transformation of Z are Gaussian. Clearly,
E
[
Bt
]

= 0 for any t ≥ 0, hence B is a centered Gaussian process.

It only remains to verify (4.1.1). Let 0 ≤ s ≤ t. By independence of the increments, we
obtain

E
[
BtBs

]
= E

[
(Bt −Bs +Bs)Bs

]
= E

[
(Bt −Bs)Bs

]
+ E

[
B2
s

]
= E

[
Bt −Bs

]
E
[
Bs
]

+ E
[
B2
s

]
= E

[
B2
s

]
= s = t ∧ s.

This completes the proof.

Note. The above proposition is a modern version of Einstein’s postulates.

4.1.3 Construction of Brownian Motion

There are different ways of constructing a Brownian motion. For instance, it can be con-
structed as the continuous limit of a random walk. Convergence in law is guaranteed by
Donsker’s theorem, which can be described as the infinite dimensional version of the central
limit theorem. The interested reader can consult [21] for more details on this construction.
Instead, we will follow Paul Lévy’s formulation from 1948, based on functional analysis.
For the reader’s convenience, we present in Appendix B elementary concepts of Banach and
Hilbert spaces that we will use in our construction.
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Preliminaries

Definition 4.1.4. We denote by L2([0, 1]) the linear space of all equivalence classes for a.e.
equality of Lebesgue measurable functions f : [0, 1]→ R such that(∫ 1

0
|f(s)|2 ds

)1/2

<∞.

Definition 4.1.5. Let f, g ∈ L2([0, 1]). We define an inner product in L2([0, 1]) by the
formula

〈f, g〉L2([0,1]) =

∫ 1

0
f(s)g(s) ds.

This leads us to define an induced norm for L2([0, 1]) as follows:

‖f‖2L2([0,1]) = 〈f, f〉L2([0,1]).

Henceforward we will omit the subscript L2([0, 1]) in the norm and inner product.

Example 4.1.6. Given two indicator functions 1[0,t],1[0,s] in L2([0, 1]), their inner product
is

〈1[0,t],1[0,s]〉 = t ∧ s.

We now introduce Hilbert space theory. The following results are based on Section B.2.

Theorem 4.1.7. L2([0, 1]) is a Hilbert space.

Definition 4.1.8. An orthonormal sequence in L2([0, 1]) is called a complete orthonormal
system (CONS) of L2([0, 1]) when the set of all finite linear combinations of its elements is
dense in L2([0, 1]).

Remark 4.1.9. A CONS is also called an orthonormal basis. Proposition B.2.9 shows the
equivalence.

By Definition B.2.8, if {ui}i∈Z>0 is a CONS of L2([0, 1]), then for any f ∈ L2([0, 1]) we
have the series expansion

f =

∞∑
i=1

〈f, ui〉ui

which converges in L2([0, 1]).

As a result, Parseval’s identity holds:

‖f‖2 =

∞∑
i=1

〈f, ui〉2.

Wiener’s reasoning

Wiener observed that if Brownian motion could be built on a probability space (Ω,F ,P)
then there would be a linear isometry of L2([0, 1]) into L2(Ω,F ,P), the Hilbert space of
equivalence classes for a.s. equality of random variables X such that E

[
X2
]
< ∞. The

underlying idea of his construction is that the isometry described above maps orthonormal
bases and series expansions between L2([0, 1]) and L2(Ω,F ,P). It is now known as Wiener’s
isometry.
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Lévy’s construction

The first step of the building process is to find a suitable orthonormal basis of L2([0, 1]).
Paul Lévy made use of the Haar functions, defined as follows:

Definition 4.1.10. Let I(n) be the set of odd integers between 0 and 2n, where n is a
strictly positive integer. We define the Haar functions by

H
(1)
0 (t) = 1 ∀t ∈ [0, 1],

and for n ∈ Z>0, k ∈ I(n),

H(k)
n (t) =


2
n−1
2 , k−1

2n ≤ t <
k

2n

−2
n−1
2 , k2n ≤ t <

k+1
2n

0 , otherwise.

Proposition 4.1.11. The Haar functions form a complete orthonormal system of L2([0, 1]).

Proof. Orthonormality with respect to the inner product in L2(0, 1) can be verified directly.
It suffices to show that this system spans all step functions that are constant on each dyadic
interval [j2−n, (j + 1)2−n), j = 0, 1, . . . , 2n − 1. This can be verified by induction on n.

Corollary 4.1.12. Every f ∈ L2([0, 1]) can be expressed as an L2-series expansion of the
form

f = 〈f,H(1)
0 〉H

(1)
0 +

∞∑
n=1

∑
k∈I(k)

〈f,H(k)
n 〉H(k)

n .

Therefore, by Parseval’s identity,

‖f‖2 = 〈f,H(1)
0 〉

2 +
∞∑
n=1

∑
k∈I(k)

〈f,H(k)
n 〉2.

Furthermore, Lévy employed another family of real-valued functions defined on the same
space, called Schauder functions. These are closely related to the Haar functions.

Definition 4.1.13. For any n ∈ Z>0, k ∈ I(n), t ∈ [0, 1], the Schauder functions are given
by

G
(1)
0 (t) = t,

G(k)
n (t) = 〈1[0,t], H

(k)
n 〉 =

∫ t

0
H(k)
n (s) ds.

For each fixed n ≥ 1, these functions are positive and non-overlapping for different values of
k. Moreover, their graphs are small "tents" of height 2−

n+1
2 and base

[
k−1
2n ,

k+1
2n

]
, centered

at k
2n .

Proposition 4.1.14. Let {Z(1)
0 , Z

(k)
n | n ∈ Z>0 , k ∈ I(n)} be i.i.d. standard Normal

random variables on a common probability space (Ω,F ,P). Then

1. The mapping

IW : L2([0, 1])→ L2(Ω,F ,P)

f 7→ 〈f,H(1)
0 〉Z

(1)
0 +

∞∑
n=1

∑
k∈I(k)

〈f,H(k)
n 〉Z(k)

n

is a linear isometry.
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2. ∀f ∈ L2([0, 1]), IW (f) ∼ N
(
0, ‖f‖2

)
.

Proof. 1. The linearity can be easily deduced from inner product properties. Let us check
the following two equalities:

‖IW (f)‖2L2(Ω,F ,P) = E
[
IW (f)2

]
= ‖f‖2.

The l.h.s. equality stems from the inner product in L2(Ω,F ,P) defined by 〈X,Y 〉L2(Ω,F ,P) =

E[XY ] which induces the norm ‖X‖L2(Ω,F ,P) =
(
E
[
X2
]) 1

2 . For the r.h.s. equality we will
compute the expectation:

E
[
IW (f)2

]
= 〈f,H(1)

0 〉
2 E
[
(Z

(1)
0 )2

]
+ 2

∞∑
n=1

∑
k∈I(n)

〈f,H(1)
0 〉〈f,H

(k)
n 〉E

[
Z

(1)
0 Z(k)

n

]
+
∞∑
n=1

∑
k∈I(n)

∞∑
m=1

∑
l∈I(m)

〈f,H(k)
n 〉〈f,H(l)

m 〉E
[
Z(k)
n Z(l)

m

]
.

Since E[XiXj ] = E[Xi]E[Xj ] for any pair of independent Normal random variables defined
on the same probability space, we have

E
[
IW (f)2

]
= 〈f,H(1)

0 〉
2E
[
(Z

(1)
0 )2

]
+

∞∑
n=1

∑
k∈I(n)

〈f,H(k)
n 〉2E

[
(Z(k)

n )2
]
.

Using formula (3.2.3) together with Parseval’s identity in Corollary 4.1.12 we obtain

E
[
IW (f)2

]
= 〈f,H(1)

0 〉
2 +

∞∑
n=1

∑
k∈I(n)

〈f,H(k)
n 〉2 = ‖f‖2.

2. We have shown that the series defining IW (f) converges in L2(Ω,F ,P). Thus, we
have convergence for the expectation and variance of IW (f). A simple computation using
(3.2.1) shows that the limit follows a Normal distribution. Furthermore, E

[
IW (f)

]
= 0

since E
[
Z

(k)
n

]
= E

[
Z

(1)
0

]
= 0. We have already shown that E

[
IW (f)2

]
= ‖f‖2, hence the

demonstration is complete.

In order to prove Lévy’s construction theorem, we will introduce two lemmas from prob-
ability theory.

Lemma 4.1.15 (Tail estimate for the standard Normal distribution). For any Z ∼
N(0, 1) and a > 0,

P(|Z| ≥ a) ≤ 2

a
√

2π
e
−a2
2 .

Proof.

P(|Z| ≥ a) =
2√
2π

∫ ∞
a

e−
x2

2 dx ≤ 2√
2π

∫ ∞
a

x

a
e−

x2

2 dx =
2

a
√

2π
e−

a2

2 .

Lemma 4.1.16 (First Borel-Cantelli Lemma). Let {An}n≥1 be a sequence of events in
(Ω,F ,P). Then

∞∑
n=1

P(An) <∞ =⇒ P
(

lim sup
n→∞

An
)

= 0.
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Theorem 4.1.17 (Lévy’s Construction Theorem). Let B = {Bt = IW
(
1[0,t]

)
| t ∈

[0, 1]}.

1. B is a centered Gaussian stochastic process with covariance function Q(s, t) =
E[BsBt] = s ∧ t. Hence, B is a Brownian motion on [0, 1].

2. The series expansion

Bt = IW
(
1[0,t]

)
= 〈1[0,t], H

(1)
0 〉Z

(1)
0 +

∞∑
n=1

∑
k∈I(k)

〈1[0,t], H
(k)
n 〉Z(k)

n

converges a.s. uniformly for every t ∈ [0, 1]. Thus, the sample paths t 7→ Bt are a.s.
continuous.

Proof. 1. It is easy to verify that B0 = 0 a.s.

By Proposition 4.1.14, for every t ∈ [0, 1], Bt ∼ N(0, ‖1[0,t]‖2). Therefore for every
t, s ∈ [0, 1],

E[BtBs] = 〈Bt, Bs〉L2(Ω,F ,P) = 〈1[0,t],1[0,s]〉 = t ∧ s.

Lastly, we need to prove that the finite-dimensional distributions are Gaussian. We
apply the linearity of the isometry IW to show that any linear combination of the form

m∑
i=1

aiBti =

m∑
i=1

aiIW (1[0,ti]) = IW

(
m∑
i=1

ai1[0,ti]

)
(a1, . . . , am ∈ R)

is a Normal random variable. Hence, by definition, the random vector

(Bt1 , . . . , Btm)

is Gaussian.

2. Introducing the Schauder functions G(k)
n from Definition 4.1.13, we have

Bt = G
(1)
0 (t)Z

(1)
0 +

∞∑
n=1

∑
k∈I(k)

〈G(k)
n (t), Z(k)

n 〉Z(k)
n .

Our aim is to prove that the double series
∑∞

n=1

∑
k∈I(k)

∣∣G(k)
n (t)Z

(k)
n

∣∣ converges uni-
formly a.s. in [0, 1].

We know that maxt∈[0,1]

∣∣G(k)
n (t)

∣∣ = 2−
n+1
2 ≤ 2−

n
2 . Let mn = maxk∈I(n)

∣∣Z(k)
n

∣∣. By
Lemma 4.1.15, ∀n ≥ 1, k ∈ I(n),

P
(∣∣Z(k)

n

∣∣ ≥ 2
n
4

)
≤ 2

2
n
4

√
2π
e−

(2n/4)2

2

=

√
2

2
n
4
√
π
e−

2n/2

2

= 2−
n
4

√
2

π
e−2

n
2−1

.

Therefore,

P
(
mn ≥ 2

n
4

)
= P

 ⋃
k∈I(n)

∣∣Z(k)
n

∣∣ ≥ 2
n
4

 ≤ 2nP
(∣∣Z(1)

n

∣∣ ≥ 2
n
4

)
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≤ 2n−
n
4

√
2

π
e−2n/2−1

≤ 2
3
4
n+ 1

2 e−2n/2−1
.

Clearly,
∑∞

n=1 2
3
4
n+ 1

2 e−2n/2−1
<∞ and thus applying Lemma 4.1.16 we have

P
(

lim inf
n→∞

{
mn ≥ 2

n
4

})
= 1.

This amounts to saying there exists a set Ω̃ with P(Ω̃) = 1 such that for every ω ∈ Ω̃,
there exists n0 = n0(ω) ∈ Z>0 such that mn(ω) ≤ 2

n
4 for every n ≥ n0(ω). Then, for

n sufficiently large, ∑
k∈I(n)

∣∣G(k)
n (t)Z(k)

n

∣∣ ≤ ∑
k∈I(n)

2−
n
2 2

n
4

≤
∑
k∈I(n)

2−
n
4

<∞.

Weierstrass criterion on uniforme convergence of series of functions is verified, so for
every ω ∈ Ω̃, Bt(ω) converges uniformly in t. Since almost surely the mapping t 7→∑

k∈I(n)G
(k)
n (t)Z

(k)
n is continuous, the sample paths t 7→ Bt are a.s. continuous.

Corollary 4.1.18. There exists a stochastic process B = {Bt | t ≥ 0} on a probability space
(Ω,F ,P) such that B is a Brownian motion.

Proof. Theorem 4.1.17 assures the existence of a sequence (B(k))k≥1 of independent Brow-
nian motions indexed by [0, 1] and defined on a probability space (Ω,F ,P). We define B
recursively by

Bt =

{
B

(1)
t , t ∈ [0, 1]∑k
i=1B

(i)
1 +B

(k+1)
t−k , t ∈ [k, k + 1].

It is clearly a centered process and one can easily check that E
[
BsBt

]
= s∧ t. The indepen-

dence of the Brownian motions B(k) implies that B is Gaussian. Hence, it is a Brownian
motion according to Definition 4.1.1.

We end this subsection with the notion of Brownian motion in multiple dimensions.

Definition 4.1.19. Let d ∈ Z>0 \ {1}. Let B(1), B(2), . . . , B(d) be independent Brownian
motions indexed by R≥0. The process

B := {Bt = (B
(1)
t , B

(2)
t , . . . , B

(d)
t ) | t ≥ 0}

is a d-dimensional Brownian motion on R≥0.

4.1.4 Sample Path Properties

For the sake of completeness, in this subsection we present a collection of properties of
Brownian motion that hold almost surely. Proofs will be omitted, since they are beyond the
scope and objectives of this thesis. They can be found in [13, 23, 15, 16, 6], to name a few
references.
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Fundamental properties

Proposition 4.1.20. Let B = {Bt | t ≥ 0} be a Wiener process.

(i) Since E
[
B2

0

]
= 0, B0 has a Dirac distribution at the origin.

(ii) E
[
|Bt −Bs|2

]
= |t− s|.

Proposition 4.1.21 (Invariance Properties). Let B = {Bt | t ≥ 0} be a Brownian mo-
tion. The processes generated by the following transformations are also Brownian motions.

(i) Scaling: For any λ > 0, Bλ := { 1
λBλ2t | t ≥ 0}.

(ii) Time inversion: The process X = {Xt | t ≥ 0} defined by

Xt :=

{
0 for t = 0

tB
(

1
t

)
for t > 0.

(iii) Time shift: For any fixed a > 0, B+a := {Ba+t −Ba | t ≥ 0}.

(iv) Symmetry: −B := {−Bt | t ≥ 0}.

Property (i) represents the fractal nature of Brownian motion: it identifies a transformation
that changes the individual Brownian motions but not their distributions. Property (ii) has
the following interesting corollary:

Corollary 4.1.22 (Strong Law of Large Numbers). Almost surely,

lim
t→∞

Bt
t

= 0.

Roughly speaking, this means that for any ε > 0, |Bt| oscillates with an amplitude less than
tε.

Quadratic Variation

Fix t > 0. Let {Πn}∞n=1 be a sequence of partitions of the interval [0, t] defined by

0 = t
(n)
0 ≤ t(n)

1 ≤ . . . ≤ t(n)
r(n) = t.

Suppose

lim
n→∞

‖Π‖ = 0

where ‖ · ‖ = maxj=1,2,...,r(n) |tj − tj−1| is the norm of the partition.

Then, the quadratic variations

V
(2)

t(n)
:=

r(n)∑
j=1

∣∣∣∣Bt(n)j

−B
t
(n)
j−1

∣∣∣∣2
of a Brownian motion over these partitions converge to t in L2 as n→∞. That is,

lim
n→∞

V
(2)

t(n)
= t in L2.

The previous convergence also holds a.s. if
∑∞

n=1 ‖Πn‖ <∞.
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We now define the variation of a Brownian sample path B on [0, t] as follows:

Vt := lim sup
‖Π‖→0

n∑
j=1

∣∣Btj −Btj−1

∣∣
where Π = (t0, t1, . . . , tn) is a partition of [0, t] and ‖ · ‖ its associated norm.

Almost surely, when ‖Π‖ → 0, the quadratic variations converge to t as n→∞. Therefore,
since the sample paths are a.s. continuous, Brownian motion has unbounded variation
almost surely.

Law of the Iterated Logarithm

Our next theorem describes the oscillations of Brownian motion when the time parameter
is close to the origin and when it tends to infinity.

Theorem 4.1.23 (Law of the Iterated Logarithm). For almost every ω ∈ Ω,

lim sup
t↓0

Bt(ω)√
2t log log

(
1
t

) = 1 , lim sup
t→∞

Bt(ω)√
2t log log(t)

= 1 ,

lim inf
t↓0

Bt(ω)√
2t log log

(
1
t

) = −1 , lim inf
t→∞

Bt(ω)√
2t log log(t)

= −1 .

The function t 7→
√

2t log log(t) determines almost surely the asymptotic growth of the
process. It is known as the asymptotic smallest upper envelope of the Brownian motion.

Continuity properties

Definition 4.1.24. A function g(·) is called a modulus of continuity for a function
f : [0, T ]→ R if for any 0 ≤ s ≤ t ≤ T ,

|t− s| ≤ δ =⇒ |f(t)− f(s)| ≤ g(δ)

for every δ > 0 sufficiently small.

The modulus of continuity for a function describes its local smoothness.

Theorem 4.1.25 (Lévy Modulus of Continuity, 1937). Let B = {Bt | t ∈ [0, 1]} be a
Brownian motion. Let g : (0, 1]→ (0,∞) be given by g(δ) =

√
2δ log(1/δ). Then

P

lim sup
δ↓0

1

g(δ)
max

0≤s<t≤1
t−s≤δ

|Bt −Bs| = 1

 = 1.

Definition 4.1.26. Let γ ∈ (0, 1]. A function f : R → R is said to be locally γ-Hölder
continuous if for any bounded interval I ⊂ R, there exists a constant c(γ, f, I) > 0 such that

|f(x)− f(y)|
|x− y|γ

≤ c(γ, f, I)

for every x, y ∈ I satisfying x 6= y. We refer to γ as Hölder’s exponent and to c(γ, f, I) as
Hölder’s constant.

Remark 4.1.27. Note that γ-Hölder continuity becomes stronger as γ increases.

Theorem 4.1.28. If γ < 1
2 , then, almost surely, the sample paths of a Brownian motion

are everywhere locally γ-Hölder continuous.
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Nowhere Differentiability

Definition 4.1.29. For a continuous function f : [0,∞)→ R we define the upper and lower
(right and left) Dini derivatives at t by

D±f(t) = lim sup
h→0±

f(t+ h)− f(t)

h

and

D±f(t) = lim inf
h→0±

f(t+ h)− f(t)

h
,

respectively.

Theorem 4.1.30 (Paley, Wiener and Zygmund, 1933). Let B = {Bt | t ≥ 0} be a
Wiener process defined on a probability space (Ω,F ,P). For almost every ω ∈ Ω, the sample
paths t 7→ Bt(w) are nowhere differentiable.

Furthermore, almost surely, for every t ≥ 0,

either D+Bt = +∞ or D+Bt = −∞ or both.

The following stronger result indicates the value of Hölder’s exponent for which the
transition between local γ-Hölder sample path continuity and non-continuity happens.

Theorem 4.1.31. For any γ ∈
[

1
2 , 1
]
, the sample paths of a Wiener process are a.s. nowhere

locally γ-Hölder continuous.

4.2 Isonormal Gaussian Processes

In this section we introduce a new class of Gaussian stochastic processes with a wider range
of index sets.

4.2.1 Introduction

Definition 4.2.1. A Gaussian random field is a Gaussian stochastic process indexed by an
arbitrary set of dimensionality at least one.

Remark 4.2.2. The finite-dimensional distributions, as well as the mean and covariance
functions, are given analogously to Chapter 3. The only difference lies in the index set. The
existence of Gaussian random fields is ensured by [5, Lemma 1.2.2].

Definition 4.2.3. A Gaussian process W = {W (h) | h ∈ H} indexed by a real separa-
ble Hilbert space1 H is said to be H-isonormal if it is centered with covariance function
E[W (h)W (g)] = 〈h, g〉H for all h, g ∈ H.

Note. When no particular Hilbert space is mentioned, we will speak of isonormal Gaussian
processes.

Remark 4.2.4. The definition above extends the definition of Brownian motion to Hilbert
spaces. In fact, Brownian motion is a particular case of isonormal Gaussian processes. The
next theorem gives a more detailed description of this idea.

1See Definition B.2.4.
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Theorem 4.2.5. Fix T > 0. If W is an L2([0, T ])-isonormal Gaussian process, then

W0,T := {W (t) := W
(
1[0,t]

)
| t ∈ [0, T ]}

defines a Brownian motion on [0, T ].

Proof. W0,T is a centered Gaussian process satisfying E[W (s)W (t)] = 〈1[0,s],1[0,t]〉L2([0,T ]) =
s ∧ t for all s, t ∈ [0, T ]. Therefore, it is a Brownian motion by Definition 4.1.1.

Lemma 4.2.6. Let W be an H-isonormal Gaussian process. The mapping W : H →
L2(Ω,F ,P) is a linear Hilbert space isometry. Therefore, it maps orthogonal elements of H
to orthogonal elements of L2(Ω,F ,P).

Proof. W is an isometry since for all h ∈ H, ‖h‖2H = E
[
W (h)2

]
. Furthermore, for every

a, b ∈ R and h, g ∈ H,

E
[(
W (ah+ bg)− aW (h)− bW (g)

)2]
= ‖ah+ bg‖2H + a2‖h‖2H + b2‖g‖2H
− 2a〈ah+ bg, h〉H − 2b〈ah+ bg, g〉H + 2ab〈h, g〉H

= 0.

This proves the linearity of W .

4.2.2 Construction

The following proposition guarantees the existence of an isonormal Gaussian process.

Proposition 4.2.7. Let {en}n≥1 be a complete orthonormal system of H. Let W = {W (h) |
h ∈ H} be an isonormal Gaussian process. We define Zn = W (en) ∀n ≥ 1.
Then (Zn)n≥1 is a sequence of i.i.d. standard Normal random variables and each random
variable W (h) is defined by

W (h) =
∞∑
n=1

〈h, en〉HZn ,

where the series converges in L2(Ω,F ,P).

Proof. By Definition 4.2.3, the random variables Zn are uncorrelated standard Normal.
Thus,W being a Gaussian process, they are also independent. According to Definition B.2.8,
for any h ∈ H, the series

∞∑
n=1

〈h, en〉Hen

converges in H to h. Lemma 4.2.6 ensures that

W (h) =

∞∑
n=1

〈h, en〉HW (en) =

∞∑
n=1

〈h, en〉HZn

and the series converges in L2(Ω,F ,P), since

∀n,m ≥ 1, n 6= m,

{
E
[
|Zn|2

]
= 1

E[|Zn|]E[|Zm|] = 0

and
∞∑
n=1

|〈h, en〉H |2 = ‖h‖2H

by Parseval’s identity.
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Remark 4.2.8. The above proposition yields a bijection between the isonormal Gaussian
process W and the i.i.d. sequence (Zn)n≥1. We can interpret the random variables Zn as
the Hilbert space coordinates of the process W .

4.3 Gaussian White Noise

Firstly, we will introduce the notion of white noise in space and how it can be obtained from
an isonormal Gaussian process. Next, we will add another dimension and we will give it a
special meaning.

4.3.1 White Noise on Rd

Let D be a non-empy subset of Rd, with d ∈ Z>0. Let µ be a σ-finite measure on (D,B(D)).
We define the set Bf (D) := {B ∈ B(D) | µ(B) <∞}.

In this subsection we will consider the case D = Rd.

Definition 4.3.1. A (Gaussian) white noise with intensity µ (µ-GWN) is a centered Gaus-
sian random field of the form

W = {W (A), A ∈ Bf (Rd)}

defined on a probability space (Ω,F ,P) with covariance function

E[W (A)W (B)] = µ(A ∩B) ∀A,B ∈ Bf (Rd).

Note. When µ is the Lebesgue measure on Rd, we will simply name it white noise.

The existence of white noise is a direct consequence of [5, Lemma 1.2.2]. Consider the
Hilbert space H = L2(Rd,B(Rd), µ) and assume the existence of an H-isonormal Gaussian
process W . We can readily associate W with a white noise W with intensity µ by defining
W (A) = W (1A) for every A ∈ Bf (Rd).

In this setting, given h ∈ H, we can think of W (h) as an L2(Ω,F ,P)-valued integral of h.
In such a case, we adopt the notation

W (h) :=

∫
Rd
h(x)W (dx) :=

∫
Rd
h(x) dW. (4.3.1)

Definition 4.3.2. The random variableW (h) defined in (4.3.1) is called the Wiener integral
of h ∈ H with respect to the white noise W with intensity µ.

We will close this subsection with two propositions containing some interesting properties
of white noise with a given intensity. For the proofs, we refer the reader to [5, 15].

Proposition 4.3.3. Let W be a µ-GWN. Let A1, . . . , An ∈ Bf (Rd) be pairwise disjoint.
Then for every i, j ∈ {1, . . . , n},

(i) if i 6= j, then W (Ai) and W (Aj) are independent and W (Ai ∪Aj) = W (Ai) +W (Aj);

(ii) the random vector
(
W (A1), . . . ,W (An)

)
is centered Normal with covariance matrix

given by

Qij =

{
µ(Ai) if i = j

0 otherwise.
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Proposition 4.3.4. Let W be a µ-GWN.

(i) Let (An)n≥1 ⊂ Bf (Rd) be a decreasing sequence with µ(A1) < ∞. Set A := ∩n≥1An.
Then W (An)→W (A) in L2(Ω,F ,P).

(ii) Let (An)n≥1 ⊂ Bf (Rd) be an increasing sequence. Set A := ∪n≥1An and assume
µ(A) <∞. Then W (An)→W (A) in L2(Ω,F ,P).

4.3.2 Space-time White Noise

Let D be a non-empty open subset of Rd. Letting the measure µ described previously be
defined in Rd+1 by µ(dx, dt) = 1D(x)1[0,∞)(t) dx dt yields a particular case of white noise
known as space-time white noise.

We define the set Bf (D × R≥0) := {B ∈ B(D × R≥0) | λ(B) < ∞}, where λ denotes
the Lebesgue measure on D × R≥0. In the sequel, we will consider the Hilbert space H =
L2(D × R≥0,B(D × R≥0), λ).

Definition 4.3.5. A space-time white noise on D × R≥0 is a centered Gaussian random
field defined on some probability space (Ω,F ,P) by

W = {W (A), A ∈ Bf (D × R≥0)}

such that ∀A,B ∈ Bf (D × R≥0), E[W (A)W (B)] = λ(A ∩B).

Similarly to white noise, any H-isonormal Gaussian process W̃ has a related space-time
white noise given by

W (B × [0, t]) = W̃
(
1B×[0,t]

)
for every B ∈ Bf (D), t ∈ R≥0. In this case, for all h ∈ H, the Wiener integral of h with
respect to W is the random variable

W̃ (h) =

∫
D×R≥0

h(x, t)W (dx, dt). (4.3.2)

Sometimes (4.3.2) is informally written as

W (h) =

∫
D×R≥0

h(x, t)Ẇ (dx, dt).

The next proposition gathers some important properties of space-time white noise. These
are analogous to those included in Proposition 4.3.3 and Proposition 4.3.4.

Proposition 4.3.6. Let W be a space-time white noise. Let A1, . . . , An ∈ Bf (D×R≥0) be
pairwise disjoint. Let i, j ∈ {1, . . . , n}.

(i) If i 6= j, then W (Ai) and W (Aj) are independent and W (Ai ∪Aj) = W (Ai) +W (Aj).

(ii) The random vector
(
W (A1), . . . ,W (An)

)
is centered Normal with covariance matrix

given by

Qij =

{
λ(Ai) if i = j

0 otherwise.

(iii) Let (An)n≥1 ⊂ Bf (Rd) be a decreasing sequence with λ(A1) < ∞. Set A := ∩n≥1An.
Then W (An)→W (A) in L2(Ω,F ,P).
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(iv) Let (An)n≥1 ⊂ Bf (Rd) be an increasing sequence. Set A := ∪n≥1An and suppose
λ(A) <∞. Then W (An)→W (A) in L2(Ω,F ,P).

Definition 4.3.7. Let W be an H-isonormal Gaussian process. For t ∈ R≥0, φ ∈
L2(D,B(D), λ), we define

Wt(φ) := W
(
φ× 1[0,t]

)
.

Remark 4.3.8. For a fixed time t, Wt is an L2(D,B(D), λ)-isonormal Gaussian process.

Proposition 4.3.9. Let {en}n≥1 be a complete orthonormal system of L2(D,B(D), λ) and
fix T ∈ R>0. Define Bn : t ∈ [0, T ] 7→W

(
en × 1[0,t]

)
∀n ≥ 1.

Then

1. (Bn)n≥1 is a sequence of independent Brownian motions.

2. For any φ =
∑∞

n=1 φnen ∈ L2(D,B(D), λ) with real coefficients φn, each random
variable Wt(φ) is defined almost surely by

Wt(φ) =
∞∑
n=1

Bn(t)φn. (4.3.3)

Proof. 1. Let n ≥ 1. By definition, Bn is a centered Gaussian process. Moreover, for
m ≥ 1 and s, t ∈ [0, T ], we have

E
[
Bn(t)Bm(s)

]
= E

[
W
(
en × 1[0,t]

)
W
(
em × 1[0,s]

)]
= 〈en × 1[0,t], em × 1[0,s]〉L2(D×[0,T ],B(D×[0,T ]),λ)

= 〈en, em〉2L2(D,B(D),λ)(t ∧ s)
= δn,m(t ∧ s)

and the independence follows. Taking n = m in the above formula proves that Bn is
a Brownian motion.

2. For any φ ∈ Span{e1, . . . , eN}2, the expression (4.3.3) is obtained taking the limit
N →∞.

Remark 4.3.10. The above result is the space-time version of Proposition 4.2.7, providing
an explicit connection between Brownian motion and time-dependent isonormal Gaussian
processes.

2Recall that the linear span of a set can be defined as the set of all finite linear combinations of its
elements.
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Chapter 5

A Linear Stochastic Heat Equation

5.1 Introduction

5.1.1 Motivation

In Chapter 2 we examined the inhomogeneous global Cauchy problem (2.3.1) with a pro-
cedure to obtain an explicit solution of the form (2.3.2) based on the given data and the
fundamental solution Φk defined in (2.2.19). In this chapter we will employ the ideas de-
veloped in the two previous chapters to study the case where the external forcing f(x, t)
is replaced by a space-time white noise Ẇ (x, t). The resulting equation is known as the
stochastic heat equation on R. We will examine the associated solutions and their sample
path continuity properties.

5.1.2 Random Field Solutions

Let L be a linear partial differential operator on R×R>0 with constant coefficients. A linear
stochastic partial differential equation (LSPDE) on R with additive noise has the form{

Lu = Ẇ (x, t) , x ∈ R , t > 0

u(x, 0) = u0(x) , x ∈ R
(5.1.1)

where the initial condition is deterministic. This type of equations are solved with tools
from the theory of distributions, pioneered by Laurent Schwartz (see [24]). Within this
framework, a concise and general description of LSPDEs with additive noise can be found
in [5].

In this chapter we will focus on the stochastic heat equation on R with k = 1, corre-
sponding to the heat operator ∂

∂t −
∂2

∂x2
. In this context, we will denote the heat operator by

L and we will consider the LSPDE

Lu = Ẇ (x, t) , x ∈ R , t > 0 (5.1.2)

with a given deterministic initial condition

u(x, 0) = u0(x) , x ∈ R. (5.1.3)

Since the value of the thermal diffusivity constant k is 1 throughout this chapter, we will
omit the subscript in the associated fundamental solution Φ1 to the classical heat equation.

For all (x, t) ∈ R×R≥0, let Φx,t(y, s) := Φ(x−y, t−s) be a function defined on R× [0, t].
We have already seen that for any pair (x, t) ∈ R×R>0, (y, s) 7→ Φ(x− y, t− s) belongs to
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L1
(
R× (0, t)

)
. Let us show that this is also true for L2

(
R× (0, t)

)
:∫

R

∫ t

0
Φ2
x,t(y, s) ds dy =

∫
R

∫ t

0
Φ2(y, s) ds dy

=

∫
R

∫ t

0

1

4πs
e−2 y

2

4s ds dy

=

∫
R

∫ t

0

1√
16πs

e−
y2

2s ds dy

=

∫
R

1√
2πs

e−
y2

2s dy

∫ t

0

1√
8πs

ds. (5.1.4)

Notice that for any s > 0, the function y 7→ 1√
2πs

e−
y2

2s represents the probability density
of a centered Normal random variable with variance s. Therefore, the value of the integral
with respect to y in (5.1.4) is 1 and we have∫

R

∫ t

0
Φ2
x,t(y, s) ds dy =

∫
R

∫ t

0
Φ2(y, s) ds dy =

∫ t

0

1√
8πs

ds =

√
t

2π
. (5.1.5)

We are now able to give the following definition from [5]:

Definition 5.1.1. Let W be a space-time white noise. Let I0(x, t) be the solution to the
homogeneous linear PDE

Lu = 0 , x ∈ R , t > 0 (5.1.6)

with a specified initial condition. The random field solution to the stochastic heat equation
Lu = Ẇ on R× R>0 with the same initial condition is

u(x, t) = I0(x, t) +

∫ t

0

∫
R

Φx,t(y, s)W (dy, ds). (5.1.7)

Remark 5.1.2. Equation (5.1.6) corresponds to the classical homogeneous heat equation
(2.2.10) with k = 1. Thus, for every initial value u0 such that the function y 7→ Φ(x −
y, t)u0(y) belongs to L1(R), the solution I0 is given by

I0(x, t) = (Φ1,t ∗ u0)(x) =

∫
R

Φ(x− y, t)u0(y) dy (5.1.8)

according to (2.2.21).

Remark 5.1.3. The integral expression in (5.1.7) is equivalent to the Wiener integral
W̃ (Φx,t) according to (4.3.2). Therefore, the stochastic process u = {u(x, t) | (x, t) ∈
R × R≥0} is L2(R × R≥0)-isonormal Gaussian with expectation E

[
u(x, t)

]
= I0(x, t) and

variance

Var
(
u(x, t)

)
= Var

(
I0(x, t)

)
+ Var

(∫ t

0

∫
R

Φx,t(y, s)W (dy, ds)

)
+ 2Cov

(
I0(x, t),

∫ t

0

∫
R

Φx,t(y, s)W (dy, ds)

)
= E

[(∫ t

0

∫
R

Φx,t(y, s)W (dy, ds)

)2
]

=

∫ t

0

∫
R

Φ2
x,t(y, s) dy ds =

√
t

2π
,

where the last two equalities are obtained from Lemma 4.2.6 and (5.1.5), respectively.
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5.2 Hölder Continuity

The aim of this section is to prove that the sample paths of a random field solution to the
equation (5.1.2) with initial condition given by (5.1.3) are Hölder continuous. For the sake
of simplicity, we will define

v(x, t) :=

∫ t

0

∫
R

Φx,t(y, s)W (dy, ds) (5.2.1)

and we will denote the random field solution in Definition 5.1.1 by

u(x, t) = I0(x, t) + v(x, t). (5.2.2)

We are already familiar with the notion of local Hölder continuity - see Definition 4.1.26.
Due to our interest in the global properties of the stochastic heat equation, we require a
notion of Hölder continuity that applies to the whole set of real numbers. As a result, we
provide the following definition:

Definition 5.2.1. Let γ ∈ (0, 1]. A function f : R→ R such that

|f(x)− f(y)|
|x− y|γ

≤ c(γ, f) <∞

for every x ∈ R and y ∈ R\{x} is called globally γ-Hölder continuous, with Hölder’s constant
c(γ, f) = c(γ, f,R) > 0.

The space of γ-Hölder continuous functions on an interval I ⊆ R is denoted as C0,γ(I). This
space becomes a Banach space1 if we endow it with the γ-Hölder norm

‖f‖C0,γ(I) = max
I
|f |+ c(γ, f, I).

So far we have only considered Hölder continuity in the space variable. We want to
extend this idea to space-time dimension and apply it to the random field solutions defined
previously. To this end, we introduce another type of Hölder continuity.

Definition 5.2.2. Let γ1, γ2 ∈ (0, 1]. A function g : R × R≥0 → R is said to be
jointly locally (γ1, γ2)-Hölder continuous if for any ε1, ε2 > 0, there exists a constant
C = C(γ1, γ2, g, ε1, ε2) > 0 such that

|g(x, t)− g(y, s)|
|x− y|γ1 + |t− s|γ2

≤ C

for every (x, t), (y, s) ∈ R× R≥0 satisfying 0 < |x− y| < ε1 and 0 < |t− s| < ε2.

If this property holds for every (x, t) ∈ R × R≥0 and (y, s) ∈
(
R \ {x}

)
×
(
R≥0 \ {t}

)
, the

function g is jointly globally (γ1, γ2)-Hölder continuous.

Note. To shorten notation, we will simply say (γ1, γ2)-Hölder continuous when a function
is jointly (γ1, γ2)-Hölder continuous.

In order to prove local Hölder continuity of the sample paths (x, t) 7→ v(x, t), we must
use a version of the Kolmogorov continuity criterion for Gaussian processes. To this end,
we shall first introduce the following definition.

Definition 5.2.3. Let X = {Xt | t ∈ T} and X̃ = {X̃t | t ∈ T} be two stochastic
processes indexed by the same set T with values in the same state space. We say that X̃ is
a modification (or version) of X if

∀t ∈ T, P
(
X̃t = Xt

)
= 1.

1See Section B.1.
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Remark 5.2.4. This implies in particular that two modifications of the same process have
the same finite-dimensional distributions, hence the same law.

We now state a famous continuity criterion on sample paths. In the literature it is
attributed to Kolmogorov, either exclusively or along with Chentsov. The proof can be
found in e.g. [13, 15].

Theorem 5.2.5 (Kolmogorov Continuity Criterion). Let X = {Xt | t ∈ I} be a
stochastic process on a probability space (Ω,F ,P) indexed by a bounded interval I of R≥0.
Assume there exist three constants α, β, C > 0 such that for every t, s ∈ I,

E
[
|Xt −Xs|α

]
≤ C|t− s|1+β.

Then there exists a continuous modification X̃ of X whose sample paths are locally γ-Hölder
continuous for every γ ∈

(
0, βα

)
.

Remark 5.2.6. If I = R≥0, we may still apply Theorem 5.2.5 successively with I =
[0, 1], [1, 2], [2, 3], . . .

We have already seen that the set of random field solutions to the stochastic heat equation
represents a Gaussian stochastic process. Due to our interest in finding estimates of the
moments of these solutions, we introduce the following lemma containing some properties
of the moments of Normal random variables that we will use on various occasions.

Lemma 5.2.7. Let p ∈ (−1,∞). Let Γ be Euler’s Gamma function restricted to the real
line, thus having the form

Γ(x) =

∫ ∞
0

e−ttx−1 dt (x ∈ R>0).

We will call it Euler’s real Gamma function.

1. Let Z ∼ N(0, σ2) with σ > 0. Then

E
[
|Z|p

]
= cp

(
E
[
Z2
]) p

2 , where cp =
2
p
2

√
π

Γ

(
p+ 1

2

)
. (5.2.3)

2. For every t > 0, ∫
R
|x|pΦ(x, t) dx =

2p√
π
t
p
2 Γ

(
p+ 1

2

)
. (5.2.4)

3. Let Y ∼ N(µ, σ2) with µ ∈ R, σ > 0. Let cp be defined as in (5.2.3). Then for every
p > 0,

E
[
|Y |p

]
≤ 2p(1 + cp)

(
E
[
Y 2
]) p

2 . (5.2.5)

Proof. 1. By definition,

E
[
|Z|p

]
=

∫
R
|x|pfσ2(x) dx

where fσ2(x) = 1√
2πσ2

e−
x2

2σ2 is the probability density function of Z.

The even parity of this function implies that∫
R
|x|p 1√

2πσ2
e−

x2

2σ2 dx =
2√

2πσ2

∫ ∞
0

xpe−
x2

2σ2 dx
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=

(
2

π

) 1
2

σ−1

∫ ∞
0

xpe−
x2

2σ2 dx.

With the change of variables w = x2

2σ2 we obtain∫ ∞
0

xpe−
x2

2σ2 dx =

∫ ∞
0

2
p−1
2 σp+1w

p−1
2 e−w dw

= 2
p−1
2 σp+1Γ

(
p+ 1

2

)
,

therefore

E
[
|Z|p

]
=

2
p
2

√
π
σp Γ

(
p+ 1

2

)
.

The last expression is equivalent to (5.2.3) since σ2 = Var(Z) = E
[
Z2
]
.

2. Let t > 0. The function x 7→ Φ(x, t) is the density of a centered Normal random vari-
able with variance 2t. Hence we can apply the previous change of variables replacing
σ2 by 2t in order to reach (5.2.4).

3. Let p > 0. By definition, Y = µ+Z, where Z ∼ N(0, σ2). Using the triangle inequality
and (5.2.3) we deduce that

E
[
|Y |p

]
≤ 2p

(
|µ|p + E

[
|Z|p

])
= 2p

(
|µ|p + cp

(
E
[
Z2
]) p

2

)
. (5.2.6)

Notice that E
[
Y 2
]

= µ2 + E
[
Z2
]
by linearity of the expectation operator. Therefore

both |µ|p and
(
E
[
Z2
]) p

2 are bounded by
(
E
[
Y 2
]) p

2 and thus (5.2.6) is bounded by the
r.h.s. of (5.2.5). This completes the proof.

Theorem 5.2.8. Let I, J be bounded intervals of R and R≥0, respectively. Fix α1, α2 ∈
(0, 1] and define

∆(x, t; y, s) = |x− y|α1 + |t− s|α2 and Q =
1

α1
+

1

α2
.

Let u = {u(x, t) | R× R≥0} be a Gaussian random field and suppose there exists a constant
K ≥ 0 such that for all (x, t), (y, s) ∈ I × J ,

E
[(
u(x, t)− u(y, s)

)2] ≤ K(∆(x, t; y, s)
)2
.

Let Γ be Euler’s real Gamma function. Then for every p > 0, the following inequality holds
for all (x, t), (y, s) ∈ I × J :

E
[
|u(x, t)− u(y, s)|p

]
≤ Kp

(
∆(x, t; y, s)

)p
,

where

Kp = 2p

(
1 +

(
2p

π

) 1
2

Γ

(
p+ 1

2

))
K

p
2 .

Therefore, u has a continuous modification ũ, and for every α ∈
(
Q
p , 1
)
, there exist a

constant c > 0, a bounded function a(I, J, α, α1, α2, p) and a positive random variable Y
such that

E
[
Y p
]
≤ Kpa(I, J, α, α1, α2, p) <∞

and for all (x, t), (y, s) ∈ I × J ,

|ũ(x, t)− ũ(y, s)| ≤ cY
(
∆(x, t; y, s)

)α−Q
p .

Furthermore, for any pair (β1, β2) ∈ (0, α1) × (0, α2), ũ is (β1, β2)-Hölder continuous on
I × J .
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We refer to [5, Section A.4] for a proof and further details.

In addition to Theorem 5.2.8, we need an upper bound on the moments of order 2 of the
increments of the fundamental solution Φx,t. This is provided by Lemma 5.2.10 below. Let
us introduce before an algebraic property of Φ concerning semigroups of linear operators
that will prove very useful in this section. We refer to [19] for a thorough account of this
topic.

Lemma 5.2.9 (Semigroup Property). The fundamental solution Φ to the classical homo-
geneous heat equation with k = 1 satisfies the (strongly continuous one-parameter) semigroup
property

Φ(x, t) =

∫
R

Φ(x− y, t− s)Φ(y, s) dy ∀ 0 < s < t. (5.2.7)

Proof. It follows from a straightforward integration. This property generalizes the convolu-
tion product of Normal probability measures.

Lemma 5.2.10. Let Φ be the fundamental solution (2.2.19) with k = 1.

(i) For all h ∈ R, ∫ ∞
0

∫
R

[Φ(z, r)− Φ(z + h, r)]2 dz dr =
|h|
2
. (5.2.8)

(ii) For all h̃ ≥ 0, ∫ ∞
0

∫
R

[
Φ(z, r + h̃)− Φ(z, r)

]2
dz dr =

√
2− 1√

2π

√
h̃. (5.2.9)

(iii) For all (x, t), (y, s) ∈ R× R≥0,∫ ∞
0

∫
R

[Φ(x− z, t− r)− Φ(y − z, s− r)]2 dz dr ≤
(

2−
1
2 |x− y|

1
2 + π−

1
4 |t− s|

1
4

)2
.

(5.2.10)

Proof. (i) Developing the square of the integrand and using the semigroup property (5.2.7)
together with (5.1.5), we obtain∫ ∞

0

∫
R

[Φ(z, r)− Φ(z + h, r)]2 dz dr

=

∫ ∞
0

∫
R

[
Φ2(z, r) + Φ2(z + h, r)− 2Φ(z, r)Φ(z + h, r)

]
dz dr

=

∫ ∞
0

[
2

1√
8πr
− 2Φ(−h, 2r)

]
dr

= 2

∫ ∞
0

(
1√
8πr
− 1√

8πr
e−

(−h)2
8r

)
dr

= 2

∫ ∞
0

1√
8πr

(
1− e−

h2

8r

)
dr.

The change of variables w = |h|
2
√

2r
gives

2

∫ ∞
0

1√
8πr

(
1− e−

h2

8r

)
dr =

|h|
2
√
π

∫ ∞
0

1− e−w2

w2
dw. (5.2.11)
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Integrating by parts the integral in the r.h.s. of (5.2.11) yields∫ ∞
0

1− e−w2

w2
dw = 2

∫ ∞
0

e−w
2
dw =

√
π.

This implies (5.2.8).

(ii) We use a similar procedure to the one used in (i):∫ ∞
0

∫
R

[
Φ(z, r + h̃)− Φ(z, r)

]2
dz dr

= lim
t→∞

∫ t

0

∫
R

[
Φ2(z, r + h̃) + Φ2(z, r)− 2Φ(z, r + h̃)Φ(z, r)

]
dz dr

= lim
t→∞

∫ t

0

 1√
8π(r + h̃)

+
1√
8πr
− 2Φ(0, 2r + h̃)

 dr
= lim

t→∞

∫ t

0

 1√
8π(r + h̃)

+
1√
8πr
− 2√

4π(2r + h̃)

 dr

= lim
t→∞

1√
8π

∫ t

0

(
1√
r + h̃

+
1√
r
−

√
8√

2r + h̃

)
dr

=
1√
2π

lim
t→∞

[√
t+ h̃−

√
h̃+
√
t−
√

2

(√
2t+ h̃−

√
h̃

)]
=

1√
2π

lim
t→∞

[√
t+ h̃+

√
t−
√

2

√
2t+ h̃+

√
h̃
(√

2− 1
)]
.

Using standard calculus techniques to find limits we easily check that

lim
t→∞

(√
t+ h̃+

√
t−
√

2

√
2t+ h̃

)
= 0.

As a result, (5.2.9) holds.

(iii) Assume s ≤ t. Since the time variable in Φ is defined on R≥0, we have∫ ∞
0

∫
R

[Φ(x̃, t− r)− Φ(x̃, s− r)]2 dx̃ dr =

∫ s

0

∫
R

[Φ(x̃, t− r)− Φ(x̃, s− r)]2 dx̃ dr

+

∫ t

s

∫
R

Φ(x̃, t− r)2 dx̃ dr. (5.2.12)

Applying the triangle inequality to the integral in (5.2.10) we obtain[∫ ∞
0

∫
R

[Φ(x− z, t− r)− Φ(y − z, s− r)]2 dz dr
] 1

2

≤ T1 + T2

with

T 2
1 :=

∫ ∞
0

∫
R

[Φ(x− z, t− r)− Φ(x− z, s− r)]2 dz dr,

T 2
2 :=

∫ ∞
0

∫
R

[Φ(x− z, s− r)− Φ(y − z, s− r)]2 dz dr.

The identities (5.1.5), (5.2.9) and (5.2.8), together with the expression (5.2.12), imply

T 2
1 =

√
2− 1√

2π

√
t− s+

√
t− s√
2π

=
1√
π

√
t− s,
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T 2
2 =

|y − x|
2

=
1

2
|x− y|.

Therefore,[∫ ∞
0

∫
R

[Φ(x− z, t− r)− Φ(y − z, s− r)]2 dz dr
] 1

2

≤ π−
1
4 |t− s|

1
4 + 2−

1
2 |x− y|

1
2

and we have (5.2.10).

We are now able to prove local Hölder continuity of the sample paths of v and, moreover,
to give separate upper bounds on Hölder’s exponents.

Proposition 5.2.11. For all (x, t), (y, s) ∈ R× R≥0,

E
[(
v(x, t)− v(y, s)

)2] ≤ (2−
1
2 |x− y|

1
2 + π−

1
4 |t− s|

1
4

)2
(5.2.13)

and there exists a continuous modification ṽ of the process v = {v(x, t) | (x, t) ∈ R × R≥0}
whose sample paths are locally (α, β)-Hölder continuous, with α ∈

(
0, 1

2

)
and β ∈

(
0, 1

4

)
.

Proof. By (5.2.1) and (5.2.10),

E
[(
v(x, t)− v(y, s)

)2]
= E

[(∫ t

0

∫
R

Φx,t(z, r)W (dz, dr)−
∫ s

0

∫
R

Φy,s(z, r)W (dz, dr)

)2
]

=

∫ ∞
0

∫
R

[Φx,t(z, r)− Φy,s(z, r)]
2 dz dr

≤
(

2−
1
2 |x− y|

1
2 + π−

1
4 |t− s|

1
4

)2
.

Since the process v is Gaussian, we can apply Theorem 5.2.8 with K =

max
{

2−
1
2 , π−

1
4

}
, α1 = 1

2 and α2 = 1
4 .

Our next step is to prove that the sample paths of the homogeneous solution I0(x, t)
are globally Hölder continuous. This is ensured by Lemma 5.2.12 below, which, moreover,
provides a ratio between the space-time Hölder’s exponents.

Lemma 5.2.12. Assume the initial condition u0 given by (5.1.3) belongs to C0,η(R) for a
certain η ∈ (0, 1]. Then the function

(x, t) 7→ I0(x, t) =

∫
R

Φ(x− y, t)u0(y) dy

defined on R× R≥0 is
(
η, η2

)
-Hölder continuous.

Proof. Let (x, t) ∈ R × R≥0. According to Remark 5.1.2, I0(x, t) is given by a convolution
operation in space. Let us denote it by (Φt ∗ u0)(x).

Let h > 0 be the increment in the spatial variable. The corresponding increment in
I0(x, t) is thus

I0(x+ h, t)− I0(x, t) = (Φt ∗ u0)(x+ h)− (Φt ∗ u0)(x)

=

∫
R

[Φ(x+ h− y, t)− Φ(x− y, t)]u0(y) dy

=

∫
R

Φ(y, t) [u0(x+ h− y)− u0(x− y)] dy
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by the commutativity property of convolutions.

By hypothesis, u0 ∈ C0,η(R). We denote its Hölder’s constant by c(η, u0). It follows that

∀T > 0, sup
t∈[0,T ]

|I0(x+ h, t)− I0(x, t)| ≤ sup
t∈[0,T ]

∫
R

Φ(y, t)|u0(x+ h− y)− u0(x− y)| dy

≤ sup
t∈[0,T ]

∫
R

Φ(y, t)c(η, u0)hη dy

and, since
∫
R Φ(y, t) dy = 1 by definition,

sup
t∈[0,T ]

|I0(x+ h, t)− I0(x, t)| ≤ c(η, u0)hη. (5.2.14)

Next, we study the time shift. Let x ∈ R, t > 0, s ∈ [0, t). We have

|I0(x, t)− I0(x, s)| = |(Φt ∗ u0)(x)− (Φs ∗ u0)(x)|

=

∣∣∣∣∫
R

Φ(x− y, t)u0(y) dy −
∫
R

Φ(x− y, s)u0(y) dy

∣∣∣∣ .
Applying the semigroup property (5.2.7) and Fubini gives∫

R
Φ(x− y, t)u0(y) dy =

∫
R

(∫
R

Φ(x− z, t− s)Φ(z − y, s) dz
)
u0(y) dy

=

∫
R

Φ(x− z, t− s)
(∫

R
Φ(z − y, s)u0(y) dy

)
dz

=
(
Φt−s ∗ I0(z, s)

)
(x).

In addition,∫
R

Φ(x− y, s)u0(y) dy =

∫
R

Φ(x− z, t− s)
(∫

R
Φ(x− y, s)u0(y) dy

)
dz

=
(
Φt−s ∗ I0(x, s)

)
(x).

given that
∫
R Φ(x− z, t− s) dz = 1.

Therefore,

|I0(x, t)− I0(x, s)| =
∣∣(Φt−s ∗ I0(z, s)

)
(x)−

(
Φt−s ∗ I0(x, s)

)
(x)
∣∣

=
∣∣Φt−s ∗

(
I0(z, s)− I0(x, s)

)
(x)
∣∣

by distributivity of convolutions.

We can now use two previous results to obtain an upper bound on the time increment. Using
(5.2.14),∣∣Φt−s ∗

(
I0(z, s)− I0(x, s)

)
(x)
∣∣ =

∣∣∣∣∫
R

Φ(x− z, t− s)
[
I0(z, s)− I0(x, s)

]
dz

∣∣∣∣
≤
(∫

R
Φ(x− z, t− s) |I0(z, s)− I0(x, s)| dz

)
≤ c(η, u0)

∫
R

Φ(x− z, t− s)|x− z|η dz. (5.2.15)

The value of the last integral in (5.2.15) is given by (5.2.4). Hence, we have the upper bound

|I0(x, t)− I0(x, s)| ≤ c(η, u0)
2η√
π
|t− s|

η
2 Γ

(
η + 1

2

)
. (5.2.16)

From (5.2.14) and (5.2.16) we conclude that there exists a constant c̃ > 0 such that

|I0(x+ h, t)− I0(x, s)| ≤ c(η, u0)c̃
(
hη + |t− s|

η
2

)
. (5.2.17)

This proves the claim on Hölder continuity of I0.
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Our final step is to prove local Hölder continuity of the sample paths of random field
solutions. We will consider two cases.

Proposition 5.2.13. Let u0 be an initial value to (5.1.6) defined under the assumptions of
Remark 5.1.2. Let u = {u(x, t) | (x, t) ∈ R×R≥0} be the stochastic process given by (5.2.2),
(5.2.1). Fix L, T > 0.

1. Continuity without the initial time. Fix 0 < t0 ≤ T . For every p ≥ 2, there exists
a constant C = C(p, t0, T, L, u0) > 0 such that for all (x, t), (y, s) ∈ [−L,L]× [t0, T ],

E
[
|u(x, t)− u(y, s)|p

]
≤ C

(
|x− y|

1
2 + |t− s|

1
4

)p
. (5.2.18)

Hence, there exists a continuous modification ũ of u with (α, β)-Hölder continuous
sample paths on [−L,L]× (0, T ], where α ∈

(
0, 1

2

)
and β ∈

(
0, 1

4

)
.

2. Continuity including the initial time. Suppose u0 satisfies the assumption in
Lemma 5.2.12. Then for every p ≥ 2, there exists a constant C = C(p, η, T, L, u0) > 0
such that for all (x, t), (y, s) ∈ [−L,L]× [0, T ],

E
[
|u(x, t)− u(y, s)|p

]
≤ C

(
|x− y|

1
2
∧η + |t− s|

1
4
∧ η

2

)p
. (5.2.19)

Moreover, there exists a continuous modification ũ of u with Hölder continuous sample
paths on [−L,L]× [0, T ] with exponents (α, β) subject to the following conditions:{

α ∈
(
0, 1

2

)
, β ∈

(
0, 1

4

)
if η ≥ 1

2

α ∈ (0, η), β ∈
(
0, η2
)

if η < 1
2 .

(5.2.20)

Proof. Let p ≥ 2.

1. Let (x, t), (y, s) ∈ [−L,L] × [t0, T ]. Since u(x, t) = I0(x, t) + v(x, t), the triangle
inequality implies

‖u(x, t)− u(y, s)‖Lp(Ω,F ,P) ≤ |I0(x, t)− I0(y, s)|+ ‖v(x, t)− v(y, s)‖Lp(Ω,F ,P).

(5.2.21)

We know that I0 is C∞ on R×R>0 with uniformly bounded derivatives of all orders on
[−L,L]×[t0, T ]. Therefore, I0 is Lipschitz continuous relative to space and time on the
compact [−L,L]×[t0, T ]. Consequently, there exists a constant C0 = C0(t0, T, L, u0) >
0 such that

|I0(x, t)− I0(y, s)| ≤ C0 (|x− y|+ |t− s|) . (5.2.22)

By definition, v = {v(x, t) | (x, t) ∈ R × R≥0} is a centered Gaussian random field.
Therefore, by (5.2.3), every random variable v(x, t) satisfies the relation

‖v(x, t)− v(y, s)‖pLp(Ω,F ,P) = cp‖v(x, t)− v(y, s)‖p
L2(Ω,F ,P)

= cpE
[(
v(x, t)− v(y, s)

)2] p2
.

(5.2.23)

Inserting (5.2.22) and (5.2.23) in (5.2.21) yields

E
[
|u(x, t)− u(y, s)|p

]
≤
(
C0 (|x− y|+ |t− s|) + c1/p

p E
[(
v(x, t)− v(y, s)

)2] 1
2

)p
≤
[
C0 (|x− y|+ |t− s|) + c1/p

p

(
2−

1
2 |x− y|

1
2 + π−

1
4 |t− s|

1
4

)]p
where the second inequality stems from the upper bound (5.2.13).
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It is easy to see that the last expression is bounded from above by

C1

(
|x− y|+ |t− s|+ |x− y|

1
2 + |t− s|

1
4

)p
for some constant C1 = C1(p, t0, T, L, u0) > 0. Given that |x−y| ≤ 2L and |t−s| < T ,
there exists a constant C = C(p, t0, T, L, u0) > 0 such that (5.2.18) holds.

Lastly, since (5.2.18) is satisfied with p = 2, the statement on local Hölder continuity
of sample paths arises from Theorem 5.2.8.

2. Let (x, t), (y, s) ∈ [−L,L] × [0, T ]. Applying (5.2.21) and (5.2.23) from the proof of
Claim 1, together with the estimates (5.2.17) and (5.2.13), we obtain

E
[
|u(x, t)− u(y, s)|p

]
≤

[
c(η, u0)c̃

(
|x− y|η + |t− s|

η
2

)
+ c1/p

p

(
|x− y|

1
2

√
2

+
|t− s|

1
4

π
1
4

)]p
and we can see that there exists a constant C = C(p, η, T, L, u0) > 0 that implies
(5.2.19).

The claim concerning local Hölder continuity of sample paths with exponents given
by (5.2.20) is obtained as in Claim 1.
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Chapter 6

Conclusions

The purpose of this thesis is to show the transition from the classical to the stochastic
one-dimensional heat equation and study the latter’s continuity properties. To this end, we
introduce the necessary ingredients for the definition of the stochastic heat equation on R
and the associated random field solutions.

From simple physical principles, we derive the classical heat equation and subsequently
the associated Cauchy problems. Then we focus on the computation and study of the
fundamental solution, which we obtain by means of two different approaches. The relevance
of this function in the study of the stochastic heat equation on R is reflected in the last
chapter.

In parallel, we introduce the notions of Gaussian random variables, characteristic func-
tions, and Gaussian processes. The latter is the key concept of the second half of this thesis,
from the definition of Brownian motion to the study of local Hölder continuity of the sample
paths of the random field solutions to the stochastic heat equation on R. Throughout the
thesis we focus on the notions that allow us to define a linear stochastic partial differential
equation on R. For this reason, we do not deal with other interesting properties of Brownian
motion, such as the strong Markov property or the reflection principle, nor we describe more
classes of Gaussian processes.

In the last part, we bring together the notions of isonormal Gaussian processes, space-
time white noise, and fundamental solution Φ to define the concept of random field solutions,
and thereafter we carefully prove the local Hölder continuity of their sample paths.

This thesis highlights the link between the fields of stochastic processes and PDEs by
means of the heat equation. This relation, together with the importance of the heat equation
in physics, captured my interest and drove me to choose this topic.
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Appendix A

Normal and Multivariate Normal
Distributions

A.1 Normal Distribution

Definition A.1.1. Let µ ∈ R and σ ∈ R>0. A real-valued random variable X is said to
have a Normal distribution with parameters µ and σ2 if its probability density function is
given by

fX(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 .

We denote this law by N
(
µ, σ2

)
. If a random variable X has this distribution, we write

X ∼ N
(
µ, σ2

)
.

If µ = 0 and σ2 = 1, it is known as the standard Normal distribution.

Proposition A.1.2 (Basic Properties). Let X ∼ N
(
µ, σ2

)
.

• E[X] = µ.

• Var(X) = σ2.

• fX is symmetric with respect to x = µ.

Proposition A.1.3 (Normal Transformation). Let X ∼ N(0, 1). We fix two parameters
µ ∈ R and σ ∈ (0,∞) and we define the random variable Y = µ+ σX. Then

fY (y) =
1√

2πσ2
e−

(y−µ)2

2σ2 (A.1.1)

and therefore Y ∼ N
(
µ, σ2

)
.

Proof. The random variable Y is obtained through the function g : R → R, g(x) = µ +
σx. Since g is C1, bijective and strictly increasing, we may apply the well-known density
transformation formula

fY (y) = fX
(
g−1(y)

) ∣∣∣(g−1
)′

(y)
∣∣∣ = fX

(
g−1(y)

) 1∣∣g′(g−1(y)
)∣∣

to obtain (A.1.1).
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A.2 Multivariate Normal Distribution

Throughout this section, n is a strictly positive integer and X = (X1, . . . , Xn) is a real
random vector.

Definition A.2.1. The covariance matrix Q of X is the n× n matrix whose general term
is

Qi,j = Cov
(
Xi, Xj

)
.

Proposition A.2.2. The covariance matrix Q of X is symmetric and positive semidefinite.

Proof. The symmetry is trivial, since Cov
(
Xi, Xj

)
= Cov

(
Xj , Xi

)
∀i, j ∈ {1, . . . , n}.

Moreover, for all a1, . . . , an ∈ R,

n∑
i=1

n∑
j=1

aiajQi,j = Var

(
n∑
i=1

aiXi

)
,

and since variances are always positive, the proof is complete.

Definition A.2.3. X has a multivariate Normal (or Gaussian) distribution if every linear
combination of its components has a (univariate) Normal distribution.

We denote by N(µ,Q) its law, where µ = (µ1, . . . , µn) ∈ Rn is the mean vector and Q is the
covariance matrix.
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Appendix B

Functional Analysis

B.1 Banach Spaces

Definition B.1.1. Let X be a real linear space. A mapping ‖·‖ : X → R is called a norm
if for each scalar λ and every x, y ∈ X, the following properties hold:

(i) positivity : ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0;

(ii) homogeneity : ‖λx‖ = λ‖x‖;

(iii) triangular inequality : ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Definition B.1.2. A normed space is a linear space endowed with a norm.

Hereafter we assume X is a normed linear space.

Definition B.1.3. If every Cauchy sequence in X converges, X is called complete.

Definition B.1.4. A Banach space is a complete, normed linear space.

Examples. Let U ⊂ Rn be a bounded open set.

(i) The space C0
(
U
)
of continuous functions on U , endowed with the maximum norm

‖f‖
C0
(
U
) = max

U
|f |.

(ii) Lp spaces. Let p ∈ [1,∞]. For every Lebesgue measurable function f : U → R, we
define the Lp norm

‖f‖Lp(U) :=

{(∫
U |f |

p
)1/p if p <∞

ess supU|f | if p =∞,

where ess supU|f | denotes the essential supremum of |f |, i.e. the infimum of all numbers
M ≥ 0 such that |f(x)| ≤M a.e. in U1.

We denote by Lp(U) the linear space of all Lebesgue measurable functions f : U → R
such that ‖f‖Lp(U) < ∞. This space becomes a Banach space when we identify any
pair of functions equal a.e. in U and we equip it with the Lp norm. If p ∈ [1,∞), Lp(U)
is the set of real-valued functions defined on U such that |f |p is Lebesgue integrable in
U . In this case, the Lp norm is called integral norm of order p.

1A property holds almost everywhere (a.e.) in a set if it is true for all points in the set except for a subset
of Lebesgue measure zero.
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B.2 Hilbert Spaces

Let H be a real linear space.

Definition B.2.1. An inner product in H is a mapping 〈·, ·〉 : H×H → R with the following
properties: for all x, y, z ∈ H and λ, µ ∈ R,

(i) positivity : 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 if and only if x = 0;

(ii) symmetry : 〈x, y〉 = 〈y, x〉;

(iii) bilinearity : 〈µx+ λy, z〉 = µ〈x, z〉+ λ〈y, z〉.

A linear space endowed with an inner product is called an inner product space.

Definition B.2.2. The norm induced by an inner product 〈·, ·〉 is given by

‖x‖ = 〈x, x〉1/2 ∀x ∈ H.

Definition B.2.3. A Hilbert space H is a Banach space endowed with an inner product
which induces the norm.

Definition B.2.4. A Hilbert space is said to be separable if it contains a countable dense
subset.

Example B.2.5. The space L2(U) is a separable Hilbert space with respect to the inner
product

〈f, g〉L2(U) =

∫
U
fg dx.

Definition B.2.6. Two Hilbert spaces H1 and H2 are isometric if there exists a bijective
linear mapping L : H1 → H2, called isometry, that preserves the norm, that is,

‖x‖H1 = ‖Lx‖H2 ∀x ∈ H1.

Definition B.2.7. Two elements x, y belonging to a Hilbert space H endowed with an inner
product 〈·, ·〉 are orthonormal if {

〈x, y〉 = 0

‖x‖ = ‖y‖ = 1.

A set of mutually orthonormal elements is an orthonormal set.

Definition B.2.8. An orthonormal basis in a separable Hilbert space H is a countable
sequence {ui}i≥1 ⊂ H such that its elements are pairwise orthonormal and every x ∈ H
may be expanded in the form

x =
∞∑
i=1

〈x, ui〉ui.

The series above is called the generalized Fourier series. Moreover, the following expression,
known as Parseval’s identity, holds:

‖x‖2 =
∞∑
i=1

〈x, ui〉2.

We end this appendix with two useful propositions from [22, Section 6.4.2].
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Proposition B.2.9 (Characterization of Orthonormal Bases). Let H be a separable
Hilbert space. An orthonormal sequence {ui}i≥1 ⊂ H is a basis for H if and only if one of
the following conditions is satisfied:

(i) if x ∈ H is orthogonal to ui for every i ≥ 1, then x = 0;

(ii) the set of all finite linear combinations of the elements of {ui}i≥1 is dense in H.

Proposition B.2.10. Every separable Hilbert space admits a countable orthonormal basis.
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