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Molecular impact of launch related dynamic vibrations and
static hypergravity in planarians
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Gennaro Auletta® and Jack JW.A. van Loon @*®*

Although many examples of simulated and real microgravity demonstrating their profound effect on biological systems are
described in literature, few reports deal with hypergravity and vibration effects, the levels of which are severely increased during
the launch preceding the desired microgravity period. Here, we used planarians, flatworms that can regenerate any body part in a
few days. Planarians are an ideal model to study the impact of launch-related hypergravity and vibration during a regenerative
process in a “whole animal” context. Therefore, planarians were subjected to 8.5 minutes of 4 g hypergravity (i.e. a human-rated
launch level) in the Large Diameter Centrifuge (LDC) and/or to vibrations (20-2000 Hz, 11.3 G,s) simulating the conditions of a
standard rocket launch. The transcriptional levels of genes (erg-1, runt-1, fos, jnk, and yki) related with the early stress response were
quantified through gPCR. The results show that early response genes are severely deregulated after static and dynamic loads but
more so after a combined exposure of dynamic (vibration) and static (hypergravity) loads, more closely simulating real launch
exposure profiles. Importantly, at least four days after the exposure, the transcriptional levels of those genes are still deregulated.
Our results highlight the deep impact that short exposures to hypergravity and vibration have in organisms, and thus the
implications that space flight launch could have. These phenomena should be taken into account when planning for well-

controlled microgravity studies.
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INTRODUCTION

There is currently an increased interest in space research and
gravity-related sciences, especially since commercial space travels
opened broad and new perspectives in medical and physical
research, innovative tourism, or even in terms of territorial
expansion towards the Moon and Mars. The 2005 NASA initiative
to designate the US segment of the International Space Station
(ISS) as a US national lab' is in line with this trend. In this
scenario, more research is required on the mechanisms of the
effect of space flights on the function of cells and organisms.
Fluctuations in gravity, vibration, pressure, temperature and
radiation are the main parameters to take into account in space
flight studies*™. While many examples of how simulated and real
microgravity, simulated and real partial gravity, and hypergravity
demonstrate their profound effects on biological and physiologi-
cal systems are found in literature, see for review’ '°, a limited
number of reports deal with specific launch-related hypergrav-
ity''™'% or vibration'>'® effects, the levels of which are severely
increased in every space flight during ascent. There are, up till
now, no ground-based research reports where the effects of
launch vibrations and static g loads are applied simultaneously.
To learn of the effects of hypergravity and vibration in living
organisms, we report on the impact of static and dynamic loads
on planarians. Planarian are flatworms with the unique ability to
regenerate any missing part of their body, even the head, after
amputation'”"'®, Planarians show a centralized nervous system,
with an anterior brain to which two nerve cords are connected,
two eyes, a digestive system that connects to an evaginable

pharynx, and an excretory system'®. The amazing regenerative
ability of planarians is due to the presence of a population of adult
stem cells—called neoblasts—that are totipotent, and thus able to
give rise to any planarian cell type'®2°. Planarian plasticity is also
visible during their normal homeostasis, since they continuously
grow and degrow depending on food availability'®?'. The
presence of these unique adult stem cells and their plasticity
renders planarians in a unique model to study the impact of
environmental factors like hypergravity and vibration in adult cells
in the context of a “whole animal”, in contrast to the partial view
inherent to “in vitro” cell cultures. Also, there is an increasing
interest to study these animals under various altered gravity
conditions®*2°,

Planarians were subjected to 4 g hypergravity in the Large
Diameter Centrifuge (LDC) and/or to vibration for 8.5 minutes
(20-2000 Hz, 11.3 G,ps), simulating the conditions of a standard
human-rated rocket launch. The transcriptional levels of genes
related with the early response were quantified through gPCR. The
results show that despite planarians regenerate apparently as
good as controls, genes that respond just a few hours after
wounding (early response genes) are significantly up- or down-
regulated after the various treatments. Furthermore, the dereg-
ulation is higher after the combined exposure of static and
dynamic g loads. Importantly, four days after exposure, the
transcriptional levels of those genes are still deregulated. These
results highlight the deep impact that launch-related hypergravity
and vibrational loads can have on cells and whole organisms, and

'Department of Genetics, Microbiology and Statistics, Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain. 2Life Support and Physical Sciences Section (TEC-
MMG), European Space Agency—European Space Research and Technology Centre (ESA-ESTEC), Noordwijk, The Netherlands. *TEC-ECC, European Space Agency—European
Space Research and Technology Centre (ESA-ESTEC), Noordwijk, The Netherlands. *Pontifical Gregorian University, Roma, Italy. *University of Cassino, Cassino, Frosinone, Italy.
SDESC (Dutch Experiment Support Center), Amsterdam University Medical Center location VUmc and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit
Amsterdam, Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam Movement Sciences, Amsterdam, The Netherlands. *%email: j.vanloon@amsterdamumc.nl

Published in cooperation with the Biodesign Institute at Arizona State University, with the support of NASA

NP| nature partner
pJ journals


http://crossmark.crossref.org/dialog/?doi=10.1038/s41526-020-00115-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41526-020-00115-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41526-020-00115-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41526-020-00115-7&domain=pdf
http://orcid.org/0000-0002-1895-9530
http://orcid.org/0000-0002-1895-9530
http://orcid.org/0000-0002-1895-9530
http://orcid.org/0000-0002-1895-9530
http://orcid.org/0000-0002-1895-9530
http://orcid.org/0000-0001-9051-6016
http://orcid.org/0000-0001-9051-6016
http://orcid.org/0000-0001-9051-6016
http://orcid.org/0000-0001-9051-6016
http://orcid.org/0000-0001-9051-6016
https://doi.org/10.1038/s41526-020-00115-7
mailto:j.vanloon@amsterdamumc.nl
www.nature.com/npjmgrav

npj

N. de Sousa et al.

thus the implications for space flights experiment design and
logistics.

RESULTS

Planarians after short-duration vibration and/or 4 g hypergravity
are able to properly regenerate the missing head

In order to verify whether vibration and hypergravity conditions
affects planarian regeneration, 1-day-regenerating planarian
trunks - the head and the tail were amputated the day before -
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were loaded into the LDC in which a vibration system was
adapted (Figs. 1a and 2).

To explore the effects of hypergravity and vibration individually
and combined, four animal groups were included: planarians at
1 g without vibration (control group), planarians at 4 g without
vibration, planarians at 1g with vibration, and planarians at 4g
with vibration (see Fig. 1b). In vivo observation of the animals
immediately after the treatment (0 h) and 4 days (4d) after showed
no obvious difference in the regenerative abilities between the
various planarian groups (Fig. 3). Thus, planarians under vibration
and/or 4 g hypergravity, regenerate an apparently proper head.

Different groups analyzed in the
experiment

No vibration / 1g Control

No vibration/4 g Hypergravity
Vibration / 1g Vibration
Vibration/4 g Hypf,?g::;{gﬁ and

Experimental design. a Animals were amputated the day before of the exposure to simulated launch loads (day —1). At day 0, animals

were loaded into T25 flasks and the experiment was initiated. Immediately after the exposure to hypergravity, vibration or both, RNA was
extracted from half of the animals (0 h). Four days after the exposure, the RNA of the rest of the animals was extracted (4d). The regenerated
structures were imaged at 4 days after the exposure. b The four experimental groups of animals.

Fig. 2 Vibration system. a Inside of the LDC gondola the vibration system consisting of the actuator, the amplifier and the data acquisition
system was mounted in one gondola. The cooling system was placed in a second gondola (not visible in the image). b Detail of the top part of
the actual actuator shown here with a T25 flask attached which contained five animals. The flasks were completely filled with planarian
artificial medium, leaving no air bubbles. During simulated launch exposures the animals were at ambient conditions. During other periods

the temperatures were 20-22 °C.
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Planarians after short-duration vibration and/or 4 g hypergravity
show a transcriptomic deregulation of genes essential for
regeneration

In planarians, the onset of regeneration relies on the transcrip-
tional activation of early response genes, which are known to be
quickly activated after any kind of wound. Those genes are
essential for the proper proliferation and differentiation of stem
cells after an injury?’?® in order to restore the missing structures.
We performed a gPCR analysis to explore the expression levels of
specific early response genes in the animals corresponding to the
four conditions studied. We analyzed the expression of the
transcription factors runt-1, which is normally expressed 3-6 h
after wounding and is required for specifying different cell types
during regeneration®’?® and egr-1 (early growth response-1), which
is expressed 1 h after wounding®’ (Fig. 4). We also analyzed the
expression of JNK pathway-related genes (fos-1, jnk), which
coordinate the apoptotic and the mitotic response required for
proper regeneration®® (Fig. 4). Our results show that immediately
after the exposure (0 h) planarians that were subjected to only a
static load of 4 g show a significant decrease in the transcriptional
levels of egr-1 and jnk. Planarians which were subjected to only a
dynamic load of a random vibration showed a significant increase
in the transcriptional levels of egr-1 and a decrease of jnk. The
most interesting result was that the simultaneous exposure of
planarians to 4 g hypergravity and vibration severely affected the
transcription of the early genes. Thus, five genes analyzed were
significantly up- or down-regulated with respect to controls. The
two genes related with the JNK pathway (fos and jnk), which are
an evolutionarily conserved signal to regulate cell death and cell
proliferation in response to injury were the most severely affected.
runt-1 was also up-regulated more than two-fold. In these analyses
we also quantified the expression of yki, which is the nuclear

no vibration 1g no vibration 4g high vibration 1g high vibration 4g

4 days after experiment

Fig. 3 In vivo phenotype of animals exposed to hypergravity and/
or vibration 4 days after the exposure. Animals in all groups were
able to regenerate the head (the eyes are indicated with arrow
heads). No alterations are observed between the animals from the
four different conditions. n>10. Scale bar =1 mm.
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effector of the Hippo pathway, involved in tumor progression in
mammals and also in planarians®*®3'. Importantly, we show that yki
is significantly down-regulated in samples exposed to vibration
and 4 g (Fig. 4). Maybe the most important result is that four days
after the exposure the transcriptional levels of some early genes
remained significantly de-regulated in 4 g hypergravity or vibra-
tion alone, and even more so in the samples subjected to
simultaneous exposure to static and dynamic loads. However, in
the latter samples the levels of de-regulation of fos, were much
lower than the initially very high levels observed in the Oh
samples. It must be also noted that expression levels of piwi, which
is a marker of stem cells, does not change in a significant manner
in any sample. This result suggests that despite the deregulation
of the genes required to respond to stimulus, the organism is able
to maintain a stable population of stem cells, which also agrees
with the observation that planarians can regenerate properly.

Overall, these results indicate that exposure to static and
dynamic loads, similar to the ones experienced during a rocket
launch produces a high impact in the transcriptional regulation of
genes required to properly respond to any injury. Furthermore,
the deregulation is reinforced when both elements, hypergravity
and vibration, are applied simultaneously, as it occurs during
launch. Importantly, the deregulation of the transcripts occurs
immediately after the exposure and persists throughout the
following days.

DISCUSSION

Although planarians regenerate an apparent proper head, our
results indicate that short exposures to hypergravity and vibration
do elicit important transcriptional changes at a genetic level. The
deregulation of the early response genes at 0 h indicates that the
cells are sensing the ‘stressing’ mechanical stimulus applied and
respond by regulating genes that control essential cellular
processes as proliferation and cell death. Importantly, although
hypergravity or vibration alone already produce transcriptomic
alterations, the simultaneous application of both for several
minutes produces an even higher alteration of the transcriptional
levels of the genes analyzed. The high up-regulation of fos, an
oncogene involved in the control of cell death in all animal
species®?, indicates the profound effects that this treatment
produces in cells. Even more important is the finding that 4 days
after returning the animals to normal 1g conditions the
transcriptional levels of some genes analyzed do not reach basal
levels. In fact, egr-1, and fos show a transcriptional alteration that is
inverse with respect to the samples at 0 h, which could indicate
that a rebound effect is occurring. Hypergravity or vibration alone

4d after exposure

B runt1
Bl egr
Il fos
il jnk
Ea yki
B piwi

Fig.4 gPCR analysis of planarians exposed to vibration or/and 4 g hypergravity compared to 1 g static controls directly after exposure or
at 4 days post exposure. The mRNA levels of the indicated genes are analyzed with respect to the levels of ura4. Values represent the means
of at least two biological replicates each one with five animals. Error bars represent standard deviation. Data was analyzed by two-sided

Student’s t-test. *p < 0.05; **p < 0.01; ***p < 0.001.
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are also not completely recovered at 4 days. It must be stressed
that these alterations are observed in a context of a “whole
animal”. Thus, the sustained activation of the early response
genes, which main function is to control apoptosis, stem cell
proliferation, and differentiation can have an impact in the cell
renewal of the organisms affected. The early response genes (c-
myc, c-fos) expression after launch-related vibrations was also
identified by Tjandrawinata and colleagues®® where higher levels
of both genes were reported 30 min after exposure to a one-axis
simulated space shuttle launch (2 min 7.83 G,,,s followed by 6 min
at 4.098 G,,s). However, in that cell monolayer in vitro experiment
this increase disappeared after 3 h. Using a whole animal like a
planarian provides a more realistic situation where we do not see
a recovery even after 4 days.

The study by Kumei and coworkers®* was one of the very first
published experiments that explored the role hypergravity on the
expression of early response genes such as c-fos, c-myc, and c-myb.
Hela cells were exposed for 2-4 days to either 18, 35 of 70 g and
only
c-myc showed an increase in expression. In another study, c-fos
expression also increased, gradually, in an MC-3T3 bone cell line
exposed for 5 min from 50 to as much as 2000 g, while erg-1 was
more expressed at lower g levels®®. The very first study regarding
c-fos in real microgravity showed an opposite effect of gravity. In
that paper by de Groot and colleagues they reported a strongly
decreased epidermal growth factor (EGF)-induced expression of
the c-fos and c-jun proto-oncogenes in a Maser sounding rocket
experiment®®. In the preparation for a spaceflight experiment we
identified also the possible anabolic effects of vibration providing
the opportunity to elucidate how bone cells (MC-3T3) sense
vibration stress®”. More recent studies explored the effects of
parabolic flight-related vibrations on thyroid cancer cells'® and the
possible anabolic effects in chondrocytes®®,

Comparing launch vibration simulation with in-flight data
Cubano and Lewis concluded that the regulation of heat shock
proteins hsp27 and hsp70 in Jurkat cells was due to spaceflight'®.
However, based on the current data, it might not be excluded that
the effect on hsp27 could also have been generated by the
combined effect of vibration and hypergravity loads during
launch. Such a combined test was not performed in that study.
In spaceflight experiments, the interest is not generally the effect
of the launch, but the effect of microgravity specifically. However,
the effect of the launch most likely affects the parameters during
the next hours or even days. Thus, understanding what happens
during the launch is required to optimize the experimental
parameters.

Overall, our results indicate that a relatively short exposure to
hypergravity and / or vibration can elicit short-term but also long-
lasting cellular responses on a genetic and likely proteomic level.
Even if effects of either static g loads or vibration might have no or
little effect separately, paradigms such as stochastic residence
might transpose sub-threshold responses to a relevant level*>°, It
would be interesting to explore the nature of the cellular or tissue
responses due to vibration. Would the effects be the result of
organelle intracellular replacements like the relatively heavier
nucleus®” or, also depending on the compliance of the experiment
volume, a deformation of the whole-cell/tissue body due to
inertial gravitational shear*'. In this respect, it is worth mentioning
that yki as the effector of the Hippo pathway, which is involved in
force transduction of the cellular environment to the nucleus. It
has been demonstrated that a direct force on to the cell leads to
nuclear translocation of YAP which is the yki homolog in
vertebrates*?,

The better experimental design in gravity-related space
research is to apply an on-board 1g centrifuges to control for
any spaceflight related effects such as radiation and launch®.
However, based on current results also the factor time, which is
required to fade out launch effects, should also be taken into
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account by either a delay the in-flight start of an experiment or an
implementation of the launch fade out phase by increasing the
total active experiment time. This can be combined with the well-
established reduction of cellular activity by lowering temperature
or reducing medium serum content. During a pilot study in
preparation of a sounding rocket study we exposed primary
osteoblast to an 11 g launch simulation in the MidiCAR centrifuge
at 37°C. It was shown that cells do sense this profile by
phosphorylation of some proteins which could be stopped by
‘launching’ at 8 °C**,

This study demonstrated the importance of pre-flight tests
especially related to launch effects for life sciences/biological
experiments. It might be argued that, especially for institutionally
funded basic research experiments, one needs, as part of the
qualification process, to demonstrate how a particular experiment
responds to launch loads (static, dynamic, and combined) and
how this relates to the initiation of the experiment while in
microgravity. This is especially true for short-duration microgravity
experiments that make use of platforms such as parabolic
aircraft®®, drop towers*® or sounding rockets but also the more
recent commercial suborbital platforms such as the Blue Origin
New Shepard®, future Virgin Galactic White Knight*®, Dream
Chaser from Sierra Nevada Company®® or the upcoming Space
Rider from the European Space Agency>’. It is even more alarming
since our data showed that launch effects are visible directly after
lift off until even 4 days post exposure. This indicates that
although systems like the Russian Soyuz or the Space-X Dragon
are now sometimes coupling to the International Space Station
within a day, which has always been favored by the life sciences
community, an experiment might still need more time to
overcome the launch stress effects before a clear and reliable
actual microgravity experiment can be initiated.

We may conclude that in this study, where we exposed whole
animals to static g-loads and, for the first time, also used
combined launch effects with an actuator located inside a large
centrifuge, demonstrated the long-lasting effects of launch loads
with a limited number of early response genes. Future experi-
ments should explore the full spectrum of genes and proteins
relevant for the research of a particular cell, tissue or animal. Also,
we applied a generic launch vibration profile in only one axis,
while profiles of the various rockets are different and the location,
fixation and/or stowage of the samples during launch are very
relevant parameters for the actual vibration profile.

We showed that launch effects and especially the combined
static g-loads and dynamic vibration, based on our findings
concerning expression of five early response gene’s expressions
can be more important, and long lasting than previously expected.
Ideally, any space-flight experiment should be exposed to such
launch loads and these tests should be made part of the standard
flight-related requirements tests an experiment has to go through
before an actual study in real microgravity may be performed and
produce relevant results.

METHODS

Planarian culture and exposure to hypergravity and/or vibration

Asexual planarians from a clonal strain of Schmidtea mediterranea BCN-10
were maintained at 20 °C in planarian artificial medium (PAM) water, as
previously described”'. Animals were fed with veal liver and starved for at
least one week before beginning the experiments. Animals were
transported from Barcelona/Spain to ESA-ESTEC Noordwijk/the Nether-
lands in PAM water using 50 mL falcon tubes.

To study the regeneration process in planarians after exposure to
hypergravity and/or vibration animals were amputated (head and tail) one
day before the exposure. The day after trunk fragments were loaded into
T25 flasks (day 1 of regeneration) (Fig. 1a). Four groups of animals were
analyzed: planarians at 1 g without vibration (control), planarians at four
times Earth gravity static accelerations without vibration (4 g), planarians at
1 g with dynamic g-loads (vibration), and planarians at 4 g with vibration
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5
(Fig. 1B). Three flasks per condition (three replicates), were included with 5 study we applied that same profile to test the biological responses. The
planarians per flask. RNA was extracted from those animals immediately total load experienced by the samples is 11.3 G5 in the frequency range
after the exposure (0 h) and 4 days after (4d). between 20 and 2000 Hz (Table 1, Fig. 5b). These vibration levels are also

comparable to the acceptance levels profile of the Generalized Random
Vibration Test Levels Components (GELV) for payloads of 22.7 kg (50-Ib) or

Simulation of rocket launch less with have an overall G,ms of 10.0 as are set in NASA standards™*.

Planarians were amputated (head and tail) one day before the exposure to The vibration was applied for only one of the three orthogonal axes and
launch-related mechanical loads. The day after, trunk fragments were was slightly modified because the shaker could not output the force
!oaded into 725 f.lgsks (day 1 of rggeneratlon). Thrge 125 flasks were required by the profile at higher g levels. In the range from 150 to 600 Hz
included per condition, and 5 planarians were loaded into each flask. The we did lower the power from 0.16 to 0.13 g/Hz. The force was lessened by
setup includes the Large Diameter Centrifuge (LDC) (Fig. 5a ref. *?), to ~20 Newton. Due to the unorthodox application of an actuator inside a
simulate hypergravity (4 g) and a vibration system, which was bolted to the centrifuge, and despite the slight adaptation we made, the high vibration

floor plate of one of the gondolas (Fig. 2). The hardware components of
the set-up included the actual shaker model 2075E, a linear power
amplifier model 2050E09 both from The Modal Shop (TMS, Cincinnati, OH,
USA), a front-end 8-channel data acquisition system (LMS / Siemens
SCADAS), a cooling system (Asynchronous Motors Cl. 71\2), and a laptop to
control the shaker with the companies dedicated control software. To fix
the flasks with planarians on the shaker, an aluminum plate wrapped in a
thin rubber sheet was used. The rubber sheet impeded the movement of Planarian RNA extraction

at 49 ran for 240s (4min) at maximum intensity and stopped
automatically due to reaching the over-heating settings of the system.
We immediately restarted the actuator set-up to run for another 270s
(4.5min) in order to complete the full launch time simulation of
8.5 minutes.

the flasks along the metal plate. Planarians were subjected to vibration and To perform the transcriptomic analysis through quantitative real-time PCR
static hypergravity separately or simultaneously. Four groups of animals (gPCR) analysis, total RNA was extracted from the four groups of planarians
were analyzed: planarians at 1g without vibration (control), planarians at immediately (0 h) and after four days after exposure (4d). Three replicates
four times Earth’s gravitational force static accelerations without vibration each containing a pool of five animals were analyzed per condition. RNA
(4 g), planarians at 1g with dynamic g-loads (vibration), and planarians at was extracted with Trizol (Invitrogen, Carlsbad, CA, USA), following the
4 g with vibration. The parameters used to simulate launch vibration are manufacturer’s instructions. RNA was quantified with a Nanodrop ND-1000
shown in Fig. 5b and Table 1. spectrophotometer (Thermo Scientific, Waltham, MA, USA) and cDNA was

The applied vibration profile was based on the Code of Federal synthesized using SuperScript™ lll Reverse Transcriptase (Thermo Scientific

Regulations (CRF) .of. the.Ofﬁce of the Fedgral Register National Archives Waltham, MA, USA) following the manufacturer’s instructions.
and Record Administration, for launches into space from the Federal

Aviation Administration (FAA)>>. These random vibration tests are usually L .

performed at the payload level of assembly for proto-flight hardware that is Quantitative real-time PCR

subjected to a random vibration test to verify its ability to survive the lift-off Quantitative PCR’s were performed using Power SYBR™ Green PCR Master
environment and also to provide a final workmanship vibration test. In this Mix (Applied Biosystems) on 7500 Real-Time PCR Systems (Applied
a b Planarian Dynamic g-Load Launch Profile

0.1

Acceleration Spectral Density (ASD, g/Hz)

10 100 1000
Frequency (Hz)

Fig. 5 The six red-colored swing-out and one central gondola from the 8-meter diameter Large Diameter Centrifuge (LDC). a Both
centrifuges are currently located at the technology center (ESTEC) from the European Space Agency ESA) in Noordwijk, the Netherlands. b The
Acceleration Spectral Density (ASD) of the random vibration test specification profile from the 20 to 2000 Hz range as used for exposing
planarians to a simulated launch load. This profile is based on the minimum workmanship levels for random vibration testing®®. The
equipment set-up was divided over two gondolas where the actual actuator was placed in the outer gondola (see for further details Fig. 2).

Table 1. Vibration parameters, frequency range and power spectral density, as actually used in the dynamic g exposure of planarians for a period of
8.5 min.

Maximum Maximum Maximum Maximum force Frequency (Hz) Slope Amplitude
acceleration (g) velocity (m/s) displacement (mm) (N) (dB/Oct) (gz/Hz)
High 48 0.378 1.42 213 20 0.021
Vibration
20-150 3 0.130
150-600 -6 0.130
600-2000
2000 0.014
Overall G = 11.28
From ref. >3
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Table 2. Sequence of primers used in the qPCR experiments.

Genes  Primers (5'—3/)

runt1 TCCTATCGGAGACGGACA GCTTCACCGTTGACGAGT
egrl GTTAGCGTGCCATTTTTGT AGCTGCATTGATAAGGCTTC
fos GAACGACGCCAATTTCAG CGCTTCGAGTTGTTTGAGT
jnk TCAACGAATCTCGGTCG AGTGAGCTCTCTTTCATCAACC
yorkie ATTTGTGTCGACTCCATCC CCATTAAGACATGTCGACAAG
piwi ATCCTATGGCACCGAATGAG CCCTTATGCACCTTTCCAAC

Biosystems) by denaturation at 95 °C for 10 min, followed by 40 cycles at
95 °C for 15 s and 60 °C for 40 s. Melting curve analyses were performed to
verify the amplification specificity. Relative quantification of gene
expression was performed according to the AA-CT method>® with at least
two technical replicates per sample and at least two biological replicates.
The measured C; values were normalized to the ubiquitously expressed
control mRNA smed-ura4. Student t-test was used for differential
expression analysis between samples. The set of used primers in gPCR
analysis in provided in Table 2.

Reporting summary

Further information on experimental design is available in the Nature
Research Reporting Summary linked to this paper.

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Received: 30 March 2020; Accepted: 11 August 2020;
Published online: 08 September 2020

REFERENCES

1. Harris, B. et al. International Space Station Utilization and Advancing Research in
Space. In AIAA SPACE 2013 Conference and Exposition. San Diego, CA, US.A,,
American Institute of Aeronautics and Astronautics. (2013).

2. Chang, Y.-W. The first decade of commercial space tourism. Acta Astronaut. 108,
79-91 (2015).

3. Moro-Aguilar, R. The new commercial suborbital vehicles: an opportunity for
scientific and microgravity research. Microgravity Sci. Technol. 26, 219-227 (2014).

4. Cottin, H. et al. Space as a tool for astrobiology: review and recommendations for
experimentations in earth orbit and beyond. Space Sci. Rev. 209, 83-181 (2017).

5. Huang, B, Li, D. G, Huang, Y. & Liu, C. T. Effects of spaceflight and simulated
microgravity on microbial growth and secondary metabolism. Mil. Med. Res 5, 18
(2018).

6. Horneck, G., Klaus, D. M. & Mancinelli, R. L. Space microbiology. Microbiol. Mol.
Biol. Rev. 74, 121-156 (2010).

7. Becker, J. L. & Souza, G. R. Using space-based investigations to inform cancer
research on Earth. Nat. Rev. Cancer 13, 315-327 (2013).

8. Beysens, D. A. & van Loon, J. in Generation and Applications of Extra-Terrestrial
Environments on Earth (eds Daniel A Beysens & JJWA van Loon) Ch. 1, 5-9 (Rivers
Publishers, 2015).

9. Najrana, T. & Sanchez-Esteban, J. Mechanotransduction as an adaptation to
gravity. Front. Pediatr. 4, 140 (2016).

10. Manzano, A. et al. Novel, Moon and Mars, partial gravity simulation paradigms
and their effects on the balance between cell growth and cell proliferation during
early plant development. npj Microgravity 4, 9 (2018).

11. Fitzgerald, J. & Hughes-fulford, M. Mechanically induced c-fos expression is
mediated by cAMP in MC3T3-E1 osteoblasts. FASEB J. 13, 553-557 (1999).

12. Kopp, S. et al. Thyroid cancer cells in space during the TEXUS-53 sounding rocket
mission-The THYROID Project. Sci. Rep. 8, 10355 (2018).

13. Ulbrich, C. et al. Differential gene regulation under altered gravity conditions in
follicular thyroid cancer cells: relationship between the extracellular matrix and
the cytoskeleton. Cell Physiol. Biochem. 28, 185-198 (2011).

npj Microgravity (2020) 25

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.
41.

42.

43.

. Baert, P. et al. The potential (radio-)biological impact of launch vibration. Acta

Astronaut. 58, 456-463 (2006).

. Cubano, L. A. & Lewis, M. L. Effect of vibrational stress and spaceflight on reg-

ulation of heat shock proteins hsp70 and hsp27 in human lymphocytes (Jurkat). J.
Leukoc. Biol. 69, 755-761 (2001).

. Wehland, M. et al. The impact of altered gravity and vibration on endothelial cells

during a parabolic flight. Cell Physiol. Biochem. 31, 432-451 (2013).

. Gentile, L, Cebria, F. & Bartscherer, K. The planarian flatworm: an in vivo model

for stem cell biology and nervous system regeneration. Dis. Model Mech. 4, 12-19
(2011).

. Sald, E. et al. Planarian regeneration: achievements and future directions after 20

years of research. Int. J. Dev. Biol. 53, 1317-1327 (2009).

. Baguna, J. The planarian neoblast: the rambling history of its origin and some

current black boxes. Int. J. Dev. Biol. 56, 19-37 (2012).

Rink, J. C. Stem cell systems and regeneration in planaria. Dev. Genes evolution
223, 67-84 (2013).

Felix, D. A. et al. It is not all about regeneration: Planarians striking power to stand
starvation. Semin. Cell. Dev. Biol. 87, 169-181 (2019).

Adell, T., Salo, E., van Loon, J. J. & Auletta, G. Planarians sense simulated micro-
gravity and hypergravity. Biomed. Res. Int 2014, 679672 (2014).

de Sousa, N. et al. Transcriptomic analysis of planarians under simulated micro-
gravity or 8 g demonstrates that alteration of gravity induces genomic and
cellular alterations that could facilitate tumoral transformation. Int. J. Mol. Sci. 20,
720 (2019).

Gorgiladze, G. I. Regenerative capacity of the eye of Helix lucorum in a 163-day
orbital flight aboard the International Space Station. Dokl. Biol Sci. 440, 316-319
(2011).

Lu, H. M. et al. Effects of large gradient high magnetic field (LG-HMF) on the long-
term culture of aquatic organisms: planarians example. Bioelectromagnetics 39,
428-440 (2018).

Morokuma, J. et al. Planarian regeneration in space: persistent anatomical,
behavioral, and bacteriological changes induced by space travel. Regeneration 4,
85-102 (2017).

Sandmann, T., Vogg, M. C, Owlarn, S., Boutros, M. & Bartscherer, K. The head-
regeneration transcriptome of the planarian Schmidtea mediterranea. Genome
Biol. 12, R76 (2011).

Wenemoser, D., Lapan, S. W., Wilkinson, A. W., Bell, G. W. & Reddien, P. W. A
molecular wound response program associated with regeneration initiation in
planarians. Genes Dev. 26, 988-1002 (2012).

Almuedo-Castillo, M. et al. JNK controls the onset of mitosis in planarian stem
cells and triggers apoptotic cell death required for regeneration and remodeling.
PLoS Genet. 10, e1004400 (2014).

de Sousa, N., Rodriguez-Esteban, G., Rojo-Laguna, J. I, Sald, E. & Adell, T. Hippo
signaling controls cell cycle and restricts cell plasticity in planarians. PLoS Biol. 16,
2002399 (2018).

Zanconato, F., Cordenonsi, M. & Piccolo, S. YAP/TAZ at the roots of cancer. Cancer
Cell 29, 783-803 (2016).

Gozdecka, M. & Breitwieser, W. The roles of ATF2 (activating transcription factor 2)
in tumorigenesis. (Portland Press Limited, 2012).

Tjandrawinata, R. R, Vincent, V. L. & Hughes-Fulford, M. Vibrational force alters
mRNA expression in osteoblasts. FASEB J. 11, 493-497 (1997).

Kumei, Y., Nakajima, T., Sato, A., Kamata, N. & Enomoto, S. Reduction of G1 phase
duration and enhancement of c-myc gene expression in Hela cells at hyper-
gravity. J. Cell Sci. 93, 221-226 (1989).

Nose, K. & Shibanuma, M. Induction of early response genes by hypergravity in
cultured mouse osteoblastic cells (MC3T3-E1). Exp. Cell Res. 211, 168-170 (1994).
de Groot, R. P. et al. Microgravity decreases c-fos induction and serum response
element activity. J. Cell Sci. 97, 33-38 (1990).

Bacabac, R. G. et al. Bone cell responses to high-frequency vibration stress: does
the nucleus oscillate within the cytoplasm? FASEB J. 20, 858-864 (2006).
Lutzenberg, R. et al. Pathway analysis hints towards beneficial effects of long-
term vibration on human chondrocytes. Cell. Physiol. Biochem. 47, 1729-1741
(2018).

Bacabac, R. G, Van Loon, J. J,, Smit, T. H. & Klein-Nulend, J. Noise enhances the
rapid nitric oxide production by bone cells in response to fluid shear stress.
Technol. Health Care 17, 57-65 (2009).

Van Loon, J. J. Micro-gravity and mechanomics. Gravit. Space Res. 20, 3-17 (2007).
van Loon, J. J,, Folgering, E. H., Bouten, C. V., Veldhuijzen, J. P. & Smit, T. H. Inertial
shear forces and the use of centrifuges in gravity research. What is the proper
control?. J. Biomech. Eng. 125, 342-346 (2003).

Elosegui-Artola, A. et al. Force triggers YAP nuclear entry by regulating transport
across nuclear pores. Cell 171, 1397-1410 (2017).

Van Loon, J. in Biology in Space and Life on Earth. Effects of Spaceflight on Bio-
logical Systems (ed. E. Brinckmann) 17-32 (John Wiley and Sons Ltd., 2007).

Published in cooperation with the Biodesign Institute at Arizona State University, with the support of NASA



44. Guntermann, A. Untersuchungen zelluléirer Proteinphosphorylierungsmuster pri-
mdrer Osteoblasten nach Hypergravitationsbelastung PhD thesis, Philipps-Uni-
versitat Marburg, (2002).

45. Pletser, V. & Kumei, Y. in Generation and Applications of Extra-Terrestrial Environ-
ments on Earth (eds Daniel, A. B. & Jack, JWA v. L) 61-73 (Rivers Publishers, 2015).

46. von Kampen, P., Kaczmarczik, U. & Rath, H. J. The new drop tower catapult
system. Acta Astronaut. 59, 278-283 (2006).

47. Blue Origin. New Shepard Payload User’'s Guide. Revision E NSPM-MADO002. Texas,
USA, Blue Origin Texas, LLC. 98 (2018).

48. Virgin Galactic. SpaceShipTwo: An Introductory Guide for Payload Users. Santa Fe,
New Mexico, USA, Virgin Galactic. Revision Number: WEB005:34 (2016).

49. Taylor, F. W. et al. Challenges and Opportunities Related to Landing the Dream
Chaser® Reusable Space Vehicle at a Public-Use Airport. Space Traffic Manage-
ment Conference, Embry-Riddle Aeronautical University, Daytona Beach, FL, USA
(2014).

50. Fedele, A. et al. The Space Rider Programme: end user's needs and payload
applications survey as driver for mission and system definition. Acta Astronautica
152, 534-541 (2018).

51. de Sousa, N. & Adell, T. Maintenance of Schmidtea mediterranea in the Labora-
tory. Bio-Protocol. 8, 1-16 (2018).

52. van Loon, J. J. et al. The large diameter centrifuge, LDC, for life and physical
sciences and technology. Life in Space for Life on Earth, Anger, France, SP-663, ESA
Communication Production Office (2008).

53. Code of Federal Regulations, C. Vol. App. E 667, Table E417.611-661, Minimum
Workmanship (Department of Transportation (DOT)) (2012).

54. NASA, G. S. F. C. in For GSFC Flight Programs and Projects Vol. GSFC-STD-7000A
GSFC-STD-7000A (NASA GSFC Technical Standards Program, Greenbelt, 2013).

55. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-
time quantitative PCR and the 2— AACT method. Methods 25, 402-408 (2001).

ACKNOWLEDGEMENTS

We appreciate the assistance of Mr. Alan Dowson at ESA-ESTEC-TEC-MMG during the
various campaigns. This work was supported by BFU2017-83755-P from Ministerio de
Ciencia, Innovaciéon y Universidades (Spain) and grant 2017SGR-1455 from AQU
(Generalitat de Catalunya) to T.A. and E.S. The study was also possible though an ESA
CORA grant; contract no. 4000109540/13/NL/PG/pt and for JvL via an ESA contract
4000107455/12/NL/PA.

Published in cooperation with the Biodesign Institute at Arizona State University, with the support of NASA

np)

7

N. de Sousa et al.

AUTHOR CONTRIBUTIONS

N.d.S., JIR-L, ES., T.A.: set-up and analyzed the data from the planarian experiments;
G.A.: overall Pl of planarian study; M.C,, J.V.: set-up and operation vibration study; J.J.
W.A.v.L.: initiation of this particular launch load study, set-up and operations of the
LDC centrifuge. All authors discussed the results and revised and edited the paper.

COMPETING INTERESTS

The authors declare no competing interests.

ADDITIONAL INFORMATION

Supplementary information is available for this paper at https://doi.org/10.1038/
s41526-020-00115-7.

Correspondence and requests for materials should be addressed to JJW.A.v.L.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

BY Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2020

npj Microgravity (2020) 25


https://doi.org/10.1038/s41526-020-00115-7
https://doi.org/10.1038/s41526-020-00115-7
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Molecular impact of launch related dynamic vibrations and static hypergravity in planarians
	Introduction
	Results
	Planarians after short-duration vibration and/or 4nobreak&#x02009;nobreakg hypergravity are able to properly regenerate the missing head
	Planarians after short-duration vibration and/or 4nobreak&#x02009;nobreakg hypergravity show a transcriptomic deregulation of genes essential for regeneration

	Discussion
	Methods
	Planarian culture and exposure to hypergravity and/or vibration
	Simulation of rocket launch
	Planarian RNA extraction
	Quantitative real-time PCR
	Reporting summary

	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




