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Every statement or theory is not only
either true or false but has,
independently of its truth value, some

degree of verisimilitude.

Karl Popper, Conjectures and

Refutations

To my parents






RESUMEN

La verosimilitud es una propiedad de una proposicién o teoria que representa su cercania, su
aproximacién, o su semejanza a la verdad. La nocién permite defender una posicién intermedia
entre el infalibilismo y el escepticismo y proporciona una lectura optimista de un conjunto de ideas
sobre la ciencia que parecen implicar, en un primer momento, una visién instrumentalista o
pesimista de las teorias cientificas. A este respecto, quizd todas las teorias cientificas sean,
estrictamente hablando, falsas, aunque algunas pueden estar mds cerca de la verdad que otras; el
progreso cientifico es posible gracias a un aumento de la cercania a la verdad de las teorias; la
verdad, aunque quizd inalcanzable, puede definirse como el objetivo final de la ciencia en el sentido
de la busqueda de una mejor aproximacion a ella; nuestras mejores teorias cientificas (incluyendo
sus partes inobservables) funcionan porque son aproximadamente verdaderas; y uno puede abrazar
el falibilismo y aun asi ser capaz de estimar que algunas teorias estin mds cerca de la verdad que

otras.

Tras el fracaso de Popper en proporcionar una definicién satisfactoria sobre la verosimilitud, la
nocién se convirtié en un tema de intensa discusién por parte de los filésofos de la ciencia y los
légicos, lo que dio lugar a dos lineas de investigacién principales, la del enfoque del contenido-
consecuencia y la del enfoque de la similaridad. Esta tesis doctoral desarrolla un marco para definir
la verosimilitud de las leyes deterministas y probabilistas dentro del enfoque de la similaridad tal

y como lo ha desarrollado Ilkka Niiniluoto.

Segin Niiniluoto, la verosimilitud de las leyes deterministas cuantitativas puede definirse a través
de la métrica de Minkowski. La tesis presenta algunos contracjemplos a dicha definicién y
argumenta que falla debido al hecho de que considera que la verosimilitud de las leyes
deterministas cuantitativas es solo una funcién de su “precisién”, pero una ley altamente precisa
puede errar respecto a la “estructura” o el “comportamiento” real del sistema que pretende
describir. Desarrolla una modificacién de la propuesta de Niiniluoto que define la verosimilitud
de las leyes deterministas cuantitativas basindose en una funcién de dos variables: la “precisién” y
la “nomicidad”. Esta ultima representa los comportamientos cualitativos implicados por una ley
que no pueden capturarse apelando Gnicamente a la comparacién de sus valores predichos con los
valores reales. Muestra que la nomicidad puede medirse mediante la similaridad de formas entre

dos funciones, apelando a la distancia euclidiana entre las derivadas de las funciones



correspondientes. La propuesta final resuelve los contraejemplos presentados y define una nueva

forma de entender el progreso cientifico.

El marco se amplia para cubrir las leyes probabilistas, que representan un subconjunto relevante
de las leyes cientificas actuales. Al desarrollarse esta investigacion, la literatura sobre la
verosimilitud apenas contenia propuestas sobre cémo tratar con las leyes probabilistas o con las
verdades probabilistas en general. En este sentido, la investigacién partié de la sugerencia de
Niiniluoto de usar la divergencia Kullback-Leibler para definir la distancia entre una ley de
probabilidad X y la verdadera ley de probabilidad T y argumenta que dicha divergencia parece ser
la mejor de las distancias entre funciones de probabilidad disponibles para medir la precisién de
las leyes probabilistas. Sin embargo, como en el caso de las leyes deterministas, argumenta que la
precisién representa una condicién necesaria pero no suficiente, ya que dos leyes probabilistas
pueden ser igualmente precisas y aun asi una implicar consecuencias, comportamientos o hechos
probabilisticos mds verdaderos o semejantes a la verdad que la otra. La propuesta final define,
nuevamente, la verosimilitud de las leyes probabilistas como una funcién de su precisién y

nomicidad, en intima conexién con la propuesta desarrollada para las leyes deterministas.
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ABSTRACT

Truthlikeness is a property of a theory or a proposition that represents its closeness, similarity or
likeness to the truth. The notion allows to defend a middle position between infallibilism and
scepticism, providing an optimistic understanding of a set of ideas regarding science that may
seem to imply, prima facie, an instrumentalist or pessimistic view of scientific theories. In this
sense, perhaps all scientific theories are strictly speaking false, but some may be closer to the truth
than others; scientific progress is possible because of an increase in truthlikeness; truth might be
said to be the aim of science in the sense of pursuing a better approximation to it; our best
developed theories (including the unobservable parts) work because they are close to the truth;
and finally, one may embrace fallibilism and still be able to estimate that some theories are closer

to the truth than others.

Since Popper’s failure to provide a satisfactory definition of truthlikeness, the notion has become
a topic of intense discussion by philosophers of science and logicians. This gave rise to two main
perspectives, the content-consequence and the similarity approach. This dissertation proposes a
framework to define truthlikeness for deterministic and probabilistic laws within Niiniluoto’s

version of the similarity approach.

According to Niiniluoto, truthlikeness for quantitative deterministic laws can be defined by the
Minkowski metric. We present some counter-examples to the definition and argue that it fails
because it considers truthlikeness for quantitative deterministic laws to be just a function of
“accuracy”, but an accurate law can be wrong about the actual “structure” or “behaviour” of the
system it intends to describe. We develop a modification of Niiniluoto’s proposal that defines
truthlikeness for quantitative deterministic laws as a function of two factors: accuracy and
nomicity. The latter represents the qualitative behaviours implied by a law that are not captured
by value comparison and can be measured by shape similarity, appealing to the Euclidean distance
between the corresponding derivative functions. The final proposal solves the presented counter-

examples and defines a new way of understanding scientific progress.

The framework is expanded to cover probabilistic laws, which represent a relevant subset of actual
scientific laws. When this research was developed, there were almost no proposals in the literature

of truthlikeness to deal with probabilistic laws or probabilistic truths in general. In this way, we



followed Niiniluoto’s suggestion to use the Kullback—Leibler divergence to define the distance
between a probability law X and the true probability law T and we argue that the Kullback—Leibler
divergence seems to be the best of the available probability distances to measure accuracy between
probabilistic laws. However, as in the case of deterministic laws, we argue that accuracy represents
a necessary but not sufficient condition, as two probabilistic laws may be equally accurate and still
one may imply more true or truthlike probabilistic consequences, behaviours or facts about the
system than the other. The final proposal defines truthlikeness for probabilistic laws again as a
function of accuracy and nomicity, in intimate connexion with the proposal developed for

deterministic laws.
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PREFACE

In a possible world, Aristotle, Newton and Einstein enter the stage. The audience applauds
enthusiastically for the imminent debate that is going to take place. The tickets had been resold
on eBay for more than a thousand euros. The three physicists take a seat and the moderator

initiates the debate with the question: ‘Why does a stone fall when we drop it near the surface of

the Earth?’.

‘All things have a natural place in the Universe’ Aristotle begins. “The earth element is situated
on its centre and the stone is composed mainly of the earth element. Therefore, when we drop it,

it has a natural tendency to go down, towards its natural place’.

“Your theory has been proven to be false’ Newton replies. ‘Objects exert a force of attraction among

them. The stone falls because of the gravitational force that the Earth exerts on it’.

‘No way’ Einstein intervenes. “There are no such forces. The Earth’s mass curves the space-time

near its surface. The stone just follows the shortest possible path’.

‘Well’ the moderator says. ‘Your theory, Dr Einstein, is probably and strictly speaking false too’.
She turns to the audience. You see! All past scientific theories are false and current scientific
theories are probably and strictly speaking false too. How could someone talk about scientific
progress? There is no progress in moving between falschoods. We have better take a pragmatist

attitude towards science. Truth is not something that science has or can achieve’.

A person in the audience stands up, visibly angry with the moderator’s comment. ‘Anything to
add, Sir Karl?’ the moderator asks. ‘All scientific theories might be false’ Karl claims. ‘But they do

not need to be on a par. Some may be closer to the truth than others’.

A second person stands up, shaking his head. ‘Larry Laudan here’ He says. ‘Until someone
explains to me what closer to the truth means, these sort of claims are just so much mumbo-

jumbo’

* %k k

My interest in the notion of truthlikeness appeared as a consequence of my previous interest on

scientific realism. As a graduate student, I considered the appeals to the notion of closeness to the
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truth as a very natural and elegant solution to many of the problems discussed in the literature on
scientific realism. However, the concept was usually not elucidated and my philosophical curiosity
remained unsatisfied. This changed with Ilkka Niiniluoto’s Truthlikeness (1987), which opened

an exciting and entirely new philosophical world to me.

I am deeply thankful to my supervisor, Jose Diez, for all his support and inestimable criticisms
which have undoubtedly raise the quality of my research. Not only that, but he has particularly

influenced my way of looking at philosophy, for which I will always be grateful.

I wish also to specially thank Ilkka Niiniluoto, who I had the honour to meet in Prague during
CLMPST 2019. He gave me a very warm welcome into the truthlikeness family and some months
later he offered me the opportunity to do a research stay in Helsinki. I have learned a lot from his

works, our conversations and correspondence.

I shall also thank Gustavo Cevolani and Theo Kuipers for great comments on previous versions
of the presented papers; Stathis Psillos, for being the first to comment a draft of this research and
whose positive words meant a lot to me; members of LOGOS (Research Group in Analytic
Philosophy, Barcelona) in general and in particular LOGOS’ people of philosophy of science, all
of them have had influenced on my philosophical training over the last four years; and Howard
Holland, for kindly taking the time to correct my typing. Finally, I am thankful to all those who
attended any of my talks and asked difficult questions that helped to improve the points developed

in this research.

I would like to finish by deeply thanking my parents, M2 Angeles and Carlos, and my family, for
all the encouragement and support. Isabel, for her endless positive energy in the most frustrating
moments. And Albert, Alex, Oriol and David, for stoically putting up with my long conversations

about truthlikeness.
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project ‘Laws, Explanation and Realism in the Physical and Biomedical Sciences’, funded by the
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OVERVIEW OF THE DOCTORAL PROJECT

1. Introduction to the notion of truthlikeness
1.1. Intuitions about truthlikeness

The notion of truthlikeness intuitively emerges from considering the fact that the different
potential answers to a cognitive problem may not be on a par regarding the true answer. Theories
and propositions seem to present a property, independent from their truth value, which locates
them in a kind of topological space regarding their closeness to the true theory or proposition of

a given cognitive problem.

Consider the problem regarding the number of planets in our Solar System. This problem has
(2021) the true answer ‘eight planets’. However, there are plenty (infinite perhaps) of other

potential answers. Consider the following two possible answers:

a) The number of planets in our Solar System is ten.

b) The number of planets in our Solar System is ten billion.

Although a) and b) are false, they do not seem to be on a par. Intuitively, answer a) seems to
“correspond better” to the facts or to present “less error” than answer b). The notions of ‘better
correspondence’ and ‘less error’ might need philosophical clarification, but at the level of intuitions

they seem to posit a difference between both potential answers.

Intuitions do not seem to be restricted to numerical examples. Consider the cognitive problem

regarding the shape of the Earth. Two potentials answers might be:

¢) The shape of the Earth is a sphere.
d) The shape of the Earth is a cube.

The actual shape is very similar to an oblate spheroid, a sphere flattened at the poles and a bit
bulged at the equator. Again, answers c) and d), although being false, do not seem to be on a par
regarding some property. Answer ¢) seems to be a better description of the actual shape of the

Earth than answer d).

Moreover, intuitions do not seem to be restricted to false potential answers either. Consider the

following two alternative true possible answers regarding the first cognitive problem:
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e) The number of planets in our Solar System is between seven and ten inclusive.

f)  The number of planets in our Solar System is between one and ten billion inclusive.

Once more, there seems to be some property regarding which e) and f) are not on a par. Answer
e) seems to be “more accurate” or “closer” to properly capturing the actual number of planets than

answer f).

Further, there seem to be cases where a true potential answer “corresponds better” to the facts
than a false potential answer. In this sense, answer e) seems to be “more accurate” or “closer” to

the actual number of planets than answer b).

Finally, there may be cases where a false potential answer might “correspond better” to the facts
than a true one. Consider the following two possible answers regarding the first cognitive

problem:

g) The number of planets in our Solar System is 7.

h) The number of planets in our Solar System is either 1, less than 1 or greater than 1.

As in the previous cases, answers g) and h) do not seem to be on a par. Answer g) seems, at least,

more “informative” or “accurate” than answer h) regarding the cognitive problem in question.

Note that the property with respect to that they are not on a par, is not that of “closeness to the
«

truth in general” or “closeness to being true” (see section 1.2.). In that case, h) would obviously be

closer to being true than g), as h) is indeed true.

What these cases seem to point out, is that different potential answers to a cognitive problem,
besides the property of being true or false, present an independent property P related to their
degree of better or worse correspondence to the facts. As in a Tarskian correspondence theory of
truth the notion of ‘correspondence to the facts’ can be taken as a synonym for ‘truth’ (Popper,
1963, p. 303), we may take the notion of the ‘degree of better or worse correspondence to the
facts’ as expressing the degree of closeness, likeness, or similarity to the truth, and naturally call
this property P ‘truthlikeness’ or ‘verisimilitude’. Then, truthlikeness, in a first rough
characterization, can be defined as a property of a theory or a proposition that represents its

closeness, similarity or likeness to the truth.

As an independent property from the truth value of potential answers, what the previous examples

seem to show is that:

i Some falsehoods can be closer to the truth (in question) than some falsehoods.
il. Some truths can be closer to the truth (in question) than some truths.
iii. Some truths can be closer to the truth (in question) than some falsechoods.
. Some falsehoods can be closer to the truth (in question) than some truths.
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Condition i) is probably the most interesting possibility for the philosophy of science and science
in general. In this way, the notion of truthlikeness entered in the philosophical scene during the
early sixties, relatively late in comparison to other relevant philosophical notions. One of the main
reasons, according to Oddie (2016), was the abandoning, by mainstream philosophers during the
latter half of the twentieth century, of the traditional Cartesian goal of infallible knowledge for a
fallibilist conception of human inquiry. This left the philosophical landscape dangerously close to
scepticism, pessimism or pragmatism: if all we can tell about theories and propositions is their
truth value and we are forced to conclude that we may never have conclusive reasons to ascribe
truth to a theory, then the only presumable available criteria to choose among theories seems to
be related to pragmatic or instrumentalist considerations. However, the notion of truthlikeness
emerged as a lifesaver: one may embrace fallibilism and still conclude that a theory A is preferable

to a theory B because of considerations related to truth, as A may be closer to the truth than B.

Still at the intuitive level, we seem to postulate a truthlikeness relation regarding a large number
of scientific theories and fields, so that the notion emerges as a natural explanation of theory
success and scientific progress. Some examples are given in Figure 1 (where >,’ stands for ‘closer

to the truth than’).

% Dynamics: Einstein theory >; Newton theory >; Aristotle theory

é}@: < Solar system: Kepler model >, Copernicus model >; Ptolemy model
Q'\é\ < Light: Quantum theory >; Electromagnetic theory >, Particle theory
é‘ﬁ < Atom theory: Bohr model >, Rutherford model >; Themson model
-3
C’*}Q@$ % Thermodynamics: Peng-Robinson law >; Van der Waals law >, Ideal gas law
] :o\O@ { < Biologic evolution: Extended synthesis >, Biological synthesis >; Darwin theory of natural selection
N @4‘ % Economic growth: The Solow model >; Harrod-Domar model
@{9@9 + International Trade: Standard model >; Heckscher-Ohlin model >, Ricardian model

Figure 1. Intuitive truthlikeness relations between scientific theories.

Note that, if we don’t move beyond the true/false dichotomy, all we can tell about all (or many)
of the listed theories in Figure 1 is that they are false and simply false. Truthlikeness aims to
overcome this limitation: although the dynamical laws described by Aristotle, Newton and
Einstein are (probably and strictly speaking) false, we have the strong intuition that the
Einsteinian world is closer to “how the world is” than the Newtonian world, and both seem to
“correspond better to the facts” than the Aristotelian world. That was, precisely, one of Popper’s

original motivations to introduce the notion of truthlikeness: to make sense of the idea that
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different scientific theories might be false and yet constitute progress towards the truth, where

progress is explained in terms of increasing truthlikeness.

As a final and very illustrative example, in thermodynamics the Van der Waals law of real gases
is usually presented as a clear example of scientific progress regarding the Ideal gas law, being the
former closer to the actual behaviour of gases than the latter. Interestingly for our topic, Barnett
describes in his classical Chemical Engineering Thermodynamics this scientific progress in terms
of truthlikeness: “it is clear that this equation [ Van der Waals] is a very much closer approximation

to the truth than the ideal gas equation” (1944, p. 175).

1.2. What truthlikeness is not

Prima facie, the concept of truthlikeness is different from the notions of “closeness to being true”,
“being an approximate truth”, “being a partial truth”, “vagueness” and “epistemic probability”. Not
to beg the question, we will try to show that in each case there seems to be a (same) property P

(truthlikeness) that captures different information than what is captured by the listed notions.

Regarding “closeness to the truth” (truthlikeness) and “closeness to being true”, imagine that the
actual speed of light was exactly 300.000 km/s. Then, the claim that the speed of light is between
300.001km/s and 900.000 km /s would be very “close to being true”: just by increasing in a tiny
amount the postulated interval (+1km/s), the claim would turn out to be true. In comparison,
the claim that the speed of light is 299.998 km /s would be less “close to being true” than the
former, as one would need to vary the claim by 2km/s in order to make it true. However, the
latter claim would be much better in another sense: it would be much more informative and closer
to accurately describe the target fact. This latter property is precisely what truthlikeness aims to

capture.

A statement with a high degree of “closeness to being true” might be said to be “approximately
true”, “almost true” or “nearly true”, and the notion might be defined appealing to the minimum
distance of a theory or a proposition from the actual world or the complete truth. However, an
“approximately true” statement (in this sense) may not be very truthlike, as its information content
might be low. In this sense, a “quasi-tautology” is very “approximately true”, but not informative

at all. Moreover, all truths have a maximal degree of “closeness to being true”, as they are indeed

true, but they might have different degrees of truthlikeness, as argued in section 1.1.

In this regard, the adjective “approximately true” might be said to correspond to the notion of
“approximate truth”, which may be taken as a synonym of the notion of “closeness to being true”.
However, the notion of “approximate truth” or “being an approximate truth” might have an

alternative reading, if used to capture the idea of true claims that are not sharp or precise
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(Niiniluoto, 1987, p. 177). Under this reading, the claim that the speed of light is between
298.000 km/s and 302.000 km/s has a high degree of “being an approximate truth”, as it is true
and highly accurate, whereas the claim that the speed of light is between 200.000 km /s and
400.000 km/s has a considerably lower degree of “being an approximate truth”. In comparison,
the claim that the speed of light is 299.999 km//s is presumably very truthlike, but it is not an

“approximate truth” in the explicated sense, as it is false.

To sum up, consider the following three claims:

a) The speed of light is 299.998 km/s
b) The speed of light is between 300.001km/s and 300.100 km/s
¢) The speed of light is between 299.997 km/s and 300.003 km/s

As we will see, according to the developed theories of truthlikeness, a) is the most truthlike claim.
In comparison, b) is the most “approximately true” claim and c) is the only “approximate truth”,

(if these notions are taken in the explicated sense).

In this way, as will be shown in section 1.3, a notion related to these concepts has been postulated
by many authors as indispensable for a plausible defence of scientific realism. Roughly, the realist’s
idea is that our best developed theories (including the unobservable parts) work because they are
“close to the truth”, so that our best scientific theories give truthlike or “approximately true”
descriptions of both the observable and the unobservable aspects of the world. However, in
general, the literature on scientific realism seems to fail to distinguish the expounded notions. For
example, in the entry about Scientific Realism of the Stanford Encyclopedia of Philosophy,
Chakravartty (2010) claims:

Realists regarding scientific knowledge... have special need of a notion of approximate truth... the
realist requires some means of making sense of the claim that [theories] may be false and yet close

to the truth, and increasingly so over time [our emphasis].

Based on what has been exposed, “approximate truth” and “close to the truth” are different notions
(taking “close to the truth” as “being truthlike”). As argued, a theory might be “close to the truth”
and yet not an “approximate truth”, and a theory T; can be “closer to the truth” than a theory T,
and yet T, may be more “approximately true” than Ty (in the previous example, a) is more truthlike

than b) whereas b) is more “approximately true” than a)).

Like this, scientific realism is sometimes formulated by claiming that our best developed theories
are “approximately true”, but if “approximately true” is understood in the sense of having a high
degree of “closeness to being true”, the notion would not work for the realist. As mentioned, a
quasi-tautological theory would be very “approximately true”, but this theory would not

presumably instantiate the kind of property that the realist has in mind. What is presumably
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meant by the claim that our best theories are “approximately true” is that they are “truthlike”, in
the sense of having a “sufficiently high degree of truthlikeness”. Then, what the realist presumably

needs is a notion of “being truthlike” (see section 1.4).

Furthermore, a possible sense of the notion of “partial truth” defines a claim which is true but
does not express the “whole truth” in question. For example, a witness in a court may not lie but
conceal some relevant facts, telling just “a part” of the whole truth (Niiniluoto, 1987, p. 175).
Then, presumably, a claim may be very truthlike without being “partially true” in this explicated

sense.

Moreover, regarding the difference between truthlikeness and “vagueness”, suppose one analyses
the latter notion in the many-valued logic style, where statements are assigned a truth value which
lies between zero (full falsehood) and one (full truth). Consider the claim ‘Isabel is exactly 30 years
old’. The proposition ‘Isabel is 29.9 years old’ does not contain any vague elements, so it would
be classified as “clearly false” with a truth value of zero. However, in truthlikeness terms it would
presumably be classified as very close to the truth. Therefore, a proposition might be clearly false
in vagueness terms and really close to the truth in truthlikeness terms, presenting a minimum

degree of vagueness and a high degree of truthlikeness.

Finally, truthlikeness does not seem to match with “epistemic probability” either. Popper (1963,
p- 295) was the first to point out a constitutive difference between both notions. Consider first
the notion of the content of a theory or a proposition. Given two statements p and g, Popper
claims that the informative content of the conjunction (p A q) will always be greater than (or at
least equal to) the content of any of its components. If Ct (p) stands for ‘the content of p’, we have

that:

Ctp) = Ct(pAq) = Ct(q)
This condition contrasts with one of the fundamental laws of the calculus of probabilities (being

P(p) the probability of p):

P®) =P Aq) =P@)
Both conditions imply that, when content increases, probability decreases (and vice versa). This
brought Popper to conclude that our search for better theories (theories which will imply a growth
in our knowledge, an increase in content) goes hand in hand with the search of less probable
theories. As content is one of the fundamental components that define Popperian truthlikeness,

both conditions imply that when truthlikeness increases, probability decreases (and vice versa).

More generally, the divergence between both notions can be easily illustrated by considering how
they treat false propositions. The probability of a known false proposition is always zero, but

presumably a false proposition can have a very high degree of truthlikeness. Moreover, the
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probability of a tautology is always 1, but in general tautologies do not seem to exhibit a high

degree of truthlikeness, as they are not informative at all.

1.3. Philosophical virtues

The notion of truthlikeness enables an optimistic understanding of a set of ideas regarding science
that one may want to accept individually but that may appear to imply, prima facie, a pessimistic

or instrumentalist view of scientific theories.

(I) The nature of scientific theories. Many (or perhaps all) scientific theories involve abstractions
(neglecting some properties) and idealizations (distorting some properties), therefore being
strictly speaking false. However, appealing to the notion of truthlikeness one need not claim that

they are all on a par: some may be closer to the truth than others.

(II) Scientific progress. A quick overview of the history of science seems to show a historical
development in terms of progress. It seems natural and intuitive to claim that there has been
epistemic progress from Aristotle to Newton and from the latter to Einstein regarding the
understanding and the explanation of the physical world. However, accounting for the notion of
scientific progress may appear challenging, particularly in the (many) cases where a false theory is
replaced by another false theory (as the movement from Aristotle to Newton). How is it possible
to advance in our knowledge of the world if we move between falsehoods? One possible answer
is to claim that scientific progress from a false theory to another false theory is possible because
of an increase in truthlikeness'. Newton’s theory represents progress regarding Aristotle’s theory

because the former is closer to the truth than the latter.

(IIT) Fallibilism. Fallibilism is nowadays probably the most popular position among
epistemologists, philosophers of science and scientists. The view holds that we might never have
conclusive reasons to ascribe truth to a theory, so that scientific theories should be taken as
hypothetical and always corrigible in principle. As pointed out in section 1.1, this may seem to
imply epistemic pessimism, scepticism or pragmatism towards scientific theories. However,
although we may not be able to ascribe truth to theories, we may be able to estimate their degrees
of truthlikeness, in that, given some evidence, it may be rational to claim that a theory T; is more

truthlike than a theory T, (see sections 1.5 and 4.3).

(IV) Truth as the aim of science. Many realist positions hold that truth (informative truth) is the

aim (or at least one of the aims) of science. What scientists try to do is to offer complete true

! See Niiniluoto (1984) for a defence of scientific progress in truthlikeness terms; Bird (2007) for a critic to the
explanation of progress appealing to the notion of truthlikeness; and Niiniluoto (2014) and Cevolani and Tambolo
(2013) for replies.
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descriptions of (fragments of) the world. However, because of (I) we may raise reasonable doubts
that this aim has been or can be realized, which seems to imply that science has an unachievable
end. Nevertheless, appealing to the notion of truthlikeness, we might say that the aim of science
is achievable in the sense of pursuing a better approximation to it, by scientific theories that grow
in closeness to the truth. On the other hand, because of (III) we might never know that science
has realized its aim, but with a notion of estimated truthlikeness (see sections 1.5 and 4.3) we

might be in a position to reasonably claim how that science is approaching it.

(V) Scientific Realism. Broadly, scientific realism defends a positive epistemic attitude toward our
best developed scientific theories, recommending belief in both the observable and the
unobservable parts described by those theories. However, one cannot claim that science works
because our best developed theories (including the unobservable parts) are true (roughly, because
of (I), (III) and the Pessimistic Induction, among others). Fortunately, the claim can nicely
reformulated by suggesting that our best developed theories (including the unobservable parts)
work because they are “close to the truth”, such that they provide truthlike descriptions of both

the observable and the unobservable aspects of the world.

In this sense, truthlikeness has been postulated by many authors as an indispensable notion for a
plausible formulation of scientific realism. However, as mentioned in section 1.2, different
notions have been used in the literature to presumably represent the same property. As a few
examples, Smart (1963) appeals to “nearly true” and “approximately true”, McMullin (1970) to
“approximate correspondence”, Putnam (1975) to “approximately true”, Worrall (1982) to
“approximately true” and “close to the truth”, McAllister (1993) to “close to the truth”, Leplin
(1997) to “approximately true” and “partially true”, Laudan (1981), Boyd (1983, 1990), Weston
(1992) and Chakravartty (2007) to “approximately true” and “approximate truth”, and Newton-
Smith (1981), Niiniluoto (1999) and Psillos (1999) to “truthlikeness”.

What the realist seems to have in mind when claiming that our best developed theories are
“approximately true” is that, although being strictly speaking false, they provide a “good”
description of both the observable and the unobservable aspects of the world, where a “good”
description is one that represents “very closely” how the world is. Metaphorically, theories being
“approximately true” are to be imagined as a realist painting of a landscape: although a painting
does not “perfectly” represent all the shapes and colours, it may be a very “good” or “close”
representation of the landscape. In this sense, the notions of “approximately true” and
“approximate truth” understood as described in section 1.2 would not do the work for the realist’s
purposes. What the realist presumably needs is the specific notion of “closeness to the truth” or

“truthlikeness” as detailed in this introduction.
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The notion of truthlikeness naturally combines all the mentioned ideas, providing an optimistic
interpretation related to truth: perhaps all scientific theories are strictly speaking false, but some
may be closer to the truth than others; progress is possible because of an increase in truthlikeness;
truth might be said to be the aim of science in the sense of pursuing a better approximation to it;
our best developed theories (including the unobservable parts) work because they are close to the
truth; and finally, one may embrace fallibilism and still be able to estimate than some theories are

closer to the truth than others.

To be sure, for each point (I)-(V) other philosophical concepts might do the same job as
truthlikeness in the sense of providing alternative explanations that avoid pessimistic or
instrumentalist interpretations of science. However, we take as one of the main virtues of
truthlikeness its ability to optimistically interpret (I)-(V) through a unique concept, in what we
take in a very natural and intuitive way. In this sense, truthlikeness allows for an optimistic middle

position between infallibilism and scepticism regarding scientific theories.

1.4. Types of truthlikeness statements

Being T; and T, two theories or propositions, one may find, at least, three different types of

statements which might be interesting to frame in terms of truthlikeness:

(a) T, is closer to the truth than T,.
(b) T, is close to the truth.
(c) The degree of truthlikeness of T; is x.

Claims of type (a) need a comparative condition which can be qualitative or quantitative and
provide a possible explanation of scientific progress. Claims of type (b) need the introduction of
a threshold which establishes the condition of possessing or not the property in question, which
again can be done in a qualitative or quantitative way. Those types claims are of special interest
for the scientific realist, who would like to claim that our best developed theories “are truthlike”
(though being able to establish claims of type (a) might be already relevant for a modest realist).
Finally, claims of type (c) need the introduction of a metric, being therefore only available to

quantitative definitions of truthlikeness.

A metric on a set is just a function that defines the distance between each pair of elements of the
set, being a numerical description of how distant objects are from each other. A set X with a

defined metric d constitutes a metric space (X, d). Formally, a metric d on a set X is a function

[d: X XX — [0,00)], so that for allx,y,z € X:

i d(x,y)=0

i dxy)=d@y,x)
iii. dix,y) =0 x=y
iv. d(x,z) <d(x,y)+d(y,2z)
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Although a quantitative definition is not necessary for a comprehensive definition, the
introduction of a metric arguably provides a more fine-grained notion. However, it may involve

some arbitrary conventions (see section 4.2).

1.5. The semantic and the epistemological problems

As with many other philosophical concepts, one must clearly distinguish between: (a) the logical
or semantic problem and (b) the epistemological problem. Popper (1963, p. 317) elegantly

formulated them for the case of truthlikeness as:

...we have here again to distinguish between the question “What do you intend to say if you say
that the theory t has a higher degree of verisimilitude than the theory t:?”, and the question “How

do you know that the theory t; has a higher degree of verisimilitude than the theory t:?”

The former has to do with the philosophical definition of the notion and needs to show how it is
meaningful to claim that a theory T, is more truthlike than a theory T;. The latter has to do with
our epistemic access to the conditions defining the concept and needs to show how, given some

evidence, it is rational to claim that a theory T, is more truthlike than a theory T;.

Keeping both notions clearly distinguished is crucial, as they obey different aims and require a
different treatment. The most common (negative) reaction to the notion of truthlikeness we have
encountered during our research, seems to focus exclusively on the epistemological problem,

presumably overlooking the virtues of a satisfactory solution to the semantic problem.

This common reaction goes roughly as follows: in order to claim that “a): the number of planets
in our Solar System is ten” is closer to the truth than “b): the number of planets in our Solar
System is ten billion” (or any other comparative truthlike claim), we need to know what the truth

actually is. But then:

(1) If we know what the truth is, then it seems of minor interest to know which theories or

propositions are closer to the truth than others (we already know what the truth is).

(2) Ifwe don’t know what the truth is, then it seems impossible to make claims about the truthlikeness
of theories or propositions, as we cannot establish their closeness to the truth. So for many (perhaps

all) real scientific cases where the notion would be useful, it cannot be applied.

Therefore, the notion of truthlikeness is either uninteresting or useless.

As we have encountered this reaction so many times, it may be worth discussing it in a bit of

detail.

On the one hand, (1) may be disputable. Even if we knew the truth, establishing the degrees of

truthlikeness of different theories could be of interest for the sake of studying or justifying the
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historical evolution of science. For example, assume that we come to know that Einstein’s theory
is the true theory of our universe. Then, it might be an interesting task to calculate the degrees of
truthlikeness of Newton’s theory and Aristotle’s theory in order to study the evolution of scientific
theories regarding the physical world. A parallelism might help to illustrate the point: even
knowing at some time t that the world’s 100m record is x seconds (and even considering that,
for some reasons, this record could not be overcome ever), it still might be an interesting task to

graphically represent past world’s 100m records in order to study the evolution of athletics.

In any case, even granting (1) as unproblematic, the main challenge and negative reaction to the
notion of truthlikeness seems to mainly come from (2). As we do not generally know the truth
with certainty, the notion seems inapplicable to real scientific theories and therefore epistemically
useless. As mentioned, this criticism targets the epistemological problem. Let us assume that this
problem was irresolvable in any sense?, that is to say, that given some available evidence there were
no possible rational procedure to estimate that a theory T; is more truthlike than a theory T5.
Even then, we take the semantic aspect of truthlikeness as providing enough philosophical utility
to make the concept valuable: showing that the notion is meaningful justifies an optimistic
philosophical interpretation of (I)-(V), as argued in section 1.3. Chakravartty (2007, p. 213) offers
a similar consideration, claiming that being able to respond to the antirealist scepticism by proving

that truthlikeness is a coherent idea is the main goal of a theory of truthlikeness.

Moreover, if one sets the possible interest of a philosophical concept on the possibility of its
(infallible) applicability to real cases, our guess is that very few (or none) philosophical concepts
would end up being valuable. In that sense, (2) seems to be an unfair reaction to truthlikeness, as
the possible epistemic complications do not seem to undermine the philosophical value of many

other concepts. Let us mention a couple of examples to illustrate the point.

On the one hand, the notion of knowledge might be defined appealing to “justified true belief”
or to some other post-gettier set of necessary and sufficient conditions. However, many (perhaps
all) of the proposed definitions cannot be infallibly applied to concrete cases, as they all involve
truth as a necessary condition. Even so, providing a satisfactory definition of knowledge seems

valuable per se.

On the other hand, in the debate about the nature of laws of nature, the realist proposals appeal
to some sort of necessity, which is not logical but nomological. The realist intuition is that laws
of nature govern the evolution of events that constitute our Universe. In this way, laws have been

conceptualized as necessitarian relations between universals (Dretske 1977; Tooley 1977,

2 We take this assumption to be false, as we believe that there may be rational ways of estimating the degree of

truthlikeness of a theory based on some available evidence. See section 4.3.
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Armstrong 1983), as powers or dispositional essences (Woodward, 1992; Ellis, 2001; Bird, 2005),
as ontological primitives (Maudlin, 2007); as causal/explanatory regularities (Carroll, 2008) or as
members of a counterfactually stable set of propositions (Langue, 2009). All this proposals make
laws epistemically inaccessible in the same way as (2), but still many philosophers find them

valuable.

To sum up, if the negative reaction towards the notion of truthlikeness lies in the impossibility of
its infallible application to real scientific cases, then we take the reaction as unfair. A solution to
the semantic problem seems sufficient to make the concept valuable and there may be rational
(and fallible) ways of estimating the degree of truthlikeness of a theory based on some available
evidence (see section 4.3). For those reasons, we take the “negative-reaction argument” as an

unsound criticism.

1.6. Historical development of the notion of truthlikeness
1.6.1. Popper

Popper (1963) was the first to take the concept of truthlikeness seriously and to give a formal
definition of it as a function of two variables: content and truth value. Departing from Tarski’s
theory of truth, his purpose was to capture the idea of a better or worse correspondence to the
facts. Take a theory T4 to be identified with the set A of all its logical consequences. If T4 is true,
A will only contain true propositions, whereas if T4 is false, A will contain true and false
propositions. Call the set of all true consequences of T4 its “truth content” (A7) and the set of all
false consequences its “falsity content” (Ag). Thus, A = Ay U Ag. Then, Popper’s natural idea is
that T4 is more truthlike than T? if and only if (i) T# has more truth content than T? and at least
the same falsity content or if (ii) T4 has at least the same truth content as T? and less talsity
content. As the sets A and B could have infinite elements, the comparison must be stated in terms

of set inclusion. Then, T4 is more truthlike than T® if and only if:

Ar DBy N Ap € Br or Ar 2By N Ap C Bp
This would have been a virtuous solution to the semantic problem, but unfortunately Miller
(1974) and Tichy (1974) proved independently that Popper’s definition didn’t work in the
intended way. Their argument goes as follows. Consider that T4 and T? are false and that Ay D
Br AAp € Bp. Then, T# has at least a true consequence g such that ¢ € Ay and q € Bry.
Moreover, T4 and T? will have at least one common false consequence 7, such that 7 € Ar and
r € Bp. Now,asq € Aand r € A, then (q A1) € A. As is a false consequence, then specifically

(q AT) € Ap. But crucially, (q A1) & Br. Therefore, it is not true that Ay € B, as was assumed.
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A similar case can be constructed if option two of the definition is assumed (Ar 2 By AAp C
Br). What the argument shows is that if T4 and T# are false, then neither option of the definiens
can be realized, so that Popper’s proposal implies that no falsehood is closer to the truth than any
other falsehood. This is a fatal flaw, as allowing for a truthlikeness ordering between falsehoods

is probably the core motivation of the notion of truthlikeness.

1.6.2. Two approaches to truthlikeness

Since Popper’s failure, the notion of truthlikeness has become a topic of intense discussion by
philosophers of science and logicians. One may find in the literature two broad approaches to deal
with the concept. On the one hand, what we may call the official approach emanates directly from
Popper’s analysis and can be considered the “institutionalized” approach to the notion. The
proposals of the official approach agree on a basic general framework and principles, and tend to
produce quantitative or logical definitions of the notion. On the other hand, what we may call the
unofticial approach incorporates different definitions given by philosophers usually unrelated to
the official approach. These proposals tend to be qualitative, appearing in the broader context of
scientific realism and analysing truthlikeness informally, in terms of another notion that remains
at an intuitive understanding. Let us emphasize that the chosen names are just labels for a possible
classification, without any intended type of positive or negative judgements. The two approaches

and the corresponding main authors are summarized in Figure 2.

—
Miller (1978)
Kuipers (1982)

. Burger and Heidema (1994)
The content- Gemes (1994, 2007)
CONSEqUENCE —] g 1z and Weingartner (1987, 2010)
approach
Cevolani and Festa (2009, 2020)
The official Cevolani, Festa and Kuipers (2013)
— —
—~
Hilpinen (1976)
Tichy (1974)

approach

Popper Miller (1974) The similarity —< Tuomela (1978)
(1972) = Tichy (1974) _ @pproach Festa (1986)
Oddie (1986)
Niiniluoto (1987)

~—

Gicere (1988)
Psillos (1999)
The unofficial Chakravartty (2010)
approach Northcott (2013)
Weston (1992)
Smith (1998)

Figure 2. Historical approaches to the notion of truthlikeness.
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1.6.3. The unofficial approach

The notion of “limiting case” has been suggested as a relation of truthlikeness between theories
(Chakravartty, 2017). If theory T; is a limiting case of theory T, then T, is closer to the truth
than Tj. The classical example is the degeneration of the Einsteinian equations into the
Newtonian equations when velocity tend to zero. In that case, Einstein’s theory might be said to
be more truthlike than Newton’s theory because the latter is a limiting case of the former. Such a
definition, even if correct, considerably restricts the application of the concept, not allowing for
truthlikeness comparisons between rival theories which do not instantiate inter-theory reductive

relations.

Giere (1988, p. 106) argues that the notion of “approximation” for scientific theories should not
be understood in terms of the “bastard semantical relationship” (p.106) idea of approximation to
the truth. He seems to share Laudan’s (1981) arguments that no one has presumably provided a
successful definition of truthlikeness (though he just mentions Popper’s (1963) and Newton-
Smith’s (1981) proposals). Moreover, he argues that truthlikeness is not a kind of truth, but a
kind of falsehood, as he takes that “being close to the truth” implies being “not exactly true”, which
in turn means “being false”. This is questionable, as shown in section 1.1, and false according to
the official approach: a theory can be closer to the truth than another even when both are true,

such that “being close to the truth” does not imply “being false”.

Giere’s proposal then defines the “approximation” of a (false) scientific theory in terms of the
notion of “similarity”, which is the basic relation he postulates between scientific models and real
systems. Sadly, the notion remains undefined in his proposal, but he offers the following example:
“the positions and velocities of the earth and moon in the earth-moon system are very close to
those of a two-particle Newtonian model with an inverse square central force” (1988, p. 81). With
that example in mind, we take Giere’s anti-truthlikeness arguments as a kind of verbal confusion.
If the earth-moon system represents the “real system” (a set of true facts), then similarity to the
earth-moon system literally means similarity to the truth (similarity to the target set of true facts).
Therefore, we take Giere as indeed defining a notion of qualitative truthlikeness® in terms of an

intuitive notion of similarity.

Psillos (1999), after what we take as some unfair refusal of the similarity approach, defends what
he calls an “intuitive approach”, based on understanding truth as fittingness and therefore
accounting for truthlikeness in terms of approximate fittingness. A description, a law or a theory
is truthlike if it fits as accurately as possible the relevant facts. Based on these ideas, he proposes

the following definition of “being truthlike” (p. 268):

* A similar criticism is given by Psillos (1999:265)
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A description D approximately fits a state S if there is another state S’ such that S and S’ are linked

by specific conditions of approximation, and D fits S’.

As an example, he mentions that the Ideal gas law is truthlike since it is true for ideal gases and
the behaviour of real gases approximates that of ideal gases under certain conditions. Note that
this definition only allows for absolute truthlikeness claims (statement of type (ii), section 1.4).

On personal communication (2018*) he stated a similar definition for comparative truthlikeness:

A description D1 of the actual worldly state S is more truthlike than a description D2 if there are
states S1, S2 such that D1 approximately fits S1, D2 approximately fits S2 and S1 is a better

approximation to S than S2.

Then, a theory T4 is closer to the truth than a theory T® if T4 approximately fits better the actual
world state S than TZ. As in the case of Giere, a natural reaction might be to point out that one
has substituted a notion that was in need of clarification (truthlikeness) for another notion
(“approximate fittingness”, “approximation”) which remains vague and undefined. However,
Psillos (1999, p. 268) considers that the notion of “approximation” is easier to make more precise

and concrete than the notion of truthlikeness.

According to Chakravartty (2010), the official (quantitative) approaches have ignored the intrinsic
qualitative dimension of truthlikeness and have not analysed the actual ways in which scientific
theories diverge from truth. He concludes that truthlikeness is a concept that is multiply realized
by means of the different ways in which scientific representation works: degrees of truthlikeness
are represented by degrees of idealizations, by degrees of abstraction or by a combination of both

factors.

Northcott (2013) defines truthlikeness according to how well a theory captures the relevant causes
of the world. A theory is close to the truth if it accurately captures the strengths of the causes
present in a given phenomenon. The better a theory correctly weighs the actual causal structure
of reality —limited to some specific context- the more truthlike it is. “Closeness” between a theory’s
postulated causal weightings and the true causal weightings is defined by the absolute difference

or Manhattan distance, which is one of the considered distance measures in Paper 1 and Paper 2.

Other proposals that could be included in this category but focus on the notion of ‘approximate
truth’ include Weston (1992) and Smith (1998). Roughly, Weston defines ‘approximate truth’ in
terms of accuracy: a statement is approximately true if it is true according to any method of

measuring error and within any allowable margin of error. As error measuring and acceptable

* Psillos presented this proposal in the workshop Explanation and realism in the physical and biomedical sciences

(University of Barcelona, 2018), during his comments on Garcia-Lapefa’s Truthlikeness and scientific realism.
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limits are context dependent on each specific scientific field, he concludes that a neutral notion of

‘approximate truth’ is unattainable.

On the other hand, Smith (1998) departs from the basic schema that <‘P’ is approximately true if
and only if approximately P>. He then takes scientific theories to be represented by the tuple <
M, A >: an abstract mathematical structure M and its empirical applications A. As M is a perfect
characterization of some geometrical structure, the approximation operation of the schema is
transmitted only to A. Therefore, a theory being approximately true means that the geometric
structure defined by the theory approximately replicates the corresponding structure of the target
real-world phenomenon. From here, he concludes that being approximately true is nothing
mysterious: it just requires us to define an appropriate geometrical closeness relation between
structures. This final idea is very similar to Niiniluoto’s proposal and to our own framework

developed in Paper 1 and Paper 2.

1.6.4. The official approach

The official approach can be divided into two main perspectives, the (i) content-consequence
approach and the (ii) likeness or similarity approach (being the consequence approach a special
modification of the content approach). As there are already a number of excellent presentations

of these proposals (Niiniluoto (1987), (1998), (2020) and Oddie (2013), (2016)), we will limit

ourselves to a general exposition.

1.6.4.1. The content-consequence approach

Perhaps the core element of the content approach is the idea that truthlikeness supervenes on just
two variables: content and truth value. In this sense, the main problem with Popper’s proposal is
that all consequences are given the same value, but this may be questionable. Take a theory T4 to
imply the true consequence p and the false consequence ~ q. Popper’s intuitive idea is that p
should count in favour of T4’s degree of truthlikeness and ~ q against it. However, once we have
counted p and ~ g, it may seem redundant to also count T*’s false consequence (p A~ q) against
its degree of truthlikeness. Moreover, the classical notion of logical consequence implies that in
the previous example (p V @), being @ an arbitrary formula, would be a true consequence of TA.
But again, it may seem irrelevant to count these kinds of implications in favour of T#’s
truthlikeness. These types of presumably irrelevant and redundant consequences are the core of

the Tichy-Miller’s argument.

This suggests that Popper’s proposal may be saved by taking into account only the “relevant”

consequences of a theory, restricting the elements that conform its truth content and its falsity
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content to some special set of consequences. This is the core idea of the consequence approach,
which implies the specification of a criterion R that differentiates between relevant and irrelevant
consequences. As an important constraint, the conjunction of all the relevant consequences should
be logically equivalent to the original theory, so no information is lost by the relevant criterion.
Then, truthlikeness can be defined in the Popperian way: a theory T4 is more truthlike than a
theory T® if and only if T4’s relevant truth content is larger and its relevant falsity content is at
least the same as those of TZ; or if T4’s relevant falsity content is smaller and its relevant truth
content is at least the same than those of T5. Proposals that follow this strategy include Burger
and Heidema (1994), Gemes (2007), Schurz and Weingartner (1987, 2010), Schurz (2018,
2021), Cevolani, Festa and Kuipers (2013) and Cevolani and Festa (2020).

Miller (1978) and Kuipers (1982) offered a structuralist model-theoretic version of Popper’s
account. A theory T# framed in language L is defined by its class of models Mod(T#) (the class
of L-structures M where T4 is true). Then, T4 is at least as truthlike as T? if and only if (where

‘A’ stands for the symmetric difference):

Mod(T*)AMod(T) S Mod(T5)AMod(T)
Kuipers’ first “naive definition” can be considered as belonging to the consequence approach, as
he takes the truth T to represent the “nomic truth”, the special set of “real” possibilities (physical,
chemical, biological, etc.) among all the conceptual possibilities of a given domain, and a theory
T4 is framed as a conjunctive set of relevant consequences (i.e., nomic consequences). This
proposal can lead to the Miller—Tichy’s problem when the truth is a complete theory. Later
(1987a, 1987b, 2000) he developed a “refined definition” which appeals to a qualitative notion of
similarity in order to allow that not all false consequences are on a par. This later proposal can be

considered as a structuralist version belonging to the similarity approach.

1.6.4.2. The similarity approach

The similarity approach to truthlikeness was first proposed by Hilpinen (1976), within possible
world semantics, and Tichy (1974), within propositional logic, and rapidly expanded by
Niiniluoto (1987), Oddie (1986), Tuomela (1978) and Festa (1986), among others. Tichy (1974)

elegantly sketched his proposal at the end of the paper criticising Popper’s account:

For a simple language which, like L, is based on propositional logic only, this is easily done. The
‘distance’ between two constituents can be naturally defined as the number of primitive sentences
negated in one of the constituents but not in the other. The verisimilitude of an arbitrary sentence
a can then be defined as the arithmetical mean of the distances between the true constituent t and
the constituents appearing in the disjunctive normal form of a. It is easily seen that such a definition

meets all intuitive requirements.
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The core idea of the similarity approach can be captured by the claim that the truthlikeness of a
theory or a proposition rests on the similarities between the states of affairs it allows and the actual
states of affairs of the world. The approach can be summarized as follows. Consider a
phenomenon or system P and a language L to talk about P. One can construct a space of
possibilities Sp which contains all the mutually exclusive and jointly exhaustive ways (cy, ¢3, C3 -..)
P can be regarding L, all the possible complete descriptions of P given L5. Then, a theory or claim
h of L will be expressible as a set of elements of S. The next step is to introduce a metric d(c;, ¢)
which defines the distance (in terms of similarity) between the elements of S5 and an extension
of d into another metric d'(h, ¢;) which defines the distance (in terms of similarity) from a set of
elements of S§ (theories or claims) to a single element. Then, given a correspondence theory of
truth, some element ¢; of Sf will represent the truth in question (the actual world or the most
informative true description of the world given L). Connecting all the above, the degree of
truthlikeness of a theory or claim h, once d' is normalized, is defined by the similarity between h

and c{:

Tr(h) =1—d'(hc})

The key element of the similarity approach is its appeal to a (quantitative) notion of likeness or
similarity, which is defined according to metrics d and d'. A similarity measure is just the inverse
of a given distance function (see section 1.4). However, usually it is not enough that d and d’
satisfy the mathematical criteria for metric functions in order to be “good” distance to the truth
functions. Additional restrictions may come from clear-cut intuitive cases and/or from general

truthlikeness principles.

The distance function d has to be specified for each cognitive problem, but there are natural ways
of doing so in most of the cases (Niiniluoto, 1998; p. 4). As a simple example, consider again the
number of planets in the Solar System as the target cognitive problem. In that case, the space Sp
will contain N elements of the form ¢, = <the number of planets in our Solar System is x> Vx €
N. One natural similarity metric d for this structure will be the absolute difference d(Cx, Cy) =
|x — y|. Then, as d(cq,cg) = 1 < d(cy3,¢cg) = 4, Cqis closer to the truth (cg) than ¢;5, which

matches our truthlikeness intuitions regarding cg and cy;.

On the other hand, function d’ is supposed to be universal. Given some similarity values defined
by an appropriate metric d, the extension d’ defines the best “similarity combination”. In this
way, there are two main proposals in the similarity approach to define function d’: Oddie and

Tichy have favoured the “average measure” (the average of the distances of the elements that

5 In Oddie’s proposal, the elements ¢y, ¢,, C5 ... represent possible worlds. Niiniluoto’s framework is more flexible,
allowing to represent state descriptions, structure descriptions, monadic constituents or scientific laws, depending on

our cognitive interests.
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constitute h to ¢;), while Niiniluoto has defended the “min-sum measure” (the weighted average
of the minimum distance plus the normalized sum of all the distances of the elements that
constitute h to ¢¢). Both proposals are rival hypotheses, as in some cases and for some propositions

they conclude in different truthlikeness orderings® (see section 1.6.5).

1.6.5. Agreements and disagreements in the official approach

Zwart (2001) proposes that the content-consequence and the similarity approaches can be

TYOTst that they consider as the least truthlike theory. To illustrate

distinguished by the theory
the difference, consider a simple propositional language where the complete truth is given by
(p1 A p2 Ap3). Zwart claims that the content-consequence approach takes the negation of the
complete truth (~ py V~ p; V~ p3) as TWO"™!  whereas the similarity approach judges
(~ p1 A~ D3 A~ p3) as TWO"St. Moreover, Zwart and Franssen (2007) argue, via Arrow’s

impossibility theorem, that both approaches cannot be combined in order to define a unifying

truthlikeness ordering (for reactions see Schurz and Weingartner (2010) and Oddie (2013))

Minimally, the content (Cont), consequence (Cons) and similarity (Sim) approaches can be

characterized as:

= Tr(A)cont = f(truth value, content(A)) = f(Ar, Ar)
*  Tr(A)cons = f(truth value, content(A4),R) = f (A%, A%)
*  Tr(A)sim = similarity(A,T) = f(d(A,T))

It should be noted that most of the proposals agree on a large number of cases and that for concrete
practical applications, almost all accounts would yield a very similar (or same) truthlikeness
ordering regarding a selected group of historical scientific theories. Disagreements mainly come
from the truthlikeness orderings of disjunctions and implications of theories and propositions. In
this sense, the proposals by Niiniluoto (1987), Kuipers (2000), Oddie (2013), Schurz and
Weingartner (S&W, 2010) and Cevolani and Festa (C&F, 2020) agree on the following

properties7:
(P1) The true theory T is more truthlike than any other theory.
(P2) Some false theories may be more truthlike than some true theories.

(P3) A false theory may be more truthlike than another false theory.

¢ For Niiniluoto’s comparison between average and minsum see 1987, Chapter 6.6. See Oddie (2013) for a defence
of average based on three general principles.

7 The chosen properties of agreement and disagreement are partly taken from Niiniluoto (2020).

33



Discrepancies emerge mainly from two principles. The former has been labelled by Oddie (2013,
2016) ‘the strong value of content for truths’ and was initially postulated by Popper as a

desideratum for a satisfactory definition of truthlikeness:

(P4) Among true theories, truthlikeness increases with logical strength

Proposals by Niiniluoto, Kuipers and S&W satisfy it, while those of Oddie and C&F violate it.
Within the similarity approach, this principle is the main difference between minsum and average.

According to average:
(P4a) Among true theories, truthlikeness does not always increase with logical strength.
(P4b) Among true theories, truthlikeness does not always decrease with logical strength.

For a simple example, consider the following two propositions regarding the number of planets

in our Solar System:

a) The number of planets is eight or twenty.

b) The number of planets is eight or thirteen or twenty.

Where a) is a stronger truth than b). According to Niiniluoto’s minsum (and Kuipers and S&W)
a) is more truthlike than b), while according to Tichy-Oddie’s average (and C&F) b) is more
truthlike than a).

A kind of correspondence principle to (P4) for false theories can be formulated as:
(P5) Among false theories, truthlikeness decreases with logical strength.

The content-consequence proposals (Kuipers, C&F, and S&W) satisfy it (which implies that the
negation of the whole truth is considered as T%°"t), while the similarity proposals (Niiniluoto

and Oddie) violate it. According to minsum and average:
(P5a) Among false theories, truthlikeness does not always increase with logical strength.
(P5b) Among false theories, truthlikeness does not always decrease with logical strength.

For a simple example, consider the cognitive problem regarding the number of moons on the

Earth (Niiniluoto, 2020):

¢) The number of moons is two.

d) The number of moons is two or two thousand.

Where c) is a stronger falsity than d). According to the content-consequence proposals (Kuipers,
C&F, and S&W) d) is more truthlike than c¢), while according to the similarity proposals
(Niiniluoto and Oddie) ¢) is more truthlike than d). The satisfied principles by each proposal are

summarized in Figure 3.
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(P4) (P4a) (P4b) (P5) (P5a) (P5b)
Schurz and Weingartner (2010) X X
Kuipers (2000) X X
Niiniluoto (1987) X X X
Cevolani and Festa (2018) X X X
Oddie (2013) X X X X

Figure 3. Satisfied principles by each truthlikeness proposal.

In this way, S&W and Kuipers presents the strongest “content” proposals, in the sense that they
imply the most strict relations between <truth value, content> and the degree of truthlikeness.
Oddie presents the weakest “content” proposal, in the sense of implying the most contingent
relations between <truth value, content> and the degree of truthlikeness. Niiniluoto and C&F

offer middle-point (non-equivalent) proposals.

Finally, let us briefly mention a presumable problem commonly associated with the official
approach. One may read in various works about scientific realism that, up to now, no one has
presumably provided a satisfactory or coherent definition of truthlikeness (e.g. Laudan (1981),
Giere (1988), Psillos (1999), Chakravartty (2007)). The legitimacy of this claim seems to partly
depend on how one understands the terms “satisfactory” and “coherent”. All the presented
proposals in section 1.6.5 provide coherent, strongly accurate and well-defined notions of
truthlikeness. As stressed, they all share a great number of common principles and consequences,
diverging only by some general principles and intuitive cases related to the truthlikeness orderings

of disjunctions and implications.

In comparison, one may find less “accuracy” in the different rival philosophical proposals
regarding other philosophical notions. As an example, Lewis’ (1973, 1983, 1986, 1994) best
system account (BSA) of laws of nature roughly defines laws as those regularities that figure out
in the best systematization of the universe, where the best systematization (the Best System) is
the true one that properly balances two main properties, strength and simplicity. “Strength” and
“simplicity”, however, still remain undefined in contemporary BSA proposals. And the most
known alternative (realist) approach, the Universals account, seems to share the same fate. Under
this account, laws are conceptualized as necessitarian relations between universals (Dretske 1977,
Tooley 1977; Armstrong 1983), but the concrete nature of those kinds of relations remains a
mystery. To be fair, both accounts are much richer than what this sketchy presentation suggests,
but the point is to illustrate that, although there is not a universally accepted definition of

truthlikeness, all the different accounts are extremely accurate in their definitions.
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The syntactic and the semantic view of scientific theories, or the descriptivist and the causal
theories of reference, are coherent, accurate and well-defined rival views. Our claim is that the
different content-consequence and similarity approaches to truthlikeness instantiate this same
kind of rivalry. Therefore, the claim that no one has presumably provided a satisfactory definition
of truthlikeness should be understood in the sense that, up to now, there is no universally accepted
definition by all the participants in the debate, mainly because they accept different desideratum
and have different intuitions regarding some specific cases. However, this seems to happen with

many (perhaps all) philosophical concepts.
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2. Research methodology and goals

The similarity approach, particularly Niiniluoto’s formulation, has been the main theoretical and

methodological framework applied in our research. This has been so for several reasons.

On the one hand, historically the majority of truthlikeness definitions have focussed almost
exclusively on qualitative languages (particularly the content-consequence approaches). Many of
the examples of application involve very simple propositional languages, which seemed to build a
large bridge between the notion of truthlikeness and the application to actual (quantitative)
scientific theories. In this sense, a notable exception is Niiniluoto. Already in (1982) he developed
a proposal within the similarity approach to define truthlikeness for singular quantitative
statements, interval statements and simple quantitative laws. Later, in (1987), he showed how to
transform a conceptual space defined by Carnapian Q-predicates into a mathematical state space
generated by quantities. We take this as one of the main virtues of his approach, as state spaces
are the most common conceptual apparatus used in the formulation of scientific theories. This
implies a nice connexion between his truthlikeness theory and the actual scientific practice,

making its application very natural.

In general, the content-consequence approaches have been silent on how to apply their proposals
to cases of numerical approximation, which seem to posit a challenging application. Consider two
theories, IG (Ideal gas law) and IG’, where the only difference between them is that /G’ postulates
a more accurate universal gas constant R. Both theories would imply the same set of qualitative
true consequences (roughly, that V o< 1/P,V « T, P < T and V « n) and all their quantitative
consequences would be false. Presumably, a content-consequence approach would have to
conclude that IG and IG' are equally truthlike, as their sets of true and false consequences would
have an equal “size”. On the contrary, the similarity approach could capture the intuitive result
that IG' is closer to the truth than IG, appealing to the fact that IG’ false quantitative
consequences are more similar to the actual values of pressure, volume and temperature than the

ones implied by IG.

Further, we see a philosophical connexion between many of the unofficial proposals (section
1.6.3) and the similarity approach. For example, we think that the qualitative notions that Giere

and Psillos have in mind are in fact the ones captured by the similarity approach, framed in a more
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accurate and rich conceptual apparatus. In this way, Popper himself conceived truthlikeness as
“the idea of a degree... of greater (or less) likeness or similarity to truth” (1963:315). His mistake,
perhaps, was to assume that “similarity” could be well captured appealing only to truth value and
content. On the contrary, “similarity” is a well-defined and largely studied notion in mathematics
and geometry, and the similarity approach naturally incorporates and applies all this knowledge

into the concept of truthlikeness.

For all these reasons, our main goal was to make a contribution to the similarity approach. This
took us to focus on the topic of truthlikeness for scientific laws, as the available definitions

regarding function d for the case of scientific laws presented some relevant problems.

Typical scientific laws are formulated in quantitative languages. In those languages one can
distinguish two main types of quantitative statements: singular quantitative statements and
quantitative laws. Cases of singular quantitative statements within scientific theories involve the
estimation of some real quantity 8, which can be a physical constant (like Avogadro’s constant),
a parameter (like a and b from the Van der Waals equation) or the prediction by a theory of the
value of some quantity. Niiniluoto ((1982), (1986), (1987), (2018)) and Festa (1986) developed
similar truthlikeness proposals for singular and interval quantitative statements, where function d
is defined by the absolute difference or, in general, by any of the Minkowski metrics (see Paper
1). Kieseppi (1996a, 1996b), however, showed that these proposals can fail when the hypotheses
compared have different dimensions, because they are based on Lebesgue integrals. For example,
if 0% is a point of R?, I; is a line and I, is a surface, then taking a measure of length to compare
them assigns an infinite “size” to I, while taking a measure of surface assigns a 0 “size” to I;.
Kieseppd then considers possible generalizations of average and minsum using Hausdorff
measures, his proposal being an improvement in the similarity approach regarding singular

quantitative statements.

For quantitative (deterministic) laws, the most developed proposal when this research started was
that of Niiniluoto, which defined the distance d between a law X and the true law T by either of
the values p equal to 1, 2 or “0” of the Minkowski metric (known as Manhattan, Euclidean and
Chebyshev distances respectively). However, at least Thom (1975), Weston (1992) and Liu
(1999) had offered counter-examples to the use of the Manhattan and the Euclidean distances to
define truthlikeness between laws. Moreover, we were able to develop (presumably) more pushing

counter-examples, and managed to expand them to the use of the Chebyshev distance.

In this sense, our first goal was to develop a satisfactory definition of truthlikeness for quantitative
deterministic laws within Niiniluoto’s version of the similarity approach, with the additional
purpose to be a positive complement to Kieseppéd’s improvements over singular quantitative

statements. This led to the publication of Paper 1.
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Once the framework was developed, a natural move was to expand it to cover probabilistic laws,
which represent a relevant subset of actual scientific laws. This expansion, and the aim to offer a
general account for both deterministic and probabilistic laws, was the second goal of our research.
In the literature of truthlikeness, however, there were almost no proposals of appropriate distances
for probabilistic laws or probabilistic truths in general, so that the topic was both challenging and
motivating. This changed in 2021 with the publication of the special issue by Synthese

Approaching Probabilistic Truths, in which Paper 2 was published.

To sum up, our goal was to develop a satisfactory definition of truthlikeness for deterministic and
probabilistic laws within Niiniluoto’s version of the similarity approach. The research mainly
focussed on the semantic problem of truthlikeness for scientific laws, leaving its epistemic

application for future development (see section 4.3).
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3. Research outcomes: Description of the two papers

The doctoral research gave rise to two papers, each focussed on one of the presented goals (see
section 2). Paper 1 deals with the definition of truthlikeness for quantitative deterministic laws,
whereas Paper 2 expands the proposal to cover probabilistic laws and offers a general treatment

of both deterministic and probabilistic laws. Both papers are briefly described below.

3.1. Paper 1: “Truthlikeness for Quantitative Deterministic Laws’.

Paper 1 appeared first online 21th May, 2021: https://doi.org/10.1086/714984.

The paper first applies the similarity approach to the case of quantitative deterministic laws
(QDL) and presents Niiniluoto’s proposal. It is shown that QDL can be naturally represented in
a n-dimensional state space S™, being n the total sum of the dimensions of the quantities
(hy, ..., hyy) that represent the (relevant) properties of a target system. A QDL is then a
mathematical functional relation between the physical real-value quantities characterizing a

system.

Assume the general form hy, (x) = f E(hy (%), ..., hyp—1 (X)), which defines a possible continuous
real-value function in S™. Niiniluoto (1982, 1987, 2018) proposes to define the distance between
a deterministic law X and the true deterministic law T by the Minkowski or Lp metric for
functions (p = 1):

1

a0 = ([ 1@ - rreorax)

As special cases, when p is 1, 2 or tends to o, the resulting metrics are known as Manhattan,
Euclidean and Chebyshev, respectively. Niiniluoto considers these three metrics as good
candidates to define an appropriate similarity metric d regarding QDL. Although the proposal is
attractive in a number of ways, it seems to yield an unintuitive result in some cases. The paper
presents the (structurally very similar) counter-examples by Thom (1975), Weston (1992) and
Liu (1999) and argues that they cannot be considered conclusive counter-examples. Then, it
develops new counter-examples to the Manhattan, Euclidean and Chebyshev metrics which are

taken to be conclusive.
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Taking ‘d(X,T) to refer to either the Manhattan or the Euclidean distance, the papers argues
that the underlying problem with Niiniluoto’s proposal lies in the fact that d (X, T) measures the
“accuracy” of a law, so that d(X,T) defines truthlikeness for QDL as a function of accuracy.
Relevantly, this idea is also at the core of Weston’s (1992), Oddie’s (2019) and Schurz’s (2021)
proposals. However, it is argued that accuracy represents a necessary but not sufficient condition
to define truthlikeness for QDL, as two laws may be equally accurate and still one may imply
more true or truthlike consequences, behaviours or facts about the system than the other. Then,
it is argued that Niiniluoto’s definition should be complemented with an additional factor,
labelled as ‘nomicity’, which measures the similarity of some aspects of the “structures” or
“behaviours” described by a law compared to the true “structures” or “behaviours” of the target

system that are not captured by accuracy.

It is shown that the introduction of this new factor implies two issues that must be clarified: (i)
the need of defining or quantifying the notion of ‘nomicity’ and (ii) the need of combining
accuracy and nomicity into a single function in order to define a comparative notion of

truthlikeness and the numerical degree of truthlikeness of a law.

For (1), the paper defines the degree of nomicity of a law X regarding the true law T by the distance
between the derivative functions X" and T'. This can be thought of as a measure of the similarity

of their shapes or the qualitative behaviours implied by X and T.

It is shown that problem (ii) is much challenging, as there are infinite ways to combine two
variables into a single function. The only way to proceed is to establish a set of desideratum and/or
intuitive cases that the combination function would have to respect. The paper argues for two
main properties that a combination function between accuracy and nomicity should satisfy, which
represent the idea that great failures in one of the factors should not be compensated by great

success in the other:

(1) (d*™*(X,T) =00 Ad*X',T)Y=0)>Tr(X)=0
2) (d** (X, T) =0 Ad¥(X",T") = 0) > Tr(X) =0

The final proposal presented in the paper defines accuracy by the Euclidean distance d**(X, T),
nomicity by the Euclidean distance of the derivative functions d®“ (X', T") and the general degree
of similarity d{™ (X, T) between a law X and the true law T by the combination of both factors via

summation:

dsn(X,T) = d°“(X, T) + (m — n)de* (X', T")

The parameter (m —n), which represents the interval under consideration, is a constant

introduced to equate the units of accuracy and nomicity and make the sum meaningful. The main
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obvious drawback of the proposal is the arbitrariness of multiplying nomicity by a constant, which
may change the distance to the truth of a law depending on the chosen value. That being said,
every numerical definition involves some arbitrariness, so that it must be judged according to its
consequences in intuitive cases and/or according to the principles it satisfies. In that sense,
d{™ (X, T) satisfies properties (1) and (2) and provides the intuitive results in the counter-examples

presented in the paper.

The final section of the paper applies the developed framework in two directions. First, it shows
how to define absolute claims of the form ‘law X is close to the truth’ based on a truthlikeness
definition grounded on d{" (X, T). Second, it applies the framework to define scientific progress
for QDL. Interestingly, the nomicity factor shows that progress from a law X to a law ¥ can be
achieved even if Y is less or equally accurate than X. A small case study regarding the movement

from the Ideal gas law to the Van der Waals law is presented to exemplify this idea.

3.2. Paper 2: ‘T'ruthlikeness for Probabilistic Laws’

Paper 2 appeared first online 18th June, 2021: https://doi.org/10.1007/s11229-021-03206-4.

After a brief study of the similarities and differences between deterministic laws (DL) and
probabilistic laws (PL), the paper first presents Niiniluoto’s (1987) proposal of truthlikeness for
DL and the expanded version developed on Paper 1. However, a relevant modification to the
definition d{" (X, T) developed in Paper 1 is introduced, via a new way d§" (X, T) of combining

accuracy and nomicity:

dg"(X,T) = (X, T) + D@ X', T)+1) -1

Function d§™(X, T) also satisfies properties (1) and (2) and provides the intuitive results in the
relevant cases. As a main drawback, it is not a metric function (it does not satisfy the triangle
inequality) as d{™ (X, T). However, d§™ (X, T) presents two additional virtues. First, truthlikeness
defined by d3™(X,T) does not depend on the arbitrary constant (m — n). Second, normalizing

d$™ (X, T) and rearranging, one can obtain the following definition of truthlikeness:

1 1
Tr,(X) =
(%) (1+deex, 7)) (1 + dev (X', T"))
This final formulation appears to be more conceptually elegant than the one obtained by
d{"(X,T). Try(X) can be interpreted in the following way: we first normalize accuracy and
nomicity and then truthlikeness is defined as the combination of both factors via multiplication,

which is the most natural mathematical way of combining two different properties.
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Moving to probabilistic laws, the paper shows that, according to the spirit of the similarity
approach, what is needed to define truthlikeness for PL is an appropriate similarity metric
between probability functions. The paper notices that there is a host of available distances in the
literature of probability developed for this purpose, much more comparatively than in the case of
distance metrics for geometrical functions that represent DL. However, it is shown that many can
be classified in families and share common properties. In this sense, the paper rests on Cha’s
(2007) excellent analysis, which offers a categorization of fifty-six of the main and most used

probability distance functions.

Cha’s results are interpreted as offering two main clusters of probability distance functions,
labelled as ‘Geometric’ and ‘Divergence’ families. As Cha’s clusters present a similarity of
behaviours, a small sample of representatives of each family can be taken for posterior analysis,
reducing the host of available distances to a few. Particularly, the Manhattan (MA) and the
Euclidean (EU) distances are taken as main representatives of the Geometrical family and the
Kullback-Leibler (KL) and Jeffreys divergence (JD) are taken as main representatives of the
Divergence family. In order to decide, the paper constructs four different scenarios. Appealing to
intuitions, it is concluded that KL and JD seem to represent a better notion of similarity to the

truth for probabilistic systems than MA and EU.

Then, the paper argues that what KL measures, can be taken as analogous to accuracy in the case
of DL. This raises the natural question about whether nomicity is also a relevant factor for PL.
Through a small case study regarding atom decay and the normal distribution, it is concluded that
nomicity is also a necessary factor for probability density functions, which again can be measured

by the comparison of the derivatives of the relevant density functions.

As in the case of DL, both factors need to be combined into a single function in order to make

comparative judgements and to obtain the numerical degree of truthlikeness of a PL. Analogously

to the case of DL, a version of d5" (X, T) is proposed for PL.
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4. Final remarks and open questions for future development

4.1. Summary of the developed framework

The general framework developed to define truthlikeness for deterministic and probabilistic laws
can be summarized as follows. In both deterministic and probabilistic laws it has been argued that
accuracy represents a necessary but not sufficient condition to define closeness to the truth, as two
deterministic or probabilistic laws may be equally accurate and still one may imply more true or
truthlike consequences, behaviours or facts about the system than the other. The additional factor,
labelled as ‘nomicity’, measures the qualitative behaviours implied by a law that are not captured
by value comparison. The proposed method to measure nomicity appeals to shape similarity,

captured by the Euclidean distance between the corresponding derivative functions.

In brief, the proposal defines the similarity d*™ (X, T) between a deterministic or probabilistic law
X and the true deterministic or probabilistic law T as a function of two factors, accuracy and

nomicity:

d*(X,T) = F(accuracy, nomicity)

Specifically, we may call ‘accuracy’ the general concept defining “value similarity”, the similarity
between the values of a (deterministic or probabilistic) law X and those of the true law T; ‘d-
accuracy (deterministic accuracy) the concept defining the similarity between the values of a DL
X and those of the true DL T (a similarity between states); and ‘p-accuracy’ (probabilistic accuracy)
the concept defining the similarity between the values of a PL X and those of the true PL T (a
similarity between probabilities). Analogously, we may call ‘nomicity the general concept defining
“shape similarity”, the similarity between the shape of a (deterministic or probabilistic) law X and
that of the true law T; ‘d-nomicity’ (deterministic nomicity) the concept defining the similarity
between the shape of a DL X and that of the true DL T; and ‘p-nomicity’ (probabilistic nomicity)
the concept defining the similarity between the shape of a PL. X and that of the true PL. T
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The developed framework is summarized in Figure 4.

Value similarity Shape similarity | Combination Function Truthlikeness
Deterministic laws d-accuracy d-nomicity 1 L
Measured by du(X,T) deU(X',T") KA = (1+deu@,m) (1 +deu(x,T))
Probabilistic laws p-accuracy p-nomicity . .
Measured by d¥L(X, T) 4T & (0= (1 +dFr(x, 1)) (1 4 den(x’,T7)

Figure 4. Summary of the developed framework.

4.2. The combination function d**(X,T)

The research has produced two possible combination functions, d{"(X,T) and d$"(X,T). As
they are not ordering-equivalent, they can conclude in different truthlikeness ordering for a same

set of given laws.

This may induce two relevant and related worries. On the one hand, other more satisfactory
combination functions may be possible. On the other hand, it seems that truthlikeness should be
an “objective notion”, in the sense that the distance to the truth of a scientific law X should not
depend on the (partly arbitrary) mathematical way of combining two variables. As the notion of

truth, the distance to the truth of a law X should be “an objective value”.

Both are fair worries. Partly, it is true that every numerical formulation might involve some
arbitrariness. Even in the choice of function d for very simple cases, this arbitrariness might be
present. Remember the cognitive problem regarding the number of planets in the Solar System
exposed in section 1.6.4.2. In that case, we defined d by the absolute difference, as it seemed the
most “natural metric” for that particular structure. However, other possible distances d could

conclude in different orderings, implying for instance that cyg is closer to the truth (cg) than cy.

In the similarity approach, this presumed arbitrariness comes particularity from the fact that any
function that satisfies conditions i — iv (see section 1.4) is a valid metric function. However, many
possible metric functions “do not seem” valid similarity-truthlikeness functions, either because
they give an unintuitive result for some cases or because they violate some appealing principles
(for an example of an intuitively invalid similarity function, see Paper 1, section 2). As with almost
(perhaps all) philosophical concepts, one needs to appeal to clear-cut intuitive cases and/or general
principles in order to evaluate the “goodness” of a philosophical proposal. In that sense, and a bit

metaphorically, “objective” or “pre-theoretical” truthlikeness comes from a combination of
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intuitions and principles, and a proposed truthlikeness definition would be “objective” or “good”
if it satisfies the presumed principles and provides the expected results in the intuitive cases. As
with any other philosophical proposal, problems might appear when there is disagreement

regarding some of the principles or the presumed clear-cut intuitive cases (see section 1.6.5).

For the case of d*"(X,T), its “goodness” comes from implying the intuitive truthlikeness
orderings in the presented cases and from satisfying the postulated properties (1) and (2). As
noted, both d{™(X,T) and d$"(X, T) fulfil these requirements, but further reasons might bring
us to prefer d5" (X, T). In any case, it is an open possibility that: (a) new cases might posit counter-
examples to d{" (X, T) or d3™ (X, T); (b) that a more satisfactory combination function d{" (X, T)
is formulated, perhaps appealing to different principles; (c) or that further factors besides accuracy

and nomicity are shown to be relevant to define truthlikeness for scientific laws.

4.3. The epistemological problem

As mentioned in section 2, the research has only focused on the semantic problem of
truthlikeness. However, the application of d*™* (X, T) to real cases appears challenging, as we don’t
know the true law T (see section 1.5). What can be expected at most, is to define an estimation
of the degree of truthlikeness of a law X based on some available evidence e. In this section we
will sketch an epistemological application of the developed framework, open for future
development. The focus will be only on deterministic laws, but the proposed methods may be

naturally extended to cover probability density functions.

An estimation of d*"*(X,T) can be reduced to an estimation of the accuracy and the nomicity
factors. For deterministic laws, take a simple case where the target system is represented according
to two quantities X and Y and consider a set of n empirical observations Gy, o, (E, yDs.
Then, the estimated degree of accuracy of a law X, E[d®*(X,T)], can be naturally calculated by

comparing, for each empirical point, the true value y; with the predicted value y;*:

1
n 2
sy = (52 S -or)
1

8 Although technically these values come with a margin of error ¢, and therefore the exact “true values” should be
considered indeterminate and inside the error’s range [(x], ]T) =(x] L ij + €)], let us consider the simplification
of assuming (x{,y]) as the “true values” (which is alike to take the mean value of the error’s range). The described
situation might be a bit unrealistic for some areas of science where empirical observations come with a large margin of
error or present significant noise. In any case, we take this proposal as a starting point, which can then be modified and

refined to incorporate these more complex scenarios.
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This proposal matches with Niiniluoto’s (1987, p. 288; 2018, p. 131), except for the factor

n

This factor is introduced to approximate the summation to the Riemann sum of interval x§ — x] ,

which in turn is an approximation to the definite integral of the interval’. Note that the value of
the definite integral of the interval matches with the theoretical degree of accuracy of law X as
defined in Paper 1. Therefore, in the limit, when n — 0, we obtain the result that our

epistemological proposal equates with the theoretical definition:

lim E[d°“(X,T)] = d®*(X,T)

Nomicity, however, is harder to estimate, as the “true function” is unknown and the values of the
derivative at the points (x7,y!) cannot be empirically observed. The only way to proceed is to
rationally estimate the value of the derivative of the true function for each empirical point. This
would allow to compare them with the values of the derivatives of each of the laws (which we can
calculate), in the same way as in the case of accuracy. In what follows, we will sketch two possible

ways of doing so, based on a philosophical assumption of “simplicity” (see below).

For Method 1, consider an empirical observation (x7, yT), where (x"_;, y7;) and (x4, ¥%1)
represent the two closest previous and posterior observations as represented in some state space.
The simplest path between (x7_;,y7 ;) and (x7,y!) might be rationally claimed to be given by

a linear equation, with slope:

)’iT _yL'T—l

T _ T
Xi =X

mi_q1,; =

If that were the “true function” connecting (x/_;,y7 ;) and (x[,y7), then the value of the

. . . !
derivative of the “true function” at (x7,y7), y7', would correspond to the slope m;_1 ;.

If the empirical observations do not follow a perfectly linear path, then typically m;_; ; # m; ;4.
Therefore, on a first approximation it may seem rational to define the estimated slope E[m;] (i.e.,
the estimated value y7 of the true derivative at (x7,yT)) by taking some kind of average between

m;_; and m; ;4 1, weighted by wy and wy,:

E[m;] = wim;_q; + wom; iy

? Without the factor, the more observations or points we had, the higher the value of E[d®*(X, T)] would be, so the
law would be less accurate the more observations we add. That has the undesirable consequence that if we had a huge
number of empirical observations, say 1010, and each of the predicted values had a small difference regarding the
overserved value, the final degree of estimated accuracy of the law would be incredibly high. Roughly, without the factor

we are just summing “segments”, differences, but with the factor we are summing rectangles, areas, so it is a better

T T
Xp—X
1 would

approximation to the theoretical value of the integral. In the limit of infinite equidistant observations,

transform into dx and we would get the value of the integral.
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The estimation might be claimed to be more “grounded” if it includes a larger amount of previous

and posterior observations, such as, for instance:

E[mi]l =wim;_p; + Wom_q; + Wamypq; + WaMga

This can be intuitively thought of as including more information regarding “where the function
comes before (x7,yT)” and “where the function goes after (x7, yT)” in the estimation of the most
probable slope of the “true function” at (x7, y7). In the limit, each estimated slope E[m;] of each
empirical observation is to be calculated appealing to its linear connection to all the other

empirical points, with proper weights.

E[mi]l =wimi_p;+ -+ wem_q; + wyMipq; + -+ wpmygg,

Weights wy, ..., w, could be defined by a function of the relative distance of each empirical point
to the target point (x7,¥7). In that way, closest points would have a higher impact in the

determination of E[m;] than further points, as it may intuitively seem it should be.

A similar spirit is behind the proposed Method 2, which is a method of interpolation known as
cubic splines. Roughly, a cubic spline interpolation results in a piecewise function with each of its
pieces being a three order polynomial. Given a set of py,..., p, points, a cubic spline interpolation
produces n — 1 polynomials. The polynomials are defined by intervals according to pairs of points:
P, is a cubic polynomial for the interval [py, p,], P; is a cubic polynomial for the interval [py, p3],
etc. The resulting “total function” is then a piecewise function defined by the conjunction of all
the three order polynomials. What is crucial, however, is that one imposes the condition that in
each shared point p;, both polynomials P;_; and P;;; must have the same value for the first and
the second derivatives. For example, in point p, we require that P{ = P, and P;’ = P,', in point
p3 we require that P, = P; and P, = P3’, etc. With that we obtain a highly smooth transition
from one polynomial to the following. As an example, given the following set of points (1, 3), (2,

4), (3, 4), (4, 1.5), (5, 1), we obtain the cubic spline interpolation represented in Figure 5.

4 ! ! ! pz'/\.?:i !

P \ | ‘ ‘ Py if ppsx<py
\ i <x<
— \ | | ] fSpIine(x) P, if ppSx<py
§ Py ! Py if p3<x<ps
P, \|P4 | [ Py if pp<x<ps
=X
Py |
[
Py

Figure 5. Example of cubic spline interpolation
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What makes cubic splines philosophically interesting for the purpose of estimating nomicity is
that they instantiate the minimum curvature property (Holladay, 1957), which can be stated as
follows: among all possible curves that can pass through a set of given points, cubic splines
represent the path which presents minimum curvature (Leslie et al., 1996). Roughly, they can be
understood as defining the “shortest” plus “smoothest” possible path between a set of known
points: any shortest path will present some sharp changes, so it will be globally less smooth; and
any smoothest path will necessarily be longer. In other words, among all possible smooth paths,

cubic splines instantiate the shortest one.

Both Methods are fallible, in the sense that the “estimated” value of the true derivative at (x], ¥ )
could diverge from the “actual” true value, which is unobservable. The True law could, in
principle, highly oscillate between the available empirical points. It is a known fact that any finite
set of points is compatible with infinite functions and that a unique function is underdetermined
by any finite set of point. At the end of the day, what we face here is the classical problem of
induction, as Niiniluoto points out “the problem of estimating verisimilitude is neither more nor
less difficult than the traditional problem of induction” (1987, p. 263). However, both Methods
can be thought of as providing a rational estimation of the value of the true derivative, assuming
a metaphysical principle of simplicity in nature. An extended discussion of this claim would

require much more space, but let us point out some intuitive reasons.

Method 1 assumes a notion of simplicity related to the shortest possible path between two points.
Then, it weighs the simplest possible paths (linear paths) between a target point (x7,y7) and
each of the other empirical points (X7, Y5k ), Vi, k(1 ...,n). Therefore, this method provides
the expected value y/ " of the derivative of the “true function” at (xT,¥T) if nature followed the
shortest possible path through a set of given points, properly balancing the contribution of each

point (x7y ., Y71k ) by weights wy, ..., Wy, according to their distance to the target point.

Method 2 appeals to a notion of simplicity related to a kind of “balance” or “optimization”
between total length and total curvature. On the one hand, a shortest path than the one provided
by cubic splines will be simpler, but it will necessarily have some “sharp” changes that, on a
possible reading, would make it, globally, more complex (sharp changes usually need larger
amounts of energy than smooth changes). On the other hand, any other smooth path will present
a higher curvature which, again, would add complexity to the path by increasing its length. In
intuitive energetic terms, assume that one would like to go from point p; to point p,, having to
pass through a finite set of intermediate known points. Consider that one would like to minimize
the energy needed for the travel and that, broadly, short paths require less energy than long paths
and that smooth changes require less energy than sharp changes. Then, cubic splines would yield
the path that minimizes energy consumption. This may be claimed to match, roughly, with what

entropy tell us about the behaviour of physical systems.
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For our purposes, we take that, assuming simplicity in any of the explicated senses, Method 1 or
Method 2 estimate the “most probable path” (or one of the “most probable paths”) of the True
Jaw in the proximities of each empirical point, and so they enable us to estimate the “most probable

value” (or one of the “most probable values”) of the True derivative for each empirical point.

Therefore, the estimated degree of nomicity of a law X, E[d®“(X’,T")], can be calculated by
comparing, for each empirical point, the value of the estimated true derivative (y;') by Method

1 or 2 with the value of the derivative of law X (y{'):

n

1
xI —xT S ' N2 2
E[d® (X', Th] = | — 1*2(}/? —yix)>
1

With the estimation of both factors, the normalized estimated degree of truthlikeness of a law X,
E[Tr(X)], can be calculated by:

1
(1 +E[d™(X,T)])

E[Tr(X)] =

Given this proposal, a final relevant complication should be noted. We defined (Paper 1) a
quantitative deterministic law as a mathematical functional relation between the physical real-

value quantities Ay, ..., by, characterizing the system, so that:
f(hy, ...,hp) =0

However, a detailed analysis of deterministic laws (see Paper 2, section 3.3) shows that they can
present two “kinds” of quantities, variables (vy, ..., ;) and parameters (kq, ..., k;), and some

constants (Cq, ... ), so that their structure may be more accurately formulated as:

f(vl, U ke, kj, Cly o ck) =0

Parameters usually represent initial or boundary conditions and can take the form of variables or
constants. When parameters are variables, we may call the resulting function the “general form”
of a law. This is represented in the state space as a set of possible trajectories (for laws of
succession) or possible regions (for laws of coexistence), each corresponding to some specification
of the parameters. When parameters are specified, they become constants, representing some
initial or boundary conditions. We may call the resulting function the “specific form” of a law.
This is represented in the state space as singular trajectories or regions, which model a particular

system.

For example, the general form of the Ideal gas law may be formulated as PV = nRT (4-
dimensional), where P (pressure), T (temperature) and V' (volume) are variables, n (number of

moles of the gas substance) is a parameter and R (universal gas constant) is a constant. A possible
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specific form of the Ideal gas law is PV = 2RT (3-dimensional), where it is assumed that the gas

is composed by two moles of substance.

Function d*™(X,T), and therefore the theoretical degree of truthlikeness of a law X, has been
defined appealing to the general form of X and T. In this sense, one can think of d*™(X,T) as
measuring the similarities of each possible trajectory or region defined by X and T regarding each

possible value of the parameters (roughly, regarding each possible initial condition).

However, for testing and making predictions, usually the specific form of a law is needed. This
implies that E[Tr(X)] would be calculated given some concrete specifications of the parameters
and initial conditions, and for some range of the variables (v, ..., ;). Relevantly, however, it is
possible that for some specifications of (ky, ..., kj) and for some range of values of (v, ..., v;),
law X performs much better than for others, so that taking a small sample of different values of

(k1, ..., kj) and (vy, ..., v;) can be a bad indicator of its estimated truthlikeness.

As an example, the Ideal gas law is quite accurate for gases at low densities, which correspond to
values of “low” pressures and “high” temperatures (where the values of “low” pressures and “high”
temperatures match with the ones usually found on Earth under normal conditions). At low
densities the particles’ volumes and the intermolecular forces are negligible, but at high densities
those factors, among others, become relevant. This implies that the Ideal gas law results much
more accurate for some ranges of P-V-T than for others. Additionally, from modern physics and
chemistry we know that not all gas substances have the same “nature” or “properties”. From a
microscopic perspective, a substance is a combination of a number of atoms in different quantities.
These combinations produce a series of properties with macroscopic impact. Among others,
substances can be polar (e.g. H,0) or non-polar (e.g. N;), depending on whether they are
asymmetric (“charged”) or symmetric (“not-charged”). Regarding this taxonomy, it is known that
the Ideal gas law laws perform well in non-polar and weak polar substances, but badly in polar
ones. Therefore, estimating the degree of truthlikeness of the Ideal gas law by taking a sample of
non-polar substances and a value range of P-V-T corresponding to “low” pressures and “high”

temperatures can result in a distorted estimated degree of truthlikeness.

Being so, E[Tr(X)] should be calculated for an adequate n sample of different values of
(k1, ..., kj) and (v4, ..., v;), covering as many different situations i of the target system as possible.
As a result, the expected-pondered degree of truthlikeness of a law X, E[Tr(X)], should be
defined as:

E[Tr(X)] = %Z E[Tr(X)];

Where different weights may be included to average the possible different importance of the

specifications of (kq, ..., k;) and (vy, ..., v;).
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4.4. From laws to theories

The ultimate aim of a theory of truthlikeness for science is to define closeness to the truth for
scientific theories. As in the case of the epistemological problem, in this final section we will
sketch a possible expansion of the developed framework to cover scientific theories, open for

future development.

The Sneedian-structuralist framework (Balzer et al, 1987) provides two key ideas for this
purpose. In the first place, structuralism conceives theories, very roughly, as sets of laws, but
crucially not all laws are equally essential. For example, in classical mechanics Newton’s Second
Law might be claimed to be a central component, whereas the law of simple pendulum seems less
central. This implies a representation of theories as nets (more precisely, as inverted tree-like nets)
each knot being a “theory-element” which structuralism characterises as a pairs < K, I > of laws

and intended applications (the empirical systems to which the laws are intended to apply).

This idea of “degrees of relevance” might be a worthwhile component to incorporate into a theory
of truthlikeness for theories. For a simple proposal, take a theory T to be constituted by X,.., X,
laws with weights of importance wy, ..., w, (X w; = 1). Then, the degree of truthlikeness T7 of
a theory T could be defined as (where Tr(X;) is our proposed definition of the degree of

truthlikeness of law X;):

Tr(T) = w, Tr(X;) + - + w, Tr(X,)

How to quantify the different weights wy, ..., w,, however, might be a challenging task. A
possible way to proceed would be to appeal to the concept of ‘strength’ as developed in Lewis’
Best System Account of laws of nature (see section 1.6.5). Roughly, in that context, strength is
usually conceived in terms of the informativeness or logical content of the theorems of a given
system with respect to the mosaic. The strength of a systematization lies in the number of
consequences that are realized, on the amount of facts it accounts for. A strong system is then one

that accounts for many facts of the mosaic.

With this idea, the strength of a law X; may be defined by the number of types of phenomena
and the number of instances of those types that it intends to describe, and its weight of importance

w; appealing to a function of its relative strength. Take s; to represent the degree of strength of
law X;. Then, w; of law X; (given X3,.., X;; laws) could be defined as:

This proposal would imply the intuitive result that Newton’s law of universal gravitation would
be considered much more relevant in classical mechanics than the law of simple pendulum, as the

former applies to a greater number of types of phenomena and instances. As an example, consider
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a theory to be constituted by three laws X1, X, X3, where X; and X, are intended to apply to k

instances and X3 to k/2 instances. Then, w; = w, = 0.4 and w3 = 0.2.

In the second place, structuralism may provide a useful framework to define comparative
truthlikeness between theories. When defining truthlikeness, the content-consequence and the
similarity approaches appeal to a given language L in which all theories and propositions are
formulated (see section 1.6.4). Then, closeness to the truth is defined, roughly, as the distance of
the different L-potential answers to a given L-true answer. In this way, in the framework
developed in Paper 1 and Paper 2 a given state space composed by quantities (hy, ..., hy,) was
assumed, and the different candidate laws were taken to be different mathematical functional
relations between the quantities. In some cases (perhaps typically), however, rival scientific

theories may not be formulated in the same language L.

This induces the problem on how to compare theories, in truthlikeness terms, which are
ormulated in different languages, i.e., on how to compare theories which postulate differen
f lated in different languages, i.e., on how t pare th hich postulate different
physical quantities to represent the properties of the same system, generating different state-

spaces.

Structuralism divides a theory’s T vocabulary Vr into two components: (a) its T-non theoretical
or T-empirical vocabulary and (b) its T-theoretical or T-explanatory vocabulary. The former is
the part of Vr used in the description of the phenomena which T intends to explain (ex. ‘spatial
position’, ‘time’ and ‘particle’ in classical mechanics). Crucially, T-non theoretical concepts can be
measured/determined without presupposing any T-law (Diez, 2006). This implies that T’s data
is not theory-laden by T. On the other hand, T-theoretical concepts are those which cannot be
measured/determined without presupposing some T-law (ex, ‘mass’ and ‘force’ in classical
mechanics). This distinction does not coincide with the classical “observational/non

observational” characterization of scientific concepts.

The structuralist distinction implies three conceptual possibilities for two rival theories Ty and T,

(Diez, 2006), that one may want to compare in truthlikeness terms:
(1) T, and T, share the same T-non theoretical and T-theoretical vocabulary.
(2) T, and T, share the same T-non theoretical vocabulary and differ, at least partly, in their T-
theoretical vocabulary.
(3) Ty and T, do not share their T-non theoretical and T-theoretical vocabulary.

In (1), Ty and T, are formulated in the same language, so that the truthlikeness comparison may

impose no challenge. The situation matches with the one assumed in Paper 1 and Paper 2: given
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some shared quantities (hy, .., hy), Ty and T, postulate different mathematical functional

relations (i.e. different laws) between them.

This case, however, may be atypical in science. Usually, two rival theories diverge, at least partly,
in their T-theoretical concepts, as they postulate different explanations of the same phenomena.
Compared to the Ideal gas law, the Van der Waals law includes two new concepts in its theoretical
machinery, a (representing the attraction between the gas particles) and b (representing the

volume gas particles occupy).

A historical example of (1) may be found in the series of modifications that followed the
publication of the Van der Waals law (VW) in 1873":

RT a

PVW =
v—b v?

Firstly, in 1899, Dieterici proposed an equation of state that replaced the squared volume factor

of VW by an exponential function:

RT

pbl — * e—a/vRT
v—>b

Although Dieterici’s law was similar in terms of accuracy to VW, its structural change didn’t had
a historical continuation. Some years after, in 1907, Berthelot tried to incorporate to VW Clasius’

findings about the dependence (inverse proportionality) of parameter a with temperature:

RT a

v—>b Tv?

PBE —

His proposal, however, resulted in many cases much less accurate than VW and was rarely used.
The VW equation became forgotten until 1949, when the Redlich-Kwong (RK) modification
appeared, supposing a revival of van der Waals’ ideas and attracting a great deal of interest within

the scientific community (Valderrama, 2003):

RT a/NT

PRK= IR
v—b vZ+4+vb

These four models share the same T-non theoretical and T-theoretical vocabulary, so that their
general forms (see section 4.3) can be represented in the same 6-dimensional state space. Their
main difference is the functional relation they establish between the six quantities (the three

variables and the three parameters).

10 Where P is pressure, T temperature, v molar volume (v =V /n), V volume, n the number of moles, a represents

the attraction between the gas particles, b represents the volume gas particles occupy and R is the universal gas constant.
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Case (2) may be the most typical situation in science, where Ty and T, share a common T-non
theoretical vocabulary and differ, at least partly, in the theoretical concepts they postulate to
explain the target phenomena. Examples include, among others, the Ideal gas law and the Van
der Waals law, the Aristotelian and Ptolemaic models of astronomy and the phlogiston and
oxygen theories of combustion (Diez, 2006). In such cases, the shared T-non theoretical
vocabulary allows the construction of a common state space where the laws postulated by T; and
T, can be compared in truthlikeness terms. In this sense, the Ideal gas law and the Van der Waals
law can be represented in a same (P-V-T') three-dimensional state space R3 (which coincides with
their specific forms). Moreover, the phlogiston and oxygen theories of combustion can be
represented in a same two-dimensional state-space R? with variables “time” and “weight of the
combusted element”. In such case, the phlogiston theory would be (for any element) a decreasing
function and the oxygen theory would be a decreasing or increasing function depending on the
element in question. For a similar example regarding the Aristotelian and Ptolemaic models of

astronomy, see Diez (2006, p. 36).

Case (3) may imply two possible situations. In a weak scenario (which might be considered a
special case of possibility (2)), T; and T, may share some of their T-non theoretical vocabulary.
For example, take T;-non theoretical vocabulary to be constituted by quantities < M, N, 0 > and
T,-non theoretical vocabulary to be constituted by quantities < M, N, P >. Then, T} and T, may

be compared in truthlikeness terms appealing to a common (M, N) two-dimensional state space.

A more challenging possibility, however, is a strong scenario where T} and T, do not share any
T-non theoretical vocabulary at all. As an example, Diez (2006) mentions the case of Classical
and Relativistic mechanics. Intuitively, both theories try to account for “kinematic trajectories”,
but the former conceptualizes these trajectories in a three-dimensional space and a one-
dimensional time and the latter appeals to a four-dimensional space-time, being their T-non
theoretical machineries conceptually different. Still, as Diez points out, there is a strong intuitive
sense in which Classical and Relativistic mechanics “speak about the same things”. In order to
talk about rivalry and comparability in these cases, Diez concludes that we should look “outside”

the conceptual machinery of both theories, and explores two possibilities for this purpose.

The former appeals to “instrumental data”, things as “tables of astronomic data, spectroscopic
images, galvanometer readings, (optic-, radio-) telescope images, (optic-, electronic-) microscope
images, tables of changing characteristics in a species population, trajectories of particles in cloud
chambers, tables codifying values in computer screens, etc...” (2006, p. 42). The “immediate”
description of these data does not use T-non theoretical vocabulary, but a more “basic” pre-
theoretic vocabulary. The relation between T and its “instrumental data” is that of representation:
the intended applications of T represent, via T-non theoretical vocabulary, the “instrumental

data”.
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Given that situation, we may define the expected instrumental data by theory T, E[T(ID)], as the
instrumental data one expects to obtain given T, for example, “such and such spectroscopic
images” or “such and such trajectories in cloud chamber”. Then, two theories Ty and T, which
instantiate the strong scenario (3) and share the same instrumental basis may be compared, in
truthlikeness terms, appealing to their E[T; (ID)] and E[T,(ID)]. Given an appropriate distance
d for the kind of instrumental data in question, one may claim that T; is closer to the truth than
T, if and only if E[T;(ID)] is more similar to the actual instrumental data obtained ID* than
E[T,(ID)]:

d(E[T,(ID)],ID*) < d(E[T,(ID)],ID*)

Still, Diez argues that we may find cases of rival theories that do not share even an instrumental
base. He convincingly exemplifies the point appealing to the case of Galileo’s observations of
Venus’ phases using the telescope. In that historical episode, the Aristotelians rejected the
instrumental basis of the Galileans, the fact that from the telescope’s changing shapes one could
infer changes in Venus itself, as according to the Aristotelians the sub-lunar and the supra-lunar
worlds do not share the same physical laws, so one should not expect that the telescope works
alike in both worlds. In such cases, Diez argues that the only possibility to account for rivalry is
to look for something common “below” the instrumental data, less elaborated, which he labels as
‘observational scenes’ (2002, 2006). Things like “dots in relative movement in the sky, grey paths
in a cloud chamber, angular displacement of a galvanometer-needle... or going back to our
example, increasing/decreasing shapes in a telescope lens” (2006, p. 44). Crucially, there is no

possible disagreement among normal human beings regarding observational scenes.

Then, analogously to the previous case, two theories Ty and T, which instantiate the strong
scenario (3) and do not share the same instrumental basis may be compared, in truthlikeness
terms, appealing to their expected observational scenes, E[T1(0S)] and E[T,(0S)]. Given an
appropriate distance d for the kind of observational scenes in question, one may claim that T; is
closer to the truth than T, if and only if E[T;(0S)] is more similar to the actual observational
scene 0S* than E[T,(0S)]:

d(E[T,(05)],0S) < d(E[T,(0S)],05")
For example, in the telescope’s case heliocentrism might be claim to be closer to the truth than
geocentrism since the expected increasing/decreasing shapes in a telescope lens by heliocentrism

are more similar to the increasing/decreasing shapes observed than the ones expected by

geocentrism.
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To sum up:

IfT; and T, share the same T-non theoretical and T-theoretical vocabulary (hy, ..., hy,),

then T is closer to the truth than T, if and only if:

d(f (g, e hon), £ (R, oo, ) < A(F2(Ry, ooy i), £ (e o, B))

If Ty and T, share the same T-non theoretical vocabulary (hy, ..., h;) and differ, at least

partly, in their T-theoretical vocabulary, then T; is closer to the truth than T, if and only
if:

d(f1(hy, o, b)), f*(hy, o, b)) < A(f2(Ry, oo ), f (Ry, o b))

If T; and T, do not share their T-non theoretical and T-theoretical vocabulary but share

a common instrumental base, then T; is closer to the truth than T, if and only if:

d(E[T,(ID)],ID*) < d(E[T,(ID)],ID*)

If T; and T, do not share their T-non theoretical and T-theoretical vocabulary or their
instrumental basis but share a common kind of observational scenes, then T; is closer to

the truth than T, if and only if:

d(E[T,(05)],05") < d(E[T,(0S)],05")
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4.5. Final remarks

Larry Laudan famously stated that until a coherent account of truthlikeness was developed, claims
such as ‘actual scientific theories are close to the truth’, ‘actual scientific theories are closer to the
truth than older theories’ and ‘a theory being explanatory successful implies it being close to the

truth’ are just “so much mumbo-jumbo” (1981, p. 32).

Since then, many philosophers of science and logicians have worked in developing a satisfactory
notion of truthlikeness, so that the notion may no longer be claimed to be absurd or
incomprehensible. With this research, we have tried to contribute to the development of the
concept of truthlikeness, providing a framework in which claiming that a scientific law is closer

to the true law than another law is a coherent, meaningful and accurate statement.

On a larger scale, we hope to have provided some additional tools for a realist view about science

and for a fallibilist optimistic view of human knowledge.
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PAPER 1

TRUTHLIKENESS FOR QUANTITATIVE DETERMINISTIC LAWS

Abstract

Truthlikeness is a property of a theory or a proposition that represents its closeness to the truth.
According to Niiniluoto, truthlikeness for quantitative deterministic laws (QDL) can be defined
by the Minkowski metric. We will present some counterexamples to the definition and argue that
it fails because it considers truthlikeness for QDL to be just a function of accuracy, but an accurate
law can be wrong about the actual ‘structure’ or ‘behaviour’ of the system it intends to describe.
We will develop a modification of Niiniluoto’s proposal that defines truthlikeness for QDL
according to two parameters: accuracy and nomicity. The presented proposal solves the

counterexamples and defines a new way of understanding scientific progress.

1. Preliminaries

Truthlikeness, in a first rough characterization, is a property of a theory or a proposition that
represents its ‘closeness’, ‘similarity’ or ‘likeness’ to the truth. A classical example in the literature
(Oddie [1986], [2016]) to intuitively introduce the concept invites us to consider the following
propositions:

a) The number of planets in our Solar System is ten.

b) The number of planets in our Solar System is ten billion.

As the number of planets is actually eight, both propositions are false. However, intuitively, they
don’t seem to be ‘equally false’: a) seems, in some sense, ‘less false’ or ‘more similar’ to the truth,

closer to how things are, closer to the actual number of planets, than b).
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For a more qualitative case, consider:

¢) The shape of the Earth is a sphere.
d) The shape of the Earth is a cube.

Where, again, as the actual shape of the Earth is something similar to an oblate spheroid (a bit
flattened at the poles and bulged at the Equator), both propositions are false. However, intuitively,

c) seems closer to the actual shape of the Earth, closer to the truth in question, than d).

Still at the intuitive level, we seem to postulate such a relation regarding a large number of

scientific theories and fields (take >;’ to mean ‘closer to the truth than’):

* Dynamics: Einstein theory >, Newton theory >, Aristotle theory
* Solar system: Kepler model >; Copernicus model >, Ptolemy model

& + Light: Quantum theory >, Electromagnetic theory >, Particle theory

* Atom theory: Bohr model >, Rutherford model >; Thomson model

& * Thermodynamics: Peng-Robinson model >; Van der Waals model >, Ideal gas model
» Biologic evolution: Extended synthesis >, Biological synthesis >, Darwin theory of Natural Selection

o + Economic growth: The Solow model >, Harrod-Domar model

ge
NS
&

&

&
&

& » International Trade: Standard model >, Heckscher-Ohlin model >, Ricardian model

o

&Y « Ete.

Figure 1

Why is the notion of truthlikeness philosophically interesting? First note that, if we don’t move
beyond the true/false dichotomy, all we can tell about all (or many) of the listed theories is that
they are false and simply false. Truthlikeness aims to overcome this limitation and express some
fundamental ideas: although the dynamical laws described by Aristotle, Newton and Einstein are
(probably and strictly speaking) false, we have the strong intuition that the Einsteinian world is
closer to ‘how the world is’ than the Newtonian, and much closer than the Aristotelian. That was,
precisely, one of Popper’s original motivations to introduce the concept of truthlikeness: to make
sense of the idea that different scientific theories might be false and yet constitute progress

towards the truth, where progress is explicated in terms of increasing truthlikeness.

The notion of truthlikeness enables us to make compatible, in a satisfactory and organic way, a
large set of ideas regarding science: (1) many (or all) scientific theories involve abstractions and
idealizations, an therefore are strictly speaking false, but not ‘equally false’: some may be closer to
the truth than others; (2) scientific progress from a false theory to another false theory is possible
because of an increase in truthlikeness; (3) truth (informative truth), although perhaps
unachievable, might be said to be the aim of science in the sense of pursuing a better
approximation to it; (4) we might never have conclusive reasons to ascribe truth to a theory

(fallibilism), but we may be able to estimate degrees of truthlikeness; (5) we can’t claim that
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science works because our best developed theories (including the unobservable parts) are true (we
know that many aren’t, in the strict sense), but we can nicely reformulate the claim by postulating
that our best developed theories (including the unobservable parts) work because they are ‘close
to the truth’ (in this sense, truthlikeness is indispensable for a plausible formulation of scientific

realism).

For truthlikeness to do such a nice job, a philosophical proposal must show (i) how it is
meaningful to claim that T, is more truthlike than T; (logical or semantic problem); and (ii) how,
given some evidence, it is rational to claim that T, is more truthlike than T; (epistemological
problem). In the present paper we will try to answer the first problem regarding quantitative
deterministic laws (QDL). Section II introduces the similarity approach to truthlikeness. Section
IIT conceptualizes QDL within the framework of the similarity approach. Section IV presents
Niiniluoto’s definition of truthlikeness for singular quantitative statements and QDL. Section V
develops some counterexamples to Niiniluoto’s proposal. Section VI presents a new definition of
truthlikeness for QDL as a combination of two factors, accuracy and nomicity. Finally, section
VII presents a two dimensional space where scientific progress and the objective distance from
laws to the truth can be visually represented and defines a new way of understanding scientific

progress.

II. The similarity approach

Popper ([1963]) was the first to take the concept of truthlikeness seriously and to give a formal
definition of it. Some years later, however, Miller ([1974]) and Tichy ([1974]) proved
independently that Popper’s definition didn’t work in the intended way, as according to it no false
theory or proposition is closer to the truth than any other. Since then, the notion has been a topic
of intense discussion by philosophers of science and logicians. It is not the aim of this paper to
provide an extensive survey of the different philosophical proposals developed to deal with the
notion (see the excellent reviews by Niiniluoto [1987], [1998], [2018a] and Oddie [2013],
[2016]). We will limit ourselves to outline the one that we take to be the most developed and

satisfactory: the similarity approach.

The similarity approach was firstly proposed by Hilpinen ([1976]), within possible world
semantics, and Tichy ([1974]), within propositional logic, and rapidly expanded by Niiniluoto
([1987]), Oddie ([1986]), Tuomela ([1978]) and Festa ([1986]), among others. Its core idea can
be captured by the claim that the truthlikeness of a theory or a proposition rests on the ‘similarities’
between the state of affairs it allows and the actual state of affairs of the world. The approach can

be outlined in five main points:
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(1) Given a phenomenon or system P and a language L to talk about P we can construct
a space of possibilities 55 which contains all the ways (cy, ¢z, ¢3 ...)" the world, P, can be

regarding L, all the possible descriptions of P given L.2
(2) Any theory or claim h of L will be expressible as a set of elements of Sj.

(3) We introduce a metric d(c;, ¢;) which defines the distance (in terms of similarity)
between elements of Sﬁ and an extension of d into another metric d’(h, ¢;) which defines
the distance (in terms of similarity) from theories or claims (set of elements of SpL) to a

single element of Sj.

(4) Some element ¢; will be the truth in question (the actual world or the most

informative true description of the world given L)*.

(5) Connecting all the above, we can finally define the degree of truthlikeness of a claim h,

once d' is normalized, as the function:
Tr(h) =1 —d'(h c})
Where:

» Tr(c)=1-d(c,cf)=1
= Tr(h) >Tr(s) o d(hc) <d(sc)

Therefore, truthlikeness is defined by the tuple <P, L, S. L h;,d,d', c;, Tr>. Within that framework
we obtain an elegant solution to the semantic problem: ‘T, is more truthlike than T} means that:
(i) given a space Sy where Ty, T, and the truth in question c; are represented and (ii) given some

appropriate similarity metrics d and d’ for S}, then (iii) d'(T, ¢;) < d'(Ty, ;).

Much of the work developed from the mid-seventies to the mid-eighties was focused on defining
and detailing all the elements from the mentioned tuple. L was usually taken as a qualitative first
order language, where S, can be constructed via Carnapian predicates or possible worlds.
However, for quantitative languages there are many fewer proposals. The most developed is

Niiniluoto’s ([1987]), where he suggests constructing Sy as a state-space (section III).

The key element in the similarity approach is its appeal to a notion of ‘likeness’ or ‘similarity’. At
the end of the day, similarity is the concept which explicates and defines truthlikeness: similarity

to the truth. The notion is defined according to metrics d and d’ on the space Sé. A metric on a

! Mutually exclusive and jointly exhaustive.

2 In Oddie’s proposal, each element (¢, ¢3, 3 ...) represents a possible world; Niiniluoto’s framework is more flexible,
allowing to represent state descriptions, structure descriptions, monadic constituents or scientific laws, depending on
our cognitive interests.

> When the target ¢ represents the true law T, it may no longer be conceived as the actual world or the most informative

true description of the world given L. See footnote 8 for more details.
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set is just a function that defines the distance between each pair of elements of the set, being a
numerical description of how distant objects are from each other. A set X with a defined metric
d constitutes a metric space (X, d). Formally, a metric d on a set X is a function [d: X X X —
[0,00)], such that forallx,y,z € X:

i dxy)=0

i dlx,y)=d(y,x)

iii. dxy)=0ex=y
v. dx,z) <d(xy)+d(y,2)

However, in the similarity approach it is not enough that d and d’ satisfy these mathematical
criteria for metric functions in order to be ‘good’ similarity and truthlikeness functions. Besides,
they must capture, precisely, the similarities between the elements of ;. This can be easily

exemplified by considering the following trivial metric:

0 ifx=y
d®(x,y)

1 ifx#y
According to d®, which satisfies i — iv, every element that is not the truth is at distance one from
it. Therefore, ‘the number of planets in our Solar System is ten’ and ‘the number of planets in our
Solar System is ten billion” are at the same distance (‘equally similar’) from the truth. As this is
obviously an unintuitive consequence, d® is not a good candidate for a similarity function. We
have to add some additional criteria to i — iv such that its satisfaction would guarantee that the

distance function is a good measure of likeness or similarity.

These additional criteria and the search for good similarity metrics is the core philosophical aspect
of the similarity approach. They can be established according to three (partly incompatible) ways:
(I) pointing out some clear-cut intuitive cases that any d and d’ would have to respect; (II)
postulating some general principles that any d and d’ would have to respect; (III) taking an
equilibrium between (I) and (II). So far, we find no consensus in the literature on how to proceed
(although the problems, as we will see, have to do with the way of defining d’, not d, where there
is a general agreement). This, however, is nothing surprising, as choosing between (I), (II) and
(IIT) is a general philosophical-methodological problem concerning any (or many) philosophical
concept(s). Regarding truthlikeness, roughly, Tichy and Oddie* advocate for (I), Popper for (II)
and Niiniluoto for (III).

A clear example of this issue raised in the development of truthlikeness for qualitative languages.

There was, since the beginning, full agreement in defining d as the Clifford measure (the

* Oddie ([1986], pp. 5-10) initially argued in favour of low-level intuitive judgements for evaluating a theory of
truthlikeness. However, in a more recent paper (Oddie [2013]) he argues for the need of some general principles to

constrain the possibilities of the extension from d to d'.
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symmetric difference between the elements of S3), but the extension of d into d’ is still a subject
of dispute. This can be illustrated with a toy example. Suppose we are interested in Sahara’s desert
weather and we have a simple propositional language with three primitive propositions, h, d and s
(for the primitive states ‘hot’, ‘dry’ and ‘sunny’) to describe it. Then, S;; will contain eight elements,
eight possible complete descriptions of the world: c;(h Ad As),c;(RAd A =s),...,cs(h A =d A
=5), ..., cg(mh A =d A =s). Take ¢; to be cf, the truth, the actual weather. Then, according to
the number of disagreements between c¢; and c¢;, we obtain:d(cq,¢q) =0,d(cz,¢1) =
1,..,d(cs,¢1) = 2,...,d(cg, c1) = 3. Now suppose a proposition p that claims that the world is
hot and wet (h A =d), p = {c3 V c5}. We know the similarities of its components to the truth
(c3 = 1,c5 = 2), but how should we measure their combination? Oddie and Tichy have favoured
the average measure (the average of the distances of the elements that constitute p to ¢;), while
Niiniluoto has argued for the min-sum measure’ (the weighted average of the minimum distance
plus the sum of all distances of the elements that constitute p toc;). In our example,
dverage(p,c;) = 2(1+2) = 1.5 and d™" 5" (p,¢;) = 1(1) + 2(1 + 2) = 2. The fact that
they result in different values is not a fundamental problem. The problem arises because, in some
cases and for some propositions, the two proposals result in different truthlikeness orderings.
Their main difference appears regarding the Popperian general principle that Oddie has called
‘the value of content for truth’: the fact that among true theories truthlikeness should covary with
logical strength. Average violates the principle, whereas min-sum satisfies it. Niiniluoto accepts
the validity of the principle, while Oddie and Tichy reject it based on their intuitions regarding
some specific cases. Here we find a conflict between methodologies (I) and (II). Which is more

rationally justified is a complex (perhaps impossible) issue to determine®.

As Niiniluoto has stated many times, the distance function d ‘has to be specified for each cognitive
problem B separately, but there are “canonical” ways of doing this for special types of problems’
(Niiniluoto [1998], p. 4). For example, if our cognitive problem is the number of planets in the
Solar System, then each element of S, will be of the form ‘the number of planets in our Solar
System is x’ Vx € N. The natural metric d for this structure will not be the Clifford measure but
the absolute difference d(cx,cy) = |x — y|. However, function d’ is supposed to be universal
regardless of the cognitive problem. Given some similarity values defined by an appropriate d,

then the extension d’ (average or min-sum) is supposed to define the best similarity combination

5 Specifically, d™M=SUm(p,c;) =y * d™"(p, ¢;) + ¥ dS“"(p, ¢;), where 0 <y < 1 and 0 < y’ < 1. Parameters y
and y' indicate the relative weights of both factors. For other measures that Niiniluoto considers, see Niiniluoto
([1987]).

¢ An extensive discussion of the general principles characterizing the different approaches to truthlikeness and the
different implications of average and minsum can be found in (Oddie [2013]). Niiniluoto’s comparison between

average and minsum can be found in ([1987], Chapter 6.6).
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of the elements regarding the truth. As we will see, our concerns have to do with how function d

has been defined for QDL, so our proposal is, in a sense, neutral regarding function d’.

To sum up, what we need to define truthlikeness for scientific laws within the framework of the
similarity approach is an appropriate space Sj to represent scientific laws and an appropriate
similarity measure d for scientific laws as represented in S;. In the next section we define the kind
of space S{,; where QDL can be represented. We follow Niiniluoto ([1987], [1990], [1994],
[1998], [2018]) in considering that those spaces are best defined by the state-space. One of the
strengths of this concept lies in the fact that it is actually used in the formulation of many scientific

theories (see for instance Greiner et al., [1997]).

III. The state-space and quantitative deterministic laws

Suppose we are studying some phenomenon or system S. In a simple description, S is composed
of p individuals which exemplify some properties and interact in a certain way. What scientific
theories usually do is: (i) postulate some physical real-value quantities (hy, ..., hy,) that represent
the (relevant) properties those individuals instantiate and (ii) explain the ‘behaviour’ of the system
according to some mathematical relations among the quantities. The chosen quantities to
represent the system can have different dimensions, depending on whether they are scalar, vector
or tensor. A system of (iy, ..., i) individuals with (hy, ..., hy,) physical quantities with dimensions
(hi, ..., hk) will generate an = P * ), i, ..., kK dimensional state-space S™, where all the possible
states of the system can be naturally represented. If we assume that (hy,..., h,,) are one
dimensional, then each possible state of a system with (iy, ..., {;,) individuals will correspond to
the tuple < il(hl),...,il(hm),...,ip(hl) ...,ip(hm) > and to one and only one point in ™.
Then, the behaviour of the system can be represented as the change from one state (point) to

another.
Examples:

A. In classical mechanics, the state of a particle at each instant of time is fixed by position
r® = (1,7, 1;) and momentum p* = (py, Py, p;). Therefore, S™ can be taken to be R®,
being each state a 6-tuple of real numbers (y, 73, 73, Dx, Py, D2)-

B. In classical thermodynamics, the state of a gas is fixed by pressure, volume and
temperature. Therefore, S™ can be taken to be R® being each state a 3-tuple of real
numbers (P,V,T).

C. In classical economics, the state of an economy is fixed by production, capital, labour and

land. Therefore, S™ can be taken to be R* being each state a 4-tuple of real numbers

(Y,K,L,N).
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A quantitative deterministic law of a system S is then a mathematical functional relation between
the physical real-value quantities hg, ..., Ry, characterizing the system. They are normally

formulated as functions f: R™ — R such that:

f(hy,....h,) =0

If for all hy, ..., hyy—1 € R there is only one value A, € R such that f(h, ..., hy,) = 0, then we

can write:
hm = g(hl' ""hm—l)

This is the archetypal form of many scientific laws, where usually hy, ..., hy—q represent
observable or measurable quantities (independent values) and h,, the quantity we are interested

in predicting (dependent value).

If time t is one of the physical quantities (hy, ..., lyp—1,t), then (hy, ..., hyy—1) can have just one
value for every t. The representation of f (hq, ooy App—q, t) will correspond to a trajectory in S™.
Those kinds of laws have been traditionally called laws of succession. A typical example are the

Newtonian laws of motion.

If t is not one of the physical quantities then, generally, a concrete value of any quantity h; is
compatible with a set of values of the other quantities. In this case, the representation of
f (hy, ..., hyy) will correspond to a region in S™. Those kinds of laws have been traditionally called
laws of coexistence and usually correspond to equilibrium states. A typical example is the Ideal

gas law.

Scientific laws can present two kinds of quantities, variables and parameters, and some constants.
Parameters take the form of variables in what we may call the ‘general form’ of the law, but
transform into constants in what we may call the ‘specific form’ of the law, when it is applied to

particular systems. For example, in the Van der Waals equation:

n?Nza' ,
P+—5— | (V = nNub") = N, KsT

We have:

»  Variables: P (pressure), T (temperature), V (volume of the container).
*  Parameters: n (number of moles), a’ (average attraction between the particles), b’ (volume
excluded by a particle),

»  Constants: Ny (Avogadro’s constant), Kz (Boltzmann’s constant).

Therefore, the state-space generated by the Van der Waals law is strictly speaking R®, which
contains all the possible combinations of P, T, V, n, a’ and b’ for any gas. The general form of a

law defines a set of possible trajectories (for laws of succession) or possible regions (for laws of
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coexistence), each corresponding to some specification of the parameters. However, when a state-
space is considered, usually only the variables are taken to conform its dimensions. Parameters
usually represent initial or boundary conditions. Then, it is more accurate to say that a scientific
law generates a state-space of the dimensions of its variables given some initial conditions (given
some concrete values of the parameters). In the above example, given some values of n, a’ and b’

for a particular gas system, the van de Van der Waals equation generates a R? state-space.

In the displayed framework, two different laws A and B of the same system S will have a real
function representation f4(hy, ..., hy) and fB(hy, ..., hy,) typically in the same state-space S™.
The Ideal Gas law and the Van der Waals law exemplify this situation. In some cases, however,
we might have to compare theories which postulate different physical quantities to represent the
properties of the same system, generating different state-spaces. To compare them (in
truthlikeness terms) we must search for a common state-space generated by their common
physical quantities. For example, phlogiston and oxygen theories of combustion can be
represented in a same two dimensional state-space R* with variables ‘time’ and ‘weight’ of the
combusted element. Then, the phlogiston theory would be (for any element) a decreasing function
and the oxygen theory would be a decreasing or increasing function depending on the element in
question. As another example, we can represent classical dependence between rest mass (m,),
relative mass (m) and velocity (v) as the constant function m = my in state-space R?, where we
can also represent the relativistic dependence m = mg/(1 — v?/c?)*? (Niiniluoto [1987], p.
392). In other cases, the comparison might be possible via intertheoretical connections of the
quantities. For example, thermodynamic statistical mechanics can be represented in the state-
space R® generated by classical thermodynamics by considering pressure as the result of the

collision of the particles, temperature as their mean kinetic energy and volume in the classical way.

IV. Niiniluoto’s definition of truthlikeness for quantitative deterministic laws

In quantitative languages we can distinguish two main types of quantitative statements: singular
quantitative statements and quantitative laws (interval statements can be treated as infinite
disjunctions of singular quantitative statements). Our main focus lies on the latter, but we will say

a few words about singular statements.

Typical cases of singular statements within scientific theories are those in which we are trying to
estimate some real quantity 8, which can be a physical constant (like Avogadro’s constant), a
parameter (like @’ and b" from the Van der Waals equation) or the prediction by a theory of the

value of some quantity (like the prediction from Newtonian mechanics of the position where a

cannonball will fall).
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If 0 is the estimate of the true value 8%, then 6" and each possible 6 can be represented in a one

dimensional state-space. In order to measure the distance (in terms of similarity) between 6" and
all the potential estimations 8, Niiniluoto ([1982], [1986], [1987], [2018b]) and Festa ([1986])

proposed to define d as the absolute difference:

d(@,0") =6 — 6|

If the values 6 and 6 are n-dimensional, 8 = (x4, ...,x,) and 6" = (x1, ..., X;,), then the most

natural measure is the Euclidean:

d(e,e) = \/(x1 —x1)% 4, o, H(x, — x)?

More generally, as shown by Niiniluoto, the distance between 8 and 8" can be defined by any of
the Minkowski metrics or p-norms, which performs here an analogous role to the Clifford

measure in qualitative languages. (p = 1):

1
i 3
a6 = (Z I —x:|p>
i=1

Regarding the extension of d into d’, Niiniluoto (1986) advocates again for its min-sum measure.
For the case of measuring the distance from an interval I to 8%, Niiniluoto formulates min-sum

as follows’:

d'(1,0%) = min,g(x —0*)? + ,BJ |x — 6*| dx
I

This can be generalized to situations where I is a finite union of intervals. Kieseppi ([1996a],
[1996b]), however, showed that this proposal, together with Festa’s approach, fails when the
hypotheses compared have different dimensions, because they are based on Lebesgue integrals.
Kieseppid then considers possible generalizations of average and min-sum using Hausdorff
measures. His proposal can be considered as an improvement in the similarity approach regarding

singular quantitative statements. Our goal is to make an analogous improvement regarding QDL.

Given a quantitative language to characterise a system, S™ will contain, as we saw, all the possible
‘behaviours’ (functions, laws) that the system can exhibit regarding the chosen physical quantities.
Then, what we need to define truthlikeness for QDL is a metric d which defines the distance (in
terms of similarity) between functions. Assume the general form h.,,(x) =

Fi(hy(x), ..., hyp_1(x)), which defines a possible continuous real-value function in $™. Niiniluoto

7 Where: (a) B > 0 is a constant; (b) in the case of a discrete set of points, the integral is substituted by a summation.
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([1982], [1987], [2018b]) proposes to define the distance between two laws A and B with the

Minkowski metric for functions (p > 1):

1

awm) = ([ 17160 - oo ax)’

As special cases, when p is 1, 2 or tends to o0, the metrics are known as Manhattan, Euclidean

and Chebyshev respectively:
= d™(A,B) = [If*() - Pl

- d(4,B) = (fIfA Q) - FF Iz
- A4 B) = sup [FA() — fP ()

Where d™%(4, B) corresponds to the volume between the surfaces (the area whenm = 2) and
d°"(4, B) to the maximum distance between the surfaces; d°“(4, B) can be bigger or smaller than

d™(A, B) depending on the situation.

Niiniluoto considers that these three metrics are good candidates for a definition of truthlikeness
regarding quantitative deterministic laws. Kieseppd ([1996a]) seems to agree with Niiniluoto’s
proposal. If we take fT(x) as the true law T, the true ‘connexion’ or ‘relationship’ between the
quantities, and d*(A, T) with [i = ma, eu, ch] as either of the three metrics, then a comparative

judgement of truthlikeness can be defined by:

A>, B d'(AT) <d(BT)

And a normalized definition of the degree of truthlikeness of a law® can be defined by:

8 The target ¢/ of a theory of truthlikeness for QDL is the true law T. This target, however, might be argued to be of
a different kind than the actual world or the most informative true description of the world given L, which are the
traditional representations of the truth in question in the literature of truthlikeness. In this regard, Cohen ([1980])
made a distinction between ‘verisimilitude’ (truthlikeness) and ‘legisimilitude’, claiming that the latter is the proper aim
of science. Cohen defined legisimilitude as ‘nearness to natural necessity’, ‘likeness to physically necessary truth’ or
‘lawlikeness’ (likeness to law), such that legisimilitude aims to capture likeness to ‘truth about other physically possible
worlds as well as about the actual one’ (Cohen [1980], p. 500). A similar distinction was made by Kuipers ([1982])
between ‘descriptive’ and ‘theoretical’ verisimilitude, and more recently ([2019]) between the ‘actual truth’ and the
‘nomic truth’, claiming that truthlikeness for laws and scientific theories must be evaluated in terms of their similarity
to the ‘nomic truth’ (the set of ‘really’ possibilities —physical, chemical, biological, etc.- among all the conceptual
possibilities of a domain). In both authors, roughly, the target T is conceived as a special set of possibilities. Our proposal
is in concordance with these ideas. As we have formulated QDL in section III, what they define (either in general or
in specific form) is a special set of possibilities of a given domain, and truthlikeness would be defined as the similarity
between the possibilities defined by a law X and the possibilities defined by the true law T. Therefore, our concept of

‘truthlikeness for QDL can be taken as closely related to the concept of ‘legisimiliude’ or ‘nomic truthlikeness’. See
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1

TT'(A) = m

In the next section we will expose some counterexamples to the use of d™*, d®* and d°" in
defining truthlikeness for QDL. We will argue that d°" is not a good measure of truthlikeness

and that d™® or d®“ represent a necessary but not sufficient condition.

V. Counterexamples

As we have seen, it is not enough that a metric d satisfies the mathematical criteria for metric
functions, but it must also capture the similarities between the elements of SpL. Therefore, d™?,
d®* and d°" would be good candidates for the state-space of functions if they correctly capture

the similarities between functions. We will argue that this is not the case.

5.1. Counterexamples to the Chebyshev metric

According to the Chebyshev metric, law A is more truthlike than law B if an only if d* (A, T) <
d"(B,T), that is to say, if and only if the maximum distance between f4 (x) and f7 (x) is smaller

than the maximum distance between £ (x) and f7 (x). Consider the following cases:

1@
00 o]
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£x)
Figure 2 Figure 3

Figure 4

Oddie ([1982]) and Niiniluoto ([1987], Chapter 11; [2018b]) for a discussion of the concept of legisimilitude within

their respective proposals.
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In all three, it seems that f4(x) is more similar to 7 (x), to the actual behaviour of the system,
than 2 (x). Therefore, intuitively A >, B. However, according to the Chebyshev metric,

as d"(A,T) > d°"(B, T), then B >, A, contrary to our “similarity intuitions”.

The Chebyshev metric is based on the idea of ‘no large errors’. For example, if we want to ensure
that a function f4(x) makes no errors larger than & with respect to some function f%(x),
then d“*(A, B) < € guarantees this requirement. This might be a useful indicator for some
purposes. However, we have tried to show that this property does not always go hand in hand
with truthlikeness; that f“(x) can make an error larger than f5(x) with respect to fT (x) and

even then f4(x) could be more truthlike or close to how f7 (x) is than f5 (x).

5.2. Counterexamples to the Manhattan and Euclidian metrics

In this section, d(X,T) will refer to either d™*(X,T) ord®“(X,T). Thom ([1975]), Weston
([1992]) and Liu’ ([1999]) present the following structurally similar cases:

- fP) o)

< “‘:—:"’_—7& i
- T

T fw) /

Figure 5: Thom, 1975 Figure 6: Weston, 1992
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o
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00

Figure 7: Liu, 1999

In all three, as d(A, T) > d(B,T), Niiniluoto’s proposal yields the result that fZ (x) is closer to
the truth fT(x) than f4(x).

? In Liu’s case the dashed line represents the slope of the true function.
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Thom (although he is not addressing directly the issue of truthlikeness) argues that in such a
situation a theorist would prefer f 4 (x) rather than fZ (x), even at the cost of a greater quantitative
error, feeling that ‘[f“ (x)], which gives rise to a graph of the same appearance as the experimental
result, must be a better clue to the underlying mechanisms of [f7 (x)] than the quantitatively
more exact [fZ(x)] ([1975], p. 4).

Weston, relying on Thom’s (slightly modified) example, claims that it shows that ‘we cannot
compare curves in a space by simply subtracting them’ ([1992], p. 59). To the question of which
of the curves, f4(x) or 2 (x), is more similar to f7 (x), he answers that we can’t give an a priori
response. If our aim is to make numerical predictions, then f5 (x) is more similar to f7 (x); for

other purposes, f*(x) might be consider more qualitatively similar to f7 (x).

Liu talks of lawlikeness in reference to truthlikeness applied to laws. He claims that his example
proves why truthlikeness definitions based on d(X,Y) are wrong, because according to those
definitions B >; A but, considered ‘as laws’, we would say that A >, B, that f4(x) is closer to

the true law than fZ(x).

Niiniluoto answers Liu’s objection suggesting that the counterexample might show that
truthlikeness regarding laws is related to two different questions: ‘(i) what are the values of the
true law? and (ii) what is the correct mathematical form of the true law?’ ([2018], p. 131). Then,
he points out that truthlikeness regarding laws should be considered as a ‘balanced combination
of them’ ([2018], p. 131), but offers no formalization of the idea. We totally agree with Niiniluoto

at that point and our proposal will try to integrate both properties into a formalized solution.

Further, Niiniluoto explores an alternative solution to the problem, which consists in fixing the
possible mathematical forms of the functions either by some theoretical background knowledge
or by considerations of simplicity. If in Liu’s case we restrict the mathematical form of the

functions to linear functions, then fZ(x) is no longer a valid candidate.

This suggestion would not work for several reasons. First, the state-space where all the possible
functions of a given system are represented cannot be constrained by theoretical background or
functional considerations'’. By definition, it must contain all the possible elements expressible in
the chosen language. As Niiniluoto himself points out in relation to another counterexample of
Liu, ‘the state space Q_should be a neutral framework for comparing various kinds of hypotheses

independently of assumed background knowledge’ ([2018], p. 130). Therefore, from a logical

10 Sometimes the state-space is restricted by some theoretical basis in the form of upper and/or lower limits. However,
these restrictions are minimal and in a sense derive from the definition of the quantities or the chosen language (if our

language includes the term ‘mass’, then the axis representing this quantity can’t be negative, by definition of ‘mass’).
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point of view, Liu’s oscillating function is a perfectly valid potential answer to the behaviour of

the system.

Second, even if we restrict the mathematical form of the functions, we could find further
counterexamples. Suppose that we introduce in the state-space a functional restriction to ‘linear’

mathematical forms:

Figure 8

Then, according to d(X, T), fZ(x) is more truthlike than f#(x), as the surface between f5 (x)
and fT(x) is smaller (in the considered interval), but it intuitively seems that f4(x) should be
considered more similar to fT (x) than fZ(x). One could now increase the level of constraints

and consider only ‘positive linear’ mathematical functions:

Figure 9

Where again, according to d (X, T), f5 (x) is more truthlike than £ (x), but it perhaps intuitively
seems that f4(x) should be considered more truthlike than fZ (x). Therefore, even if we admit
background or simplicity constraints at the logical level, this would not constitute a solution to

the counterexamples.

Having said that, we take the presented cases by Thom, Weston and Liu not to be conclusive
counterexamples to Niiniluoto’s proposal. Is it f#(x), in all cases, according to our intuition,
clearly more similar to f7(x) than fZ(x), clearly more similar to how the world is? Well, it
depends. Similarity is a matter of respects. Regarding the shape of the functions, f4 (x) is certainly
more similar to f7(x) than f(x). However, regarding the values of the quantities, which are

also a (highly relevant) part of how the system really is, fZ(x) is in all cases clearly more similar

to fT(x) than f4(x).
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To overcome this problem, consider the following case:

/—\ fT(x)

fix)
A0

Figure 10

Consider that f4(x) and f&(x) are such that d(A, T) = d(B, T). In that situation, according to
Niiniluoto’s proposal both laws would be equally truthlike, A =, B. However, we take it as
strongly intuitive that 4 (x) appears to be more similar to f7 (x) than B (x), that f4(x) clearly
seems to be closer to how the world is or more similar to the actual behaviour of the system
than fZ (x). Therefore, intuitively, f4(x) seems more truthlike than fZ(x), so a satisfactory

definition of truthlikeness should give the result that A >; B.

Moreover, consider a slightly modified situation in which d(A4,T) = x and d(B,T) = x — dx
(meaning that d(B, T) is just infinitesimally smaller than d(4, T), while the shapes remain as in
F10 [Figure 10]). In that case, Niiniluoto’s proposal will yield the result that B >; A. However,
again, we take that the intuitive result should be that A >; B, as f 4(x) would still appear more
similar to f7 (x) than fB(x), even if f5 (x) is infinitesimally closer to f7 (x) than f4(x) in terms

of d™(X,T) or d*(X,T).

Therefore, we take F10 to be a clear counterexample to a definition of truthlikeness for QDL
relying just on the Minkowski distance between functions. And we take the presented cases by
Thom, Weston and Liu and our own case as pointing to the idea that the shape of the functions

seems to have some role in the definition of truthlikeness for QDL.

VI. A new definition of truthlikeness for quantitative deterministic laws

The problem lies in the fact that d(X, T) measures the accuracy of a law, but an accurate law can
be completely wrong about the ‘actual way in which the quantities are related’, and that ‘structure’
or ‘behaviour’ seem to have a weight in evaluating the truthlikeness of laws, as Niiniluoto himself
points out. To see this in a less abstract way consider a car moving from Barcelona to Paris on a
straight line at a constant speed of 1 m/s. We characterize the system by two quantities, position

and time, generating a two dimensional state-space R?. The true function that describes the
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movement of the car is 77 = 1t (being r position and t time). Suppose we postulate law 4 as a

description of the car’s movement:

T'A =1t + sin(100¢t) + e

— . _3
10 (t+5)10 w-10

Figure 11

Law A (oscillating function in F11) is highly accurate regarding the position of the car at each
instant of time. It has a maximum predictive error of less than 0.1 m. However, it is in a sense
completely wrong about the actual true relation between position and time. According to law A:
the movement of the car is not uniform; the car has a constantly oscillating acceleration; the
position of the car depends to some degree on the irrational numbers e and 7 and is, also to some
degree, inversely proportional to time; the net sum of the forces acting on the car is never zero
neither constant; etc. All those facts are radically false regarding the actual ‘way’ in which the
quantities are related. Law A, although being highly accurate, is in a sense completely wrong about
some aspects of ‘how the world is’, about how position and time are actually related, about some

relevant features of the real behaviour of the system under consideration.

Therefore, accuracy seems not enough to define truthlikeness for QDL. There seems to be
another parameter, exhibited by the ‘shape’ of the law, which should also play a role. The shape
describes the ‘way’ in which the quantities are related or connected, representing some relevant
aspects of the ‘structure’ or the ‘behaviour’ of the system. It tells us, for instance, if the system
presents a global increasing or decreasing behaviour, and the increasing or decreasing rate of such
behaviour. If the shape includes some (local or global) minimums or maximums, this may imply
some properties of the system (such as local or global stable or unstable states). An oscillating

shape implies a continuous trade-off between the quantities, which points out to relevant
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properties and behaviours that a non-oscillating shape does not represent. In all these situations,

the behaviours implied by the shape of a law may or may not be obtained in the world.

To sum up, the shape of a law captures some aspects of the structure or behaviour of a system that
are not captured by accuracy. What’s more, two laws may exhibit very similar values but represent
very different behaviours (as in F10, F11). Then, closeness or similarity to the true law should

also take into account this parameter represented by the shape. We will call it ‘nomicity™".

Obviously, this does not mean that accuracy does not play a role at all, as Liu seems to suggest.

When two laws have the same or very similar shape:

/—\ fr(){)
/_\ e

/—\ O]

Figure 12

Then clearly the most accurate (f“ (x) in F12) is the most truthlike. The numerical values of the
quantities are also a relevant part of how the system is’. In this sense, accuracy, defined
as d™*(X,T) or d®®(X,T), is a necessary but not sufficient condition to define truthlikeness for

quantitative deterministic laws.

Our proposal, then, is to judge the distance (in terms of similarity) between a law X and the true

law T as a function of two factors, accuracy and nomicity:

d*"(X,T) = F(accuracy, nomicity)

Accuracy measures the similarity of the quantities’ values and is well captured by the Minkowski
metric, either by d™*(X, T) or d®*(X, T). Nomicity measures the similarity in terms of how the
quantities are related, according to the ‘structures’ or ‘behaviours’ described by the laws.

Truthlikeness of quantitative deterministic laws, then, results from a combination of both factors.

11 Under a standard account of laws of nature, nomic or natural necessity is what differentiates laws from accidental
generalizations. Then, an accidental connection or relation between some quantities involves no nomicity and a lawful
connection or relation between the quantities is nomic. Calling the parameter nomicity seems pertinent, as the shape
of the true law represents the true way in which the quantities are connected and ‘shape similarity’ aims to measure the
closeness between the way in which the quantities are connected in a law with respect to the true way in which they are
connected in the true law. If the reader disagrees with the chosen name, just take into account that hereafter with

‘nomicity’ we will refer to the degree of similarity in shapes.
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We propose that nomicity can be well measured by the derivative. Roughly, the derivative in a
point measures the ‘behaviour’ of the function in the proximities or neighbourhoods of the point.
It tells how the variables are related near the point, being an indicator of the ‘structure’ or
‘behaviour’ of the system at each point. In the simplest two dimensional case y = f(x), if in the
proximities of a point ¢ we increase variable x by dx and variable y increases by a - dx, a is
precisely the value of the derivative in c. If two corresponding points of two functions have the
same derivative then, in the proximities of these points, both functions behave alike. If two
functions have a very similar derivative in each of its corresponding points across an interval I,
then they define a very similar behaviour between the variables across I, and so their shapes will
be very similar across I. If I is their full domain, then both functions will have a very similar shape

across all their domain.

Therefore, we can measure how much two functions agree or disagree in shape (in nomicity) by
calculating the distance between the derivative functions, where a small distance will indicate a
high similarity in shapes and a big distance will correspond to a low similarity in shapes. The
distance between derivative functions (representing the distance in terms of nomicity) is given

again by any of the Minkowski metrics, where now the functions are the derivative functions'*:
m
a8y =( [ 17 @ -7 @ ax
n

Now, however, the Manhattan case (p = 1) could fail in capturing the idea of ‘similarity of shapes’
in some cases of symmetry". The problem can be avoided by taking the Euclidean value (p = 2),
which also has the nice property of giving more weight to large differences than to small

differences.

12 For the purpose of measuring similarity / dissimilarity in shapes it is enough to consider the distance between the
first derivatives. For functions with more than two variables, each point can be evaluated by the comparison of the total
differentials, which is obtained by the sum of all the partial derivatives.

B3 Consider: yT =2x; y4=x; y® =x+sinx. For complete cycles of f5(x) (2m 4m, 6m..), we obtain
that d™e(A",T") = d™e(B, T") (for [0,21], d™(A',T")=d™(B,T")= 2m; for [0,4n], d™(4’T")=
d™*(B',T") = 4m; etc.). For not complete cycles of f5(x) we obtain that d™*(A',T") < d™*(B',T"). If one has the
intuition that f4(x) is more similar in terms of nomicity to f7(x) than f5(x) even in complete cycles, then
d™2(A’,B") is not a good candidate for the measure of shape similarity. Note that this situation would also appear if
we measure accuracy with d™® (X, T). In the previous example, for complete cycles of f 2 (x), d™* (A, T) = d™*(B,T).
However, this result could seem intuitively correct, as f4(x) and f & (x) are equally accurate in average. Of course, one
could share the same intuition for the nomic case, and think that in complete cycles f4(x) and £ (x) are equally nomic
in average. If that is the case, then d™?(A',B’) is a good candidate for the measure of shape similarity between

functions.
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Therefore, the distance, in terms of similarity, between a law X and the true law T will be a

function of d®*(X,T) and d®*(X',T")14:

d*"(X,T) = F(accuracy,nomicity) = F(d*“(X,T),d**(X',T"))

And a normalized definition of the degree of truthlikeness of a law X regarding the true law T
can be achieved by:
Tr(X) = ——————
T (1+d(Xx, 1))
The next step is how to combine both factors into a single function in order to obtain the

numerical degree of truthlikeness of a law, as there are multiple ways of doing so. We have

searched for a combination that satisfies at least the following properties:

(1) d*™(X,T) is a metric function

(2) d*(T,T) =0 - Tr(T) = 1

(3) Tr(X)=1 o X=T

(4) ©(Tr(4) #Tr(B))

(5) ©(Tr(A) =Tr(B)AA#B)

6) if d“(X,T)=0->Tr(X) =1

(7) if d°“(X", T =0 O(Tr(X) £ 1)

8) (if d®™*(X,T) =0 A d™*(X',T)=0)>Tr(X) =0
9) (if d®*(X,T) =0 Ad®* (X", T") = ) > Tr(X) = 0

Property 2 implies that the truth has a degree of truthlikeness 1. Property 3 implies that just the
truth can have a degree of truthlikeness 1. Property 4 implies that not all laws may have the same
degree of truthlikeness. Property 5 implies that different laws may have the same degree of
truthlikeness. Property 6 implies that just the truth can be completely accurate. Property 7 implies
that inaccurate laws can be perfectly nomic, that inaccurate laws can have the same shape as the
truth. Properties 8 and 9 imply that great failures in one of the factors cannot be compensated by
great successes in the other. Property 8 implies that if a law is highly inaccurate and highly nomic,

it cannot be considered to be truthlike. Property 9 implies that if a law is highly accurate and its

1 Note that according to the developed reading, functions d®*(X,T) and d®*(X',T") measure accuracy and nomicity
in an inverse way: the smaller the result of d®*(X, T), the more accurate law X is, and the bigger the result of d®* (X, T),
the less accurate law X is (same for d®*(X’,T") and nomicity). Under this reading, X is more accurate than Y’ means
that the result from d®*(X,T) is smaller than the result from d®*(Y,T). Alternatively, one can read d**(X,T) as
measuring inaccuracy (and d®*(X',T") as measuring anomicity). Then, the smaller the result of d®*(X,T), the less
inaccurate law X is, and the bigger the result of d®*(X,T), the more inaccurate law X is (same for d®*(X’,T") and

anomicity). We will keep with the first reading.
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shape highly diverges from the truth, it cannot be considered to be truthlike. With properties 8
and 9 we want to ensure that if a law X is close to the truth then, necessarily, neither factor involves

large mistakes.

Summing both factors satisfies those properties”, but a parameter must be added to nomicity in
order to equate the units and make the sum meaningful’®. We have opt for (m — n), which

represents the length of the interval under consideration'’. Therefore'®:

d(X,T) = d*(X,T) + (m — n)d** (X", T")

With expanded form:

m 2 m 2
do(X,T) = f(fX(x) —fT(0))?dx | +(m—n) f(fX’(x) — f™ (x0))? dx
Metric d**(X,T) fits our intuitions of the previous cases. In F10 it yields the intuitive result
that A >; B. InF11 it will ascribe to 74 a greater distance from the truth than its level of accuracy.
In F12 the level of nomicity will play no role in comparing A and B, as it should be. In F5, 6
and F7 the result will depend on the actual structure of the functions. To see this, consider a

concrete case which resembles F5 (for interval [10 < x < 32]):

s fT(x) = —0.001x3 + 0.03x2 + 0.2x + 10
s fA(x) = —0.001x3 + 0.03x% + 0.23x + 1
»  fB(x) = 0.001x3 — 0.03x2 — 0.25x + 23

Figure 13

15 Another natural way to combine both factors would be to multiply them, but then properties 1, 8 and 9 would be
violated.

1 Tn the two dimensional case, accuracy will have y * x/2 units and nomicity y * x~/2

units. Directly summing them
would not make sense.

17 After a number of mathematical considerations, this seemed to us the most rational way to equate the units.

18 T'wo further parameters y and y’, inspired in Niiniluoto, might be added: d**(X,T) = y d®*(X,T) + y' (m—

n)d*(X',T") [0 <y < 1,0 <y’ <1], in order to be able to weighthen the values of accuracy and nomicity.
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Then:

= d(A,T) = 39.3

»  d(B,T) = 14.9

= de(4,T") = 0.1407

= de(B',T') = 4.0792

»  d9(4,T) =393+ (32 — 10) = 0.1407 = 39.3 + 3.1 = 42.4

»  d"(B,T) = 14.9 + (32 — 10) * 4.0792 = 14.9 + 89.8 = 104.6

Therefore, according to d®*(X,T) we obtain thatB >; A (14.9 < 39.3) and according to
d*"(X,T) we obtain that A >; B (42.4 < 104.6).

Besides resolving the counterexamples and providing a presumably better definition of
truthlikeness for quantitative deterministic laws, we can derive some additional interesting

insights from d*™ (X, T). This is done in the next section.

VII. The a-n space and scientific progress

As we have seen, given a system S and some postulated quantities we can construct a state-space
S™ which will contain all the possible laws regarding S. Each of these laws will have a degree of
truthlikeness defined by d*" (X, T). As d*"* (X, T) defines truthlikeness according to two variables,
we can represent all the possible laws of S™ regarding their degrees of accuracy and nomicity in a
two-dimensional space, the a-n space'’, where: the x-axis represents the degree of accuracy; the
y-axis represents the degree of nomicity; point (0,0) corresponds to the true law T; each law of
S™ is represented by a point (ay,n,) with a, degree of accuracy and n,, degree of nomicity; the
closer a law is to (0,0) regarding the x-axis the more accurate it is; the closer a law is to (0,0)

regarding the y-axis the more nomic it is.

Given a fixed degree of similarity k, such that d**(X,T) = k, many combinations of accuracy
and nomicity will have the same value k, so many different laws of S™ can have the same degree

of truthlikeness. Each value k; will generate a level line, which will contain a set of possible laws

1 .
(1+kl’)'

of S" equally truthlike, with degree T7; defined by

% Niiniluoto ([2003]) constructs a similar two dimensional space to illustrate the truthlikeness of sentences of a

propositional language given the two factors (min and sum) of his min-sum metric.
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Nomicity Ty

Truth T Accuracy

Figure 14

Note that the y-axis is empty, level lines do not cut it at the limit. This is because the only
possibility for a law to have a zero degree of accuracy (perfectly accurate) is to be T itself, whereas
several laws may have zero degree of nomicity (same ‘shape’ as T) and still different degrees of
accuracy. If we understand scientific progress (regarding QDL) as increasing truthlikeness, then
we can represent scientific progress in the a-n space as the movement from Ttj to Tr;, where i <
Jj. A direct consequence of the framework is that scientific progress regarding laws can be achieve
by two different sources: by improving accuracy, by improving nomicity or by a variation of both
factors in different degrees. This means that progress can be achieved even if one of the factors
gets worse, as long as the improvement of the other factor compensates and exceeds the

worsening.

In order to provide a visual example, consider the dynamical laws of Einstein, Newton and
Aristotle. The example does not pretend to be rigorous but merely intuitive and illustrative.
Arguably, moving from Aristotle to Newton produces a great gain in accuracy and nomicty.
Moving from Newton to Einstein does not increase too much the accuracy of the predictions of
many phenomena, but, if the nature of space and time is very close to the ones described by

Einstein, it represents a relatively higher increase in nomicity:

Nomicity Aristotle
l’ b
,"’ F An
Aa il
»”
p‘Newmn ]
” L J
B T
An ‘ Aa
;
/
‘
Einstein
Truth Accuracy
Figure 15
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Function y = x in the a-n space would represent the set of laws of S™ that linearly progress
towards T with equal increments of accuracy and nomicity. This linear progress, however, is
probably an exception in science. In general, scientific progress seems to be ‘non-linear’ in the
explicated sense and would involve a variation of both factors in different degrees. This is because
they are intimately connected, as nomicity results from the derivative function of accuracy. Any
structural variation of a function in order to obtain more accurate predictions will usually vary, to

some degree, its shape.

A clear historical case of ‘mainly nomic scientific progress’ is exemplified by the movement from
the Ideal gas law (IG) to the Van der Waals law (VW). Historically, IG (formulated by Emil
Clapeyron in 1834) was the first gas law developed to represent the behaviour of gas substances.
Roughly, in classical thermodynamics the state of a gas substance is described by three main
properties: pressure, volume and temperature. Opting for pressure as the dependent variable, as it

is common, IG can be formulated as®":

oo _RT
v

Soon after it was revealed that IG is only accurate for gases at low densities (states of ‘low

pressures’ and ‘high temperatures’), being quite inaccurate for large regions of the P-V-T space.

However, the main deficiency of IG was its lack of prediction of some qualitative properties of

gases, such as ‘phase transitions’, ‘phase boundaries’, ‘triple point’, ‘critical point’, etc. That was

partly solved by the formulation of VW in 1873 by Johannes van der Waals, which proposed a

modification of IG incorporating two new parameters, a (representing the attraction between the

particles) and b (representing the volume particles occupy):

RT a

P = v—b v?

Although VW increases, to some degree, the accuracy of IG, it is still quite inaccurate for large
regions of the P-V-T space. However, it is widely considered as a clear case of scientific progress.
Interestingly, Barnett describes this progress in truthlikeness terms: ‘it is clear that this equation
[VW] is a very much closer approximation to the truth than the ideal gas equation’ ([1944], p.
175). This is mainly because van der Waals was the first to recognize the influence of the
molecular size and the intermolecular forces of the particles of a gas, and as a result VW predicted
some of the qualitative properties mentioned earlier (in other words, the ‘shape’ of VW
approximates better to the shape of the observed behaviour of real gases). The main contribution

of VW regarding scientific progress comes from its modified shape, which implied some of the

20'Where v is the molar volume (v = V /n), n the number of moles and R is the universal gas constant.
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observed behaviour of real gases that the IG shape did not predicted. As expressed by Gilbert in
his classical Physical Chemistry ([1983],p. 39; p. 45):

The van der Waals equation is a distinct improvement over the ideal gas law in that it gives

qualitative reasons for the deviations from ideal behaviour.

[...] the van der Waals equation cannot be used for a precise calculation of the gas properties —
although it is an improvement over the ideal gas law-. The great virtue of the van der Waals
equation is that the study of its predictions gives an excellent insight into the behaviour of gases
and their relation to liquids and the phenomenon of liquefaction. The important thing is that the

equation does predict a critical state.

The tools developed so far enable us to make meaningful claims of the form ‘law A is more
truthlike than law B’ (comparative claim) and ‘the degree of truthlikeness of law A isk’
(quantitative claim). If we would like to make absolute claims of the form ‘law A is approximately
true’, in order to capture the idea that A has a ‘sufficiently high degree of truthlikeness’, then the
introduction of a threshold is needed. This kind of claims is of special interest for the scientific
realist, who, regarding laws, would like to claim that our best scientific laws are approximately

truel.

A natural way to proceed would be to claim that:
(D1) Law X is approximately true if and only if d**(X,T) < k;

Where k; is some stipulated threshold. Then the region (triangle) below k; would define the set

of truthlike laws.

Alternatively, we can define some degrees of accuracy and nomicity that a law would have to
satisfy independently in order to be considered truthlike. For example, as the values of a set of
empirical observations always come with a margin of error &, it may seem rational to claim that a
law is accurate just in the case its predictions lie within € or very close to it. Therefore, we can

stipulate that:
Law X is sufficiently accurate if and only if d**(X,T) < a;

Where a; is some degree of accuracy defined by e.

21 Being able to establish comparative claims is already relevant for a modest realist.
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Visually represented in F16:

Nomicity

-— Accurate laws

Truth a Accuracy

Figure 16

The region at the left of the dashed line defines the set of accurate laws. Those are the ones that
Niiniluoto’s proposal considers to be truthlike. F16 shows why in cases F5-F11 we were intuitively
inclined (in different degrees) not to consider the accurate laws as being close to the truth. We
can visually see that a law can be really accurate and still far away from T. Point P; would be a

good representation of fZ(x) in F7 or of f4(x) in F11.
In the same way we can stipulate that:
Law X is sufficiently nomic if and only if d®* (X', T") < n;

Where n; is some degree of nomicity. This will define a horizontal region which will contain the
set of nomic laws. In this case, the counterpart to P; would represent a law with a very similar
shape to T but very far away in terms of d®*(X, T). Function fZ(x) in F12 would be a close

example.

How to determine a rational degree of nomicity n;, however, is not as straightforward as in the
case of accuracy. Usually, nomicity is empirically presented as qualitative observational relations
between the quantities that any law regarding the phenomenon must satisfy, for example: objects
dropped near the Earth’s surface go down, pressure is proportional to temperature and inversely
proportional to volume, a diminution in the number of preys decreases the number of predators,
an increment of capital or labour increases the level of production, etc. All these empirical
observations restrict the possible shapes of the laws, but in a very low degree. In some cases, it
might be possible to introduce small perturbations in a system and measure its behaviour among

some interval in order to define a more accurate degree of nomicity n;.
Combining both conditions we can define that:

(D2) Law X is approximately true if and only if ay < a; and ny <n;
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That is to say, if and only if law X is sufficiently accurate and sufficiently nomic. Now a; and n;
define a square that will contain the set of truthlike laws. If we represent D1 and D2 in the a-n

space:

Nomicity
AN
- iAccurate laws
2
A 2
e '55(? Nomic laws
n, /. @(— ——————————— = e e
' L7
N\, b
e
B
L
Truth a Accuracy

Figure 17

According to D1, truthlike laws are those belonging to ABC, while according to D2, truthlike
laws are those belonging to C. In that sense, D2 might be a more restrictive definition, as it
excludes some possible combinations of accuracy and nomicity allowed by D1. According to D2
‘great’ failures in one of the factors are not compensated by ‘great’ successes on the other.
Therefore, laws belonging to C will have different degrees of truthlikeness, but they will be highly
accurate and will present a very similar shape to T. According to D2, there is a single ‘least

truthlike law’ Z among all the truthlike laws, corresponding to d*™" (Z,T)=a; + n;.

Accepting D2 might conclude in apparently paradoxical situations if combined with our previous
definition of progress. Suppose a law M situated in area A, a law N situated in area C, and that
M lies in a level line closer to T than N. Then M will be more truthlike than N, M will constitute
progress regarding N (according to our previous definition of progress), but M will not be
considered truthlike whereas N will be. Accepting D2, then, leads to the following definition of

progress:

(1) If M,N ¢ C, M constitutes progress regarding N if and only if Tr(M) > Tr(N).
(i1) IfM e Cand N ¢ C, M constitutes progress regarding N.
(iit) If M,N € C, M constitutes progress regarding N if and only if Tr(M) > Tr(N).

Once absolute claims regarding truthlikeness for quantitative deterministic laws have been
defined by either D1 or D2, the basic scientific realist attitude regarding laws can be formulated
as the claim that our best scientific laws belong to the region ABC (according to D1) or by the

claim that our best scientific laws belong to the region C (according to D2).
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VIII. Conclusions

We have shown that Niiniluoto’s proposal defines the accuracy of a law and we have argued that
an accurate law can be completely wrong about some aspects of the ‘structure’ or the ‘behaviour’
of the phenomenon it intends to describe, about the actual way in which the properties of a system
interact. In that sense, accuracy turns out to be a necessary but not sufficient condition to define
truthlikeness for QDL. We have argued that truthlikeness between a law X and the true law T
should be understood as a function of two factors, accuracy and nomicity, where accuracy
measures the similarity of the quantities’ values and nomicity measures the similarity in terms of
how the quantities are related, according to the ‘behaviours’ described by the laws. Our proposed
function d*"*(X, T) to combine both factors satisfies a series of intuitive and desirable properties.
In particular, it is based on the idea that great failures in one of the factors should not be
compensated by great successes in the other. Besides, function d*"*(X, T) resolves the presented
counterexamples to Niiniluoto’s proposal and can be used to construct a two dimensional space,
the a-n space, where scientific progress and the objective distance from laws to the truth can be
visually represented. In particular, it shows that scientific progress understood as an increment of
truthlikeness can be achieved from two different (but related) sources, by improving the accuracy

factor, by improving the nomicity factor or by a variation of both factors in different degrees.

The proposal leaves open some topics for future development. On the one hand, accuracy and
nomicity may not be the only factors that play a role in the determination of truthlikeness for laws
and ‘the shape of a law’ may not be the only determinant of nomicity. Metric d*™(X, T) is open

to the addition of more parameters.

Moreover, the application of d*™ (X, T) to real cases (the epistemic problem) appears challenging,
as we don’t know the true law T. Given a set of empirical observations it seems natural to define
an ‘estimation of accuracy by comparing, for each empirical observation, the observed value with
the predicted value by a law. However, an ‘estimation of nomicity’ imposes additional

complications, as we can’t observe the derivative values of the true law.

In addition, an extension of the framework to cover probabilistic laws and probabilistic truths is
desirable, as those laws conform an important family in today’s science. In principle, d** (X, T)
could be applied to cases in which X and T are probability density functions. However, one may
rise doubts about the meaning of the derivative of a probability density function. The application

of d*™(X, T) to probabilistic laws needs further elaboration.

Finally, the ultimate aim of a theory of truthlikeness for science is to define the truthlikeness of
scientific theories, so an expansion from laws to theories is needed. This move could be naturally
done in the Sneedian-structuralist framework (Balzer et al., [1987]), where, roughly, theories are

conceive as structured nets whose knots are pairs of laws and intended applications, with different
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weights of relevance. Take a theory M to be constituted by Ly,..,L, laws with weights
Wi, ..., Wy (X w; = 1). Then, the degree of truthlikeness TR of theory M could be defined as
TR(M) = wiTr(Ly) + -+ + w,Tr(Ly), where Tr(L;) is our proposed definition of the degree of
truthlikeness of law L;. For sure, this simple proposal will present many problems, particularly
regarding the comparison between theories with different intended applications. It is just a

starting working hypothesis for future development.
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PAPER 2

TRUTHLIKENESS FOR PROBABILISTIC LAWS

Abstract

Truthlikeness is a property of a theory or a proposition that represents its closeness to the truth.
We start by summarizing Niiniluoto’s (1987) proposal of truthlikeness for deterministic laws
(DL), which defines truthlikeness as a function of accuracy, and Garcia-Lapefia’s (2021)
expanded version, which defines truthlikeness for DL as a function of two factors, accuracy and
nomicity. Then, we move to develop an appropriate definition of truthlikeness for probabilistic
laws (PL) based on Niiniluoto’s (1987) suggestion to use the Kullback—Leibler divergence to
define the distance between a probability law X and the true probability law T. We argue that the
Kullback—Leibler divergence seems to be the best of the available probability distances to measure
accuracy between PL. However, as in the case of DL, we argue that accuracy represents a necessary
but not sufficient condition, as two PL may be equally accurate and still one may imply more true
or truthlike consequences, behaviours or true facts about the system than the other. The final
proposal defines truthlikeness for PL as a function of two factors, p-accuracy and p-nomicity, in

intimate connexion with Garcia-Lapefia’s proposal for DL.

1. Preliminaries

Truthlikeness is a property of a theory or a proposition that represents its “closeness”, “similarity”
or “likeness” to the truth. To intuitively introduce the notion, consider the following pair of

propositions (Oddie, 1986, 2016):

a) 'The number of planets in our Solar System is ten.

b) The number of planets in our Solar System is ten billion.
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Both a) and b) are false, as the number of planets in our Solar System is actually eight. Intuitively,
however, they don’t seem to be on a par: a) seems, in some sense, “less false” or more similar to

the truth in question, closer to how things are, closer to the actual number of planets, than b).

We seem to apply this intuitive relation to a large number of scientific theories and fields. For
instance, regarding dynamics, Einstein’s theory (probably and strictly speaking false) seems closer
to the truth than Newton’s theory, and both seem much closer to the truth than Aristotle’s theory.
Regarding the Solar System, Kepler’s model seems closer to the actual behaviour of the planets
than Copernicus’ model, and both seem closer to the truth in question than Ptolemy’s model. In
thermodynamics, the van der Waals model of real gases is usually presented as an example of
scientific progress regarding the ideal gas model, being the former closer to the actual behaviour
of gases than the later. In fact, Barnett (1944) describes in his classical Chemical Engineering
Thermodycamics this scientific progress in truthlikeness terms: “it is clear that this equation [van

der Waals] is a very much closer approximation to the truth than the ideal gas equation”.

If we remain at the true/false dichotomy level, all we can tell about all (or many) of the mentioned
theories is that they are false and “simply false”. With the notion of truthlikeness we aim to
overcome this limitation and make compatible a set of desired ideas regarding science: (1) many
(or all) scientific theories may be strictly speaking false, as they involve abstractions and
idealizations, but some may be closer to the truth than others; (2) scientific progress from a false
theory to another false theory can be explicated appealing to an increase in truthlikeness; (3)
Although (informative) truth is perhaps unachievable, it might be said to be the aim of science in
the sense of pursuing a better approximation to it; (4) we may be able to estimate the degree of
truthlikeness of a theory, even if we ascribe to a fallibilist position where we will never have
conclusive reasons to ascribe truth to it; (5) finally, as it is well known, truthlikeness is

indispensable for many plausible formulations of scientific realism.

As with many other philosophical concepts, we must clearly distinguish between: (a) the logical
or semantic problem (how it is meaningful to claim that T, is more truthlike than T;) and (b) the
epistemological problem (how, given some evidence, it is rational to claim that T, is more truthlike

than Tl )

In the present paper we will primarily deal with the semantic problem of truthlikeness for
probabilistic laws (PL henceforth), building on and expanding Garcia-Lapefa’s (2021) definition
of truthlikeness for quantitative deterministic laws (DL henceforth). Section II introduces the
similarity approach to truthlikeness, which will be later applied to DL and PL. Section III
conceptualizes DL and PL within the framework of the similarity approach, showing their
similarities and differences. Section IV summarizes Niiniluoto’s definition of truthlikeness for

DL and Garcia-Lapefia’s expanded version, which defines truthlikeness for DL as a function of
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two factors, accuracy and nomicity. Section V applies the similarity approach to the case of PL.
It will be argued that the Kullback-Leibler divergence seems to be the best of the available
probability distances to measure accuracy between PL and that, as in the case of DL, accuracy
represents a necessary but not sufficient condition to define truthlikeness for PL. The final

proposal will define truthlikeness for PL as a function of two factors, p-accuracy and p-nomicity.

2. The similarity approach to truthlikeness

The similarity approach to truthlikeness was firstly proposed by Hilpinen (1976), within possible
world semantics, and Tichy (1974), within propositional logic, and rapidly expanded by
Niiniluoto (1987), Oddie (1986), Tuomela (1978) and Festa (1986), among others. Its core idea
can be captured by the claim that the truthlikeness of a theory or a proposition can be defined
appealing to the similarities between the state of affairs it allows and the actual state of affairs of

the world.

The approach can be summarized as follows'. Consider a phenomenon or system P and a language
L to talk about P. We can construct a space of possibilities S5 which contains all the mutually
exclusive and jointly exhaustive ways (cq, 3, €3 ...) P can be regarding L, all the possible complete
descriptions of P given L2. Then, a theory or claim h of L will be expressible as a set of elements
of Sf. The next step is to introduce a metric d(c;, ¢j) which defines the distance (in terms of
similarity) between the elements of S and an extension of d into another metric d'(h, ¢;) which
defines the distance (in terms of similarity) from a set of elements of S L (theories or claims) to a
single element. Now, given some kind of correspondence theory of truth, some element ¢; of Sg
will represent the truth in question (the actual world or the most informative true description of
the world given L3). Then, connecting all the above, the degree of truthlikeness of a theory or

claim h, once d’ is normalized, is defined by the similarity between h and ¢;:
Tr(h) = 1 — d'(h, c})
Where:

» Tr()=1
= Tr(h) >Tr(s) o d'(hc) <d'(s,ct)

! For an extensive review of the similarity approach and other approaches to truthlikeness see: Niiniluoto (1987, 1998,
2020); Oddie (2013, 2016); Kuipers (1987); Zwart and Franssen, M. (2007); Cevolani and Festa (2020).

2 In Oddie’s proposal, the elements ¢y, c,,C5 ... represent possible worlds. Niiniluoto’s framework is more flexible,
allowing to represent state descriptions, structure descriptions, monadic constituents or scientific laws, depending on
our cognitive interests.

> When the target ¢ represents the true law T, it may no longer be conceived as the actual world or the most informative

true description of the world given L. See section 3.4.
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This framework provides an elegant solution to the semantic problem of truthlikeness: ‘T, is more
truthlike than T;” means that: (i) given a space S5 where Ty, T, and the truth in question ¢; are

represented and (i) given some appropriate similarity metrics d and d’ for Sj, then

(iif) d' (T, ¢¢) < d'(T, ¢f).

As a simple example, consider the number of planets in the Solar System as our cognitive problem.
In that case, the space Sj; will contain N elements of the form ¢, = <the number of planets in our
Solar System is x> Vx € N. One natural similarity metric d for this structure will be the absolute
difference d(Cx, Cy) = |x — y|. Then, ifcg = <the number of planets in our Solar System is nine>
and ¢1, = <the number of planets in our Solar System is twelve>, cg is closer to the truth (eight
planets, cg) than cj,, as d(cq,cg) =1 < d(c13,cg) =4, which matches our truthlikeness

intuitions regarding ¢y and cy,.

The key element in the similarity approach is its appeal to a notion of likeness or similarity. The
notion is defined according to metrics d and d’ on the space S5. The distance function d “has to
be specified for each cognitive problem B separately, but there are 'canonical' ways of doing this
for special types of problems” (Niiniluoto, 1998; p. 4). In the previous example, the absolute
difference seems the most natural way to capture the similarities between the elements of Sg,

which only differ regarding the number of planets they ascribe to the Solar System.

A similarity measure is the inverse of a given distance or metric: the less the distance between two
elements is, the more similar they are. A metric d on a set X is a function [d: X X X — [0, )],

such that for allx,y,z € X:

i dxy)=0
i.  dly) =dly,x)
. dx,y)=0eox=y
iv. d(x,z)<d(xy)+d(,z)

However, in the similarity approach it is not enough that d and d’ satisfy these mathematical
criteria in order to be “good” distance to the truth functions. Given a cognitive problem, many
metrics satisfying i-iv would result in unintuitive truthlikeness orderings. Additional restrictions
for satisfactory distance to the truth functions may come from clear-cut intuitive cases and/or
from general principles that any d and d’ would have to respect. In the present paper we will
appeal to both intuitive cases and general principles in order to define a satisfactory distance to

the truth function for PL.

The literature on the similarity approach (and on truthlikeness in general) has focused mainly on
qualitative languages, where d has been usually defined as the Clifford measure (the symmetric

difference between the elements of S§). For quantitative languages and scientific laws
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(deterministic and probabilistic) there are many fewer proposals. We will outline Niiniluoto’s

proposal in sections IV and V.

Whereas function d must be defined for each specific cognitive problem and space S§, function
d' is supposed to be universal. Given some similarity values defined by an appropriate metric d,
the extension d’ defines the best “similarity combination”. There are two main proposals in the
literature to define function d’. Oddie and Tichy have favoured the “average measure” (the average
of the distances of the elements that constitute h to ¢{), while Niiniluoto has proposed the “min-
sum measure” (the weighted average of the minimum distance and the normalized sum of all the
distances of the elements that constitute h to ¢;). Both proposals are rival hypotheses, as in some
cases and for some propositions they conclude in different truthlikeness orderings’. Our goal is to
find an appropriate similarity metric d for PL and to establish a truthlikeness connection between
DL and PL, so our proposal will be neutral regarding metricd’ and compatible with both

« » « . »
average and “min-sum”.

To sum up, what we need to define truthlikeness for scientific laws within the framework of the
similarity approach is an appropriate space S§ to represent scientific laws and an appropriate
similarity measure d for scientific laws as represented in S§. In the next section we define the kind
of space S§ where DL and PL can be represented, showing their similarities and differences. In

sections IV and V we turn to define appropriate similarity measures d for DL and PL.

3. Deterministic and probabilistic laws
3.1. Deterministic laws

One natural way to represent deterministic laws is the state space, used in many scientific fields®
and philosophical proposals. We follow Niiniluoto (1987, 1990, 1994, 1998, 2018) in considering
that the state space is the best way to construct the space Si where scientific quantitative

statements and scientific laws can be represented.

Given a phenomenon or system S, scientific theories usually (i) postulate some physical real-value

quantities (hy, ..., hy,) that represent the (relevant) properties of the system and (ii) explain its

4 Specifically, d™n=SUm(p, c;) =y « d™"(h, ¢;) + y'dS“"(h,c}), where 0 <y < 1 and 0 <y’ < 1. Parameters y
and y' indicate the relative weights of both factors. See Niiniluoto (1987) for other measures that Niiniluoto considers.
> See Oddie (2013) for an extensive discussion of the general principles characterizing the different approaches to
truthlikeness and the different implications of “average” and “min-sum”; and Cevolani (2017) for a deep analysis of
measure sensitive in truthlikeness measures. For Niiniluoto’s comparison between average and minsum see 1987,
Chapter 6.6. and Kuipers (1987) Chapter 1.

¢ See for instance Greiner et al., (1997).
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behaviour according to some mathematical relations among the quantities. The state space is then
a mathematical abstract space composed by the quantities (hy, ..., hyy). If 1 is the total sum of the
dimensions of the quantities, then each possible state of the system can be represented as a point
in a n-dimensional state space S™. The evolution or behaviour of the system is given by the change
from one point to another. For example, in classical thermodynamics the state of a gas is fixed by
pressure, volume and temperature. Therefore, S can be represented by R3, being each possible

state a 3-tuple of real numbers.

A quantitative DL is then a mathematical functional relation between the physical real-value
quantities Ay, ..., by, characterizing the system. If for all hy, ..., hyy,—1 € R there is only one value

h; € R such that f(hy, ..., h;y,) = 0, then we can write:

hm = g(hl' ""hm—l)

This is the archetypal form of many scientific laws. Usually, h, ..., hy,_; represent observable or
measurable quantities (independent values) and h,, the quantity we are interested in predicting

(dependent value).

3.2. Probabilistic laws

When the target system is a random phenomenon, i.e., one in which different outcomes are
possible and the one obtained depends on chance, its modelling is partly analogous to a
deterministic system. We can represent all the possible outcomes of a system in a “state space”
(Feller, 1971), which in probability is typically called “sample space”, Q. Each element in the
sample space represents a possible outcome and each (considered) possible outcome is represented
by an element in Q. Then, a function P is introduced such that it assigns to each outcome a
number between 0 and 1 (its probability), where the sum of all probabilities must equal 1. The
tuple < Q, P > defines then a probability space’.

As in the case of deterministic systems, where some real-value quantities are postulated to
represent the properties of the system, in a probabilistic system one postulates random variables
to represent the possible outcomes. A random variable X is typically defined as a function X: Q —
R. If X is a discrete variable, a discrete probabilistic law p(x) (probability mass function) can be
defined as:

PG = P(X =x)

7 Formally, a probability space is a 3-tuple < Q,F, P >, where F is a collection of events (sets of simple or compound
outcomes) and P is defined as a function P: F — [0,1]. In order to simplify the exposition, we take the limiting case

where F = Q.
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When X is a continuous variable, the probability of each single outcome is 0, such that we can
only define the probabilities of intervals. Those probabilities are defined according to some
probability density function. Take f(x) as the associated probability density function to variable
X, which can be intuitively thought as expressing the probability of each infinitesimal interval dx.

Then, the probability of any interval can be defined as:

b
Prla<X<b]= f f(x)dx

Therefore, the probability density function f(x) can be taken as the representation of a PL. when

the system is characterized by continuous random variables®.

Finally, let us note that the only difference between two probability laws of the same target system

are the probabilities each assigns to the different possible outcomes (or intervals) of the system.

3.3. The general and the specific form of a law

A detailed analysis of DL shows that they can present two “kinds” of quantities, variables
(v1, ..., ;) and parameters (ky, ..., k;), and some constants (cy, ... Cx), such that their structure

may be formulated as:

f(vl’ ""vl" kl’ ...,k]’, Cl’ "'Ck) e 0

Parameters usually represent initial or boundary conditions and can take the form of variables or
constants. When parameters are variables, we may call the resulting function the “general form”
of a law. This is represented in the state space as a set of possible trajectories (for laws of
succession) or possible regions (for laws of coexistence), each corresponding to some specification
of the parameters, to some initial or boundary conditions. We may say that the general form is

“empirically empty” in the sense that it is not representing any particular system.

When parameters are specified, they become constants, representing some initial or boundary
conditions. We may call the resulting function the “specific form” of a law. This is represented in
the state space as singular trajectories or regions, which model a particular system. From now on
we will use the term ‘path’ to refer to either a trajectory or a region. Therefore, the general form

of a DL defines a set of possible paths, whereas the specific form of a DL defines a single path.

For example, the general form of the uniform linear motion law is x = vt + x, (4-dimensional),

where x (position) and t (time) are variables, x,, (initial position) and v (velocity) are parameters,

8 We will use ‘f (x)’ to refer to either a (continuous) deterministic or probabilistic law. The context would make clear

if we are representing a deterministic law or a probability density function.
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and there are no constants. A possible specific form of the uniform linear motion law is x = 2t +
5 (2-dimensional). The general form of the ideal gas law may be formulated as PV = nRT (4-
dimensional), where P (pressure), T (temperature) and V (volume) are variables, n (number of
mols of the gas substance) is a parameter and R (universal gas constant) is a constant. A possible
specific form of the ideal gas law is PV = 2RT (3-dimensional). As it can be appreciated, the state
space corresponding to the general form of a DL is usually of a higher dimensionality than the
state space corresponding to its specific form. Moreover, for testing and making predictions,

usually the specific form is needed.

This distinction may be also applied to PL. Consider the “law” representing a fair coin. If a fair
coin is tossed n times, the sample space will contain 2™ possible paths, each with probability 27"
and the range of X will be {x, ..., x;n}. Then, the general form of the “fair coin flipping” law can
be represented as p(x;) = 27", where n is a parameter. Each specification of n will represent a
concrete case of n fair coin flips, being a possible specific form of the law p(x;) = 0.25
(corresponding to two-coin flips). One could also consider a more general coin flipping law,
allowing for different basic probabilities of heads and tails. In that case the general form may be
formulated as p(x;) = k™ (1 — k)" ", where h is the number of heads in path x; and k is the
chance of flipping heads. Now n, h and k are parameters, whose specification would represent

again a concrete case of n (fair or unfair) coin flips.

The distinction between the general and the specific form of a law enables us to formulate some
of the main similarities and differences between probabilistic and deterministic laws. On the one
hand, both the general form of DL and PL represent a set of possible systems or models, each
being specified by concrete values of the parameters. In that sense, both DL and PL specify a set
of (physical) possibilities. Moreover, both DL and PL, in specific form, diminish the set of

possibilities defined by their general forms’.

On the other hand, the set of possible systems or models defined by the general form of a DL or
a PL are structurally different. Each possibility defined by the general form of a DL produces a
single path, whereas each possibility defined by the general form of a PL produces a set of possible
paths. Accordingly, whereas the specific form of a DL represents a single path, the specific form
of a PL represents a set of possible paths, associating a probability to each path (or to each subset

of paths).

? This conclusion, argued from a different perspective (the general — specific forms of laws), is in consonance with
Koslow’s (2003) thesis regarding the relation between laws and possibilities and with Maudlin’s (2007)

conceptualization of deterministic and probabilistic laws.
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3.4. The true law T

Finally, let us note that in the case of deterministic or probabilistic laws the target ¢ of a theory
of truthlikeness represents the true (deterministic or probabilistic) law T. This target may no
longer be conceived as the actual world or the most informative true description of the world

given L.

In this regard, Cohen (1980) distinguished between “verisimilitude” and “legisimilitude”, defining
the later as “nearness to natural necessity”, “likeness to physically necessary truth” or “lawlikeness”.
Legisimilitude aims to capture likeness to “truth about other physically possible worlds as well as
about the actual one” (Cohen, 1980; p. 500). A similar distinction was made by Kuipers (1982)
between “descriptive” and “theoretical” verisimilitude and more recently (2019) between the
“actual truth” and the “nomic truth”. According to Kuipers, truthlikeness for laws and scientific
theories should be evaluated according to their similarity to the “nomic truth”, which is defined

as the set of “real” possibilities (physical, chemical, biological, etc.) among all the conceptual

possibilities of a given domain.

According to both authors, the target of a theory of truthlikeness for scientific laws or theories is,
roughly, a “special” set of possibilities. Our proposal is in concordance with these ideas. As we
have defined deterministic and probabilistic laws (either in general or in specific form) they
represent a particular set of possibilities of a given domain. In the case of DL the special set of
possibilities is represented by some determinate values defined on a state-space by the true
deterministic law T. In the case of PL the special set of possibilities is represented by some
determinate probabilities defined on a state-space by the true probabilistic law T. Then, in the
spirit of the similarity approach, truthlikeness for deterministic or probabilistic laws will be
defined as the similarity between the possibilities defined by a law X and the possibilities defined
by the true law T. Therefore, our concept of truthlikeness for deterministic or probabilistic laws

is closely related to the concepts of “legisimiliude” or “nomic truthlikeness™°.

4. Truthlikeness for deterministic laws
4.1. Niiniluoto’s definition of truthlikeness for DL

As we have seen in the previous section, given a quantitative language to characterise a system,
S™ will contain all the possible behaviours (functions, laws) that the system can exhibit regarding
the chosen physical quantities. Note that the possible functions cannot be constrained by

theoretical background or functional considerations. As Niiniluoto states: “the state space Q_

10 See Oddie (1982) and Niiniluoto (1983; 1987, Chapter 11; 2018) for a discussion of the concept of legisimilitude

within their respective proposals.
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should be a neutral framework for comparing various kinds of hypotheses independently of

assumed background knowledge” (2018, p. 130).

Then, given a space S™ and a set of possible functions, what we need to define truthlikeness for
DL is an appropriate metric d which defines the distance (in terms of similarity) between

functions.

Assume the general form hy, (x) = f E(hy (%), ..., hyp—1 (%)), which defines a possible continuous
real-value function in S™. Niiniluoto (1982, 1987, 2018) proposes to define the distance between
a deterministic law X and the true deterministic law T (the true “connexion” between the

quantities) by the Minkowski or Lp metric for functions (p = 1):

aw.n = ([ 1r @ - o)

As special cases, when p is 1, 2 or tends to o, the resulting metrics are known as Manhattan,

Euclidean and Chebyshev respectively'':
= d™XT) = [If*(0) — M) dx

- dn @, T) = JIFE () — fTG0I da)z

" AKX T) = sup |0 - fT )]

Niiniluoto considers these three metrics as good candidates to define an appropriate similarity
metric d regarding DL. Kieseppi (1996) agrees with Niiniluoto’s proposal. If we take d'(X, T)
with [i = ma,eu,ch] as either of the three metrics, then a comparative judgement of

truthlikeness between two laws, X and Y, can be defined as:

X>, YodXT) <d(Y,T)

And a normalized definition of the degree of truthlikeness of a law X can be defined by:

1

TT(X) = m

Niiniluoto’s proposal, particularly d™*(X,T) and d*(X,T), is attractive in a number of ways!2.
Both represent one of the most natural and intuitive ways of measuring the distances between

points and functions. The Lp metric is one of the basic constituents of functional analysis (Deza,

1 Where d™*(4, B) corresponds to the volume between the surfaces (the area in the two dimensional case) and
d"(A,B) to the maximum distance between the surfaces. d®“(4,B) can be bigger or smaller than d™?(4, B)
depending on the situation.

12 For counterexamples regarding the use of the Chebyshev metric to define truthlikeness, see Garcia-Lapefia (2021).
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2013). Moreover, both distances seem to match with our truthlikeness intuitions regarding a large

number of cases, including historical cases. For instance, consider the situation depicted in Figure

1:

/—\ re
/—\ fA (X)

/—\ @

Figure 1

Then, according to d™*(X, T) and d®*(X, T), f*(x) is closer to the truth than f& (x), which fits

well with our truthlikeness intuitions regarding Figure 1.

In other cases, however, Niiniluoto’s proposal seem to yield an unintuitive result. Thom (1975),
Weston (1992) and Liu (1999) provide three different but structurally very similar

counterexamples. Consider Liu’s case, shown in Figure 2'3:
t ples. Consider L , gu

fP(x)
f(x)

)

Figure 2: Liu (1999)

Take d(X,T) to refer to either d™*(X,T) or d°“(X,T). In that situation, as d(4,T) > d(B,T),
according to Niiniluoto’s proposal fZ(x) is closer to the truth than f A4(x). According to Liu,
however, the expected result should be the opposite, because considered “as laws” it intuitively

seems that f4(x) is closer to the truth than f2(x).

Liu’s intuitive conclusion, however, might be disputable. It certainly seems that there is a sense in

which f4(x) is more similar to f7(x) than f5(x). However, regarding the values of the

13 The dashed line represents the slope of the true function.
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quantities, fZ(x) is clearly more similar to fT (x) than f4(x), and the values or states represent

also a relevant aspect of how the system is.

Consider the following modified case (Garcia-Lapefa, 2021) depicted in Figure 3:

Figure 3

Consider that f4(x) and fB (x) are such that d(A, T) = d(B, T), that is to say, that A and B are
at the same distance from the truth (where distance is defined according to d™*(X,T)
or d®*(X,T)). In that situation, Niiniluoto’s proposal yields the result that both laws are equally
truthlike. However, we take it as strongly intuitive that f 4 (x) appears to be more similar to f7 (x)
than fZ(x). Law f4(x) clearly seems to be closer to how the world is or more similar to the
actual behaviour of the system than fZ(x). Therefore, a satisfactory definition of truthlikeness

should give the result that A >, B.

This case, together with the ones presented by Thom, Weston and Liu, point to the idea that a
definition of truthlikeness for DL can’t rely just on the Minkowski distance between functions.

The “shape” of the functions seems to play a role too regarding the similarity to the truth of DL

4.2. Accuracy as a necessary but not sufficient condition

The underlying problem with Niiniluoto’s proposal lies in the fact that metric d(X,T) measures
the accuracy of a law, as it compares each predicted value to the corresponding true value.
Therefore, metric d(X, T) can be taken as defining truthlikeness for DL as a function of accuracy.
This idea is also at the core of Weston’s proposal (1992) and Oddie’s Proximity principle (2019).

4 Niiniluoto seems to agree with this claim, as he points outs that Liu’s case shows that truthlikeness regarding DL
may be related to two different questions: “(i) what are the values of the true law? and (i) what is the correct
mathematical form of the true law?” (2018, p. 131), such that truthlikeness regarding DL should be considered as a

“balanced combination of them” (ibid.).
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However, Figure 3 shows that two laws may be equally accurate and still one may imply more
true or truthlike consequences, behaviours or facts about the system than the other. For example,
in Figure 3 according to the true law f7 (x) it is a true fact about the behaviour of the system that
whenever quantity x increases quantity y increases too. Law f4(x) implies this same true fact
about the system but law fZ(x) does not. According to law fZ(x), there are many intervals in
which quantity x increases and quantity y decreases. Therefore, accuracy seems to be a necessary
but not sufficient condition for truthlikeness regarding DL, as an accurate law can fail to properly

capture some aspects of the “structure” or “behaviour” of the system.

Consider a less abstract case to exemplify this idea, represented in Figure 4:

Figure 4

Suppose that the continuous curve describes the true orbit T of a planet and the dashed curve
represents an orbit described by a law A. Law A can be made really accurate in describing the
planet’s position, but still would imply completely wrong behaviours regarding the planet’s orbit.
For example: according to T the planet’s orbit is an ellipse, whereas this is not the case according
to A; according to T, if the planet is in the first quadrant and moves in the positive sense, it always
moves at a greater distance from point (0,0), whereas this is not the case according to A; moreover,
the acceleration and the forces acting on the planet described by T are radically different from the

ones described by A.
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Consider now a modified situation, shown in Figure 5, where A (dashed curve) represents again
the oscillating orbit described by a law A and B (dotted curve) represents an elliptical orbit
described by law B:

Figure 5

Consider that f4(x) and fZ(x) are such that d(4,T) = d(B, T), where again d(X, T) refers to
either d™*(X,T) or d®*(X,T)). Therefore, Niniiluoto’s proposal would yield the result that A
and B are equally truthlike. But again, intuitively, it seems that B (dotted curve) should be
considered closer to the truth than A (dashed curve). Although being equally accurate, the

mentioned behaviours implied by T and not by A are now implied by B.

To sum up, the “shape” of a law seems to represent an additional factor which should play a role
in defining truthlikeness for DL. It describes the way in which the quantities are related,
representing some relevant aspects of the “structure” or “behaviour” of the system that are not
captured by accuracy. The shape may include local or global minima or maxima, which imply
relevant properties of the system, such as stable or unstable states or regions. It might represent
an increasing or decreasing behaviour and its increasing or decreasing rate. An oscillating shape
represents some properties that a non-oscillating shape does not imply. As a result, two laws may
present very similar values but very different behaviours. Then, closeness or similarity to the true
law should also take into account this factor represented by the shape. In Garcia-Lapefia (2021)

this factor is called ‘nomicity’.
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4.3. Garcia-Lapenia’s definition of truthlikeness for DL

Relying on the arguments and cases seen in section 4.2., Garcia-Lapefia (2021) proposes to define

the distance d*™* (X, T) between a law X and the true law T as:

d**(X,T) = F(accuracy, nomicity)

Metric d** (X, T) is a natural expansion of Niiniluoto’s proposal. Accuracy measures the similarity
of the quantities’ values and is well captured by either d™*(X, T) or d®*(X, T). Nomicity measures
the similarity of some aspects of the “structures” or “behaviours” described by a law compared to

the true “structures” or “behaviours” of the target system.

Garcia-Lapefa proposes that nomicity can be captured by the distance between the derivative

functions”. Opting in both cases for the Euclidean distance:

dn(X,T) = F(d®*(X, T),d** (X', T"))

Both factors need to be combined into a single function in order to make comparative judgements
and to obtain the numerical degree of truthlikeness of a law. This can be done in infinitely many
ways. Garcfa-Lapefia argues that d*™(X,T) should satisfy, among others, the following two

properties:

1) (if d®*X, T) = o0 A d**(X',T)=0)>Tr(X) =0
@) (if d*(X,T) ~ 0 Ad“(X',T") = ) > Tr(X) = 0

These properties represent the idea that great failures in one of the factors should not be
compensated by great successes in the other. According to property (1), a highly inaccurate law
but with a very similar shape to the truth cannot be considered close to the truth. According to
property (2), a highly accurate law but with a very diverging shape from the truth cannot be
considered close to the truth. Liu’s function fZ(x) in Figure 2 would represent a law satisfying
the antecedent of property (2). Then, according to property (2) Liu’s function f?(x) cannot be

considered close to the truth.

15 The derivative in a point measures the “behaviour” of the function in the neighbourhoods of the point, describing
how the variables are related near the point. Two functions with a very similar derivative across some interval will define
a very similar behaviour between the variables across the interval, exhibiting a very similar “shape”. Therefore, by
calculating the distance between the derivative functions one can numerically define how much two functions agree or
disagree in shape (in nomicity). Again, one natural metric to define the distance between the derivative functions is the
Minkowski metric. In that case, however, d°“(X’,T") might be preferred to d™*(X',T") (see Garcia-Lapefia, 2021,
for further details).
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Properties (1) and (2) exclude some natural ways of combining both factors. For example, directly
combining them via multiplication (as in classical mechanics, where momentum is the result of

directly combining mass and velocity via multiplication) would violate both principles.

Garcia-Lapena proposes to combine accuracy and nomicity via summation:

den(X,T) = d®*(X, T) + (m — n)d** (X", T")

The parameter (m —n), which represents the interval under consideration, is a constant
introduced to equate the units of accuracy and nomicity and make the sum meaningful. The factor
(m —n)d®*(X',T") intends to scale shape differences into value differences in order to make
them comparable. The main obvious drawback is the arbitrariness of multiplying nomicity by a
constant, which may change the distance to the truth of a law depending on the chosen value.
That being said, every numerical definition involves some arbitrariness, such that it must be
judged according to its consequences in intuitive cases and/or according to the principles it

satisfies.

In this regard, if we apply d{" (X, T) to the case presented in Figure 3 we will obtain the intuitive
result that law A is closer to the truth than law B, and applied to the case presented in Figure 5
we will obtain the intuitive result that law B is closer to the truth than law A. Moreover, d{" (X, T)
is a proper metric function and satisfies the properties (1) and (2). Finally, choosing as a constant

(m — n) may seem reasonable, as it represents the length of the interval under consideration.

Given d{™(X,T), a normalized definition of the degree of truthlikeness of a deterministic law X
regarding the true deterministic law T can be achieved by:

1

0= (1+d"(X,T))

An alternative way of combining accuracy and nomicity without the need of introducing a

constant would be!®:

dg"(X,T) = (d*X, T) + D@ (X', T)+1) -1

Function d§™(X,T) also provides the intuitive results in Figure 3 and Figure 5 and satisfies
properties (1) and (2). As a main drawback, it is not a metric function (it does not satisfy the
triangle inequality). However, it can be normalized and used to define the degree of truthlikeness
of a deterministic law X regarding the true deterministic law T as:

() = (1+d9(X, 7))

am daee raterul to an anomn ous referee for some great suggestions that have led to this formulation.
16T am deeply grateful t ym feree f great suggestions that have led to this f lat
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Rearranging we can obtain:

1
Tr,(X) =
() (1+de#X, 1) (1 +dev(X',T"))
This final formulation of Tr, (X) is more conceptually elegant than the one of Try (X). Try(X)
can be interpreted in the following way: we first normalize accuracy and nomicity and then
truthlikeness is defined as the combination of both factors via multiplication, which is the most
natural mathematical way of combining two different properties. Although we lose the property

of the triangle inequality, Tr,(X) does not depend on an arbitrary constant.

As an additional virtue, if it were the case that the second and further derivatives might represent
further factors that might be relevant to define truthlikeness, they could be added to T7,(X) in a
very natural way:

1 1 1
(1 +devx, 1) (1 + dev(x, 7)) (1 + dew(x”, 7)) ™

Tr,(X) =

However, the first derivative is enough to solve the difficulties presented in Figures 2-5 and to

properly measure similarity and dissimilarity in shapes between functions.

5. Truthlikeness for probabilistic laws

According to the spirit of the similarity approach, what we need to define truthlikeness for PL is
an appropriate similarity metric between probability functions. In the literature of probability
there is a host of available distances. The Encyclopaedia of Distances (Deza, 2013) displays a total
of forty-three and the list is not exhaustive. Choosing between them usually depends on the
problem under consideration and the structure of the available data. For our purposes, we need to
select a distance that seems appropriate to measure the closeness to the truth between a probability

function X to the true probability function T.

In the literature of truthlikeness, there are almost no proposals of appropriate distances for
probabilistic laws. The only known proposal to us is Niiniluoto’s (1987). Inspired by
Rosenkrantz's (1980) definition of truthlikeness as expected support, Niiniluoto suggests to use
the Kullback-Leibler divergence (also known as relative entropy, divergence or information
deviation) to define the distance between a probability law X and the true probability law T.
Niiniluoto, however, does not provide an extensive argumentation on why the Kullback-Leibler
divergence (KL henceforth) would be an appropriate similarity metric for PL. In what follows we

will present the notion of relative entropy (5.1), confront it with other possible similarity distances
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for PL (5.2), analyse if the notion of nomicity is also a relevant factor to define truthlikeness for

PL (5.3) and propose a presumably satisfactory definition of truthlikeness for PL (5.4).

5.1. Relative entropy

Consider a discrete probabilistic system with n possible outcomes. Suppose a probabilistic law X
with probability distribution function p* (x). Take the true law T as the one with probability
distribution function p” (x). The KL distance between X and T is defined as:

pT(?C))
p*(x)

a4 (X, ) = KL(p" ()l p* () = ) pT(x)log(

For a continuous probabilistic system, being f* (x) and fT (x) the associated probability density

functions with range m, ..., n:

@, ) = KL X6 = [ 17 Gotog (]fgg) dx
KL was originally developed by Kullback and Leibler (1951) within the field of information
theory, based on Shannon’s notion of entropy (1948). It can be interpreted as measuring the
average inefficiency of assuming the distribution f* (x) when the true distribution is f7 (x) or
alternatively as the amount of information that is lost by assuming fX(x) when the true
distribution is f7 (x) (Cover et. al., 2006). If base 2 logarithms are used, the resulting number can
be interpreted in “bit” units. With those units in mind, KL measures the expected number of extra

bits required to code a sample of f7 (x) using a code based on f* (x).

In order to clarify the above interpretation, one must start from the concept of entropy. The
entropy H(p) of a (discrete) random variable with probability distribution p(x) is defined as
(Shannon, 1948):

H(p) = - ) p()logp(x)

Entropy can be thought as a measure of the uncertainty of the system or, alternatively, as the
amount of information that is needed for removing the uncertainty of the system, such that H(p)
represents the average length of the shortest description of the random variable. For example,
consider a random variable X with eight possible outcomes and a uniform probability distribution
p(x). In order to identify an outcome we would need a label that takes eight different values,

which can be obtained with a string of three bits each: {000,001, 010, ..., 111}. If we calculate

the entropy of X, the resulting number is precisely three “bits”:
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S101
H(p)=—Z§log2§=3(b1ts)

In a similar way, the concept of cross-entropy between two probability distributions p(x) and

q(x) is defined as:

H(p.q) = - ) p()logq(x)

Which resembles the definition of entropy, but now we are comparing a true distribution p(x) to
an assumed distribution q(x), such that cross-entropy measures the number of “bits” on average

to transmit an event governed by p(x) by using a code based on q(x).

For example, consider a random event with five possible outcomes and probability distribution
p(x) ={0.25,0.25,0.25,0.125,0.125}. The entropy of p(x) will be H(p) = 2.25, which
represents the amount of information on average one gets from a sample drawn of p(x). Consider
now a probability distribution q(x) = {0.125,0.125,0.25,0.25,0.25}, with the same entropy
H(p) = 2.25. If an event of q(x) takes place every day and we have to transmit which one has
been, an optimal code C would be {001,010,01,10,11}. This can be seen by calculating the
expected number of bits to transmit the outcomes of q(x) with the code C: 3bits x 0.125 +
3bits * 0.125 + --- + 2bits * 0.25 = 2.25 bits, which is precisely q(x)’s entropy. In other

words, C implicitly assumes the correct probability distribution q(x).

Now suppose we use C to transmit the outcomes of a system governed by the distribution p(x).
The expected number of bits to transmit the outcomes of p(x) with C would be: 3bits * 0.25 +
3bits * 0.25 + --- + 2bits * 0.125 = 2.5 bits. As the average bits of the optimal code to
transmit p(x) is given by its entropy (2.25), by using C we are being 0.25 bits inefficient. So, we
can appreciate that using a code C based on q(x) to transmit the information of a system governed
by p(x) is inefficient, as C assumes that the events are governed by q(x). Actually, the expected
number of bits to transmit the outcomes of p(x) with C, 2.5 bits, is precisely the cross-entropy
H(p, q). Therefore, if we are interested in measuring the inefficiency of assuming a distribution
q(x) to represent a random phenomenon governed by the true distribution p(x), the inefficiency
can be calculated by H(p, q) — H(p) (2.5 bits — 2.25 bits = 0.25 bits). And that is precisely

what KL or relative entropy measure, such that KL can be formulated as:

KL(pllq) = H(p,q) — H(p)

KL is always nonnegative and zero if p{* = p}. The usual convention is to take 0log? = 0,
0logg = 0 and plog® = co. Although it is used as a distance measure in many fields, it is not a

true metric. In particular, it is not symmetric and it does not satisfy the triangle inequality.
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However, a symmetric version, also suggested by Niiniluoto (1987), can be easily obtained and is

given by the Jeffreys divergence (JD):

d/P(X,T) = KL(T||X) + KL(X||T)

5.2. Distance between probability distributions

Although, as we mentioned, there is a vast number of distances for probability functions, many
can be classified in families and share common properties. Cha (2007) offers an excellent
categorization based on syntactic and semantic similarities. Syntactically, he divides a total of
fifty-six distances between probability functions into eight different groups, which include the
most representative distances for probability functions (Gibbs et. al., 2002). Semantically, Cha
develops a cluster categorization of the measures. This is done by generating thirty randomly
generated probability functions, calculating the distances each of the fifty-six measures deliver
between the thirty randomly generated probability functions and a target randomly generated
probability function, and measuring the degree of correlation between the calculated resulting

distances’.

The results offer two main clusters of probability functions, which broadly match with the
classification offered by Weller-Fahy et al. (2015) and Cha et. al. (2002). We will label them
‘Geometric’ and ‘Divergence’ families. For our purposes, the relevant point is that Cha’s analysis
shows a similarity of behaviours between the distance functions belonging to the same cluster,
such that we can select a small sample of them as representatives of each family for our posterior

analysis.

The main representative of the Geometrical cluster is, again, the Minkowski metric, now applied
to discrete or continuous probability functions. For two discrete probability distributions p(x)
and q(x):

1

n P
d(p(x),q(x) = (Z IpC) - q(x)v’)
i=1

The Manhattan (p = 1) and the Euclidean (p = 2) distances are the core of subfamilies which
belong to this same cluster. For instance, Manhattan is the departing point of the Serensen and
other related distances, particularly used in ecology to the comparison between species. The
Euclidean distance (or some variation, as its weighted or standardized version) is also used in

many fields, as data clustering or Network Intrusion Detection (Weller-Fahy et al.: 2015). The

7 More precisely, the procedure is repeated thirty times and the final correlations are the resulting average.
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Mahalanobis distance, largely used in statistics, emerges as a slight modification of the Euclidean,
incorporating the correlation between the variables. Although it gives different values compared
to the Euclidean, both exhibit in many cases a similar behaviour. In this cluster we also find the
cosine family, another geometrical distance which roughly measures the distance between two
vectors by the angle they form, not taking into consideration their weight or magnitude. This
measure is particularly useful in text comparison, where one wants to get rid of the difference in

length between two documents.

The second cluster, Divergence, contains mainly semimetrics, meaning that they do not satisfy
some of the four requirements for metric functions. For this reason, they are usually called
‘divergences’, as they are “oriented distances” (not symmetric). Symmetry, however, can be easily
obtained, as we showed in the case of KL. If d*(X, Y) is not symmetric, it can be transformed into
a symmetric distance by the addition method: d*¥ m@(x,Y) = di(X,Y) + d (Y, X). Moreover,

the vast majority of divergences do not satisfy the triangle inequality.

The “entropy family”, as defined by Cha (2007), can be taken as the main representative of this
cluster. Besides KL. and JD, the Jensen-Shannon divergence and the Jensen difference are also
used in some fields. Remarkably, the squared root of the Jensen-Shannon divergence does satisty
the triangle inequality. The Bhattacharyya distance and the closely related Hellinger and Matusita
distances are also well-known distances, and present tight bounds with the entropy family (Gibbs
et. al., 2002). Famously, Csiszir (1967) proved that many of those divergences are cases of f-

divergences:

b, Il = [ £ (55) 0

dQ
Choosing different functions f(t) one can obtain many of the mentioned distances that belong
to the Divergence cluster, therefore exhibiting a similar behaviour. For instance, if f(t) =
t log(t), one obtains KL. It is interesting to point out that another more general family of
divergences is given by the Bregman Divergences, where choosing different functions one can
obtain the squared Euclidean, the squared Mahalanobis and the KL distances. Surprisingly, KL,

is the only distance that belongs to both f-divergences and Bregman Divergences (Amari, 2009).

From the developed analysis, we can appreciate that Niiniluoto’s proposal of using KL to define
the distance between a probability law X and the true probability law T is a reasonable and
attractive option. KL is one of the most known and used representatives of the Divergence cluster.
Both KL and its symmetric version, JD, seem good candidates to define truthlikeness between

probability laws.
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As an alternative, the Manhattan and the Euclidean distances (MA and EU henceforth), main
representatives of the Geometrical cluster, seem reasonable options too. We take these four
distances as representatives of the two main clusters of probability distance measures and as viable
candidates to define truthlikeness for PL. As they can exhibit different behaviours in some
circumstances, resulting in different truthlikeness orderings for PL, in order to decide which
represent a better notion of closeness to the truth for PL, we proceed to analyse their behaviours

in some intuitive scenarios.

Scenario 1

Consider first the case S;. Suppose a fair coin with true probability law T = {0.5, 0.5} for the
outcomes heads and tails. Suppose a law A = {0.4,0.6} and a law B = {0.6, 0.4} that postulate
the corresponding coin’s probabilities of heads and tails. The resulting distances from A and B to

T are shown in Figure 6:

| d(aT)  dBT)

MA 0.2000 0.2000

EU 0.1414 0.1414

KL 0.0089 0.0089

JD 0.0176 0.0176
Figure 6

All four distances place A and B at the same distance from T (therefore, as equally truthlike). This
seems to match with the intuitive result we would expect, as A and B appear to be symmetric

regarding T.

Scenario 2

Consider now a modified case S,. Suppose an unfair coin with T = {0.3, 0.7} for the outcomes
heads and tails. Suppose a law A = {0.35,0.65} and a law B = {0.25,0.75} that postulate the
corresponding coin’s probabilities of heads and tails. The resulting distances from A and B to T

are shown in Figure 7:

| d@Tm d(B,T)

MA 0.1000 0.1000

EU 0.0707 0.0707

KL 0.0024 0.0028

JD 0.0050 0.0055
Figure 7
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This case is crucial for our purposes, as MA and EU produce a different truthlikeness ordering
than KL and JD. According to MA and EU, laws A and B are at the same distance from the
truth, whereas according to KL and JD, A is closer to the truth than B. Intuitions, however, might

be less clear than in Sj.

At a first glance, it may seem that A and B are symmetric regarding T, so that the correct
assessment is the one given by MA and EU. If we analyse the cases individually, as “points”, we
have that PT(Head) = 0.3, PA(Head) = 0.35 and PZ(Head) = 0.25. The difference between
PT(Head) and P4(Head) seems to be the same as the difference between PT(Head) and
PB(Head), and the same is the case for the probabilities of tails. Therefore, it may seem that 4
and B should be considered equally truthlike, so that MA and EU yield the expected result.

However, this intuitive symmetric appearance may be disputable.

On the one hand, if we represent 4, B and T as vectors (Figure 8), B is not the reflection vector
of Ain T, meaning that the angle @ between A and T is different from the angle ff between T and
B (their moduli are different too, as shown in Figure 6). The true reflection vector of A in T is
B’ = {0.246,0.754}. In that case, if we calculate the new eight distances from A and B’ to T
(considering B as the “symmetric in the vector sense” probability distribution of A regarding T),

MA and EU no longer yield the result that A and B at the same distance from T.

Vector Representation

0.5

0.25

0 0.25 0.5 0.75 1

Figure 8

On the other hand, it can be argued that there is a crucial difference between S; and S, because
of the probabilistic nature of the phenomenon under consideration. In Sy, there is a sense in which
A and B postulate the same “probabilistic behaviour” of the coin. According to both laws, some
outcome happens 40% of the time and the other happens 60% of the time. It is true that the
outcomes (heads or tails) that each law ascribes to each percentage or frequency is the opposite.

But the global “probabilistic behaviour” 40%-60% is the same and symmetric regarding the true
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“probabilistic behaviour” defined by T. In S;, however, the “probabilistic behaviour” represented
by A and B regarding T is no longer the same, such that “symmetry of probabilistic behaviours”
is broken and we should not expect that A and B are at the same distance from T, as KL and JD

conclude. To reinforce this idea, consider a new scenario Ss.

Scenario 3

Consider that T = {0.3,0.7}, law A = {0.599, 0.401} and law B = {0.001, 0.999}. The resulting

distances from A and B to T are shown in Figure 9:

| d@a,1r)  dBT)

MA 0.5980 0.5980

EU 0.4228 0.4228

KL 0.0793 0.6350

JD 0.1621 0.7868
Figure 9

A and B are still symmetric in the same “individual” sense defined in S, and accordingly MA and
EU locate them at the same distance from T. However, the “probabilistic behaviour” they ascribe
to the system is radically different. Law A postulates a probabilistic behaviour close to 60%-40%.
In contrast, law B postulates a behaviour that is almost deterministic. We could even consider the
limiting scenario S, where A = {0.6,0.4} and B = {0, 1}. Again, MA and EU would locate them
at the same distance from T'. This may seem clearly wrong, as in S the system under consideration

is probabilistic and law B postulates a deterministic behaviour.

This difference in “probabilistic behaviour” and its relation to the true “probabilistic behaviour”
defined by T is a strong sense in which A and B are not symmetric, either in S, S3 or Sy, such
that their distances to the truth should not be the same. What KL and JD actually measure is this
difference between the “probabilistic behaviour” of X compared to the true “probabilistic

behaviour” of T (measuring this “probabilistic behaviour” in terms of entropy or uncertainty).

From scenarios S; — S, we conclude that KL and JD seem to represent a better notion of
similarity to the truth for probabilistic systems than MA and EU. Therefore, there are good

reasons to take Niinilioto’s suggestion of KL as an appropriate truthlikeness measure for PL.
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5.3. Probabilistic laws, accuracy and nomicity

As we have seen, relative entropy compares each value of a given probability distribution X with
the corresponding true value of the probability distribution T. In that sense, the concept can be
taken as analogous to accuracy in DL. Both relative entropy and accuracy measure the similarity

of the quantities’ values between a law X a the true law T.

There is another sense, however, in which accuracy and relative entropy measure different things.
As it has been defined, accuracy measures a similarity between states, whereas relative entropy

measures a similarity between probabilities of states.

The issue here is partly terminological. We may now fix terminology in the following way. We
may call ‘accuracy’ the general concept defining “value similarity”, the similarity between the
values of a (deterministic or probabilistic) law X and those of the true law T; ‘d-accuracy’
(deterministic accuracy) the concept defining the similarity between the values of a DL X and
those of the true DL T (a similarity between states); and ‘p-accuracy’ (probabilistic accuracy) the
concept defining the similarity between the values of a PL. X and those of the true PL T (a

similarity between probabilities).

This raises the natural question whether nomicity is also a relevant factor in PL. We will argue
that indeed it is also a necessary condition for a satisfactory definition of truthlikeness for
(continuous) PL. Then, we may call ‘nomicity’ the general concept defining “shape similarity”,
the similarity between the shape of a (deterministic or probabilistic) law X and that of the true
law T’; ‘d-nomicity’ (deterministic nomicity) the concept defining the similarity between the shape
of a DL X and that of the true DL T; and ‘p-nomicity’ (probabilistic nomicity) the concept
defining the similarity between the shape of a PL. X and that of the true PL. T

The four introduced concepts are summarized in Figure 10:

Value similarity Shape similarity
Deterministic laws d-accuracy d-nomicity
Probabilistic laws p-accuracy p-nomicity
Figure 10

Following this terminology, we rename the presented d5" (X, T) and T, (X) functions in section
4.3. as d§"(X,T) and Trg(X), and we will name dg™(X,T) and T7,(X) the corresponding

similarity and truthlikeness definitions for probabilistic laws.
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In order to argue that nomicity is also a necessary factor for PL, we will start by analysing a
hypothetical situation regarding atom decay, with the additional purpose to exemplify the

application of KL to a real scientific probabilistic law.

Radioactive decay is the process through which an atomic nucleus loses energy, usually by the
emission of particles or photons, transmuting into another atom. Radioactivity was discovered in
1896 and soon after it was empirically observed that radioactive substances decay following an
exponential law (Krane, 1988). Some years after scientists realized that it was impossible to predict
the exact time when a given individual atom of a radioactive sample would decay, such that
radioactivity represents a stochastic process. In fact, it is the probabilistic nature of decays which

leads to the exponential observed behaviour.

Consider a substance formed by N radioactive nuclei at time t. After some time dt, the number
of radioactive nuclei would have varied by dN. As the decay of an individual atom is a random
phenomenon, the (expected) variation dN would be proportional to N and dt. Then, the variation
of N nuclei per unit of time would be given by:

dN - N
dt

Where A is the so called ‘decay constant’ and represents the probability per unit of time for an
individual atom to decay. Integrating and rearranging, we obtain the exponential law of

radioactive decay (ED henceforth), where Nj is the original number of nuclei in the substance at

time ty:

N(t) = Nye

Note that ED, which we have derived from simple theoretical considerations, matches the
exponential observed behaviour of radioactive substances. Note also, however, that its structure
does not match the way we have defined PL in section III. ED does not assign a probability to
each possible path a radioactive substance may follow. Actually, ED may seem deterministic, as
it defines a unique path in a two-dimensional state space (defined by quantities N and t) and
allows to make accurate predictions regarding the remaining quantity N after some time t. This
is because ED represents the expected path a radioactive substance would follow, the average
number of nuclei that would have not decayed after some time t, and the set of paths “close” to
the expected one have a probability close to 1. Therefore, in order to apply KL to atom decay, we
might consider its formulation for a single atom. Consider an atom with A7 true probability of
decay per unit of time. Consider a law A that postulates a probability A of decay per unit of time.

Then, we can calculate the distance from A to the truth as:

AT 1-AT
dXL(A,T) = KL(T]|A) = A" log (A_A) + (1 =27 log (%)
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Consider now a concrete case where A7 = 0.05 and 24 = 0.118. Suppose a law B that postulates
a probability of decay that changes with time, defined by 2% = 0.1 4+ =22%9 Tn order to calculate
the KL distance between B and T, we can either take A%’s mean value or compare the divergence
between A and T and B and T for a complete cycle of AB (0, ..., 2m). In both cases we will obtain
the result that dX(A, T) = d¥L(B,T), that is to say, that A and B are equally truthlike, which
seems an unintuitive result. If we represented A (dashed curve), B (oscillating curve) and T
(continuous curve) in the exponential law form, they would look something like the situation

depicted in Figure 11:

Figure 11

Where one may have the intuition that A seems closer to the truth than B, such that an
appropriate similarity metric between PL should yield the result that A >; B. As in the case of

DL, it seems that some further factor needs to be added to p-accuracy.

As in the cases represented in Figures 3-5, this example shows that two different PL. may be
equally p-accurate and still one may imply more true or truthlike consequences, behaviours or
facts about the system than the other. Although A4 and AZ are equally p-accurate, A4 implies,
among others, the true fact that the probability of decay per unit of time is constant. Therefore,
p-accuracy seems to be a necessary but not sufficient condition for truthlikeness regarding PL, as
a p-accurate law can fail to properly capture some aspects of the “structure” or “behaviour” of the

system.

Consider another case to reinforce this idea. The normal distribution, one of the most relevant
and used distributions in statistics, has a probability density function defined as (where y is the

mean and 0?2 is the variance of the random variable):

- 2
e '%(%)

fG) =

1
oVan

18 Actual decay constants of real atoms are much lower. For instance, Cs37 has a A around 4.4 * 1078, For the clarity

of the example we choose bigger values, without loss of generality.
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Suppose a probabilistic system following the true normal distribution T (continuous curve) and
two probabilistic laws, A (dashed curve) and B (oscillating curve), that postulate the following

density functions, represented in Figure 12':

Figure 12

If A and B are properly chosen, it would be the case that d¥*(4,T) = d¥X(B, T), that is to say,
that A and B are equally truthlike if truthlikeness for PL is measured just as a function of p-
accuracy. Again, this may seem an unintuitive result, such that an appropriate similarity metric

between probability functions that measures closeness to the truth should yield the result that
A >, B.

The intuitive result can be achieved appealing to p-nomicity, now defined between the derivatives
of the probability density functions. As in the case of DL, the Euclidean distance between the

derivatives provides a satisfactory measure of shape similarity*:

2

a1 = | [ 10 - T o ax

Where f¥ ’ (%) and f T (x) are now the derivatives of the probability density functions. P-
nomicity again, measures some aspects of the “structure” or “behaviour” of the probabilistic system
that are not captured by p-accuracy. The comparison of the derivatives of two density functions
¥ (x) and f¥(x) for a point x; (the possible outcome x;) indicates the similarity between some
aspects of the probabilistic behaviour ascribed to the system by f¥(x) and f¥(x) near the
outcome x;. If, for some interval, d®* (X', T") is smaller than d®*(Y',T"), then the shape of f* (x)

is more similar to the shape of f T(x) than the shape of f Y(x). This implies that the way

¥ In order to avoid possible negative values of law B when x is large (due to its oscillations), suppose its oscillating
shape is defined for the range —x,,, ..., 0, ..., X, such that a complete number of cycles are performed, and outside that
range law B equals law A.

20 KL is not used to measure the distance between derivative functions as entropy is not a defined property for derivatives

of density functions. In fact, the “entropy” of the derivative of any normal distribution is zero.
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probabilities behave in the interval (the way they change through the outcomes of the interval) is
better captured by f* (x) than by ¥ (x).

Consider the previous probabilistic system shown in Figure 13. Assume that the random variable
X represents the possible positions of a particle. According to the true law T, if x;, Xj, X, X > 0
and X, Xp > X3, Xj and X, — Xy = Xj — X;, then P[xl- <X< xj] > Plxy, <X < xp)]. Thatis
to say, the further a given interval of length [ is from the origin, the less probable is to find the
particle in that interval. Law A implies this same fact about the system. However, this is not true
in the case of law B. According to law B, there are some positions Xiy Xj, X, Xn > 0 where
Xy Xn > X, X and  Xp — Xy = Xj — X;, and P[xi <X< xj] < P[xy, < X < x,]. This and
many other implied behaviours by B that are not implied by T (nor by A), reinforces the idea that
A and B should not be considered at the same distance from the truth, as p-accurcay concludes.

Appealing to p-nomicity we can capture these differences.

5.4. Defining truthlikeness for probabilistic laws

Based on the previous cases, the similarity d3™ (X, T) between a (continuous) probabilistic law X

and the true probabilistic law T should be a function of p-accuracy and p-nomicity:

dg™(X,T) = F(p—accuracy, p-nomicity) = F(d*"(X,T),d**(X',T"))

It X and T are discrete probabilistic laws there is no sense of p-nomicity, as they describe no
shapes. Then, for discrete probabilistic laws the similarity dj™ (X,T) between X and T is just a
function of p-accuracy: d3™(X, T) = d**(X,T).

As in the case of DL, both factors need to be combined into a single function in order to make
comparative judgements and to obtain the numerical degree of truthlikeness of a PL. There are,
however, some important differences between the possibilities of “value similarity” and “shape

similarity” in the case of PL in comparison to the possibilities of both factors in DL.

On the one hand, in the case of DL it is possible for a law X to have the same shape as the true
law T (d®*(X',T') = 0) and different degrees of accuracy (see Figure 1). This situation is not
possible in the case of PL because of the general constraint that the “summation” of the
probabilities of all the possible outcomes must equal 1. The only possibility for a (continuous) PL
X to have the same shape as T is to be T itself. This implies that two different (continuous) PL
will always have different shapes, such that a non-zero value of KL necessarily implies a difference

in shape.

On the other hand, the only possibility for a PL. X to present a really high value in p-accuracy

(d¥L(X,T) = ) is that X contains at least a point (or interval) with a probability really close to
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zero and that T does not define a probability really close to zero in that same point or interval.
However, in that situation it would not be possible that X and T present a very similar shape
(d®*(X',T") = 0). At least near the point or interval their shapes would largely differ. Therefore,
if (1) is the property equivalent to property (1) for PL:

(1) (if d¥¥(X, T) = 00 A d**(X",T") = 0) > Tr(X) =0

The antecedent of property (1) cannot be realized in the case of PL, such that (1’) is satisfied

regardless of the way we combine p-accuracy and p-nomicity.
The property (2’) equivalent to property (2) for PL would be:

) (if d¥E (X, T) ~ 0 Ad“(X',T") ~ ®) > Tr(X) ~ 0

As in the case of DL, we take (2’) as a desirable property to be satisfied by dg™ (X, T). According
to (2’), a highly p-accurate law but with a very diverging shape from the truth cannot be considered

close to the truth.

The same combination proposal suggested in dg"(X,T) works now for p-accuracy and p-

nomicity:

agn(X,7) = @ X, 7+ 1Dd*X', T+ 1) -1

Function dg™ (X, T) satisfies properties (1) and (2’) and implies the expected intuitive results in
Figures 11 and 12. If we apply d3™ (X, T) to the case presented in Figure 11 regarding atom decay,
we will obtain the intuitive result that A4 is closer to the truth than A%. Applying it to the case of
the normal distribution presented in Figure 12, we will obtain the intuitive result that A (dashed

curve) is closer to the truth than B (oscillating curve).

As in the case of d3" (X, T), d3"™(X,T) can be normalized and rearranged to define the degree of
truthlikeness T7, (X) of a probabilistic law X regarding the true probabilistic law T as:

1 1

%) = Ay awnmn) L+ a 1)

Where:

X >, Y & d@(X,T) < de(Y,T)
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Functions dg™(X, T) and Tr, (X) present some relevant properties:

(1) d2"(X,T) =0

2) d"X,T)=0-X=T

(3) dg™(T,T) =0->Tr,(T) =1
@ TrnX)=1oX=T

(5) 0(Tr,(4) # Tr,(B))

6) 0(Tr,(A) =Tr,(BYAA#B)
7) if d“(X,T)=0->X=T

Q) if (X", T)=0->X=T

Property 1 implies that d§™ (X, T) is always nonnegative. Property 2 implies that just the truth is
at distance 0 from it. Properties 3 and 4 expand property 2 to the degree of truthlikeness: the truth
and just the truth has a degree of truthlikeness 1. Property 5 implies that not all PL. may have the
same degree of truthlikeness. Property 6 implies that different PL. may have the same degree of
truthlikeness. Property 7 implies that just the truth produces the most efficient encoding. Property

8 implies that no PL can have the same shape as the truth.

6. Conclusions

We have tried to develop a satisfactory answer to the semantic problem of truthlikeness for
probabilistic laws within the framework of the similarity approach, in intimate connexion with

Garcia-Lapefia’s (2021) proposal for deterministic laws.

In both deterministic and probabilistic laws it has been argued that accuracy represents a necessary
but not sufficient condition to define closeness to the truth, as two deterministic or probabilistic
laws may be equally accurate and still one may imply more true or truthlike consequences,
behaviours or facts about the system than the other. The proposed method to measure this
additional factor appeals to shape similarity, named ‘nomicity’, between a (deterministic or
probabilistic) law X and the true law T. We have argued that nomicity can be well captured

appealing to the Euclidean distance between the corresponding derivative functions.

Regarding deterministic laws, we proposed an alternative way of combining d-accuracy and d-
nomicity which agrees with the intuitive results in the presented cases and satisfies properties (1)
and (2). As its main virtues, it does not appeal to an arbitrary constant and provides a more elegant
definition of truthlikeness for deterministic laws. For probabilistic laws, based on Niiniluoto’s
suggestion we have argued that KL seems to be the best of the available probability distances to

measure p-accuracy. T'hen, p-accuracy and p-nomicity have been combined in the same proposed
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way for deterministic laws. The final proposal agrees with the intuitive results in the presented

probability cases and satisfies properties (1) and (2').

The developed framework of truthlikeness for deterministic and probabilistic laws is summarized

in the following table (Figure 13):

Value similarity Shape similarity Combination Truthlikeness
Deterministic laws d-accuracy d-nomicity
1 1
d (X, T g ’ o an IS Tr.(X) =
Measured by (X,7) de (X', T") d(X,T) Ta(X) (1 +del((X‘T)) (1 + L«'”‘(X',T'))
Probabilistic laws p-accuracy p-nomicity
. _ 1 1
Measured by d® (X, T) d(X', 1" de" (X, T) 15 = v arem,n) 1+ d=or, 1)
Figure 13

The proposal leaves open two main topics for future development. On the one hand, the
epistemological problem has not been addressed. A direct application of the provided definitions
to real cases is not possible, as we do not know the true law T. However, the semantic definitions
are the base to develop ways of “estimating” accuracy and nomicity for deterministic and
probabilistic laws. On the other hand, the ultimate aim of a theory of truthlikeness for science is
to define truthlikeness for scientific theories, which is the notion a scientific realist is in need of.

Therefore, an expansion from truthlikeness for laws to truthlikeness for theories is desirable.
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