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A B S T R A C T   

Three-dimensional (3D) carbon nanostructures are promising architectures to improve both specific capacity and 
power density of electrochemical energy storage systems. Their open structure and porosity provide a large space 
for active sites and high ion diffusion rates. To further increase their specific capacity, they can be combined with 
metal oxides. However, this combination often results in the loss of cycling stability and power density. Among 
the different electrode materials being studied, vertically oriented graphene nanowalls (VG) have recently been 
put forward as a potential candidate. Here, we report the use of VG covered by Si for increased supercapacitor 
performance. VG were grown on flexible graphite sheet (FGS) substrate by inductively coupled plasma chemical 
vapor deposition (ICP-CVD). Furthermore, silicon (Si) was deposited by magnetron sputtering on VG and the 
electrochemical performance studied in ionic liquid (IL) electrolyte. The incorporation of Si in VG/FGS provides 
an areal capacitance up to 16.4 mF cm− 2, which is a factor 2 and 1.4 greater than that of bare substrate and VG/ 
FGS, respectively. This increase in capacitance does not penalize the cycling stability of Si/VG/GS, which re
mains outstanding up to 10,000 cycles in IL. In addition, the relaxation time constant decreases from 9.1 to 0.56 
ms after Si deposition on VG/FGS.   

1. Introduction 

Nowadays the society demands for safe, flexible, reliable and light
weight energy storage devices like batteries and supercapacitors to run 
modern electronics [1–3]. Supercapacitors (SC) also named as electro
chemical capacitors or electric double layer capacitors (EDLC) can 
deliver high energy densities comparable to those of batteries and 
high-power densities comparable to conventional capacitors [4]. 
Therefore, supercapacitor performance lies between conventional ca
pacitors and batteries. 

Supercapacitors rely on two mechanisms to store energy described as 
electrostatic charge storage and pseudocapacitance. The former consists 
in the formation of an electric double layer at the interface between 
electrode and electrolyte. Mainly large surface area carbon material and 
its composites are used as electrodes for EDLC. The latter consists in 

reversible and faradaic surface redox reactions taking place at the sur
face of conductive polymers, transitions metal oxides, or surface 
nitrogen-containing groups [5–7]. The performance of a SC depends on 
four important parameters: electrode material, electrolyte, current col
lector, and the electrode-current collector interface [8]. 

The use of a variety of nano-and/or composite materials as an elec
trode has made significant improvements in ion diffusion length and 
volumetric expansion issues during charge/discharge process [9–15]. 
Graphene, regarded as the most interesting material since Novoselov 
synthesized it in 2004 [16], is a two-dimensional structure made of a 
single layer of carbon atoms. Due to its remarkable properties, graphene 
has become a promising material for many applications like super
capacitors [17,18], Li-ion batteries [19,20] and solar cells [21]. 

The supercapacitor performance depends on the design and 
manufacturing process of the electrode materials [22–25]. In the case of 
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SC, translation of graphene orientation from horizontal to vertical en
hances 38% capacitance at scan rate of 100 mV s− 1 due to high specific 
surface area as well as an open perpendicular structure that provides 
facile diffusion paths for ions [26]. The perpendicular structure of 
vertically aligned graphene nano-walls (GNWs) may also work as an 
open surface for deposition of other materials [27–29]. The specific 
capacitance delivered by carbon materials is lower than the one ob
tained as composites with certain metal oxides or polymers [30]. 
However, due to the faradic nature of their charge storage mechanism, 
these composites suffer from a lack of cycling stability and lower power 
density than the corresponding bare carbon material. 

Silicon nanostructures are considered as a next generation electrode 
material for energy storage devices. It has been stated that SiO2 elec
trode materials display a very high differential capacitance (180 μF 
cm− 2) in comparison to carbon electrodes (below 40 μF cm− 2) [31]. 
Silicon and its derivatives such as SiNW (Si nanowires), SiO2, SiC have 
been tested alone or in composite with other materials as EDLC by 
several researchers as presented in Table 1 [32–39]. 

Three types of electrolytes, namely aqueous, organic, and ionic liq
uids (IL) are mainly employed in supercapacitor manufacturing. The 
aqueous electrolytes are environmentally friendly, low-cost, non-flam
mable and have higher ionic conductivity. However, aqueous electro
lytes have a small potential window of about ~1.23 V [8]. On the other 
hand, organic electrolytes provide larger potential windows of ~2.3 V. 
However, they are toxic, flammable and expensive. Still, most com
mercial supercapacitors are constructed using organic electrolytes 
because they provide a larger potential window in comparison to 
aqueous electrolytes [40]. ILs are non-flammable, chemically and ther
mally stable and provide a potential window larger than 3 V. 
Conversely, they are expensive and due to their high viscosity, super
capacitors display poor cycling stability and failure at high power [40]. 
Another significant factor influencing supercapacitor performance is the 
current collector. The prime contribution of the current collector in a 
supercapacitor is to let electrons flow efficiently between the active 
material and the external circuit during the working process. It is highly 
desirable to have a strong contact between the current collector and the 
active materials to minimize the series resistance of the device. Other
wise, a significant loss of energy would occur during the charging and 
discharging process [41]. 

In this work, vertically aligned graphene nanosheets (VG) were 
grown on flexible graphite sheet (FGS) substrate using inductively 
coupled plasma (ICP). Later, Silicon (Si) was sputtered on the surface of 
VG/FGS to prepare a nanocomposite for supercapacitor electrodes. Due 
to the instability of Si in aqueous electrolytes [36,38] an IL has been 
used to analyse its performance. The results show a good contact at the 
electrode/current collector interface, and an increase in cycling stability 
and power density after Si deposition. To the best of our knowledge, this 
is the first time that Si/VG nanocomposites grown on flexible graphite 
current collector have been demonstrated for supercapacitor 
applications. 

2. Experimental 

Flexible graphite sheets (FGS) were purchased from Mersen Graphite 
company (Papyex flexible graphite sheet, n998) with a thickness of 0.02 
cm. Vertically oriented graphene (VG) nanostructures were grown 
directly on FGS by using inductively coupled plasma chemical vapor 
deposition (ICP-CVD) method. A detailed description of the ICP-CVD 
system has been reported previously [29]. FGS was introduced inside 
a quartz tubular reactor and the system was pumped down to a pressure 
below 1 Pa. Afterwards, the synthesis of VG on FGS was performed as 
follows. The system was heated up to 750 ◦C without introducing any 
gas. After reaching the desired temperature, the precursor gas (CH4, 10 
sccm) was introduced at a pressure of 50–60 Pa and the plasma ignited 
with an input power of 400 W. The growth time of VG was set to 40 min. 
Subsequently, the heating and plasma powers were switched off, as well 
as the CH4 flow. Finally, the system was let to cool down to room tem
perature. Pulsed DC magnetron sputtering was used for the sputtering 
process of Si (~20 nm thick) on VG/FGS. The parameters used were: 
120 W plasma power, 100 kHz frequency of pulsed signal, 2016 ns pulse 
width, 20 sccm of Ar gas flow and a working pressure of 1 Pa. After the 
growth of the vertical nanostructures and in order to increase their 
surface energy, the VG were treated in situ at room temperature with a 
ICP of 40 W at a O2 pressure of 43 Pa for 30 s. This post-treatment has a 
double effect of purifying the VG and increasing the wettability of the 
nanostructures, which facilitates contact with the electrolyte. 

3. Characterization techniques 

3.1. Analysis methods 

The morphological analysis of the samples was performed using 
scanning electron microscopy (FESEM, HITACHI SU5000). The quality 
and structure of the samples were examined by micro-Raman spectros
copy (HORIVA LabRam HR800, Japan). A green laser of 532 nm 
wavelength, 0.5 mW power, and a 50LWD objective was used during the 
measurements. X-ray photoelectron spectroscopy (XPS) analysis was 
carried out using a Kratos AXIS ultra DLD with an Al Kα (hν = 1486.6 eV) 
X-ray source. The high-resolution spectra were deconvoluted using 
Shirley background subtraction and Gaussian-Lorentzian functions for 
the peak fitting (Casa XPS software). The electrochemical character
ization of the samples was performed using a two-electrode cell 
configuration in non-aqueous electrolyte. The symmetrical super
capacitors were built in a MBRAUN Unilab dry glove box by sand
wiching an ionic liquid (bmim-MeSO3) soaked separator (Whatman 
glassy-fiber GF/A) between two of the following electrodes: FGS, VG/ 
FGS and Si/VG/FGS. The geometrical area was 1.13 cm2 and the elec
trodes were analysed electrochemically using a potentiostat/galvanostat 
(Autolab PGSTAT30, Eco Chemie B.V., Utrecht, The Netherlands). 

3.2. Calculation formulas and methods 

The areal capacitance of one electrode calculated from cyclic vol
tammetry (CV) measurements was estimated using equations (1) and 
(2). 

Table 1 
Capacitance comparison of Si and its derivates in different electrolytes.  

Electrode Electrolyte Capacitance 

Cyclic 
Voltammetry 

Charge/ 
Discharge 

Mixture (MMPSiC: carbon 
black: PVDF)/ 
Aluminum foil [32] 

1 M Na2SO4 253.7 F g− 1 @ 5 
mV s− 1 

– 

Mixture (MMPSiC: carbon 
black: PVDF)/ 
Aluminum foil [32] 

[EMIM] 
[TFSI] 

40.3 F g− 1 @ 5 
mV s− 1 

– 

SiNW on stainless steel 
[33] 

Et4NBF4 ~58 F g− 1 @ ~ 
0.6 A g− 1 

– 

NiO coated SiNW [34] 2 M KOH – 787.500 F g− 1 

@2.5 mA 
SiO2 coated carbon cloth 

[35] 
TEABF4/ 
ACN 

14.7 μF cm− 2 @ 2 
mV s− 1 

– 

SiNWs on Si [36] 1 M NEt4BF4 
in PC 

46 μF cm− 2 @ 50 
mV s− 1 

– 

SiC NWs/Si/SiO2/SiC [37] 3.5 M KCl 400 μF cm− 2 @ 
100 mV s− 1 

– 

SiNWs/Si [38] 1 M KCl 1.7 mF cm− 2 @ 50 
mVs− 1 

– 

SiNWs/Si [39] 1 M Na2SO4 1.55 mF cm-2 

@10 mV s− 1 
– 

MnO2/SiNWs/Si [39] 1 M Na2SO4 21.296 mF cm− 2 

@ 10 mV s− 1 
– 

Si/VG/FGs [this work] bmim-MeSO3 16.4 mF cm− 2 @ 
10 mV s− 1 

8.4 mF cm− 2 

@ 0.4 mA  
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C=(qa + |qc|)
/(

2 × ΔUappl
) (1)  

Ca = 2 × C/A (2)  

Where Ca is the areal capacitance of a single electrode in mF cm− 2,qa, 
and qc are the anodic and cathodic charges in C, C is the measured 
capacitance for the two-electrode cell and A is the area of one electrode 
in cm2 [42,43]. 

The areal capacitance (Ca) of a single electrode was calculated from 
charge-discharge curves of a complete device by the following equation 
(3). 

Ca = 2 × (I × Δt)/(A × ΔU)
(3)  

Where I is the discharge current in mA, Δt is the discharge time 
excluding IR drop due to the series resistance (ESR) in s, ΔU is the 

potential window in volt (V) excluding the voltage drop, A is the area of 
one electrode material in cm2 [44]. 

Energy density and power density are two important parameters to 
evaluate the performance of SC for real applications. The energy density 
(Ea) and volumetric power density (Pa) were calculated using the 
following equations (4) and (5) [44]. 

Ea =C(ΔU)
2/
(2A × 3600) (4)  

Pa =Ea × 3600/Δt (5)  

Where C is the capacitance calculated from the discharge curve in F, ΔU 
is the voltage window and Δt is the discharge time in s and A the area of 
one electrode in cm2. The imaginary capacitance (C′′ ) is calculated 
using equation (6) [45]. 

Fig. 1. SEM image of {(a) flexible graphite sheet (FGS), (b) Vertical graphene (VG) grown on FGS, lines and numbers indicate the pore size in nm, (c) Si deposited on 
VG}. Raman spectra of {(d), flexible graphite sheet (FGS), (e), Vertical graphene (VG) grown on FGS, and (f), Si deposited on VG/FGS}. 
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C′′ =
− Z ′

2πf |Z|2
(6)  

Where C′′ is the imaginary capacitance in F, Z′ is the real part of the 
impedance in Ω, f is the frequency in Hz and |Z| is the modulus of the 
impedance in Ω. 

4. Results and discussion 

4.1. Microscopic and spectroscopic analysis 

Fig. 1 shows SEM images of FGS, VG/FGS and Si nanocluster deco
rated VG composite nanomaterial. The flexible graphite paper used as a 
substrate consists of parallel stacking of graphite sheets of different 
lengths visible in Fig. 1(a). The structure of VG grown on graphite papers 
is extremely porous, with big voids and wavy (Fig. 1(b)). 

The VG are around 600 nm in length, a few nanometres thick and 
with sharp edges. The vertical nature of graphene with wider spaces 
between them makes it easier for carbon species to reach at the sides and 
bottom of the nanosheets. That is, it seems that geometry facilitate the 
creation of nucleation centres that lead to the formation of secondary 
nucleated VG structure. With the growth of secondary VG sheets, the 
density of the nanosheets or nanoflakes increases, which implies an 
enhancement in the surface area. This wider open structure (meso and 
macro pores) of VG is very convenient for further grafting of nano
materials on the surface of graphene nanoflakes. 

The wide voids provide good space to deposit other materials 
directly making good contact with graphene nanoflakes. Si deposited on 
VG has a maximum thickness of ~20 nm (calibrated by sputtering Si on 
a flat surface) on sharp edges of nanoflakes and interlaced vertical 
graphene nanowalls. The sputtered Si does not disturb the wavy struc
ture of the nanosheets. The Si atoms are located coating basal planes and 
edges of VG due to the non-directionality of the sputtering process. 
Nanosized clusters of Si are formed that can provide short diffusion 
pathways for ions and electrons, effectively diminishing the problem of 
pulverisation induced by large volumetric expansion [15]. 

Raman spectroscopy is a highly recommended technique to study the 
structural quality (disorder, defects, and doping level) of carbon-based 
nanomaterials. It also differentiates the structure of different carbon 
nanomaterials such as graphite, graphene, vertically oriented graphene, 
and carbon nanotubes. Raman spectroscopy displays bands based on the 
nature of the carbon nanomaterials at different wavenumbers. 

The 1st and 2nd order Raman spectra of a carbon material displays 
most prominent peaks appearing at ~1582 cm− 1 (G band), which cor
responds to C–C stretching modes, D band at ~ 1350 cm− 1 and D′ band 
at ~1620 cm− 1, which are related to various kinds of lattice defects. A 
2D (G′) band appears at 2700 cm− 1, which is the 2nd order of D mode 
[46,47]. Fig. 1(d) shows typical graphite Raman spectra of FGS with a 
very weak D peak, that can be attributed to a small number of structural 
defects. Raman spectra of VG/FGS exhibit four main peaks at (1350, 
1587.2, 1618.2 and 2690.9 cm− 1) corresponding to D, G, D′ and G′

bands respectively (Fig. 1(e)). G′ to G band intensity ratio provides an 
estimate of the number of layers [48]. The IG’/IG = 0.42 ± 0.04 ratio 
confirms that the VG/FGS sample consists of a few layers of graphene 
nanoflakes. The quality of carbon materials is mainly identified by 
measuring the intensity ratio ID/IG [49]. The value of this ratio is 1.69 ±
0.07 and 1.60 ± 0.06 for VG/FGS and Si/VG/FGS, respectively. These 
similar values indicate that the Si deposition process does not damage 
the VG structure. The Raman spectra of SNC/VG/FGS presents an 
additional peak at 470 cm− 1 [50], which confirms the presence of 
amorphous Si deposited on VG/FGS (Fig. 1(f)). 

The elemental quantification was achieved from the XPS survey scan 
spectra (Fig. 2). The survey scan of FGS and VG/FGS demonstrates the 
presence of carbon and oxygen at 284.5 eV and 531 eV binding energies, 
respectively. Si/VG/FGS survey scan displays carbon and oxygen peaks 

as well as a peak at 99 eV, which corresponds to Si. The quantification 
analysis was performed at three different places of the sample to confirm 
its homogeneity. The elemental composition analysis reveals that the as 
received FGS sample consists of C1s (98.68 at.%) and O1s (1.32 at.%), 
VG/FGS sample consists of C1s (96.89 at.%) and O1s (3.11 at.%) and Si/ 
VG/FGS sample consists of C1s (18.39 at.%), O1s (41.5 at.%) and Si 
(40.12 at.%). The higher ratio of oxygen in VG/FGS in comparison to 
FGS is probably due to the existence of defect sites and grain boundaries 
in the graphene, which readily react with atmospheric oxygen when the 
sample is removed from the reactor. 

The high Si percentage and a small amount of carbon in the Si/VG/ 
FGS is in accordance with the Si coating on the surface of VG. The high 
oxygen percentage in the Si/VG/FGS sample is probably due to the ex
istence of residual water molecules in the sputtering system and reaction 
of sputtered silicon with atmospheric moisture upon exposure to air. 

The asymmetric shape of high resolution C1s spectra indicates the 
presence of other chemical moieties at the surface of the FGS, VG/FGS, 
and Si/VG/FGS as shown in Fig. 3. The deconvolution of C1s spectra for 
FGS and VG/FGS shows 9 peaks. The main C1s peak at 284.5 ± 0.2 eV 
was characterized as C1 (C––C)/sp2 hybridized graphite like carbon. The 
C2 peak at 285.1 ± 0.2 eV was a feature of C–C/sp3 hybridized carbon 
atoms. The C3 peak at 285.8 ± 0.1 eV corresponds to the C–OH chemical 
group. The C4 (C–O) peak at 286.4 ± 0.1 eV, C5 (C––O) at 287.3 ± 0.2 
eV, and C6 (O–C––O) at 288.4 ± 0.1eV indicate the presence of alcohol/ 
ether, carbonyl and carboxylic groups, respectively [11,51–53]. The C7 
peak located at 291.0 ± 0.1 eV and C8 at 293.5 ± 0.2 eV were designated 
as shake up satellite (p-p*) and bulk-loss, respectively [54]. Due to the 
high number of defects in VG/FGS, the percentage of adsorbed impu
rities as oxygen functional groups is higher in comparison to FGS. In 
addition, a peak at 283.9 ± 0.1 eV was assigned to vacancy-like defects 
[53]. In the case of Si/VG/FGS, C1, C2, and C3 peaks appear at the same 
binding energies as those for FGS and VG/FGS. For sample Si/VG/FGS 
the C4, C5, C6, C7, and C8 peaks were not detected, and the C9 peak is 
slightly shifted ~0.5 eV to lower binding energies. The disappearance of 
the oxygen functionalities and downshift of C9 is possibly due to 
changes in the local chemical environment of carbon related to the 
presence of Si. The quantitative analysis of carbon attached to various 
oxygen groups for FGS, VG/FGS and Si/VG/FGS are provided in sup
plementary information (S1). Fig. 3(d) shows Si2p deconvoluted spectra 
of Si/VG/FGS in two elemental Si peaks, S1 (Si2p3/2; 99.34 ± 0.1 eV) 
and S2 (Si2p1/2; 99.87 ± 0.1 eV), one complete oxide peak S6 (SiO2; 
103.28 ± 0.1 eV) and three sub-oxide peaks, S3 (Si2O; 100.09 ± 0.1 eV), 

Fig. 2. XPS wide energy survey scan of flexible graphite sheet (FGS), Vertical 
graphene (VG) grown on FGS, and Si deposited on VG/FGS. 
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S4 (SiO; 100.63 ± 0.1 eV) and S5 (Si2O3; 101.54 ± 0.1 eV) [55,56]. 
Supplementary information (S2) shows that the concentration of 
elemental silicon is 30.58 at.% and the rest (69.42 at.%) consists of SiO2 
and sub-oxides. 

4.2. Electrochemical measurements 

Supercapacitors tested in IL at different scan rates (5–150 mV s− 1) in 
the voltage range of 0–1.8 V, show typical rectangular-shape voltam
mograms (Fig. 4(a)). As anticipated, the CV of Si/VG/FGS presents a 
larger integrated area and current in comparison to other samples. The 
CV curves display two different non-faradic and faradic capacitance 

regimes at different potentials. The charge storage mechanism presented 
by VG/FGS is mainly electrostatic (electric double layer capacitance) as 
can be seen from the linear increase in voltage until 1.65 V, above this 
voltage current increases exponentially which can be related to faradaic 
charge transfer due to minor oxygen functional groups at the surface of 
graphene. Samples FGS and Si/VG/FGS start to have significant faradaic 
charge transfer at 1 V or below. The faradaic charge transfer taking place 
at the electrode-electrolyte interface for FGS is due to moisture (oxygen 
groups) at the surface of graphite sheets. For Si/VG/FGS the emergence 
of faradaic charge transfer was mainly due to the presence of Si oxide 
derivatives. Fig. 4(b) shows a comparison of the capacitance at different 
scan rates. The delivered capacitances for (FGS, VG/FGS, and Si/VG/ 

Fig. 3. High resolution deconvoluted spectra {C 1s (a) FGS, (b) VG/FGS, (c) Si/VG/FGS}, {Si2p (d) Si/VG/FGS}.  

Fig. 4. (a) Cyclic voltammetry comparison between samples at 10 mV s− 1 scan rate and (b) capacitance comparison at different scan rates.  
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FGS) are (12.7, 14.9 and 16.4 mF cm− 2) respectively, at scan rate 10 mV 
s− 1. The highest capacitance obtained for Si/VG/FGS is related to the 
well-anchored Si to VG. The capacitance decreases as the scan rate in
creases because at lower scan rates electrolyte ions have more time to 
diffuse into almost the whole available space of the electrode material. 
At high scan rates (150 mV s− 1) sample (Si/VG/FGS) delivers the highest 
capacitance of 4.3 mF cm− 2. 

Fig. 5(a) presents galvanostatic charge-discharge measurements of 
FGS, VG/FGS and Si/VG/FGS at a constant current of 0.4 mA in the 
potential window 0–1.8 V. The charge-discharge profiles display a 
symmetrical shape for all samples. The capacitance of a single electrode 
from two electrode cell configuration was calculated using equation (5). 
The capacitance values of (FGS, VG/FGS, and Si/VG/FGS) were (3.6, 
6.1, 8.4 and mF cm− 2) respectively (see Fig. 5(b)). The decrease in 
capacitance with an increase in current could be related to ohmic 
resistance along the path of micropores and/or to ion diffusion con
straints through the porous structure surface [57]. 

The long-term charge-discharge stability of the supercapacitors was 
evaluated by charging and discharging at 0.5 mA current during 10,000 
cycles (Fig. 5(c)). SNC/VG/FGS sample shows an increase in capacitance 
from (6.5–7.1 mF cm− 2) after 3500 cycles most probably due to 
improvement in electrolyte wetting with time. In addition, due to a large 
pore structure and electrostatic charge storage mechanism, this sample 
presents a stable capacitance during 10,000 cycles. VG/FGS sample 
shows a decrease in capacitance from 3.8 mF cm− 2 to 3.5 mF cm− 2 in the 
first few cycles. Afterwards, it keeps an almost constant capacitance 
value of 3 mF cm− 2 up to 10,000 cycles, which corresponds to 79% 
capacitance retention. In contrast, Si/VG/FGS sample shows a 106% 
capacitance retention after the same number of charge/discharge cycles, 
which demonstrates its suitability as a nanocomposite for super
capacitor applications. 

Energy density and power density are two important parameters to 
evaluate the performance of supercapacitors for real applications. The 

energy density (E) and power density (P) were calculated using equa
tions (6) and (7). The corresponding Ragone plot of the samples is shown 
in Fig. 5(d), where it can be seen that Si/VG/FGS delivers the highest 
energy density (0.0037 mWh cm− 2, 0.0017 mWh cm− 2) and power 
density (0.7 mW cm− 2, 1.8 mW cm− 2) at 0.35 mA cm− 2 and 0.88 mA 
cm− 2 currents densities respectively, in comparison to other samples. 

The supercapacitors were further analysed by electrochemical 
impedance spectroscopy (EIS). The results are presented using the 
Nyquist plot in Fig. 6, where the inset shows the high frequency region. 
The ESR values for (FGS, VG/FGS, and Si/VG/FGS) were (3.5, 3.6 and 
2.9 Ω cm2) respectively. The low ESR values demonstrate excellent 
contact between Si, VG, and graphite sheet [58,59], which also leads to 
enhanced ionic conductivity through the inner structure of the elec
trode. There was no appearance of semicircle for all samples, which 
indicates that double layer capacitance is the main charge storage 
mechanism. At low frequencies, the trend of the slope 
Si/VG/FGS>VG/FGS> FGS manifests that amorphous Si nanoclusters 
are well-anchored to VG/FGS and promote ionic diffusion into Si pores, 
graphene, and graphite sheet. Thus, direct growth of VG results in strong 
adhesion to the flexible graphite sheet substrate, which diminishes 
contact resistance. In addition, its vertical structure allows fast ion 
diffusion and, consequently, a decrease in the ESR. 

The imaginary capacitance (C′′ )was calculated by equation 8. The C′′

vs. frequency plot shows a maximum at the relaxation frequency f0 that 
normally appears at 45◦ phase angle in phase versus frequency plots. 
The frequency f0 separate the resistive and capacitive parts of the 
supercapacitor. The inverse of f0 is called the relaxation time constant 
(τ0), which can be calculated by the following equation (τ0 = 1/

f0) as 

shown in Fig. 6(b). Supercapacitors require low values of τ0 in order to 
deliver high power densities. The relaxation time constant for VG/FGS is 
9.1 ms and 0.56 ms for Si/VG/FGS. These results indicate that VG 
composite with amorphous Si nanocluster promote fast ion 

Fig. 5. (a) Charge/discharge comparison at 0.4 mA current, (b) comparison of capacitance at different currents, (c) charge-discharge cycling stability comparison 
and (d) Ragone plot comparison at different current densities. 
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transportation through the pores of the composite electrode material, 
which results in a better power delivery nature [60]. The sudden in
crease in C′′ at very low frequencies is due to the contribution of faradic 
capacitance [61]. We did not observe the peak maximum for FGS sample 
in C′′ vs frequency plot. The absence of this peak could be due to leakage 
current or a wide distribution of porous structure [62,63]. 

5. Conclusion 

We have manufactured Si/VG/FGS nanocomposite electrodes by 
vapor deposition methods. Morphological and spectroscopic results 
reveal the formation of few layer vertical graphene nanoflakes grown on 
flexible graphite sheet. The deposited silicon nanoclusters were deter
mined to be amorphous in nature and cover the surface of vertical 
graphene from top to bottom. The Si/VG/FGS composite show a 2 and 
1.4-fold increase in capacitance with respect to FGS and VG/FGS 
respectively, a high cyclic reversibility up to 10,000 cycles at 0.5 mA and 
a very small relaxation time constant of 0.56 ms in IL. The energy and 
power densities were for Si/VG/FGS than those of FG and VG/FGS. 
These results show the potential of Si/graphene nanowalls composite 
electrode as high power and energy density electrodes in IL. 
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