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ABSTRACT
Hypothermic static cold storage and machine perfusion strategies remain the clinical standard of
care for liver graft preservation. Recently, the protection of the mitochondrial function and the ener-
getic levels derived from it has emerged as one of the key points for organ preservation. However,
the complex interactions between liver mitochondrial protection and its relation with the use of sol-
utions/perfusates has been poorly investigated. The use of an alternative IGL-2 solution to Belzer
MPS one for hypothermic oxygenated perfusion (HOPE), as well as in static cold storage, intro-
duce a new kind of perfusate to be used for liver grafts subjected to HOPE strategies, either alone
or in combination with hypothermic static preservation strategies. IGL-2 not only protected mito-
chondrial integrity, but also avoided the mixture of different solutions/perfusates reducing. Thus,
the operational logistics and times prior to transplantation, a critical factor when suboptimal organs
such as donation after circulatory death or steatotic ones, are used for transplantation. The future
challenges in graft preservation will go through (1) the improvement of the mitochondrial status
and its energetic status during the ischemia and (2) the development of strategies to reduce ische-
mic times at low temperatures, which should translate in a better transplantation outcome.
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Table 1. Composition of IGL-2 and Belzer MPS solutions

Belzer-MPS IGL-2

Electrolytes (mmol/L)
K+ 25 25
Na+ 120 125
Mg2+ 5 5
SO4 2- 5 5
Ca+ 0.5
Zn2+ 0.091
Buffers (mmol/L)
Phosphate 25 25
HEPES 10
Histidine 30
Impermeants (mmol/L)
Mannitol 30 60
Lactobionic acid 100
Dextrose 10
Ribose 5
Gluconate 85
Colloids (g/L)
Hydroxyethyl starch 50
Polyethylene glycol−35 5
Antioxidants (mmol/L)
Glutathione 3 9
Metabolic precursors (mmol/L)
Adenosine 5
Adenine 5
NaNO2 (nmol/L) 50
pH 7.4 7.4
Osmolarity (mosmol/L) 320 360
Viscosity (cP) 2.6 1.7

HEPES, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid.
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INTRODUCTION

TRADITIONALLY, liver graft preservation strategies have
been based in static cold storage (SCS) [1,2], but more

recently, a variety of dynamic perfusion techniques using
machine perfusion (MP) strategies in normothermic and hypo-
thermic conditions using the oxygenated perfusion techniques
(hypothermic oxygenated perfusion [HOPE]) [2−9] resulted in
a promising tool to rescue marginal livers, such as the ones pre-
senting with steatosis for transplantation purposes [4,10,11].
Since the first investigations on hepatic perfusion carried out

by Guarrera et al [3] in 2010, the interest has grown in the field
of MP, both for normothermic hepatic perfusion [7,8] and for
HOPE (with less operative complexity than normothermic per-
fusion) [3]. Recent advances have made it a very promising
strategy to increase the donor pool in the face of the pressing
shortage of organs for transplantation [4,10,11].
It is well known that the HOPE benefits are tied to the oxy-

genation of the perfusate, which is responsible of maintaining
the integrity and function of mitochondrial machinery [12], and
this applies either by using HOPE itself or in combination with
SCS using a commercial preservation [13]. Recent investiga-
tions have shown that the emerging interest of mitochondrial
protection during hypothermic graft preservation and its ener-
getic status is growing [14]. In this sense, the induced HOPE
protection mechanisms, defined recently by Schlegel et al [12],
are associated with the sustaining of the mitochondrial state that
contributes to: (1) the prevention of energy breakdown with the
subsequent sustaining of intracellular ATP levels; (2) the pre-
vention of damage-associated molecular pattern formation; and
(3) the induction of underlying mechanisms related to mito-
chondrial repair and endothelial protection. However, the rele-
vance of the interactions between mitochondrial graft
protection and preservation solutions/effluents would need to
be considered further.
In this context, the relevance of mitochondrial consequences

of organ preservation techniques in organ transplantation
should be specially considered in future organ hypothermic
preservation strategies, especially when new solute/effluents
could be a useful tool to increase mitochondrial protection for
the liver graft [14].
The perfusion solutions normally used for HOPE are a modi-

fication of Belzer’s solution (Table 1) used for the static preser-
vation of the graft [2,3], which on one hand contains
hydroxyethyl starch (HES) as an oncotic agent, and on the other
hand, shows a higher decreased K+ concentration than its ana-
logue University of Wisconsin, among other components
(Table 1). It is well reported that HES presence may lead to
hyperaggregability of the red blood cells during static hypother-
mic preservation [15]. HES could also interfere with further
HOPE strategies using Belzer MPS, where the presence of HES
is responsible for increasing the viscosity of the perfusate dur-
ing hypothermic perfusion vs IGL-2 (Table 1). This is espe-
cially relevant for steatotic liver grafts in which the fluid
disturbances due to dynamic of fluids in HOPE [4] may destroy
the luminal sugar thin layer covering liver endothelia, also
known as glycocalyx [16,17]. However, the lower
concentration of K+ in Belzer perfusate seems to be not relevant
to affect to vascular resistance in hypothermic conditions given
that it is well known that perfusates with physiologically low
content prevented the vascular resistance increases when livers
are subjected to cold perfusion [3,18].
Recently, we have proposed the use of IGL-2 solution as a

good alternative to Belzer MPS for HOPE strategies alone or
combined with cold static preservation [19,20] (Table 1). The
substitution of HES by polyethylene glycol 35 (PEG35); as
well as the presence of glutathione (among other components)
constitute the main difference between IGL-2 and Belzer MPS;
glutathione content in IGL-2 (9 mM) is responsible for a higher
antioxidant capacity compared with Belzer MPS (3 mM gluta-
thione), which is translated as an enhanced protection against
radical oxygen species formation and their potential damage
against mitochondria in hypothermic static preservation fol-
lowed by HOPE strategies [19−20], where the transient oxy-
genation sustains the liver mitochondrial machinery at basal
levels. We compared Sprague Dawley rats’ liver grafts sub-
jected 1h HOPE after 7 hours SCS in both solutions (Belzer
MPS and IGL-2)[20]. No significant differences in transami-
nases (alanine transaminase/aspartate transaminase) were
found. However, significant lower levels of glutamate dehydro-
genase (as a mitochondrial damage marker), were found in the
IGL-2 rats’ group vs Belzer MP, which were concomitant with



Scheme 1. IGL 2 Mechanisms of liver
graft protection suggested for HOPE and
hypothermic SCS preservation. The use of
IGL-2 facilitates the logistics of using differ-
ent solutions/perfusates besides favouring
mitochondrial function, NO generation
(vasodilation agent) and diminishing the
disturbances associated with low viscosity
that affect to endothelial glycocalyx.
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higher levels of the mitochondrial enzyme aldehyde dehydroge-
nase 2 (ALDH2). These results are in agreement with the results
of Schlegel et al [12], which confirm that the quality and protec-
tion of the mitochondria will greatly determine the capability of
the graft to recover from ischemia-reperfusion injury insult,
although further post-transplant studies are needed.
In addition, it is well known that in glutathione-based solu-

tions, such as Belzer MPS and IGL-2, the presumed vs actual
oxidation of glutathione over time is a key point that needs to
be carefully overseen [21]. This is especially relevant when the
hypothermic storage conditions of the preservation solution are
not maintained properly and according to manufacturer instruc-
tions. To avoid the oxidation of the glutathione, additional fac-
tors such as high-quality package or the maintenance of the
cold chain during transport are of utmost importance. However,
these points are only valid if the initial quantity of glutathione is
the optimal one, which is a differential point between original
solutions and white brands. [22].
The use of IGL-2 in hypothermic preservation strategies also

prevents the generation of aldehydes such as 4-hydroxynonenal
through the activation of ALDH2 and its related protective
mechanisms [13,19,20], contributing to HOPE benefits when
PEG35 is used (Scheme 1). Scheme 1 summarizes the potential
protective mechanisms of PEG35 solutions/perfusate in hypo-
thermic static preservation [13] and HOPE [19,20] for liver
transplantation purposes.
Scheme 1. IGL-2 mechanisms of liver graft protection sug-

gested for HOPE and hypothermic SCS preservation. The use
of IGL-2 facilitates the logistics of using different solutions/per-
fusates besides favoring mitochondrial function, nitric oxide
generation (vasodilation agent), and diminishing the disturban-
ces associated with low viscosity that affect to endothelial gly-
cocalyx.
In accordance with the relevant investigations of Schlegel

et al [12] and Horv�ath et al [14], we reported for the first time
the benefits of using a novel IGL-2 solution for a combined use
of SCS and HOPE strategies to rescue marginal livers, facilitat-
ing the logistics and avoiding the mixture of preservation
solutions/perfusates for transplantation purposes. With this in
mind, the use of a unique solution, such as IGL-2, for static and
HOPE preservation strategies, could also be a useful tool in
combination with “ex vivo” liver splitting and HOPE strategies,
as recently reported by Mabrut et al [23].
In conclusion, the actual strategies used in liver graft hypo-

thermic preservation suggest that the use of and unique preser-
vation solution for the protection of mitochondrial functions
should be considered as a priority in the actual studies of liver
preservation solutions [24]. Future investigations on the mito-
chondrial protection induced by polyethylene glycols need to
be explored in depth.
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