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1. Introduction

Dolbeault cohomology is one of the most fundamental analytic invariants of complex 
manifolds, relating holomorphic complexity with topology by means of the Frölicher 
spectral sequence. The different incarnations of Dolbeault cohomology through differen-
tial forms, harmonic subspaces of forms, and sheaf theory have made it a powerful and 
central tool in the study, classification, and deformation theory of complex structures, 
both in differential geometry and in algebraic geometry.

Almost complex geometry encompasses complex, symplectic, and Kähler geometry 
within a quite general differential framework. It also arises naturally in theoretical physics 
via the consideration of general geometries in string theory and supersymmetry. An 
almost complex structure on a smooth manifold M is an endomorphism of the tangent 
bundle, J : TM → TM , squaring to minus the identity, J2 = −I. To such a structure, 
one associates a tensor field NJ , called the Nijenhuis tensor. The celebrated Newlander-
Nirenberg theorem states that NJ ≡ 0 if and only if J is actually a complex structure, 
thus furnishing the manifold with a holomorphic atlas. In this case, the almost complex 
structure is said to be integrable.

In real dimension four, there are many examples of almost complex manifolds that do 
not admit integrable structures. In this case, obstructions are attained using a variety of 
tools, ranging from the Enriques-Kodaira classification of complex surfaces and Chern 
number inequalities, to gauge theory via Seiberg-Witten invariants. In real dimensions 
six and greater, it is not known whether there exists any almost complex manifold not 
admitting an integrable structure. On the other hand, any symplectic manifold admits 
a compatible almost complex structure, which in the integrable case, defines a Kähler 
structure.

There are some relatively recent cohomological approaches for understanding the prop-
erties of almost complex manifolds. Motivated by Donaldson’s open question on tamed 
versus compatible symplectic forms [16], Li and Zhang [29] introduced the so-called pure-
and-full cohomologies, as subgroups of the de Rham cohomology of an almost complex 
manifold, which have been studied by many others (see for example [17,1,23]). Another 
notable development is the Hodge theory of Tseng and Yau [41,42], who introduced new 
cohomology theories for symplectic manifolds. That theory has resurrected the classical 
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harmonic symplectic theory introduced by Brylinski [3]. Related work has been devel-
oped in the setting of generalized complex geometry, a field introduced by Hitchin [25]
and further explored by Gualtieri [22], which contains complex and symplectic structures 
as extremal special cases. In this context, there is a naturally defined Dolbeault coho-
mology extending that of complex manifolds ([4,5]). However, for symplectic manifolds, 
this recovers ordinary de Rham cohomology. Additional progress has been made outside 
the Kähler world by Verbitsky’s work on a harmonic theory for nearly Kähler manifolds 
[43,44]. As we will see below, that approach, deriving local identities for differential oper-
ators on nearly Kähler manifolds, is also a useful tool to study the Dolbeault cohomology 
defined here. It has also strongly influenced our work on harmonic symmetries for almost 
Kähler manifolds [7], further developed by Tardini and Tomassini in [40], and influenced 
the complementary Hermitian case presented by the second author in [45].

The cohomological approaches mentioned above, while well attuned to studying var-
ious geometric structures, such as compatible metrics or symplectic structures, do not 
fulfill the natural desire for a cohomological theory of all almost complex manifolds that 
both captures topological features and reduces to the known Dolbeault theory in the in-
tegrable case. In this paper, we introduce a natural extension of Dolbeault cohomology to 
all almost complex manifolds and establish some first foundational results concerning this 
invariant. These include a Frölicher-type spectral sequence, an approach via harmonic 
theory, as well as applications to nilmanifolds, compact Lie groups, and nearly Kähler 
manifolds, opening up the door for the development of Dolbeault-based approaches to 
the study, classification, and deformation of almost complex manifolds.

The extension of an almost complex structure J : TM → TM to the complexified 
tangent bundle of a manifold M allows for a decomposition into ±i-eigenspaces. This 
decomposition induces a bigrading on the complex de Rham algebra of differential forms

Ak
dR(M) ⊗R C =

⊕
p+q=k

Ap,q.

In the integrable case, the differential decomposes as d = ∂̄ + ∂ where ∂̄ has bidegree 
(0, 1) and ∂ is its complex conjugate. The equation d2 = 0 implies that ∂̄2 = 0 and hence 
one defines Dolbeault cohomology as the cohomology with respect to the operator ∂̄. In 
the general non-integrable case, there are two additional terms

d = μ̄ + ∂̄ + ∂ + μ

arising from the Nijenhuis tensor, where μ̄ has bidegree (−1, 2) and μ is its complex 
conjugate. The equation d2 = 0 decomposes into a set of seven equations, including 
μ̄2 = 0 as well as ∂̄μ̄ + μ̄∂̄ = 0. In this case, ∂̄2 �= 0, and so ∂̄-cohomology is not well-
defined. However, the above two equations allow one to define the μ̄-cohomology vector 
spaces

Hp,q
μ̄ (M) := Ker (μ̄ : Ap,q −→ Ap−1,q+2)

p+1,q−2 p,q
,
Im(μ̄ : A −→ A )
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and imply that ∂̄ induces a morphism of bigraded vector spaces

∂̄ : Hp,q
μ̄ (M) → Hp,q+1

μ̄ (M).

Furthermore, the equation μ̄∂ + ∂μ̄ + ∂̄2 = 0, which also follows from d2 = 0, implies 
that ∂̄ squares to zero on H∗,∗

μ̄ (M). We define the Dolbeault cohomology of M by

Hp,q
Dol(M) := Hq(Hp,∗

μ̄ (M), ∂̄).

This is a new invariant for almost complex manifolds which is functorial with respect 
to differentiable maps compatible with the almost complex structures. It generalizes 
the Dolbeault cohomology of complex manifolds, since in the integrable case, for which 
μ̄ ≡ 0, the cohomology H∗,∗

μ̄ (M) is the space of all forms. The notion of Hodge number 
then makes sense in the almost complex setting, whenever Dolbeault cohomology is 
finite-dimensional.

A simple example involving a well-known character, the Kodaira-Thurston manifold, 
indicates the potential of this invariant. Recall this is a compact 4-dimensional manifold 
admitting both complex and symplectic structures, but not in a compatible way. As 
we show below, any left-invariant almost complex structure on the Kodaira-Thurston 
manifold has one of the following Hodge diamonds for the left-invariant Dolbeault co-
homology, where the diamond on the left corresponds to integrable structures while the 
one on the right corresponds to non-integrable ones. In particular, the Hodge diamond 
classifies integrability:

1
2 1

1 2 1
1 2

1

1
2 1

0 4 0
1 2

1

A quick inspection on the above diamonds shows that, in contrast with the complex 
setting, Dolbeault cohomology is not upper semi-continuous for small deformations from 
integrable to non-integrable structures. This behavior indicates we should not expect 
Dolbeault cohomology of almost complex manifolds to enjoy all the known good prop-
erties that are satisfied in the integrable case.

As another important example, while the Frölicher spectral sequence of any com-
pact complex surface degenerates at the first page, this is not the case for compact 
4-dimensional almost complex manifolds. An example is given below by the filiform nil-
manifold, a compact 4-dimensional manifold not admitting any integrable structure. 
Therefore, in the case of compact almost complex 4-manifolds, degeneration of the 
Frölicher spectral sequence may be understood as a new obstruction to integrability.
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To provide some further context for the developments in this paper, we recall that 
in 1954 Hirzebruch asked a series of fundamental questions related to the topology and 
geometry of smooth and complex manifolds [24]. Among these is Problem 20, attributed 
to Kodaira and Spencer, which concerns Hermitian structures on almost complex man-
ifolds, as we next explain. For any choice of compatible metric on an almost complex 
manifold, one can define the ∂̄-Laplacian Δ∂̄ using ∂̄ and its formal adjoint ∂̄∗. As noted 
by Hirzebruch in [24], the ∂̄-Laplacian is elliptic even in the non-integrable case. In par-
ticular, for any compact almost complex manifold with an almost Hermitian structure, 
one can consider the finite-dimensional spaces Hp,q

∂̄
:= Ker (Δ∂̄) ∩ Ap,q of ∂̄-harmonic 

forms and the numbers hp,q

∂̄
:= dimHp,q

∂̄
. In the integrable setting, these are just the 

Dolbeault numbers, and so are metric-independent. Hirzebruch writes:

Is hp,q

∂̄
independent of the choice of the Hermitian structure? If not, give some other 

definition of these numbers which depend only on the almost-complex structure, and 
which generalizes the numbers hp,q

∂̄
= dimHp,q

∂̄
for a compact complex manifold.

In 2013, Kotschick provided an updated account of Hirzebruch’s problem list [28]. 
On Problem 20, Kotschick writes “There seems to have been no progress at all on this 
problem, which asks for a development of harmonic Dolbeault theory on arbitrary al-
most complex manifolds”. The first part of Hirzebruch’s question has been very recently 
answered negatively by Holt and Zhang in [26]. Specifically, they show that there is an 
almost complex structure on the Kodaira-Thurston manifold such that h0,1 varies with 
different choices of Hermitian metrics. The Dolbeault cohomology theory introduced in 
the present paper settles the second part of Hirzebruch’s question.

We end this introduction with an overview of the properties and applications of Dol-
beault cohomology for almost complex manifolds that are developed in this paper.

Frölicher spectral sequence. One main feature of Dolbeault cohomology is its relation to 
the Betti numbers via the Frölicher spectral sequence, defined as the spectral sequence 
associated to the column filtration. A key observation of the present work is that one 
may modify the classical Hodge filtration for complex manifolds by taking into account 
the presence of μ̄ and making it compatible with the total differential also in the non-
integrable case. We generalize the results of Frölicher [19] for complex manifolds, by 
showing that the Dolbeault cohomology of every almost complex manifold arises in 
the first stage of the spectral sequence associated to this new Hodge filtration, which 
converges to the complex de Rham cohomology of the manifold (Theorem 3.8):

Hp,q
Dol(M) ∼= Ep,q

1 (M) =⇒ Hp+q
dR (M,C).

Since the new Hodge filtration is compatible with morphisms of almost complex mani-
folds, it follows that the entire spectral sequence is functorial and a well-defined invariant 
of almost complex manifolds. In the integrable case, for which μ̄ ≡ 0, we recover the usual 
Hodge filtration and Frölicher spectral sequence in addition to the usual description of 
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Dolbeault cohomology. Note that the E∞-page gives a natural bigrading on the com-
plex de Rham cohomology of any almost complex manifold, generalizing the existing 
bigrading for complex manifolds.

The existence of a spectral sequence converging to de Rham cohomology allows for 
applications outside Dolbeault cohomology. For instance, in [7] we use this spectral se-
quence to study the numbers

�p,q := dimHp,q
d

of d-harmonic forms of pure bidegree (p, q). These numbers enjoy very special properties 
in the almost Kähler case. We are able to determine them using the fact that they are 
bounded by any page of the spectral sequence in the corresponding bidegree.

Harmonic theory. Via the choice of a Hermitian metric, one may consider the various 
Laplacians Δδ associated to the operators δ = μ̄, ∂̄, ∂, μ̄ or d as well as the corresponding 
spaces of δ-harmonic forms

Hp,q
δ := Ker (Δδ) ∩ Ap,q.

The operators Δ∂̄ , Δ∂ and Δd are elliptic, but Δμ̄ and Δμ are not.
In order to compare Dolbeault cohomology with harmonic forms, we first consider 

the spaces of ∂̄-μ̄-harmonic forms, given by the intersections Hp,q

∂̄
∩Hp,q

μ̄ , which are the 
same as Ker (Δ∂̄ + Δμ̄) ∩ Ap,q. These spaces are finite-dimensional and satisfy Serre 
duality whenever M is compact. They always inject into Dolbeault cohomology and in 
the extremal bidegrees q = 0 and q = m, we obtain isomorphisms

H∗,q
∂̄

∩H∗,q
μ̄

∼= H∗,q
Dol(M).

However, in general this isomorphism is not true in arbitrary bidegrees.
For almost complex manifolds whose μ̄ operator has locally constant rank (so that the 

rank of μ̄ : Ap,q
x → Ap−1,q+2

x at the fibers is constant as a function of x ∈ M) we consider 
an intermediate space as a candidate for describing Dolbeault cohomology purely in 
terms of harmonic forms. This is defined as follows. First, on the space of μ̄-harmonic 
forms there is an operator

∂̄μ̄ : Hp,q
μ̄ −→ Hp,q+1

μ̄ given by ∂̄μ̄(α) := Hμ̄(∂̄α),

where Hμ̄(α) denotes a projection of α into μ̄-harmonic forms. The locally constant rank 
condition ensures this is a smooth form. In Theorem 4.14 we prove this is a square zero 
operator whose cohomology computes the Dolbeault cohomology

H∗,∗
Dol(M) ∼= Ker (∂̄μ̄)

¯ .

Im(∂μ̄)
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There is also a Laplacian Δ∂̄μ̄
defined via the formal adjoint ∂̄∗

μ̄ to ∂̄μ̄ and corre-
sponding spaces of ∂̄μ̄-harmonic forms Hp,q

∂̄μ̄
:= Ker (Δ∂̄μ̄

) ∩Hp,q
μ̄ . We have the following 

Harmonic Inclusion Theorem (4.17), which generalizes the Hodge decomposition theo-
rem for compact complex manifolds: For any compact almost Hermitian manifold M , 
there is the following containment and inclusion:

H∂̄ ∩Hμ̄ ⊆ H∂̄μ̄

�
↪→ Ker (∂̄μ̄)

Im(∂̄μ̄)
∼= HDol(M).

The injection (�) is an isomorphism if Im(∂̄μ̄)⊥ ∼= Coker (∂̄μ̄). This is the case, for 
instance, for any left-invariant almost complex structure on a finite-dimensional real Lie 
algebra.

The above spaces of harmonic forms lead to finite-dimensionality of Dolbeault coho-
mology in various situations. For instance, when M is a compact manifold of dimension 
2m, the bottom and top rows Hp,0

Dol(M) and Hp,m
Dol (M) are finite-dimensional for all p, and 

dimH0,0
Dol(M) ∼= dimHm,m

Dol (M) accounts for the connected components of the manifold. 
These spaces are also useful to make explicit calculations on spaces with locally constant 
rank μ̄, such as nilmanifolds and nearly Kähler 6-manifolds.

Lie algebra cohomology. Already in the integrable case, Dolbeault cohomology can be 
difficult to compute in general. A framework that is particularly useful is that of Lie al-
gebra cohomology, which allows to compute geometric invariants for compact Lie groups 
as well as for nilmanifolds. A main advantage of this framework is that the computation 
of Dolbeault cohomology is reduced, by construction, to finite-dimensional linear algebra 
problems.

An almost complex structure on a real Lie algebra g of dimension 2m defines a bi-
grading on the Chevalley-Eilenberg dg-algebra A∗

gC
associated to the complexification 

gC and its differential decomposes into d = μ̄ + ∂̄ + ∂ + μ. This gives an obvious notion 
of Lie algebra Dolbeault cohomology

Hp,q
Dol(g, J) := Hq(Hp,∗

μ̄ (g, J), ∂̄)

which is identified as the first stage of a spectral sequence converging to H∗(gC).
Under the hypothesis that H2m(gC) = C (a condition that is satisfied for the Lie 

algebra of G connected and compact, and also for G nilpotent) we obtain ∂̄μ̄-Hodge 
decomposition on A∗

gC
, giving an isomorphism

Hp,q
Dol(g, J) ∼= Hp,q

∂̄μ̄
(g),

where Hp,q

∂̄μ̄
(g) is the subspace of Ap+q

gC
of ∂̄μ̄-harmonic forms, defined after choosing a 

metric on g compatible with J . This extends work of Rollenske [37] to the non-integrable 
setting (Theorem 5.4). In particular, the dimensions of Hp,q

∂̄μ̄
(g) are metric-independent 

numbers.
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Lie-algebra Dolbeault cohomology admits a translation to the geometric situation of 
compact Lie groups and nilmanifolds, respectively. We explain the latter situation. Let 
M = Γ\G be a nilmanifold, where G is a nilpotent Lie group with Lie algebra g, and 
Γ is a co-compact subgroup acting on the left. Assume that G carries a left G-invariant 
almost complex structure J , making M into an almost complex manifold. There is an 
inclusion A∗

g ↪→ A∗
dR(M) which is a quasi-isomorphism by Nomizu’s Theorem [35]. We 

define the left-invariant Dolbeault cohomology of (M, J) by letting

LH∗,∗
Dol(M,J) := H∗,∗

Dol(g, J).

Similarly, there is a left-invariant Frölicher spectral sequence converging to the complex 
de Rham cohomology H∗(M, C) of the manifold. The harmonic theory for Lie algebras 
gives a description of LH∗,∗

Dol(M, J) in terms of ∂̄μ̄-harmonic left-invariant forms. In gen-
eral, even in the integrable case, it is not known if the inclusion of left-invariant forms 
into the algebra of forms of M induces an isomorphism on Dolbeault cohomology, al-
though this is the case in several situations (see [14], [10], [38], [18]). In contrast, for 
maximally non-integrable structures, there are recent negative results in this direction. 
Indeed, while left-invariant cohomology is finite-dimensional by construction, in [9] it is 
shown that Dolbeault cohomology for maximally non-integrable manifolds of dimension 
4 or 6, turns out to be infinite-dimensional. Still, we always have an inclusion

LH∗,∗
Dol(M,J) ↪→ H∗,∗

Dol(M,J)

which, in some situations, proves to be sufficient in order to infer geometric results.

Maximally non-integrable and nearly Kähler manifolds. Complex manifolds and max-
imally non-integrable manifolds are two endpoints in the spectrum of almost complex 
manifolds. An almost complex structure is said to be maximally non-integrable if the 
Nijenhuis tensor

NJ : TxM ⊗ TxM −→ TxM

has maximal rank at all points x ∈ M . A main result below is that, for 4- and 6-
dimensional manifolds, this condition implies degeneration of the Fröhlicher spectral 
sequence at the second stage (Theorem 6.6).

An important family of maximally non-integrable manifolds is given by (strictly) 
nearly Kähler 6-manifolds, studied extensively by Gray [20], as well as [43], [44], and 
others. In particular, the degeneration condition may be used to prohibit the existence 
of metrics for which the almost complex structure is nearly Kähler. The special local 
identities satisfied by nearly Kähler 6-manifolds, together with the Harmonic Inclusion 
Theorem, lead to other special properties of their Frölicher spectral sequence. We show 
by example that in general the Dolbeault cohomology contains strictly more information 
that the de Rham cohomology. For instance, the Lie group SU(2) × SU(2) admits a 
left-invariant nearly Kähler structure, with associated Hodge diamonds
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1
3 0

0 3 0
0 1 1 0

0 3 0
0 3

1

1
0 0

0 0 0
0 1 1 0

0 0 0
0 0

1

where the diamond on the left-hand side corresponds to the Dolbeault numbers h∗,∗
Dol and 

the one on the right to the Hodge numbers in de Rham cohomology h∗,∗
dR obtained by 

Verbitsky [44]. In this case, the left-invariant Frölicher spectral sequence degenerates at 
the second term, and the above agree with the dimensions of E1 and E2 respectively.

In addition to the main E2-degeneration result, we show that the failure of first page, 
i.e. the Dolbeault cohomology, to agree with de Rham cohomology in certain bidegrees 
also prohibits the existence of nearly Kähler metrics compatible with a given almost 
complex structure. Indeed, we show that for any compact nearly Kähler 6-manifold we 
have h2,1

Dol = h2,1
dR.

2. Differential forms on almost complex manifolds

Let M be an almost complex manifold of dimension 2m. By definition, there is an 
endomorphism J : TM → TM such that J2 = −1 and the real tangent space TxM at 
x ∈ M has a complex structure Jx. The complexification decomposes into +i and −i

eigenspaces T 1,0
x M and T 0,1

x M respectively:

TxM ⊗C = T 1,0
x M ⊕ T 0,1

x M.

By taking duals and exterior powers, this decomposition gives a bigrading on the algebra 
of differential forms with values in C:

An(M) := An
dR(M) ⊗R C =

⊕
p+q=n

Ap,q.

As an abbreviated notation, we denote the fiber of forms at x ∈ M by

Ap,q
x :=

p∧
(T ∗

xM ⊗C)1,0 ⊗
q∧

(T ∗
xM ⊗C)0,1

Since Ap,q is generated by A0,0, A0,1 and A1,0, one may verify that for all p, q ≥ 0, the 
exterior derivative satisfies

d(Ap,q) ⊆ Ap−1,q+2 ⊕Ap,q+1 ⊕Ap+1,q ⊕Ap+2,q−1.
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Therefore, we may write d = μ̄ + ∂̄ + ∂ + μ where the bidegrees of each component are 
given by

|μ̄| = (−1, 2), |∂̄| = (0, 1), |∂| = (1, 0), and |μ| = (2,−1).

The components ∂̄ and μ̄ are complex conjugate to ∂ and μ respectively.
Expanding the equation d2 = 0 we obtain the following set of equations:

μ2 = 0

μ∂ + ∂μ = 0

μ∂̄ + ∂̄μ + ∂2 = 0

μμ̄ + ∂∂̄ + ∂̄∂ + μ̄μ = 0 (�)

μ̄∂ + ∂μ̄ + ∂̄2 = 0

μ̄∂̄ + ∂̄μ̄ = 0

μ̄2 = 0

Also, by expanding the Leibniz rule

d(ω ∧ η) = dω ∧ η + (−1)|ω|ω ∧ dη

we obtain a Leibniz rule for each component of d. Note that by degree consideration, 
μ̄ and μ vanish on functions, so each are linear over functions, and therefore give well 
defined fiberwise maps, μ̄ : Ap,q

x → Ap−1,q+2
x , and similarly for μ. In particular, both 

(A∗,∗, μ̄) and (A∗,∗, μ) are commutative differential bigraded algebras.
The integrability theorem of Newlander and Nirenberg [34] states that the almost 

complex structure J is integrable if and only if NJ ≡ 0, where

NJ : TM ⊗ TM −→ TM

denotes the Nijenhuis tensor

NJ(X,Y ) := [X,Y ] + J [X, JY ] + J [JX, Y ] − [JX, JY ].

The following well-known result shows that J is integrable if and only if μ̄ ≡ 0. We 
provide a short proof for convenience of the reader.

Lemma 2.1. With the above notation, we have:

μ + μ̄ = −1
4 (NJ ⊗ IdC)∗ ,

where the right hand side has been extended over all forms as a derivation.
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Proof. Let π1,0 and π0,1 denote the projections onto T 1,0M and T 0,1M respectively, and 
let π1,0 and π0,1 be the dual projections onto the respective co-tangent spaces. Let π2,0

be projection onto (2, 0)-forms. For ω a (0, 1)-form, and any real vectors X and Y , we 
use that ω vanishes on (1, 0)-vectors to compute

(μω) (X,Y ) = π2,0dω(X,Y )

= dω(π1,0X,π1,0Y )

= −ω(π0,1[π1,0X,π1,0Y ])

= −1
4ω(NJ(X,Y )).

The first equality is by definition and the third uses Cartan’s formula

dω(X,Y ) = Xω(Y ) − Y ω(X) − ω([X,Y ]).

The last equality follows from a straightforward calculation using

π1,0 = 1
2 (Id− iJ) , π0,1 = 1

2 (Id + iJ) ,

the Nijenhuis tensor, and again the fact that ω vanishes on (1, 0)-vectors.
Similarly we have μ̄ η = −1

4 (NJ ⊗ IdC)∗ for η a (1, 0)-form. Since μ vanishes on 
(1, 0)-forms, and μ̄ vanishes on (0, 1)-forms, the lemma follows. �
Definition 2.2. A morphism of almost complex manifolds f : M → M ′ is given by a 
differentiable map compatible with the almost complex structures, i.e., for all x ∈ M the 
following diagram commutes:

TxM

Jx

f∗
Tf(x)M

′

J ′
f(x)

TxM
f∗

Tf(x)M
′

An isomorphism of almost complex manifolds is a morphism of almost complex manifolds 
which is also a diffeomorphism.

Note that any morphism of almost complex manifolds f : M → M ′ induces a mor-
phism of differential graded algebras f∗ : A(M ′) → A(M) such that:

(i) f∗ preserves the (p, q)-decompositions: f∗(Ap,q
M ′) ⊆ Ap,q

M .
(ii) f∗ is compatible with d component-wise: if δ is any of the components μ̄, ∂̄, ∂

or μ of the differential d, then f∗δ = δf∗.



12 J. Cirici, S.O. Wilson / Advances in Mathematics 391 (2021) 107970
3. Frölicher spectral sequence

Throughout this section, let M be an almost complex manifold and denote by (A =⊕
A∗,∗, d) its complex de Rham algebra.
By using the last three of the equations in (�) of Section 2, we will arrive at our 

definition of Dolbeault cohomology. First, the equation μ̄2 = 0 of (�) gives well-defined 
vector spaces

Hp,q
μ̄ (M) := Ker (μ̄ : Ap,q −→ Ap−1,q+2)

Im(μ̄ : Ap+1,q−2 −→ Ap,q) .

Next, from the equation ∂̄μ̄ + μ̄∂̄ = 0, it follows that ∂̄ induces a well-defined map 
∂̄ : Hp,q

μ̄ → Hp,q+1
μ̄ . Finally, the equation μ̄∂ + ∂μ̄+ ∂̄2 = 0 shows ∂̄2 is chain homotopic 

to zero, with respect to the differential μ̄, and the chain homotopy ∂.

Definition 3.1. Define the Dolbeault cohomology of M by

Hp,q
Dol(M) := Hq(Hp,∗

μ̄ , ∂̄) =
Ker (∂̄ : Hp,q

μ̄ (M) −→ Hp,q+1
μ̄ (M))

Im(∂̄ : Hp,q−1
μ̄ (M) −→ Hp,q

μ̄ (M))
.

We next show that the Dolbeault cohomology of every almost complex manifold arises 
with the first stage of a functorial spectral sequence converging to the complex de Rham 
cohomology. For this, we modify the classical Hodge filtration by taking into account the 
presence of μ̄ and making it compatible with the total differential.

Definition 3.2. Define the Hodge filtration of A as the decreasing filtration F given by

F pAn := Ker (μ̄) ∩ Ap,n−p ⊕
⊕
i>p

Ai,n−i.

Note that in the integrable case, F coincides with the usual Hodge filtration.

Lemma 3.3. The Hodge filtration F makes (A, d, F ) into a filtered dg-algebra with

Fn+1An = 0 and F 0An = An for all n ≥ 0.

Proof. Using the fact that

d(Ap,q) ⊆ Ap−1,q+2 ⊕Ap,q+1 ⊕Ap+1,q ⊕Ap+2,q−1

we first note that

d(Ker (μ̄) ∩ Ap,n−p) ⊆ ∂̄(Ker (μ̄) ∩ Ap,n−p) ⊕Ap+1,n−p ⊕Ap+2,n−1−p.
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Since ∂̄μ̄ + μ̄∂̄ = 0 the first direct summand satisfies

∂̄(Ker (μ̄) ∩ Ap,n−p) ⊆ Ker (μ̄) ∩ Ap,n+1−p.

Now, note that

d(
⊕

i≥p+1
Ai,n−i) ⊆ μ̄(Ap+1,n−p−1) ⊕

⊕
i≥p+1

Ai,n−i.

Since μ̄2 = 0 the first direct summand satisfies

μ̄(Ap+1,n−p−1) ⊆ Ker (μ̄) ∩ Ap,n+1−p.

This proves that F is compatible with the differential and hence (A, d, F ) is a filtered 
cochain complex. Compatibility of F with the algebra structure is straightforward. The 
boundedness conditions follow from the fact that μ̄ is trivial on A0,∗. �
Definition 3.4. The Frölicher spectral sequence {Er(M), δr}r≥0 of M is the spectral se-
quence Er(M) := Er(A, F ) associated to the filtered dg-algebra (A, d, F ).

For each r ≥ 0, the pair (Er(M), δr) is a commutative differential r-bigraded al-
gebra. Since F is bounded, this spectral sequence converges to the complex de Rham 
cohomology

H∗
dR(M,C) = H∗

dR(M,R) ⊗R C.

It will be useful to consider an alternative filtration whose spectral sequence is related 
to that of F by a shift of indexing (cf. Remark 3.9). It is defined as follows:

Definition 3.5. Define the shifted Hodge filtration of A as the decreasing filtration F̃ given 
by

F̃ pAn :=
⊕

i≥p−n

Ai,n−i.

Lemma 3.6. The shifted Hodge filtration makes (A, d, F̃ ) into a filtered dg-algebra such 
that

F̃ 2n+1An = 0 and F̃nAn = An.

For r ≥ 0 we have canonical morphisms of differential bigraded algebras

Ep,n−p
r (A, F ) −→ Ep+n,−p

r+1 (A, F̃ )

which are isomorphisms for all r ≥ 1.
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Proof. We have:

d(F̃ pAn) =
⊕

i≥p−n

dAi,n−i ⊆

⊆
⊕

i≥p−n

(
Ai−1,n−i+2 ⊕Ai,n−i+1 ⊕Ai+1,n−i ⊕Ai+2,n−i−1) ⊆

⊆
⊕

i≥p−n

Ai−1,n−i+2 =
⊕

i≥p−n−1
Ai,n+1−i = F̃ pAn+1.

This proves that F̃ is compatible with the differential and hence (A, d, F̃ ) is a filtered 
cochain complex. Compatibility of F with the algebra structure is straightforward.

Now, note that the filtrations F and F̃ are related via Deligne’s décalage filtration:

F pAn = DecF̃ pAn := {ω ∈ F̃ p+nAn; dω ∈ F̃ p+n+1An+1}.

Thus the lemma follows from Proposition I.3.4 of [15], stating that the spectral sequences 
associated with a filtration and its décalage are related by a shift of indexing as above. �
Remark 3.7. Note that the shifted Hodge filtration makes A into a bigraded multicomplex 
by letting Ãp,n−p := Ap−n,2n−p. Then by definition we have that

F̃ pAn =
⊕
i≥p

Ãi,n−i,

so F̃ is the column filtration associated to this multicomplex. With this new bigrading, 
the components μ̄, ∂̄, ∂ and μ of d have bidegrees

|μ̄|′ = (0, 1), |∂̄|′ = (1, 0), |∂|′ = (2,−1) and |μ|′ = (3,−2).

So the shifted Hodge filtration just rotates the bidegrees of the components of d with 
respect to the initial grading given by the Hodge filtration.

The Frölicher spectral sequence admits a very explicit description in terms of the com-
ponents μ̄, ∂̄, ∂ and μ of the differential, whose higher terms we detail in the Appendix. 
Here we just describe the first stage.

Theorem 3.8. Let M be an almost complex manifold. We have isomorphisms

Hp,q
Dol(M) ∼= Ep,q

1 (M) ∼=
{
ω ∈ Ap,q ∩ Ker (μ̄); ∂̄ω ∈ Im(μ̄)

}
{
ω ∈ Ap,q such that ω = μ̄α + ∂̄β with μ̄β = 0

}
and the differential δ1 : Ep,q

1 (M) → Ep+1,q
1 (M) is given by
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δ1[ω] = [∂ω − ∂̄η],

where η is any form in Ap+1,q−1 satisfying μ̄η = ∂̄ω.

Proof. By Lemma 3.6, we have

Ep,n−p
1 (M) := En−p

1 (A, F ) ∼= Ep+n,−p
2 (A, F̃ ),

where F̃ is the shifted Hodge filtration. Therefore it suffices to identify Ep+n,−p
2 (A, F̃ )

with Hp,q
Dol(M) and describe the differential

δ1 = δ̃2 : E∗,∗
2 (A, F̃ ) −→ E∗+2,∗−1

2 (A, F̃ ).

As noted in Remark 3.7, the filtration F̃ is the column filtration of a multicomplex 
(Ã∗,∗, d = d0 + d1 + d2 + d3) whose differential has four components of bidegree |di| =
(i, 1 − i), where Ãp,n−p := Ap−n,2n−p and d0 = μ̄, d1 = ∂̄, d2 = ∂ and d3 = μ. Each term 
of its associated spectral sequence as well as a formula for the induced differentials

δ̃i : E∗,∗
i (A, F̃ ) −→ E∗+i,∗−i+1

i (A, F̃ )

has a known description, given by Livernet-Whitehouse-Ziegenhagen in [30]. We obtain:

Ep+n,−p
0 (A, F̃ ) ∼= Ap,n−p and δ̃0 = μ̄.

The first stage is given by

Ep+n,−p
1 (A, F̃ ) ∼= Hp,q

μ̄ (M) and δ̃1[ω] = [∂̄ω].

In particular, we find that

Ep+n,−p
2 (A, F̃ ) ∼= Hp+n,−p(E∗,∗

1 (A, F̃ ), δ̃1) ∼= Hq(Hp,∗
μ̄ , ∂̄) ∼= Hp,q

Dol(M).

Lastly, the description of Ep+n,−p
2 (A, F̃ ) and δ1 = δ̃2 appearing in [30], directly gives the 

formulas in the statement of the theorem.
In fact, the formula for the first and second stages of the spectral sequence of a 

multicomplex coincides with those of a bicomplex. Therefore the description of H∗,∗
Dol(M)

coincides with the description of the E2-term of the classical spectral sequence defined 
by Frölicher in [19], after replacing the roles of ∂̄ and ∂ by μ̄ and ∂̄. �
Remark 3.9. The shifted Hodge filtration F̃ in some sense contains more information than 
the Hodge filtration F . Indeed, we have F = DecF̃ , but in general, Deligne’s décalage 
functor Dec does not have an inverse. Our presentation of Dolbeault cohomology as the 
first stage of the spectral sequence associated to F (instead of presenting it as the second 
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stage of the spectral sequence associated to F̃ ) is mainly to naturally recover the usual 
Frölicher spectral sequence in the integrable case, as well as to preserve the original 
bidegrees of the components μ̄, ∂̄, ∂ and μ of the total differential. However, in certain 
situations it may be useful to consider the shifted spectral sequence. For instance, note 
that Lemma 3.10 below shows that the first term

(E∗,∗
1 (A, F̃ ), δ̃1) ∼= (H∗,∗

μ̄ (M), ∂̄)

is a well-defined invariant of the almost complex manifold M . In analogy with the in-
tegrable setting, one may call the quasi-isomorphism type of this differential bigraded 
algebra, the Dolbeault homotopy type of M . By Lemma 3.6, the algebra (H∗,∗

μ̄ (M), ∂̄)
is quasi-isomorphic to the algebra (E∗,∗

0 (M), d0), but the description of the former one 
retains the original geometry.

The following Lemma shows that the Frölicher spectral sequence, and in particular 
H∗,∗

Dol(M), is a well-defined invariant for almost complex manifolds.

Lemma 3.10. Let f : M → M ′ be a morphism of almost complex manifolds. Denote 
by A (resp. A′) the complex de Rham algebra of M (resp. M ′). Then f∗ : A′ → A is 
compatible with both F̃ and F :

f∗(F̃ pA′) ⊆ F̃ pA and f∗(F pA′) ⊆ F pA.

In particular, for all r ≥ 0 it induces morphisms of spectral sequences

Er(f∗) : Er(A′, F̃ ) → Er(A, F̃ ) and Er(f∗) : Er(A′, F ) → Er(A, F )

and hence a morphism between Dolbeault cohomologies

f∗ : Hp,q
Dol(M

′) −→ Hp,q
Dol(M).

Proof. Since f∗ preserves bigradings, it is compatible with F̃ . Since f∗μ̄ = μ̄f∗ we have 
that f∗(Ker (μ̄)) ⊆ Ker (μ̄). Therefore f∗ is compatible with F . �

This immediately gives:

Corollary 3.11. The complex de Rham cohomology of an almost complex manifold has 
a bigrading, given by the E∞-page of the Frölicher spectral sequence. This bigrading is 
functorial and generalizes the existing bigrading on the complex de Rham cohomology of 
complex manifolds.

Remark 3.12. By direct inspection of the Frölicher spectral sequence (whose higher stages 
are detailed in the Appendix) we may gain some insight by studying the horizontal 
bottom row q = 0 and the left vertical column p = 0. We have
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Hp,0
Dol(M) = Ep,0

1 (M) = Ap,0 ∩ Ker (μ̄) ∩ Ker (∂̄)

and

Ep,0
r (M) ∼=

{
ω ∈ Ap,0 ∩ Ker (d)

}
{ω = d(η0 + · · · + ηr−2); ηi ∈ Ap−1−i,i} , for r ≥ 2.

In particular, if r ≥ 2 and r ≥ p + 1 we have

Ep,0
r (M) = Ep,0

∞ (M) ∼= Ap,0 ∩ Ker (d)
Ap,0 ∩ Im(d) ,

where for the higher terms we used the formula for Er given in the Appendix. This gives

E0,0
2 (M) ∼= A0 ∩ Ker (d) ∼= H0(M ;C).

Also, the above expressions give a sequence of surjective morphisms

Ep,0
2 (M) � Ep,0

3 (M) � · · · � Ep,0
r (M) � · · · .

Likewise, for the vertical left column, we have a sequence of injections

· · · ↪→ E0,q
r (M) ↪→ · · · ↪→ E0,q

2 (M) ↪→ E0,q
1 (M).

For compact manifolds, the bottom right corner of the spectral sequence has the 
following special property, which in particular implies that classes in Hm,0

Dol (M) have well 
defined periods on homology classes in degree m (cf. Lemma 5 of [12] in the integrable 
case).

Lemma 3.13. Let M be a compact almost complex manifold of dimension 2m. Then for 
all r ≥ 1 we have

Hm,0
Dol (M) = Em,0

r (M) ∼= Em,0
∞ (M) ∼= Am,0 ∩ Ker (d).

In particular, if Hm(M, C) = 0 then Hm,0
Dol (M) = 0.

Proof. If [ω] ∈ Em,0
r (M) then dω = 0. It then suffices to prove that if ω = dη then 

[η] = 0. By Stoke’s Theorem,
∫
M

ω ∧ ω̄ =
∫
M

d(η ∧ dη̄) = 0,

so that ω = 0, since the pairing (α, β) = (
√
−1)m2 ∫

M
α ∧ β̄ defines a positive definite 

inner product on Am,0. �
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4. Harmonic theory

It is well known that for a compact complex manifold with Hermitian metric, Dol-
beault cohomology is isomorphic to the space of ∂̄-harmonic forms, defined as the kernel 
of the ∂̄-Laplacian Δ∂̄ := ∂̄∂̄∗+∂̄∗∂̄. This follows from the Hodge decomposition theorem 
and the fact that Δ∂̄ is elliptic. In fact, the operator Δ∂̄ is elliptic on any almost Her-
mitian manifold; the argument showing the symbol is an isomorphism does not involve 
integrability, so the Hodge decomposition with respect to ∂̄ is true in the non-integrable 
setting:

Theorem 4.1 (Hodge ∂̄-decomposition). Given a compact almost Hermitian manifold, for 
any bidegree (p, q) let

Hp,q

∂̄
:= Ker (Δ∂̄) ∩ Ap,q.

Then for every bidegree (p, q) the following hold:

(1) There are orthogonal direct sum decompositions

Ap,q = Hp,q

∂̄
⊕ Δ∂̄(Ap,q)

(2) Every element ω ∈ Ap,q can be written uniquely as

ω = H∂̄(ω) + Δ∂̄G∂̄(ω) = H∂̄(ω) + G∂̄Δ∂̄(ω)

where H∂̄(ω) denotes the projection of ω to the space Ker (Δ∂̄) of ∂̄-harmonic forms, 
and G∂̄ denotes the corresponding Green’s operator.

(3) The space H∂̄ is orthogonal to Im(∂̄) and Im(∂̄∗), and is finite-dimensional.

In contrast with the integrable case, the Green operator G∂̄ may not commute with 
∂̄ and ∂̄∗, and the image of ∂̄∗ may not be orthogonal to the image of ∂̄. Additionally, 
in the general case the image of Δ∂̄ is closed, whereas in the integrable case each of the 
images ∂̄ and ∂̄∗ are closed. Note however, that Δ∂̄ and G∂̄ commute, and that both 
images of ∂̄ and ∂̄∗ are orthogonal to H∂̄ .

Let (M, J, 〈−, −〉) be an almost Hermitian manifold. The compatible metric deter-
mines a metric on the fibers Ap,q

x of the (p, q)-bundles, and an associated Hodge-star 
operator

� : Ap,q
x −→ Am−q,m−p

x defined by ω ∧ �η̄ = 〈ω, η〉Ω,

where Ω is the volume form determined by the Hermitian metric. Composing � with 
conjugation gives another isomorphism �̄ : Ap,q

x → Am−p,m−q
x .



J. Cirici, S.O. Wilson / Advances in Mathematics 391 (2021) 107970 19
For any of the operators δ = μ̄, ∂̄, ∂, μ, and d, there are operators δ∗ := − � δ̄�, and 
we define the δ-Laplacian by Δδ := δδ∗ + δ∗δ, which satisfies �Δδ̄ = Δδ � .

We denote the space of δ-harmonic forms by

Hp,q
δ := Ker (Δδ) ∩ Ap,q = Ker (δ) ∩ Ker (δ∗) ∩ Ap,q.

Note that for δ = μ̄ and δ = μ, this is well defined fiberwise by

Hp,q
δ,x := Ker (Δδ) ∩ Ap,q

x = Ker (δ) ∩ Ker (δ∗) ∩ Ap,q
x .

It is well known that for a closed manifold the operator ∂̄∗ is equal to the L2-adjoint of 
∂̄. The next lemma shows that a point-wise version of this statement holds for μ̄, which 
implies μ̄∗ is equal to the L2-adjoint of μ̄.

Lemma 4.2. For any almost Hermitian manifold, the operator μ̄∗ is equal to the fiberwise 
metric adjoint of μ̄.

Proof. On an even dimensional manifold, we have

�α ∧ β = (−1)|α|α ∧ �β and �2 α = (−1)|α|α.

For ω ∈ Ap−1,q+2 and η ∈ Ap,q we compute

〈�μ � ω, η〉Ω = μ � ω ∧ η̄ = (−1)p+q � ω ∧ μη̄ = −ω ∧ �μη̄ = −〈ω, μ̄η〉Ω,

where in the second equality we use the fact that μ is a derivation, so that

μ � ω ∧ η̄ = μ(�ω ∧ η̄) − (−1)2m−p−q−1 � ω ∧ μη̄ = (−1)p+q � ω ∧ μη̄,

since �ω ∧ η̄ ∈ Am−2,m+1 vanishes for degree reasons. �
We next show that there is a fiberwise Hodge decomposition determined by μ̄ on any 

almost Hermitian manifold. This decomposition becomes global when the operator μ̄ has 
no jumps, as we will prove in subsection 4.2.

Lemma 4.3 (Fibrewise μ̄-Hodge decomposition). Let (M, J, 〈−, −〉) be an almost Hermi-
tian manifold. For every bidegree (p, q) the following hold:

(1) There are direct sum decompositions

Ap,q
x = μ̄(Ap+1,q−2

x ) ⊕Hp,q
μ̄,x ⊕ μ̄∗(Ap−1,q+2

x ).
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(2) Every element ω ∈ Ap,q
x can be written uniquely as

ω = Hμ̄,x(ω) + Δμ̄Gμ̄(ω)

where Hμ̄,x(ω) denotes the projection of ω to the space Hp,q
μ̄,x of μ̄-harmonics in Ap,q

x , 
and Gμ̄ denotes the corresponding Green’s operator.

(3) The map ω �→ [ω] defines an isomorphism

Hp,q
μ̄,x

∼= Hp,q
μ̄,x(M) := Ker (μ̄ : Ap,q

x −→ Ap−1,q+2
x )

Im(μ̄ : Ap+1,q−2
x −→ Ap,q

x )
.

In particular, every element in Hp,q
μ̄,x(M) has a unique μ̄-harmonic representative.

Proof. Since μ̄ is a linear operator on a finite-dimensional vector space Ap,q
x , there are 

orthogonal direct sum decompositions

Ap,q
x = (Ker (μ̄) ∩ Ap,q

x ) ⊕ μ̄∗Ap−1,q+2
x = μ̄Ap+1,q−2

x ⊕ (Ker (μ̄∗) ∩ Ap,q
x ) .

Since μ̄2 = 0, Im(μ̄) ⊆ Ker (μ̄), and since Hμ̄ = Ker (μ̄) ∩ Ker (μ̄∗), the orthogonal 
complement of Im (μ̄) ∩ Ap,q

x in Ker (μ̄) ∩ Ap,q
x is Hp,q

μ̄,x. This proves (1), and (2) follows, 
where the Green’s operator is given by orthogonal projection onto Im (μ̄∗) composed 
with the inverse of the isomorphism μ̄ : Im (μ̄∗) → Im (μ̄). The last statement follows 
readily. �

We next define a space of harmonic forms which will be shown to inject into the 
Dolbeault cohomology groups.

Definition 4.4. The space of ∂̄-μ̄-harmonic forms of an almost Hermitian manifold is 
given by

Ker (Δ∂̄ + Δμ̄) ∩ Ap,q = Hp,q

∂̄
∩Hp,q

μ̄ .

The equality in the definition can easily be checked by expanding

〈(Δ∂̄ + Δμ̄)ω, ω〉 = 0.

Note that the spaces are finite-dimensional whenever the manifold is compact. This 
follows since Hp,q

∂̄
is finite-dimensional by Theorem 4.1. These spaces satisfy Serre duality.

Proposition 4.5 (Serre duality). Let (M, J, 〈−, −〉) be an almost Hermitian manifold of 
dimension 2m. For every bidegree (p, q), and all x, we have isomorphisms

Hp,q
μ̄,x

∼= Hm−p,m−q
μ̄,x and Hp,q

¯
∼= Hm−p,m−q

¯ ,

∂ ∂
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as well as isomorphisms

Hp,q

∂̄
∩Hp,q

μ̄
∼= Hm−p,m−q

∂̄
∩Hm−p,m−q

μ̄ .

Proof. The fact that �Δμ = Δμ̄� implies

� : Hp,q
δ,x

∼= Hm−q,m−p
μ,x

is an isomorphism. Composing this with conjugation gives an isomorphism

�̄ : Hp,q
μ̄,x

∼= Hm−p,m−q
μ̄,x .

The other two statements follow similarly using �Δ∂ = Δ∂̄�. �
Lemma 4.6 (Harmonic Inclusion). Let (M, J, 〈−, −〉) be an almost Hermitian manifold. 
The identity map induces an injection

Hp,q

∂̄
∩Hp,q

μ̄ ⊆ Hp,q
Dol(M).

Proof. We use the expression for Dolbeault cohomology given in Theorem 3.8. Let ω ∈
Hp,q

∂̄
∩Hp,q

μ̄ . Since ∂̄ω = 0 and μ̄ω = 0, this gives a well-defined class [w] in

Hp,q
Dol(M) ∼=

{
ω ∈ Ap,q ∩ Ker (μ̄); ∂̄ω ∈ Im(μ̄)

}
{
ω ∈ Ap,q ; ω = μ̄α + ∂̄β ; μ̄β = 0

} .
Assume that [w] = 0. Then ω = μ̄α + ∂̄β with μ̄β = 0. It follows that

||ω||2 = 〈w, μ̄α + ∂̄β〉 = 〈ω, μ̄α〉 + 〈ω, ∂̄β〉 = 〈μ̄∗ω, α〉 + 〈∂̄∗ω, β〉 = 0

where we used the fact that, since ω is ∂̄-μ̄-harmonic, we have ∂̄∗ω = 0 and μ̄∗ω = 0. 
This gives ω = 0 and so the assignment ω �→ [ω] is injective. �
Remark 4.7. By analogy with Hirzebruch’s Problem 20, one can ask in the compact case 
whether the numbers dim

(
Hp,q

μ̄ ∩Hp,q

∂̄

)
are metric-independent. The Theorem shows 

these are bounded by metric-independent numbers:

dim
(
Hp,q

∂̄
∩Hp,q

μ̄

)
≤ dimHp,q

Dol(M).

For compact complex manifolds, we have equality by the ∂̄-Hodge decomposition.
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4.1. Finiteness results

In this subsection we use harmonic theory to give some finiteness results for H∗,∗
Dol(M)

when M is compact. First, we show H0,0
Dol(M) ∼= C when M is compact and connected. 

For this we need the following Lemma, which is a special case of the Kähler identities 
that holds for all 1-forms on almost complex manifolds (cf. [36], Appendix). In [8] this 
is generalized to forms of all degrees.

Lemma 4.8. For any metric 〈 , 〉 compatible with J , let ω(X, Y ) = 〈JX, Y 〉, let L denote 
be the Lefschetz operator given by L(η) = ω∧η, and let Λ denote the adjoint of L. Then, 
for all α ∈ A1,0 we have

Λ∂α = i∂̄∗α + i[Λ, ∂̄∗]Lα.

In particular, for any function f : M → C, we have

−iΛ∂∂̄f = ∂̄∗∂̄f − [Λ, ∂̄∗]L∂̄f.

Corollary 4.9. If (M, J) is a compact and connected almost complex manifold then 
H0,0

Dol(M) ∼= C.

Proof. We first note that H0,0
Dol(M, J) ∼= Ker (∂̄) ∩ A0,0, so it suffices to show if ∂̄f = 0

then f is constant. For any such f we have df ◦ J = i df , and in any coordinate chart 
φ : U → R2n containing any maximum point, we pullback J to φ(U) and consider the 
J-preserving map f ◦ φ−1 : φ(U) → C. The components of d are natural with respect 
this J-preserving map and we choose compatible metric on φ(U) to define Λ and ∂̄∗. 
Then by Lemma 4.8

−iΛ∂∂̄f = ∂̄∗∂̄f − [Λ, ∂̄∗]L∂̄f

on φ(U). Note ∂̄∗∂̄ is quadratic, self-adjoint, and positive, and [Λ, ∂̄∗]L∂̄ is first order 
since [Λ, ∂̄∗] = [d, L]∗ is zeroth order, because [d, L]η = dω ∧ η. Then ∂̄f = 0 implies the 
right hand side is zero, so the maximum principle due to E. Hopf applies [27], showing 
f is constant in a neighborhood of the maximum point and therefore, by connectedness, 
f is constant. �

We next show that the top and bottom rows of Dolbeault cohomology agree with 
∂̄-μ̄-harmonic forms and hence are finite-dimensional. We’ll make use of the fact that 
Δ∂̄ + Δμ̄ is elliptic, having the same symbol as Δ∂̄ , since Δμ̄ is linear over functions. 
In particular, there is a Hodge decomposition theorem for this operator, analogous to 
Theorem 4.1.

Proposition 4.10. Let (M, J, 〈−, −〉) be a compact almost Hermitian manifold of dimen-
sion 2m. For all 0 ≤ p ≤ m and q ∈ {0, m} we have
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Hp,q

∂̄
∩Hp,q

μ̄
∼= Hp,q

Dol(M).

In particular, for all such p, q, Hp,q
Dol(M) is finite-dimensional and we have

dim
(
Hp,q

∂̄
∩Hp,q

μ̄

)
= dimHp,q

Dol(M) ≤ dimHp,q

∂̄
.

Proof. In bidegrees (p, 0), for all 0 ≤ p ≤ m, we have μ̄∗ = ∂̄∗ = ∂̄∗
μ̄ = 0, and there is no 

image of μ̄ in degrees (p, 0) or (p, 1), or image of ∂̄ in degrees (p, 0). So all three spaces 
are equal to Ker (∂̄) ∩ Ker (μ̄).

For the case q = m, by Lemma 4.6 it suffices to prove that the inclusion

Hp,m

∂̄
∩Hp,m

μ̄ ↪→ Hp,m
Dol (M) ∼= Ap,m

Im(μ̄) + Im(∂̄)

is an isomorphism. Let ω be a representative of [ω] ∈ Hp,m
Dol (M). Since Δ∂̄ +Δμ̄ is elliptic, 

we may write

ω = H′(ω) + (Δ∂̄ + Δμ̄)G′ω

where H′ denotes the projection into ∂̄-μ̄-harmonic forms and G′ denotes the correspond-
ing Green’s operator. For bidegree reasons, we obtain

ω = H′(ω) + (∂̄∂̄∗ + μ̄μ̄∗)G′ω

which shows that [ω] = [H′(ω)] and hence the above map is surjective. �
The fact that dimHp,0

∂̄
is metric independent for all p was likely observed by Hirze-

bruch and others, and has been recently generalized for bundle-valued forms in [6]. Note 
as well that the identities of Proposition 4.10 are not satisfied in general for other bide-
grees.

The following Serre duality is immediate from Proposition 4.10 and Proposition 4.5.

Corollary 4.11. Let M be a compact almost complex manifold of dimension 2m. Then 
for all 0 < p ≤ m,

dimHp,0
Dol(M) = dimHm−p,m

Dol (M).

4.2. Locally constant rank case

In this subsection, we restrict to almost complex structures whose operator μ̄ has lo-
cally constant rank. These include Lie groups and nilmanifolds with left-invariant almost 
complex structures, as well as nearly Kähler manifolds.
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Definition 4.12. Let (M, J) be an almost complex manifold. We say μ̄ has locally constant 
rank if for each (p, q),

μ̄ : Ap,q
x → Ap−1,q+2

x

has constant rank as a function of x ∈ M .

In the locally constant rank case, the pointwise Hodge decomposition of Lemma 4.3
becomes global:

Theorem 4.13 (μ̄-Hodge decomposition). Let (M, J, 〈−, −〉) be an almost Hermitian man-
ifold and assume that μ̄ has locally constant rank. For every bidegree (p, q) the following 
hold:

(1) There are direct sum decompositions

Ap,q = μ̄(Ap+1,q−2) ⊕Hp,q
μ̄ ⊕ μ̄∗(Ap−1,q+2).

(2) Every element ω ∈ Ap,q can be written uniquely as

ω = Hμ̄(ω) + Δμ̄Gμ̄(ω)

where Hμ̄(ω) denotes the projection of ω to the space Hp,q
μ̄ of μ̄-harmonics in Ap,q, 

and Gμ̄ denotes the corresponding Green’s operator.
(3) The map ω �→ [ω] defines an isomorphism

Hp,q
μ̄

∼= Hp,q
μ̄ (M) := Ker (μ̄ : Ap,q −→ Ap−1,q+2)

Im(μ̄ : Ap+1,q−2 −→ Ap,q) .

In particular, every element in Hp,q
μ̄ (M) has a unique μ̄-harmonic representative.

Proof. If μ̄ has locally constant rank, then the fibers of Im μ̄ and Im μ̄∗ have constant 
rank (over all points x ∈ M) and therefore define vector bundles. Similarly, the fibers of 
Ker Δμ̄ define a vector bundle since they are the pointwise complement of Im μ̄+ Im μ̄∗. 
Then the total bundle �xAp,q

x splits as a direct sum of subbundles, and on global sections 
we have Ap,q = μ̄(Ap+1,q−2) ⊕Hp,q

μ̄ ⊕ μ̄∗(Ap−1,q+2) by Lemma 4.3. The remaining claims 
follow. �

In the locally constant rank case, the Harmonic Inclusion of Lemma 4.6 admits an 
intermediate space that is conceptually and computationally important, and also satisfies 
Serre duality, that we now introduce.

Consider the operator

∂̄μ̄ : Hp,q
μ̄ −→ Hp,q+1

μ̄ by ∂̄μ̄(ω) := Hμ̄(∂̄ω).
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By Theorem 4.13 this is well defined when μ̄ has locally constant rank since the harmonic 
component Hμ̄(∂̄ω) is a smooth form. We first show that this operator squares to zero 
and its cohomology is just the Dolbeault cohomology.

Theorem 4.14. Let (M, J, 〈 , 〉) be an almost Hermitian manifold such that μ̄ has locally 
constant rank. For every bidegree (p, q), the following are satisfied:

(1) There is an isomorphism

Ker (∂̄μ̄ : Hp,q
μ̄ → Hp,q+1

μ̄ )
Im(∂̄μ̄ : Hp,−1,q

μ̄ → Hp,q
μ̄ )

∼=−→ Hp,q
Dol(M)

induced by the identity on representatives.
(2) The following hold:

Ker (∂̄μ̄) ∩ Ap,q =
{
ω ∈ Hp,q

μ̄ ; ∂̄ω ∈ Im(μ̄)
}

and

Im(∂̄μ̄) ∩ Ap,q ∼=
{
ω ∈ Hp,q

μ̄ ;ω = μ̄α + ∂̄β with μ̄β = 0
}
.

Proof. The following diagram commutes by definition

A π Hμ̄ Hμ̄(M)
∼=

A

∂̄

Hμ̄

∂μ̄

∼=
Hμ̄(M)

∂̄

Here the horizontal isomorphisms are from Theorem 4.13 and ∂̄ : Hμ̄(M) → Hμ̄(M)
is the induced map on μ̄-cohomology, which follows since ∂̄μ̄ + μ̄∂̄ = 0. Note that ∂̄ :
Hμ̄(M) → Hμ̄(M) squares to zero by the relations in Equations (�) of section 2. It 
follows that ∂̄μ̄ ◦ ∂̄μ̄ = 0, and so the first assertion holds. The identifications for Ker (∂̄μ̄)
and Im(∂̄μ̄) follow from the commuting left square and Theorem 4.13. �

Similarly, in the locally constant rank case, we can consider the operator

∂̄∗
μ̄ : Hp,q

μ̄ −→ Hp,q−1
μ̄ defined by ∂̄∗

μ̄(ω) := Hμ̄(∂̄∗ω).

For closed manifolds, this operator is the formal adjoint to ∂̄μ̄ : Hp,q
μ̄ −→ Hp,q+1

μ̄ . Indeed, 
by the orthogonality of Theorem 4.13, the projection operator Hμ̄ is self-adjoint, so for 
all ω ∈ Hp,q

μ̄ and η ∈ Hp,q−1
μ̄ we have

〈Hμ̄(∂̄∗ω), η〉 = 〈ω, ∂̄η〉 = 〈ω,Hμ̄(∂̄η)〉 = 〈ω, ∂̄μ̄η〉.
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Note that ∂̄∗
μ̄ anti-commutes with μ̄∗ and therefore

Ker ∂̄∗
μ̄ ∩ Ap,q =

{
x ∈ Hp,q

μ̄ ; ∂̄∗x ∈ Im(μ̄∗)
}
.

We define the ∂̄μ̄-Laplacian on Hμ̄ by

Δ∂̄μ̄
:= ∂̄μ̄∂̄

∗
μ̄ + ∂̄∗

μ̄∂̄μ̄.

Definition 4.15. The space of ∂̄μ̄-harmonic forms of an almost Hermitian manifold is 
given by

Hp,q

∂̄μ̄
:= Ker (Δ∂̄μ̄

) = Ker (μ̄) ∩ Ker (μ̄∗) ∩ Ker (∂̄μ̄) ∩ Ker (∂̄∗
μ̄) ∩ Ap,q.

The ∂̄μ̄-harmonic forms, which a priori are infinite-dimensional, also satisfy Serre 
duality:

Proposition 4.16 (Serre duality). Let (M, J, 〈 , 〉) be an almost Hermitian manifold of 
dimension 2m such that μ̄ has locally constant rank. For every bidegree (p, q) we have 
isomorphisms

Hp,q
μ̄

∼= Hm−p,m−q
μ̄ and Hp,q

∂̄μ̄

∼= Hm−p,m−q

∂̄μ̄
.

Proof. The first claim follows from Theorem 4.13 and Proposition 4.5. For the second 
claim, it suffices to show that �̄ commutes with Δ∂̄μ̄

, where �̄ is the �-operator followed 
by conjugation. This will follow immediately from the relations

�̄∂̄∗
μ̄ = (−1)k∂̄μ̄�̄ and ∂̄∗

μ̄�̄ = (−1)k+1�̄∂̄μ̄,

which we show hold on Ak. Recall that �2 = (−1)k on Ak. Since ∂̄∗ = − � ∂�, it follows 
that �̄∂̄∗ = (−1)k∂̄�̄ on Ak, and ∂∗ = − � ∂̄� implies ∂̄∗�̄ = (−1)k+1�̄∂̄ on Ak. Similarly, 
�̄μ̄∗ = (−1)kμ̄�̄ and μ̄∗�̄ = (−1)k+1�̄μ̄ on Ak. Therefore, �̄ respects the orthogonal μ̄-
Hodge decomposition of Theorem 4.13, and so �̄ also commutes with the orthogonal 
projection operator Hμ̄ onto μ̄-harmonics. The result follows since by definition ∂̄μ̄ =
Hμ̄ ◦ ∂̄ and ∂̄∗

μ̄ = Hμ̄ ◦ ∂̄∗. �
Finally, in the case that μ̄ has locally constant rank, there is an improved version 

of the Harmonic Inclusion of Lemma 4.6. This Theorem will be used in section 6.1 to 
calculate Dolbeault cohomology groups for nearly Kähler 6-manifolds.

Theorem 4.17 (Harmonic Inclusion; Locally Constant Rank). Let (M, J, 〈 , 〉) be an al-
most Hermitian manifold such that μ̄ has locally constant rank. For every bidegree (p, q)
we have
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Hp,q

∂̄
∩Hp,q

μ̄ ⊆ Hp,q

∂̄μ̄

�
↪→ Ker (∂̄μ̄)

Im(∂̄μ̄)
∼= Hp,q

Dol(M).

The injection (�) is an isomorphism if Im(∂̄μ̄)⊥ = Coker (∂̄μ̄).

Proof. The first containment follows since

Ker (∂̄) ∩Hp,q
μ̄ ⊆ Ker (∂̄μ̄)

Ker (∂̄∗) ∩Hp,q
μ̄ ⊆ Ker (∂̄∗

μ̄).

The second follows since

Ker (Δ∂̄μ̄
) = Ker (∂̄μ̄) ∩ Ker (∂̄∗

μ̄) = Ker (∂̄μ̄) ∩ Im
(
∂̄μ̄

)⊥
,

and the fact that for any linear map ϕ of inner produce spaces, Im(ϕ)⊥ injects into 
Coker (ϕ). �
Remark 4.18. A natural question is whether in the compact case there are isomorphisms

Hp,q

∂̄μ̄

∼= Hp,q
Dol(M),

which would show the spaces on the left-hand side are metric-independent. Such an 
isomorphism would follow immediately from having a Hodge decomposition theorem 
with respect to the operator ∂̄μ̄. However, the operator ∂̄μ̄ is not elliptic, see Remark 6.18
for an example. Nevertheless, we will see that in the case of left-invariant almost complex 
structures on compact Lie groups and nilmanifolds, this isomorphism always holds.

We include one more lemma here concerning bidegree (0, 1), which will be used in 
Examples 6.8 and 6.9.

Lemma 4.19. Let (M, J, 〈−, −〉) be a compact almost Hermitian manifold such that μ̄ has 
locally constant rank. Then

H0,1
Dol(M) ∼= H0,1

∂̄μ̄
.

Proof. Let ω be a representative of an element in H0,1
Dol

∼= Ker (∂̄μ̄)/Im(∂̄). Then ω′ :=
ω − ∂̄G∂̄ ∂̄

∗ω is another representative, and

∂̄∗ω = H∂̄(∂̄∗ω) + Δ∂̄G∂̄ ∂̄
∗ω = ∂̄∗∂̄G∂̄ ∂̄

∗ω

since H∂̄(∂̄∗ω) = 0, by Theorem 4.1. Therefore, ∂̄∗ω′ = 0, so ω′ ∈ H0,1
∂̄μ̄

. �
Remark 4.20. The above result shows that the space H0,1

∂̄μ̄
is always metric-independent. 

Note that, in contrast, and as shown by Holt and Zhang in [26], for some almost complex 
manifolds the classical space of ∂̄-harmonic forms H0,1

¯ may depend on the metric.

∂
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5. Lie groups and nilmanifolds

A particularly useful set of examples is given by Lie algebra cohomology, which allows 
one to compute purely geometric invariants for compact Lie groups and nilmanifolds, 
after solving finite-dimensional linear algebra problems. In this section, we study the 
Frölicher spectral sequence in the context of Lie algebras with arbitrary almost complex 
structures, and develop a harmonic theory for their Dolbeault cohomology in the non-
integrable case. We then translate the results on Lie-algebra Dolbeault cohomology to 
the geometric situation of compact Lie groups and nilmanifolds respectively, and deduce 
several results in that setting. An extension of these results to the case of solvmanifolds 
is presented in [39].

5.1. Dolbeault cohomology of Lie algebras

Let g be real Lie algebra of finite dimension 2m and let J be an almost complex 
structure on its underlying real vector space, i.e. an endomorphism J : g → g such that 
J2 = −1. This determines decompositions

gC = gC
1,0 ⊕ gC

0,1 and g∨C = (g∨C)1,0 ⊕ (g∨C)0,1

on the complexified Lie algebra gC := g ⊗R C, and on its dual g∨C. The exterior algebra

A∗
gC

:=
⊕
k≥0

Λk(g∨C)

then becomes a bigraded algebra A∗
gC

=
⊕

Ap,q
g with

Ap,q
g := Λp

(
(g∨C)1,0

)
∧ Λq

(
(g∨C)0,1

)
.

Recall that the differential on g∨C is defined as the negative of the dual of the Lie bracket

d|g∨
C

:= [−,−]∨ : g∨C → g∨C ∧ g∨C,

and is extended uniquely to a derivation d of A∗
gC

. It follows that d decomposes into four 
components

d = μ̄ + ∂̄ + ∂ + μ

with |μ̄| = (−1, 2), |∂̄| = (0, 1), etc., and these satisfy Equations (�) of section 2. In 
particular, the pair (g, J) has a well-defined a μ̄-cohomology, denoted by Hp,∗

μ̄ (g, J), and 
a well-defined Hodge filtration F as in Definition 3.2. This gives an obvious notion of 
Dolbeault cohomology

Hp,q
Dol(g, J) := Hq(Hp,∗

μ̄ (g, J), ∂̄)
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and the same proof of Theorem 3.8 gives isomorphisms

H∗,∗
Dol(g, J) ∼= E∗,∗

1 (A∗
gC

, F ) ∼=
{
ω ∈ Ap,q

g ∩ Ker (μ̄); ∂̄ω ∈ Im(μ̄)
}

{
ω ∈ Ap,q

g such that ω = μ̄α + ∂̄β with μ̄β = 0
} .

A main advantage of this toy-model for the Frölicher spectral sequence is that the com-
putation of the spaces E∗,∗

r (g, F ) is a finite-dimensional linear algebra problem. A first 
consequence is the following result. Denote by

hp,q(g, J) := dimHp,q
Dol(g, J) and bn(g) := dimHn(A∗

gC
, d)

the Dolbeault and complex Betti numbers of (g, J). Then:

Proposition 5.1. Let g be real Lie algebra of finite dimension 2m and J an almost complex 
structure on its underlying real vector space.

(1) For all n ≥ 0 we have inequalities
∑

p+q=n

hp,q(g, J) ≥ bn(g).

(2) Let χ(g) :=
∑

(−1)nbn(g) denote the Euler characteristic of g. Then

χ(g) =
m∑

p,q=0
(−1)p+q hp,q(g, J).

Proof. This is a classical consequence of the convergence of the above spectral sequence, 
together with the fact that all vector spaces are finite-dimensional. �

We next develop a harmonic theory for the Dolbeault cohomology of (g, J). We’ll 
be rather brief on some details since the background and theory somewhat mimics the 
smooth manifold setting from Section 4.

Let 〈−, −〉 be a real inner product on g such that 〈Jx, Jy〉 = 〈x, y〉, which may be 
extended to a Hermitian inner product on gC. Define the Hodge star operator

� : Ap,q
g −→ Am−p,m−q

g by ω ∧ �η := 〈ω, η〉Ω,

where Ω is the volume element determined by J and the metric.
Let δ denote one of the components μ̄, ∂̄, ∂ or μ of d. We then define

δ∗ := − � δ � and Δδ := δδ∗ + δ∗δ.

We then have �Δδ̄ = Δδ� for δ = ∂̄, μ̄ and define the space of δ-harmonic forms by
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Hp,q
δ (g) := Ker (Δδ) ∩ Ap,q

g .

As in Lemma 4.3, we have a μ̄-Hodge decomposition

Ap,q
g = μ̄

(
Ap+1,q−2

g

)
⊕Hp,q

μ̄ (g) ⊕ μ̄∗ (Ap−1,q+2
g

)
into orthogonal spaces. On H∗,∗

μ̄ (g) define operators

∂̄μ̄ : Hp,q
μ̄ (g) → Hp,q+1

μ̄ (g) and ∂̄∗
μ̄ : Hp,q

μ̄ (g) → Hp,q−1
μ̄ (g)

by letting

∂̄μ̄(α) := Hμ̄(∂̄α) and ∂̄∗
μ̄ := Hμ̄(∂̄∗α)

where ∂̄∗ := − � ∂� and Hμ̄(α) denotes the projection of α into the space of μ̄-harmonic 
forms. As in Theorem 4.14 we have

Ker (∂̄μ̄ : Hp,q
μ̄ (g) → Hp,q+1

μ̄ (g))
Im(∂̄μ̄ : Hp−1,q

μ̄ (g) → Hp,q
μ̄ )(g)

∼=−→ Hp,q
Dol(g, J)

Define the space of ∂̄μ̄-harmonic forms as

Hp,q

∂̄μ̄
(g) := Ker (Δ∂̄μ̄

) ∩Hp,q
μ̄ (g) = Ker (∂̄μ̄) ∩ Ker (∂̄∗

μ̄) ∩Hp,q
μ̄ (g).

The following generalizes a result of [37] to the non-integrable setting.

Lemma 5.2. Assume that H2m(gC) ∼= C. Then ∂̄∗
μ̄ is adjoint to ∂̄μ̄.

Proof. The condition H2m(gC) ∼= C, the algebraic analogue of having a closed manifold, 
implies that d vanishes on A2m−1

gC
, so that ∂ vanishes on Am−1,m

g as well. Then the usual 
argument, as in the smooth global setting, shows that ∂̄∗ is the adjoint of ∂̄ (cf. proof of 
Lemma 4.2). It follows that ∂̄∗

μ̄ is adjoint to ∂̄μ̄, since the projection onto μ̄-harmonics is 
self adjoint: for all ω ∈ Hp,q

μ̄ (g) and η ∈ Hp,q−1
μ̄ (g),

〈Hμ̄(∂̄∗ω), η〉 = 〈ω, ∂̄η〉 = 〈ω,Hμ̄(∂̄η)〉 = 〈ω, ∂̄μ̄η〉. �
Remark 5.3 (cf. [37]). Note that the condition of the Lemma is satisfied when g is the Lie 
algebra of a connected compact Lie group, and also for a nilpotent Lie group. Indeed, for 
any g the top cohomology with values in the module A2m

gC
satisfies H2m(gC, A2m

gC
) ∼= C. 

Hence the condition H2m(gC) ∼= C is satisfied whenever g acts trivially on A2m(g). This 
is the case for g nilpotent. Lemma 5.2 also applies to unimodular Lie algebras, for which 
d ≡ 0 on A2m−1

g (see for instance [39]).

C
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Theorem 5.4. Assume that H2m(gC) ∼= C. Then for any almost complex structure J on 
g, and all (p, q), there is a ∂̄μ̄-Hodge decomposition

Hp,q
μ̄ (g) = ∂̄μ̄

(
Hp,q−1

μ̄ (g)
)
⊕Hp,q

∂̄μ̄
(g) ⊕ ∂̄∗

μ̄

(
Hp,q+1

μ̄ (g)
)

and there are isomorphisms

Hp,q
Dol(g, J) ∼= Hp,q

∂̄μ̄
(g).

Proof. This follows from linear algebra since ∂̄2
μ̄ = 0, as in the proof of Lemma 4.3. �

By an argument identical to the proof of Proposition 4.16, we find that

�̄ : Hp,q

∂̄μ̄
(g) → Hm−p,m−q

∂̄μ̄
(g)

is an isomorphism, where �̄ is the �-operator followed by conjugation. So, by Theorem 5.4, 
we obtain Serre duality on the Dolbeault cohomology:

Corollary 5.5 (Serre duality). Assume that H2m(gC) ∼= C. For any almost complex struc-
ture J on g there are isomorphisms

Hp,q
Dol(g, J) ∼= Hm−p,m−q

Dol (g, J).

Remark 5.6. The above Serre duality result allows to reduce the number of terms in the 
formulas of Proposition 5.1, in the case when g is the Lie algebra of a connected compact 
or nilpotent Lie group. In addition, by work of Milivojević [32], Serre duality persists in 
every stage of the Frölicher spectral sequence.

Compact Lie groups. If G is any Lie group with Lie algebra g, then the algebra A∗
g is 

isomorphic to the algebra A∗
L(G) of left-invariant forms on G and the almost complex 

structure on g defines a unique left invariant almost complex structure on G (with every 
left invariant almost complex structure on G occuring uniquely in this way). Moreover, 
the isomorphism

A∗
gC

∼= A∗
L(G) ⊗C

preserves the bigradings. Note that by Lemma 2.1, the integrability of J on G is equiv-
alent to μ̄ ≡ 0, which occurs if and only if μ̄ ≡ 0 in A1,0.

Definition 5.7. We define the left-invariant Dolbeault cohomology of (G, J) by

LHp,q
Dol(G, J) := Hp,q

Dol(g, J).
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The left-invariant Frölicher spectral sequence of (G, J) is the spectral sequence

LEp,q
1 (G, J) := Ep,q

1 (A∗
gC

, F ) =⇒ LHp+q(G,C).

Denote by

hp,q
L (G, J) := dim LHp,q

Dol(G, J) and bnL(G) := LHn(G,C)

the left-invariant Dolbeault and Betti numbers of (G, J). Proposition 5.1 gives:

Corollary 5.8. Let G be a real Lie group of dimension 2m with a left invariant almost 
complex structure J .

(1) For all n ≥ 0 we have inequalities
∑

p+q=n

hp,q
L (G, J) ≥ bnL(G).

(2) Let χL(G) :=
∑

(−1)nbnL(G) denote the left-invariant Euler characteristic of G. 
Then

χL(G) =
m∑

p,q=0
(−1)p+q hp,q

L (G, J).

For the remaining of this subsection, assume that G is a compact Lie group of dimen-
sion 2m with a left-invariant almost complex structure J . Then the inclusion

A∗
g
∼= A∗

L(G) ↪→ A∗(G)

is known to be a quasi-isomorphism, so we have

LH∗(G,C) ∼= H∗(G,C).

In particular, the left-invariant Frölicher spectral sequence of G computes its complex 
cohomology and Corollary 5.8 applies with bnL(G) = bn(G) and χL(G) = χ(G).

Furthermore, since (G, J) is an almost complex manifold, it has an associated (non-
left-invariant) Dolbeault cohomology and Frölicher spectral sequence. We have:

Lemma 5.9. Let G be a compact Lie group with a left-invariant almost complex structure 
J . For all r ≥ 0, the inclusion AL(G) ↪→ A(G) induces an injection

LE∗,∗
r (G, J) −→ E∗,∗

r (G, J),

which becomes an isomorphism at the E∞-stages.
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Proof. Let

I(ω) =
∫
G

L∗
gω

be the averaging operator with respect to the normalized Haar measure, where Lg is 
the left translation on G. Since the almost complex structure is preserved by Lg, I
commutes with the projections onto the (p, q) spaces, and therefore I commutes with 
the components of d.

Since the inclusion of left-invariant forms into all forms preserves bigradings, we have 
well-defined maps of spectral sequences

LE∗,∗
r (G, J) −→ E∗,∗

r (G, J).

Therefore the isomorphism at the E∞-stages follows from the fact that both spectral 
sequences converge to H∗(G, C).

To prove that the above maps are injective for all r ≥ 1, we use the formulas for Er =
Zr/Br given in the Appendix. Let ω be left-invariant and assume that ω ∈ Br(G, J). 
Since ω = I(ω) and I commutes with the components of d one may check, using the 
description of Br, that ω = I(ω) ∈ LBr(G, J). Therefore [ω] is zero in LEr(G, J). �

Note that the case r = 1 above gives an injection of Dolbeault cohomologies

LHp,q
Dol(G, J) ↪→ Hp,q

Dol(G, J).

This injection admits an alternative proof via the theory of harmonic forms as we will 
next see. Denote by

A∗
L(G) ⊗C =

⊕
Ap,q

L

the bigrading induced by J on the algebra of left-invariant forms of G. A left-invariant 
almost Hermitian metric on G allows to define spaces

LHp,q

∂̄μ̄
:= Ker (Δ∂̄μ̄

) ∩ Ap,q
L

∼= Hp,q

∂̄μ̄
(g)

of left-invariant ∂̄μ̄-harmonic forms.
By Lemma 4.6, Theorem 5.4, and its consequences, we obtain:

Corollary 5.10. Let G be a compact Lie group with a left-invariant almost complex struc-
ture J . For all (p, q) the following is satisfied:

(1) There is an inclusion

LHp,q
Dol(G, J) ↪→ Hp,q

Dol(G, J).
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(2) We have Serre duality isomorphisms

LHp,q
Dol(G, J) ∼= LHp,q

Dol(G, J)m−p,m−q.

(3) For any left-invariant compatible metric on (G, J), we have a diagram of injective 
maps

L
(
Hp,q

∂̄
∩Hp,q

μ̄

)
LHp,q

∂̄μ̄

∼= LHp,q
Dol(G, J)

Hp,q

∂̄
∩Hp,q

μ̄ Hp,q

∂̄μ̄
Hp,q

Dol(G, J)

and an isomorphism LHp,q

∂̄μ̄

∼= LHp,q
Dol(G, J). In particular, the numbers dim LHp,q

∂̄μ̄

are metric-independent.

Remark 5.11. The spaces in the top row are all finite-dimensional and straightforward 
to compute from the Lie algebra of G. In favorable situations, one can deduce from 
the top row information concerning the bottom row. For instance, in the next example 
below we conclude, via left-invariant computations, that the Dolbeault numbers of two 
different almost complex structures on the same manifold are distinct. Note as well that 
in general, the inclusion L

(
Hp,q

∂̄
∩Hp,q

μ̄

)
↪→ LHp,q

∂̄μ̄
is strict, as can be checked in the 

example below.

Example 5.12. Let G = SU(2) × SU(2) and consider its Lie algebra, generated by

{X1, Y1, Z1, X2, Y2, Z2}

with the only non-trivial brackets given by

[Xi, Yi] = 2Zi, [Yi, Zi] = 2Xi, [Zi, Xi] = 2Yi for i = 1, 2.

Let J be the almost complex structure defined by

J(X1) = X2, J(Y1) = Y2, J(Z1) = Z2, J(X2) = −X1, J(Y2) = −Y1, J(Z2) = −Z1.

Define X := X2 + iX1, Y := Y2 + iY1 and Z := Z2 + iZ1. The non-trivial Lie brackets 
are given by

[X,Y ] = [X,Y ] = kZ + kZ and [X,Y ] = [X,Y ] = kZ + kZ

where k := (1 + i), as well as those given by the cyclic permutations of X, Y , and Z. The 
dual Lie algebra is given by
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Λ(x, y, z, x, y, z)

and its differential is determined by

μ̄x = −kyz, ∂̄x = −k(yz + yz), ∂x = −kyz, μx = 0.

μ̄y = −kzx, ∂̄y = −k(zx + zx), ∂y = −kzx, μy = 0.

μ̄z = −kxy, ∂̄z = −k(xy + xy), ∂z = −kxy, μz = 0,

together with the corresponding complex conjugate equations. We obtain

LH∗,∗
Dol(G, J) ∼=

0 0 0 C

0 C C3 C3

C3 C3 C 0

C 0 0 0

and LE∗,∗
2 (G, J) ∼=

0 0 0 C

0 C 0 0

0 0 C 0

C 0 0 0

This is an example of a nearly Kähler 6-manifold, whose properties are further studied 
in Section 6.1. A known propery of nearly Kähler 6-manifolds is that even locally they 
have no holomorphic functions except constants [33]. In particular, the sheaf cohomology 
group H1(G, Ω0) is isomorphic to H1

dR(G; C), which is trivial for G. In contrast, from 
the table above we have LH0,1

Dol(G, J) ∼= C3. This exhibits how Dolbeault cohomology 
can be a rich invariant even when there are no non-constant holomorphic functions.

Note that LE∗,∗
2 (G, J) ∼= H∗,∗

dR (G, J). Also, by Corollary 6.11 proved below, we have 
E∗,∗

2 (G, J) = H∗,∗
dR (G, J) as well, so we may conclude that E∗,∗

2 (G, J) = LE∗,∗
2 (G, J).

The manifold SU(2) ×SU(2) is diffeomorphic to S3×S3, which can be endowed with 
an integrable complex structure J ′ via the holomorphic fibration

S1 × S1 −→ S3 × S3 −→ CP 1 ×CP 1.

Its Frölicher spectral sequence is known, given by:

H∗,∗
Dol(G, J ′) ∼=

0 0 0 C

0 C C C

C C C 0

C 0 0 0

and E∗,∗
2 (G, J ′) ∼=

0 0 0 C

0 C 0 0

0 0 C 0

C 0 0 0

In particular, by Lemma 5.9 we have

3 = dim LH0,1
Dol(G, J) ≤ dimH0,1

Dol(G, J) �= dimH0,1
Dol(G, J ′) = 1,
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so the (non-left invariant) Dolbeault cohomologies of these two almost complex structures 
are distinct as well.

Nilmanifolds. Let G be a nilpotent Lie group with Lie algebra g. If g = gQ ⊗ R has a 
rational structure, then by [31] there exists a discrete subgroup Γ such that the quotient 
M = Γ\G is a compact manifold, called a nilmanifold. The algebra A∗

g may be regarded 
as the algebra of left-invariant forms on G. There is an inclusion A∗

g ↪→ A∗
dR(M) and by 

Nomizu’s Theorem [35], it induces an isomorphism

H∗(g) ∼= H∗(M,R).

A left G-invariant J on G induces an almost complex structure on M , which is inte-
grable if and only if J is integrable on the Lie group G of g.

The inclusion

A∗
gC

↪→ A∗
dR(M) ⊗C

is compatible with the bigradings, but in general, even in the integrable case it is not 
known if it induces an isomorphism on Dolbeault cohomology, although this is the case 
in several situations (see [14], [10], [18]) and conjectured to be true in the integrable 
case (see [38]). Recent results of Coelho, Placini and Stelzig [9] imply that, on 4- or 
6-dimensional nilmanifolds with left-invariant maximally non-integrable almost complex 
structures, Dolbeault cohomology can never be computed using left-invariant forms only.

Definition 5.13. Define the left-invariant Dolbeault cohomology of (M, J) by letting

LH∗,∗
Dol(M,J) := H∗,∗

Dol(g, J)

Define the left-invariant Frölicher spectral sequence for (M, J) by

LE∗,∗
1 (M,J) := E∗,∗

1 (A∗
gC

, F ).

It follows that LH∗,∗
Dol(M, J) is a well-defined invariant of the almost complex struc-

ture of M and the left-invariant Frölicher spectral sequence converges to the complex 
cohomology H∗(M, C).

Note that by Remark 5.3, Theorem 5.4 and its consequences apply to nilmanifolds, 
giving the following.

Corollary 5.14. Let M = Γ\G be a nilmanifold of dimension 2m with a left-invariant 
almost complex structure J . Then for all (p, q), the following is satisfied:

(1) There is an inclusion

LHp,q
Dol(M,J) ↪→ Hp,q

Dol(M,J).
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(2) We have Serre duality isomorphisms

LHp,q
Dol(M,J) ∼= LHp,q

Dol(M,J)m−p,m−q.

(3) For any left-invariant compatible metric on (M, J), we have a diagram of injective 
maps

L
(
Hp,q

∂̄
∩Hp,q

μ̄

)
LHp,q

∂̄μ̄

∼= LHp,q
Dol(M,J)

Hp,q

∂̄
∩Hp,q

μ̄ Hp,q

∂̄μ̄
Hp,q

Dol(M,J)

and an isomorphism

LHp,q
Dol(M,J) ∼= LHp,q

∂̄μ̄
.

In particular, the numbers dim LHp,q

∂̄μ̄
are metric-independent.

Example 5.15 (Filiform nilmanifold). Consider the nilpotent real Lie algebra g generated 
by {X1, X2, X3, X4} with the only non-trivial Lie brackets given by

[X1, Xi] = Xi+1 for i = 2, 3.

Define an almost complex structure on g by letting JX1 = X2 and JX3 = X4.
Consider the complexified Lie algebra gC, generated by {A, A, B, B} with A = X1 −

iJX1 = X1 − iX2 and B = X3 − iJX3 = X3 − iX4. The only non-trivial Lie brackets 
are then given by

[A,B] = [A, B̄] = [Ā, B] = [Ā, B̄] = −1
2i (B − B̄),

and

[A, Ā] = i(B + B̄).

By dualizing, there is a free commutative differential bigraded algebra

A∗,∗
g

∼= Λ(a, b, a, b)

with generators of bidegrees |a| = |b| = (1, 0) and |a| = |b| = (0, 1) and the only non-
trivial differentials on generators given by

μ̄b = 1
āb̄, ∂̄b = 1 (

ab̄− bā
)
− iaā, ∂b = 1

ab,
2i 2i 2i
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together with the corresponding complex conjugate equations.
Consider the 4-dimensional nilmanifold M := Γ\G, where G has Lie algebra g. Then

LH∗,∗
Dol(M,J) ∼=

0 C C

C2 C4 C2

C C 0

and LE2(M,J) ∼=
0 C C

C C2 C

C C 0

The second page is already the complex cohomology H∗(M, C) of M (and in fact 
E2(M, J) ∼= H∗(M, C) is guaranteed by Theorem 6.6 below). But note that the first 
page LH∗,∗

Dol(M, J) contains more information, which is an invariant of the almost complex 
structure of M . Recall that the Frölicher spectral sequence of a compact complex surface 
always degenerates at the first page. This example exhibits that this is not true anymore 
for non-integrable structures on compact four-dimensional manifolds.

We may consider another almost complex structure on M , defined by

J ′X1 = X4 and J ′X2 = X3.

In this case, the left-invariant Frölicher spectral sequence degenerates at E1, and:

LH∗,∗
Dol(M,J ′) ∼= E∗,∗

∞ (M,J ′) ∼=
0 0 C

C2 C2 C2

C 0 0

.

Note that the left-invariant Dolbeault cohomology, as well as the bigrading induced on de 
Rham cohomology, allow one to distinguish the non-equivalent almost complex structures 
J and J ′. A simple spectral sequence argument shows that the tables computed above 
are the two only possible tables for the left-invariant Dolbeault cohomology of a non-
integrable left-invariant almost complex structure on a real Lie algebra of dimension 4. 
We remark as well that the pair (M, J ′) gives a first example for which the left-invariant 
Frölicher spectral sequence degenerates at an earlier stage than the full Frölicher spectral 
sequence. Indeed, by the work of [9] the latter degenerates precisely at the E2-stage.

The manifold M does not admit any integrable structure, as pointed out to us by 
Aleksandar Milivojević. Indeed, since b1 is even, by Kodaira’s classification of surfaces 
it would then be Kähler, and hence it would be formal. But every formal nilmanifold 
is a torus, which has H1

dR(T 2, C) ∼= C4. In contrast, the above E2-page tells us that 
H1

dR(M, C) ∼= C2.

Example 5.16 (Kodaira-Thurston manifold). Consider the 4-dimensional nilmanifold, de-
fined as the quotient

KT := HZ × Z\H ×R
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where H is the 3-dimensional Heisenberg Lie group, HZ is the integral subgroup, and the 
action is on the left. Its Lie algebra is spanned by X, Y, Z, W with bracket [X, Y ] = −Z. 
On the dual basis x, y, z, w, the only non-zero differential is dz = xy.

Consider the non-integrable J given by J(W ) = X and J(Z) = Y , and let A :=
X − iJX = X + iW , and B := Y − iJY = Y + iZ, be a basis for the invariant (1, 0)-
vectors. The non-trivial brackets are

[A,B] = [A, B̄] = [Ā, B] = [Ā, B̄] = −Z = −1
2i

(
B − B̄

)
.

Letting a, b be dual to A, B, it follows that the only non-zero components of d in degree 
one are

∂b = 1
2i ab, ∂̄b = 1

2i (ab̄− bā), μ̄b = 1
2i āb̄,

and the conjugate equations. This gives:

LH∗,∗
Dol(KT, J) ∼= E∗,∗

∞ (KT, J) ∼=
0 C C

C2 C4 C2

C C 0

.

A simple spectral sequence argument shows that the above is the only possible table for 
the left-invariant Dolbeault cohomology of a left-invariant non-integrable structure on 
KT .

The Kodaira-Thurston manifold also has an integrable structure J ′ defined by J ′(X) =
Y and J ′(Z) = W . The Dobeault cohomology is well-known (see for instance [11]), given 
by:

LH∗,∗
Dol(KT, J ′) ∼= H∗,∗

Dol(KT, J ′) ∼= E∗,∗
∞ (KT, J ′) ∼=

C C C

C2 C2 C2

C C C

.

Again, any left-invariant integrable structure will have the same table for left-invariant 
Dolbeault cohomology as the one given by J ′. One may easily define a continuous family 
of almost complex structures from the integrable J ′ to the non-integrable J above. 
Observing that

H1,1
Dol(KT, J ′) ∼= C2 � C4 ∼= LH1,1

Dol(KT, J) ⊆ H1,1
Dol(KT, J)

we deduce that, in contrast with the integrable case, Dolbeault cohomology is not upper 
semi-continuous for small deformations.
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6. Maximally non-integrable and nearly Kähler 6-manifolds

In this section, we define the condition for an almost complex structure to be maxi-
mally non-integrable, and prove for manifolds of dimension 4 and 6 that this condition 
implies that the Frölicher spectral sequence degenerates at the second stage. A particu-
larly well-behaved family of maximally non-integrable manifolds of dimension 6 is that of 
nearly Kähler manifolds, which are studied in full detail. We derive new algebraic identi-
ties for nearly Kähler 6-manifolds and use these to compute their Dolbeault cohomology. 
In particular, we conclude that the Dolbeault cohomology groups contain strictly more 
information than the de Rham cohomology groups and their (p, q)-grading. On the other 
hand, we see that the groups are rather restricted.

Definition 6.1. An almost complex structure J on a manifold M is maximally non-
integrable if the Nijenhuis tensor NJ : TxM ⊗ TxM → TxM has maximal rank at all 
points x ∈ M .

Recall that μ̄ : Ap,q → Ap−1,q+2 is linear over functions and we let

Ap,q
x :=

p∧
(T ∗

xM ⊗C)1,0 ⊗
q∧

(T ∗
xM ⊗C)0,1

denote the fiber over x.

Lemma 6.2. An almost complex structure is maximally non-integrable if and only if the 
map

μ̄ : A1,0
x −→ A0,2

x

has maximal rank for all x ∈ M .

Proof. The pointwise rank of NJ is equal to the rank of the dual (NJ ⊗ Id)∗ of the 
complexification of NJ . So, by Lemma 2.1, this rank equals the pointwise rank of the 
restriction of μ̄ + μ to degree one. Since μ̄ and μ are supported in bidegrees (1, 0) and 
(0, 1), respectively, the rank is maximal if and only if μ̄ : A1,0

x −→ A0,2
x has maximal 

rank for all x ∈ M . �
The following two Lemmas are useful in low dimensions.

Lemma 6.3. On an almost complex 4-manifold the following are equivalent:

(1) The almost complex structure is maximally non-integrable.
(2) μ̄|1,0 is a fiberwise surjection and μ̄|2,0 is a fiberwise injection.
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(3) For all x ∈ M , the table for the fiberwise dimensions of H∗,∗
μ̄,x is given by:

0 1 1
2 4 2
1 1 0

In particular, on 4-manifolds, if J is maximally non-integrable then μ̄ has locally constant 
rank.

Proof. The latter two conditions are clearly equivalent. In dimension 4, condition (1)
holds if and only if μ̄ : A1,0 → A0,2 is fiberwise surjective, which occurs if and only 
if H0,2

μ̄,x = 0 on every fiber. By Serre duality, Proposition 4.5, this occurs if and only if 
H2,0

μ̄,x = 0 on every fiber, which is equivalent to μ̄ : A2,0 → A1,2 being fiberwise injective, 
so (1) is equivalent to (2) and (3). The last claim follows from condition (3), since the 
rank of μ̄ restricted to (p, q) can be computed from the fiberwise Hodge decomposition 
to be equal to one in bidegrees (1, 0) and (2, 0), and zero otherwise. �
Remark 6.4. There are nontrivial topological obstructions to admitting a nowhere inte-
grable almost complex structure on a 4-manifold. Armstrong [2] showed that if (M, J)
is a 4-dimensional compact almost complex manifold with the Nijenhuis tensor non-
vanishing at each point, then the signature and Euler characteristic of M satisfy 
5χ(M) + 6σ(M) = 0.

Lemma 6.5. On an almost complex 6-manifold the following are equivalent:

(1) The almost complex structure is maximally non-integrable.
(2) μ̄|1,0 is a fiberwise isomorphism.
(3) For all x ∈ M , the table for the fiberwise dimensions of H∗,∗

μ̄ is given by:

0 0 0 1
0 6 8 3
3 8 6 0
1 0 0 0

In particular, on 6-manifolds, if J is maximally non-integrable then μ̄ has locally constant 
rank.

Proof. In dimension 6, maximally non-integrable is equivalent to μ̄ : A1,0 → A0,2 being 
a fiberwise isomorphism, since these fibers have the same dimension. So conditions (1)
and (2) are equivalent, and clearly (3) implies (2), so it remains to show that (2) implies 
(3).
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Suppose μ̄ : A1,0 → A0,2 is a fiberwise isomorphism, and let μ̄|p,q denote μ̄ restricted 
to Ap,q. Since μ̄|1,0 is fiberwise surjective, H0,2

μ̄ = 0 on every fiber, so by Serre duality, 
H3,1

μ̄ = 0 on every fiber. It remains to show that μ̄|2,0 and μ̄|3,0 are fiberwise injective. In 
any choice of frame (ξ1, ξ2, ξ3) of A1,0

x , with conjugate (ξ̄1, ξ̄2, ξ̄3) ∈ A0,1
x , we may write

μ̄(ξi) =
∑
j<k

λjk
i ξ̄j ∧ ξ̄k,

so that for i �= j

μ̄(ξi ∧ ξj) =
∑
m<n

λmn
i ξ̄m ∧ ξ̄n ∧ ξj −

∑
r<s

λrs
j ξi ∧ ξ̄r ∧ ξ̄s.

For each fixed i and j, the constants λmn
i and λrs

j are not all zero, and the vectors 
ξ̄m ∧ ξ̄n ∧ ξj and ξi ∧ ξ̄r ∧ ξ̄s are linearly independent, which shows μ̄2,0 is injective since 
the frame was arbitrary. A similar argument applied to

μ̄(ξ1 ∧ ξ2 ∧ ξ3) =
∑
r<s

λrs
1 ξ̄r ∧ ξ̄s ∧ ξ2 ∧ ξ3 −

∑
r<s

λrs
2 ξ1 ∧ ξ̄r ∧ ξ̄s ∧ ξ3 +

∑
r<s

λrs
3 ξ1 ∧ ξ2 ∧ ξ̄r ∧ ξ̄s

shows that μ̄3,0 is injective: the constants λrs
i are not all zero, and the summands are 

linearly independent.
The last claim follows from condition (3), since the rank of μ̄ restricted to (p, q) can 

be computed from the fiberwise Hodge decomposition to be equal to 3 in bidegrees (1, 0), 
(2, 0), (2, 1), and (3, 0), equal to 1 in bidegrees (1, 1) and (3, 0), and zero otherwise. �
Theorem 6.6. The Frölicher spectral sequence for a maximally non-integrable almost com-
plex structure on a 4-manifold or a 6-manifold degenerates at the E2-term.

Proof. By the previous two Lemmas, the E2 page of the Frölicher spectral sequence is 
given in dimensions 4 and 6 by the following diagrams, since Hp,q

μ̄ = 0 implies Ep,q
2 = 0:

0

0

0 0 0
0

0
0 0 0

It follows that in dimension 4 or 6, for k ≥ 2, the differential dk : Ep,q
k → Ep+k,q−k+1

k

vanishes since, for all p, q, either Ep,q
k = 0 or Ep+k,q−k+1

k = 0. �
Remark 6.7. The above result is optimal, in the sense that there exist maximally non-
integrable compact 4- and 6-manifolds whose left-invariant spectral sequence does not 
degenerate at E1, as shown in Examples 5.15 and 5.12 respectively. In addition, by [9]
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the non-left invariant spectral sequence never degenerates at E1 in the case of 4- and 
6-dimensional maximally non-integrable manifolds.

We can compute abstractly the Dolbeault cohomologies as follows.

Example 6.8. The Dolbeault cohomology of a maximally non-integrable almost complex 
4-manifold is given by

H∗,∗
Dol

∼=

0 A1,2/{μ̄α + ∂̄β} Coker (∂̄)

Coker (∂̄) {ω; ∂̄ω = μ̄η}/{∂̄β; μ̄β = 0} Ker (∂̄)

Ker (∂̄) Ker (∂̄) ∩ Ker (μ̄) 0

.

Note that for all (p, q) �= (1, 1), we have isomorphisms Hp,q
Dol(M) ∼= Hp,q

∂̄μ̄
. Indeed, the 

bottom and top rows follow from Lemma 4.10 and in bidegree (0, 1) it follows from 
Lemma 4.19. In bidegree (2, 1), H2,1

Dol
∼= Ker (∂̄) ∼= H0,1

∂μ̄
by Lemma 6.3, making μ̄|2,0

injective and therefore μ̄∗|1,2 surjective.

Example 6.9. Similarly, for a maximally non-integrable 6-manifold we have:

H∗,∗
Dol

∼=

0 0 0 Coker (∂̄)

0 A1,2/{μ̄α + ∂̄β; μ̄β = 0} A2,2/{μ̄α + ∂̄β; μ̄β = 0} Ker (∂̄)

Coker (∂̄) {ω ∈ Ker (μ̄); ∂̄ω = μ̄η} {ω ∈ Ker (μ̄); ∂̄ω = μ̄η} 0

Ker (∂̄) 0 0 0

In this case, we have isomorphisms Hp,q
Dol(M) ∼= Hp,q

∂̄μ̄
for all (p, q) �= (1, 2), (2, 2), while in 

the remaining bidegrees we have H∗,∗
∂̄μ̄

= Ker (∂̄∗
μ̄) ↪→ H∗,∗

Dol
∼= H∗,∗

μ̄ /Im(∂̄μ̄).

6.1. Nearly Kähler 6-manifolds

An almost Hermitian manifold (M, J, 〈−, −〉) with almost complex structure J is 
said to be (strictly) nearly-Kähler if (∇XJ)Y is skew-symmetric for all X and Y (and 
(∇XJ)Y non-zero for some X, Y ). Equivalently, the covariant derivative ∇ω of the fun-
damental (1, 1)-form ω is totally skew-symmetric.

In [44], Verbitsky developed a Hodge theory for nearly Kähler manifolds by proving 
a set of equations analogous to the Kähler identities. From these identities, Verbitsky 
deduced that, in the compact case, a complex form is d-harmonic if and only if it is 
harmonic with respect to each component of the differential, i.e.,

Ker (Δd) = Ker (Δμ̄) ∩ Ker (Δ∂̄) ∩ Ker (Δ∂) ∩ Ker (Δμ).
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This gives a decomposition on complex d-harmonic forms

Hn
d := Ker (Δd) ∩ An =

⊕
Hp,q

d where Hp,q
d := Ker (Δd) ∩ Ap,q.

Furthermore, he proved that these bigraded spaces are non-trivial only when p, q ∈ {1, 2}
(see Theorem 6.2 of [44]) and that

H1,2
d

∼= H2,1
d and H1,1

d
∼= H2,2

d .

Lastly, note that the above bigrading induces a Hodge-type decomposition on the com-
plex de Rham cohomology of every compact nearly Kähler 6-manifold.

In this section, we give a detailed study of the Frölicher spectral sequence for a nearly 
Kähler 6-manifold. We first prove degeneration at the second page.

Lemma 6.10. A nearly Kähler 6-manifold is maximally non-integrable.

Proof. According to [43], or [44], there is a local frame (ξ1, ξ2, ξ3) ∈ A1,0, and conjugate 
(ξ̄1, ξ̄2, ξ̄3) ∈ A0,1 such that

μ̄(ξ1) = λ ξ̄2 ∧ ξ̄3 μ̄(ξ2) = −λ ξ̄1 ∧ ξ̄3 μ̄(ξ3) = λ ξ̄1 ∧ ξ̄2 (2)

for some λ �= 0. Equation (2) shows μ̄(1,0) : A1,0 → A0,2 is a fiberwise isomorphism, so 
the claims follow from Lemma 6.5. �

From the previous lemma, Theorem 6.6, and Corollary 3.11, it follows that

Corollary 6.11. The Frölicher spectral sequence for a nearly Kähler 6-manifold degener-
ates at the E2-term, and for all p, q

Hp,q
dR := Ep,q

2
∼= Hp,q

d .

In particular, for compact nearly Kähler 6-manifolds, the Hodge-type decomposition in-
duced in cohomology agrees with the metric-independent bigrading induced by the almost 
complex structure.

Remark 6.12. It is an interesting geometric question whether a compact almost complex 
6-manifold admits a nearly Kähler metric. Verbitsky showed there is at most one such 
metric (up to a constant) for each almost complex structure, [43]. Since the degeneration 
depends only on the almost complex structure, and not the metric, it follows that if the 
Frölicher spectral sequence for an almost complex 6-manifold does not degenerate at E2, 
then there is no metric for which the structure is nearly Kähler.

In what follows, we give a careful study of the Dolbeault cohomology for nearly Kähler 
manifolds. To do so, we first review some known background on the algebra of operators 
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on the differential forms of a nearly Kähler 6-manifold, as well as establish some new 
algebraic identities which may be of interest in their own right. These will be used to 
facilitate the calculations on the E1-page.

Let [A, B] := AB − (−1)|A||B|BA denote the graded commutator of operators A and 
B. The following commutation relations are verified:

Lemma 6.13 ([44], Proposition 4.3). For a nearly Kähler 6-manifold, we have:

[μ∗, ∂̄] = [μ̄∗, ∂] = [μ, ∂̄∗] = [μ̄, ∂∗] = 0,

[∂̄∗, ∂] = −[μ, ∂∗] = −[μ̄∗, ∂̄],

[∂∗, ∂̄] = −[μ̄, ∂̄∗] = −[μ∗, ∂],

[μ, μ̄∗] = [μ̄, μ∗] = 0.

Given an almost Hermitian manifold (M, J, 〈−, −〉) we will denote by ω the associated 
fundamental (1, 1)-form and by L the operator given by L(η) := ω ∧ η. Let Λ be the 
adjoint to L. We have the following set of nearly Kähler identities:

Lemma 6.14 ([44], Theorem 3.1 and Proposition 5.1). For a nearly Kähler 6-manifold, 
we have:

(1) [L, ∂∗] = i∂̄, [Λ, ∂] = i∂̄∗, [L, ∂̄∗] = −i∂ and [Λ, ∂̄] = −i∂∗.
(2) [L, μ∗] = 2iμ̄, [Λ, μ] = 2iμ̄∗, [L, μ̄∗] = −2iμ and [Λ, μ̄] = −2iμ∗.
(3) If η ∈ Ap,q then (∂∂̄ + ∂̄∂)η = −iλ2(p − q)Lη.

We now deduce the following:

Lemma 6.15. For any compact nearly Kähler 6-manifold, we have identities

Δ∂̄ + 2Δμ = Δ∂ + 2Δμ̄.

In particular, for all p, q we have

Hp,q

∂̄
∩Hp,q

μ = Hp,q
∂ ∩Hp,q

μ̄ .

Moreover, restricted to bidegrees p = q, or p + q = 3, we have

Δμ̄ = Δμ and Δ∂̄ = Δ∂ .

Proof. Using (2) of Lemma 6.14 we may write Δμ as

Δμ = μμ∗ + μ∗μ = i

2 (μ[Λ, μ̄] + [Λ, μ̄]μ) = i

2 (μΛμ̄− μμ̄Λ + Λμ̄μ− μ̄Λμ) .
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Likewise, for Δμ̄ we have:

Δμ̄ = μ̄μ̄∗ + μ̄∗μ̄ = − i

2 (μ̄[Λ, μ] + [Λ, μ]μ̄) = − i

2 (μ̄Λμ− μ̄μΛ + Λμμ̄− μΛμ̄)

All together this gives

Δμ − Δμ̄ = i

2 (Λ(μμ̄ + μ̄μ) − (μμ̄ + μ̄μ)Λ) = − i

2
(
Λ(∂∂̄ + ∂̄∂) − (∂∂̄ + ∂̄∂)Λ

)
.

Let η ∈ Ap,q. Then by (3) of Lemma 6.14 we have

(Δμ − Δμ̄)η = −λ2

2 (p− q)[Λ, L]η.

It now suffices to use the fact that [Λ, L]η = (p + q−3)η (see for example [21]), to obtain

(Δμ − Δμ̄)η = λ2

2 (3 − p− q)(p− q)η.

In Corollary 3.3 in [44], Verbitsky shows that

(Δ∂ − Δ∂̄)η = λ2(3 − p− q)(p− q)η.

Combining these equations, we obtain the Lemma. �
By the previous Lemma and the conjugation isomorphism we immediately have:

Corollary 6.16. For a nearly Kähler 6-manifold, and all p + q = 3, we have

dimHp,q

∂̄
= dimHq,p

∂̄
and dim

(
Hp,q

∂̄
∩Hp,q

μ̄

)
= dim

(
Hq,p

∂̄
∩Hq,p

μ̄

)
.

By Lemma 6.10 and the definition of maximally non-integrable, Hp,q
μ̄ = 0 for 

(3
p

)(3
q

)
≤( 3

p−1
)( 3

q+2
)
. The Serre-dual groups vanish as well. Then Lemma 6.15 implies that Hp,q

μ =
Hp,q

μ̄ for all pairs (p, q) such that p + q �= 1 and p + q �= 5. So, μ̄-harmonic forms and 
μ-harmonic forms of type (p, q) coincide in the range depicted in grey in the table below:

0 0
0

0
0 0

An easy computation shows that for the remaining cases we have

H0,1
μ = 0 H1,0

μ = A1,0 H3,2
μ = 0 H2,3

μ = A2,3

H0,1
μ̄ = A0,1 H1,0

μ̄ = 0 H3,2
μ̄ = A3,2 H2,3

μ̄ = 0.
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Lemma 6.5 guarantees that, for nearly Kähler 6-manifolds, μ̄ has locally constant 
rank. Therefore, we may consider the spaces Hp,q

∂̄μ̄
defined in subsection 4.2. We use the 

established harmonic theory to compute these.

Lemma 6.17. Let M be a compact nearly Kähler 6-manifold. For the (p, q)-range depicted 
in grey in the table below we have

Hp,q
d = Hp,q

∂̄
∩Hp,q

μ̄ = Hp,q

∂̄μ̄
.

0 0 0
0

0
0 0 0

Proof. The first identity follows from Lemma 6.15 together with the above vanishing 
results of Hμ̄ and Hμ. By Lemma 4.6 we have Hp,q

∂̄
∩Hp,q

μ̄ ⊆ Hp,q

∂̄μ̄
, so let us prove the con-

verse inclusion. The only non-trivial cases are (p, q) = (1, 2) and (p, q) = (2, 1). Through-
out this proof we will systematically use the commutation relations of Lemma 6.13.

Let ω ∈ Ker (Δ∂̄μ̄
) ∩H1,2

μ̄ . Then we have

∂̄∗ω = Hμ(∂̄∗ω) + Gμμ
∗μ∂̄∗ω + Gμμμ

∗∂̄∗ω.

For degree reasons, the last summand in the above equation is trivial. Since {∂̄∗, μ} = 0
we have

Gμμ
∗μ∂̄∗ω = −Gμμ

∗∂̄∗μω.

Since ω ∈ H1,2
μ̄ = H1,2

μ this term is also trivial. Therefore we have

∂̄∗ω = Hμ(∂̄∗ω) = Hμ̄(∂̄∗ω) = 0.

Using the μ̄-decomposition for ∂∗ω we have:

∂∗ω = Hμ̄(∂∗ω) + Gμ̄μ̄μ̄
∗∂∗ω + Gμ̄μ̄

∗μ̄∂∗ω

where, for degree reasons, the last summand is trivial. We may write the second summand 
as

Gμ̄μ̄μ̄
∗∂∗ω = −Gμ̄μ̄(∂∗μ̄∗ + ∂̄∗∂̄∗)ω = 0.

Also, note that by degree reasons, we have Hμ̄(∂∗ω) = 0. This gives ∂∗ω = 0. Lastly, 
using {μ, ∂∗} = {μ̄∗, ∂̄},

μ̄∗∂̄ω = (∂∗μ− ∂̄μ̄∗)ω = 0.
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This proves that ∂̄ω = 0, since H1,3
μ̄ = 0, so that ω ∈ Ker (Δ∂̄). The proof for the case 

ω ∈ Ker (Δ∂̄μ̄
) ∩H2,1

μ̄ follows dually. �
Remark 6.18. (Δ∂̄μ̄

is not elliptic) Notice that for p = 1 and q = 0, 1, 2 the spaces Hp,q
μ̄ are 

vector bundles with fiber rank 0, 8, and 6, respectively. The operator Δ∂̄μ̄
: H1,1

μ̄ → H1,1
μ̄

has symbol map factoring through the bundle H1,0
μ̄ ⊕ H1,2

μ̄ , which has strictly lower 
fiberwise rank than H1,1

μ̄ . This shows the symbol is not an isomorphism.

Putting together the above results, together with Example 6.9, the Dolbeault coho-
mology of a compact nearly Kähler 6-manifold is expressed in terms of harmonic forms 
in the following way:

H∗,∗
Dol

∼=

0 0 0 H3,3
dR

0 H1,2
μ̄ /Im(∂̄μ̄) H2,2

μ̄ /Im(∂̄μ̄) H3,2
∂̄μ̄

H0,1
∂̄μ̄

H1,1
∂̄μ̄

H2,1
d 0

H0,0
d 0 0 0

where the differential δ0,1
1 is injective and δ2,2

1 is surjective.

Corollary 6.19. If a compact almost complex 6-manifold has H2,1
Dol �= H2,1

dR , then there is 
no metric for which it is nearly Kähler.

Finally, we note that the groups H∗,∗
Dol for bidegrees (0, 1), (1, 1), (2, 2), and (3, 2)

are in general not equal to H∗,∗
dR . In fact, Example 5.12 is a nearly Kähler structure on 

SU(2) × SU(2) with

C3 ⊆ H∗,∗
Dol �= H∗,∗

dR = 0,

for all bidegrees (0, 1), (1, 1), (2, 2), and (3, 2). This shows that Dolbeault cohomology 
contains strictly more information than de Rham cohomology in the nearly Kähler case.

Appendix A. Higher stages of the Frölicher spectral sequence

We include a description of all stages of the Frölicher spectral sequence of an almost 
complex manifold M .

Theorem A.1. For r ≥ 1, the term (E∗,∗
r (M), δr) may be described by a quotient

Ep,q
r (M) ∼= Zp,q

r (M)/Bp,q
r (M)

where:
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(1) For r = 1 we have:

Zp,q
1 (M) ∼=

{
ω ∈ Ap,q ∩ Ker (μ̄);∃ω1 with ∂̄ω = μ̄ω1

}
and

Bp,q
1 (M) ∼=

{
η ∈ Ap,q;∃ η1, η2 with η = μ̄η1 + ∂̄η2 and μ̄η2 = 0

}
.

The differential δ1 : Ep,q
1 (M) → Ep+1,q

1 (M) is given by

δ1[ω] = [∂ω − ∂̄ω1].

(2) For r = 2 we have:

Zp,q
2 (M) ∼=

{
ω ∈ Ap,q ∩ Ker (μ̄);∃ω1, ω2 with ∂̄ω = μ̄ω1, ∂ω = μ̄ω2 + ∂̄ω1

}
and

Bp,q
2 (M) ∼=

⎧⎪⎨
⎪⎩η ∈ Ap,q;∃ η1, η2, η3 with

η = μ̄η1 + ∂̄η2 + ∂η3,

0 = μ̄η2 + ∂̄η3,

0 = μ̄η3

⎫⎪⎬
⎪⎭ .

The differential δ2 : Ep,q
2 (M) → Ep+2,q−1

2 (M) is given by

δ2[ω] := [μω − ∂ω1 − ∂̄ω2].

(3) For r = 3 we have:

Zp,q
3 (M) ∼=

⎧⎪⎨
⎪⎩ω ∈ Ap,q ∩ Ker (μ̄);∃ω1, ω2, ω3 with

∂̄ω = μ̄ω1,

∂ω = μ̄ω2 + ∂̄ω1,

μω = μ̄ω3 + ∂̄ω2 + ∂ω1

⎫⎪⎬
⎪⎭

and

Bp,q
3 (M) ∼=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
η ∈ Ap,q;∃ η1, η2, η3, η4 with

η = μ̄η1 + ∂̄η2 + ∂η3 + μη4
0 = μ̄η2 + ∂̄η3 + ∂η4,

0 = μ̄η3 + ∂̄η4,

0 = μ̄η4

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

The differential δ3 : Ep,q
3 (M) → Ep+3,q−2

3 (M) is given by

δ3[ω] := [−μω1 − ∂ω2 − ∂̄ω3].
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(4) For r ≥ 4 we have:

Zp,q
r (M) ∼=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ω ∈ Ap,q ∩ Ker (μ̄);
∃ω1, · · · , ωr

with

∂̄ω = μ̄ω1,

∂ω = μ̄ω2 + ∂̄ω1,

μω = μ̄ω3 + ∂̄ω2 + ∂ω1
and

0 = μ̄ωi + ∂̄ωi−1 + ∂ωi−2 + μωi−3
for all 4 ≤ i ≤ r,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

Bp,q
r (M) ∼=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

η ∈ Ap,q;
∃ η1, · · · , ηr+1

with

η = μ̄η1 + ∂̄η2 + ∂η3 + μη4,

0 = μ̄ηi + ∂̄ηi+1 + ∂ηi+2 + μηi+3
for all 2 ≤ i ≤ r − 2,

0 = μ̄ηr−1 + ∂̄ηr + ∂ηr+1,

0 = μ̄ηr + ∂̄ηr+1,

0 = μ̄ηr+1

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

The differential δr : Ep,q
r (M) → Ep+r,q−r+1

r (M) is given by

δr[ω] := [−μωr−2 − ∂ωr−1 − ∂̄ωr].

In all of the above spaces, the elements ωi and ηi appearing in the formulas are assumed to 
be of the pure bidegree prescribed by the equations: ωi ∈ Ap+i,q−i and ηi ∈ Ap+2−i,q−3+i.

Proof. By Lemma 3.6 it suffices to describe the terms E∗,∗
r (A, F̃ ) for all r ≥ 2, where F̃ is 

the shifted Hodge filtration. As explained in Remark 3.7, F̃ is the column filtration on the 
total complex of a multicomplex (A, d0, d1, d2, d3) with four differentials di where, due 
to the shifts in the indices, d0 = μ̄ has bidegree (0, 1), d1 = ∂̄ has bidegree (1, 0), d2 = ∂

has bidegree (2, −1) and d3 = μ has bidegree (3, −2). The spectral sequence of a general 
multicomplex has been described by Livernet-Whitehouse-Ziegenhagen in [30] and gives 
the above equations in the case of a multicomplex with only four components. �
Remark A.2. In the integrable case, the above coincides with the description of the 
Frölicher spectral sequence given in [13], which is just the spectral sequence of a bicom-
plex.
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