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A B S T R A C T   

The rise of food fraud practices, affecting a wide variety of goods and their specific characteristics (e.g., quality or 
geographical origin), demands rapid high-throughput analytical approaches to ensure consumers protection. In 
this context, this study assesses flow injection analysis coupled to high-resolution mass spectrometry 
(FIA–HRMS), using a fingerprinting approach and combined with chemometrics, to address four food authen-
tication issues: (i) the geographical origin of three Spanish red wines, (ii) the geographical origin of three Eu-
ropean paprikas, (iii) the distinction of olive oil from other vegetable oils and (iv) the assessment of its quality 
category. In each case, negative and positive ionisation FIA–HRMS fingerprints, and two different data fusion 
strategies, were evaluated. After external validation, excellent classification accuracies were reached. Moreover, 
high-resolution mass spectrometry (HRMS) allowed sample matrices characterisation by the putative identifi-
cation of the most common ions.   

1. Introduction 

Globalisation has notoriously expanded international trade, 
increasing the number of participants between the production and 
consumption in the food chain. In this context, food fraud, which en-
compasses a sort of intentional manipulation practices in food products 
(i.e., adulteration, mislabelling, grey market, and counterfeit) aiming an 
economic gain (Morin & Lees, 2018), has become of great concern 
among consumers, food businesses, the scientific community, and gov-
ernment administrations. Because of the economic purpose behind food 
fraud, its likelihood is generally estimated using supply-and-demand 
and financial indicators influenced by macroeconomic trends and 
directly affected by unexpected situations such as the Suez Canal 
blockage or the COVID-19 pandemic (Points, Manning, & Group, 2020). 
Moreover, goods well-valued for specific labelled particularities (e.g., 
geographical origin or production system), which enhance their repu-
tation and increase their price, are likely to be affected by fraudulent 
practices since the difference between authentic and non-authentic 
products is difficult to measure. 

Chromatographic and related techniques —such as capillary elec-
trophoresis (CE), gas chromatography (GC), and liquid chromatography 
(LC)— with spectroscopic detection or coupled to mass spectrometry 
(MS), and combined with chemometrics, have proven excellent capacity 
to address complex food authentication issues through fingerprinting 
strategies (Cuadros-Rodríguez, Ruiz-Samblás, Valverde-Som, Pérez- 
Castaño, & González-Casado, 2016; Medina, Perestrelo, Silva, Pereira, & 
Câmara, 2019). However, the need for more rapid high-throughput 
analytical approaches, minimising sample analysis time and even 
costs, has focused the attention on direct MS techniques (Ibáñez, Simó, 
García-Cañas, Acunha, & Cifuentes, 2015). In this line, both ambient 
mass spectrometry (AMS) and flow injection analysis coupled to mass 
spectrometry (FIA–MS) seem to be potential alternatives to non-targeted 
chromatographic methods. 

AMS comprises several techniques, mainly spray- or plasma-based 
—such as desorption electrospray ionisation (DESI) (Takáts, Wiseman, 
Gologan, & Cooks, 2004) and direct analysis in real-time (DART) (Cody, 
Laramée, & Durst, 2005), respectively—, that provide direct desorption/ 
ionisation of analytes from the native sample or with minimal sample 
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treatment. Despite the significant number of advances that have been 
made in this field in the last decade and its advantages (such as real- 
time, in situ, and in vivo analysis), AMS techniques still lack three 
crucial aspects in fingerprinting approaches: good reproducibility, 
sensitivity, and wide molecular coverage (Kuo, Dutkiewicz, Pei, & Hsu, 
2020). Instead, FIA–MS, which is based on injecting a small volume of a 
liquid sample or a sample extract into an organic phase continuous 
stream that carries the sample bolus up to the mass spectrometer ion 
source, provides satisfactory reproducibility because of modern auto-
matic autosamplers and injectors precision and repeatability (Gachumi, 
Purves, Hopf, & El-Aneed, 2020) and allows better ionisation efficiency 
through any atmospheric pressure ionisation (API) source —mostly 
electrospray ionisation (ESI)— than AMS. Therefore, FIA–MS offers a 
balance between chromatographic-MS and AMS techniques regarding 
analytical capability and sample analysis throughput (Nanita & Kaldon, 
2016). 

Several analytical methods aiming to solve food authentication is-
sues by FIA–MS fingerprinting, combined with chemometrics, have been 
developed in the last years. In this line, nominal mass fingerprints ac-
quired by flow injection analysis coupled to low-resolution mass spec-
trometry (FIA–LRMS), mainly based on ion trap technology MS 
instruments —i.e., ion trap (IT) and linear ion trap (LIT)— due to their 
higher sensitivity in full-scan MS mode than quadrupole mass analysers, 
have proved their potential in particular applications, such as the 
organic and conventional sage sample differentiation (Gao, Lu, Sheng, 
Chen, & Yu, 2013) or cinnamon species classification (Chen, Sun, & 
Ford, 2014). In contrast, exact mass fingerprints are obtained by flow 
injection analysis coupled to high-resolution mass spectrometry 
(FIA–HRMS), using time-of-flight- (TOF) or Orbitrap-based mass ana-
lysers, which present a maximum resolving power up to 50,000 and 
500,000 full-width at half maximum (FWHM), respectively (Rubert, 
Zachariasova, & Hajslova, 2015). Thus, FIA–HRMS leads to richer fin-
gerprints, where near-isobaric compound signals are well-resolved, 
enhancing selectivity and providing better molecular coverage than 
FIA–LRMS. For instance, it has been already successfully applied to 
address oregano (Gao et al., 2014) and lettuce (Sun et al., 2018) pro-
duction system or milk adulteration detection (Du et al., 2018). More-
over, taking advantage of its accurate mass measurements and isotopic 
abundance ratios, molecular formulae of specific ions can be determined 
and compared to publicly accessible databases for putative compound 
identification. 

This study aimed to demonstrate FIA–HRMS suitability to address 
certain food authenticity issues through a fingerprinting approach and 
its combination to principal component analysis (PCA), partial least 
squares regression-discriminant analysis (PLS-DA), and soft independent 
modelling of class analogy (SIMCA). Thus, the geographical origin of 
three Spanish red wines (Catalunya, La Rioja, and Castilla y León) and 
three European paprikas (La Vera, Murcia, and the Czech Republic), as 
well as the distinction of olive oil from other vegetable oils and the 
assessment of its quality category, were evaluated. 

2. Materials and methods 

2.1. Reagents and solutions 

For the sample treatment, purified water was obtained using an 
Elix® 3 coupled to a Milli-Q® system (Millipore Corporation, Bedford, 
MA, USA) and filtered through a 0.22-µm nylon membrane; hexane and 
formic acid (96%) were provided from Merck (Darmstadt, Germany); 
UHPLC-supergradient acetonitrile was from Panreac (Castellar del 
Vallès, Spain); and ethanol was purchased from VWR International 
Eurolab S. L. (Barcelona, Spain). Instead, for the FIA–HRMS, LC–MS 
grade water and acetonitrile were from Merck. 

2.2. Instrumentation 

FIA was performed using an ultra-high-performance liquid chroma-
tography (UHPLC) system equipped with an Accela 1250 quaternary 
pump and an Accela autosampler (Thermo Fisher Scientific, San Jose, 
CA, USA). The sample injection volume was 10 µL. The carrier consisted 
of a 50:50 (v/v) mix, composed of water acidified with 0.1% formic acid 
(v/v) and acetonitrile, and was pumped isocratically at 150 µL⋅min− 1 for 
1.5 min. 

The UHPLC system was coupled to a hybrid quadrupole-Orbitrap (Q- 
Orbitrap) mass spectrometer (Q-Exactive Orbitrap, Thermo Fisher Sci-
entific) equipped with a heated electrospray ionisation source (H-ESI II) 
operating in both negative and positive ionisation modes. The H-ESI 
source was set in an off-axis position to prevent and minimise mass 
spectrometer contamination. Nitrogen with a purity of 99.98%, pur-
chased from Linde (Barcelona, Spain), was used for the ESI sheath, 
sweep, and auxiliary gas at flow rates of 40, 0, and 12 a.u. (arbitrary 
units), respectively. Moreover, the vaporiser temperature was set at 
250 ◦C, the capillary temperature at 350 ◦C, the spray voltage at ± 3.0 
kV (depending on the ionisation mode), and the S-lens RF level at 50 V. 
The Q-Orbitrap mass analyser worked in full-scan MS mode, with an m/z 
range from 100 to 1500, at a mass resolution of 70,000 FWHM at m/z 
200. Besides, an automatic gain control (AGC) target of 3.0 × 106, which 
is the number of ions to fill the C-Trap, and a maximum injection time of 
100 ms, were established. Simultaneously to the full-scan MS mode, 
data-dependent scan mode (ddMS2) was also performed with an in-
tensity threshold of 1.0 × 105, a fixed first m/z of 50 for the registered 
product ion scan range, a quadrupole isolation window of 0.5 m/z, and 
applying stepped normalised collision energies (NCE) of 17.5, 35.0, and 
52.5 eV for ion fragmentation. Besides, in this event acquisition mode, a 
mass resolution of 17,500 FWHM at m/z 200, an AGC target value of 5.0 
× 105, and a maximum injection time of 100 ms were also set. 

The Q-Orbitrap system was tuned and calibrated every three days, 
using commercially available calibration solutions for both negative and 
positive ion modes (Thermo Fisher Scientific). Moreover, the Xcalibur 
software v 4.1 (Thermo Fisher Scientific) was used to control the LC–MS 
system and acquire and process data. 

2.3. Samples and sample treatment 

In this study, three different sample sets (red wine, paprika, and olive 
and other vegetable oils), detailed in the present Section, were under 
evaluation by the proposed FIA–HRMS method. In all their corre-
sponding sample sequences, in order to ensure the quality of the results 
avoiding and controlling systematic errors and cross-contamination, a 
quality control (QC) sample —constructed by pooling equal aliquots of 
each sample of the set— and an extracting solvent blank were injected at 
the beginning and after every ten sample injections. Besides, samples 
were also randomly injected to minimise the effect of instrumental drifts 
on the chemometric models. 

2.3.1. Red wine 
A set of 94 red wine samples from three Spanish areas —50 from 

Catalunya, 25 from La Rioja, and 19 from Castilla y León— encompassing 
15 different Protected Designation of Origin (PDO) labels (Bierzo, Cat-
alunya, Conca de Barberà, Costers del Segre, Empordà, Montsant, Penedès, 
Pla de Bages, Priorat, Ribera del Duero, Rioja, Tarragona, Terra Alta, Tierra 
de Castilla, and Toro) and ten production years (1996, 2002, 2006, 2007, 
2009, 2010, 2011, 2012, 2013, and 2014), and made from various grape 
varieties, were analysed. Prior to FIA–HRMS analysis, samples were 
filtered with a 0.22-µm nylon filter (Scharlab, Sentmenat, Spain). 

2.3.2. Paprika 
One hundred eleven paprika samples, including different 

geographical origins —72 with La Vera PDO (Spain), 24 with Murcia 
PDO (Spain), and 15 from the Czech Republic (their specific region was 
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not labelled)— and types (hot, bittersweet, and sweet), were directly 
purchased from their production companies or bought in Spanish or 
Czech commercial supermarkets. 

Regarding the sample treatment, a previously developed procedure 
was followed (Cetó et al., 2018). Briefly, 0.3 g of the sample were sub-
jected to solid–liquid extraction (SLE) with 3 mL of water:acetonitrile 
(20:80, v/v) mix. After stirring in a Vortex (Stuart, Stone, United 
Kingdom) for 1 min, sonicating (5510 Branson ultrasonic bath, Hamp-
ton, NH, USA) for 15 min, and centrifuging (ROTANTA 460 RS Centri-
fuge, Hettich, Germany) for 30 min at 4500 rpm, the resulting 
supernatant extract was filtered, using a 0.22-µm nylon filter and kept at 
4 ◦C in a glass injection vial until its analysis. 

2.3.3. Olive and other vegetable oil 
In this study, a total of 85 vegetable oil samples —46 olive oils, 15 

sunflower oils, 6 corn oils, 6 soy oils, and 12 oils produced from mixtures 
of seeds (6 sunflower/corn oils and 6 sunflower/soy oils)— from various 
trademarks and purchased from Barcelona markets were analysed. 
Moreover, among the olive oil sample set, 12 were refined olive oils 
(OO), 4 virgin olive oils (VOO), and 30 extra-virgin olive oils (EVOO). 

The employed sample treatment was based on a previously described 
method (Gosetti, Bolfi, Manfredi, Calabrese, & Marengo, 2015) with 
slight modifications. First, liquid–liquid extraction with low- 
temperature partition (LLE-LTP), using ethanol:water (70:30, v/v) as 
the extracting solvent, was carried out. Thus, in a 15 mL-polytetra-
fluoroethylene (PTFE) tube (Serviquimia, Barcelona, Spain), 2.00 g of 
oil sample were extracted by stirring for 2 min in a Vortex in 2 mL of the 
extracting solvent. After centrifugation for 5 min at 3500 rpm, the 
mixture was frozen for 24 h at − 18 ◦C. Then, the resulting supernatant 
extract was transferred into another PTFE tube for a defatting step with 
2 mL of hexane, also by stirring in a Vortex followed by centrifugation 
for 5 min at 3500 rpm. Finally, the aqueous ethanolic sample extract was 
filtered with a 0.22-µm nylon filter and stored at − 18 ◦C in a 2-mL glass 
injection vial until FIA–HRMS analysis. 

2.4. Data analysis 

2.4.1. Data matrix construction 
Raw data results were submitted to exact mass detection, chro-

matogram builder, isotopic peak grouper, and join aligner, using the 
mzMine 2.53 software (Pluskal, Castillo, Villar-Briones, & Orešič, 2010). 
First, the exact mass detection step generated mass lists for each scan 
acquired in a sample, considering a noise level of 1.0 × 105. Then, the 
chromatogram builder allowed the joining of exact mass signals found in 
contiguous scans in a sample, establishing a peak time range of 0.05 – 
0.40 min, an m/z tolerance of 5 ppm, and an intensity threshold of 1.0 ×
105. After this, isotopes were removed, considering that the most 
representative isotope was the most intense and setting an m/z tolerance 
of 5 ppm. Finally, the join aligner allowed matching of exact masses 
detected across samples, establishing a mass tolerance of 5 ppm, a peak 
time tolerance of 0.35 min (the whole time range under evaluation), 
95% of weight for m/z, and a 0% of weight for time. At the end of this 
workflow, a data matrix was constructed containing FIA–HRMS finger-
prints of the studied samples: samples × variables, where variables 
consisted of ion signal intensity values as a function of m/z. Moreover, to 
reduce the matrix dimensions, molecular features were filtered and only 
were selected those with a relative standard deviation (RSD, %) lower 
than 20% in the signals of the QC samples injected during the sample 
sequence. 

2.4.2. Chemometric analysis 
The obtained FIA–HRMS fingerprints were then subjected to PCA, 

PLS-DA, and SIMCA, which were performed using Solo 8.6 chemo-
metrics software from Eigenvector Research (Manson, WA, USA). De-
tails of the theoretical background of these chemometric methods are 
addressed elsewhere (Massart et al., 1997; Wold, 1976). 

PCA relies on the concentration of the dataset’s relevant information, 
originally arranged in the X-matrix containing sample FIA–HRMS fin-
gerprints, into a reduced number of principal components (PCs). In this 
study, it allowed an exploratory chemometric analysis to evaluate QC 
sample behaviour (i.e., QC samples forming a compact group in the PCA 
scores plot indicates the absence of systematic errors during the sample 
injection and validates the chemometric results) and sample trends and 
groups. 

Instead, PLS-DA, which uses the same X-matrix as PCA, assigns each 
given sample into a numerically encoded class in the Y-matrix, 
depending on predefined sample characteristics (e.g., geographical or 
botanical origin). In this case, a reduced number of latent variables (LVs) 
contain the most relevant information that links both matrices. The most 
appropriate number of LVs to build the PLS-DA models was established 
at the first significant minimum point of the Venetian blinds cross- 
validation (CV) error. Besides, considering the complexity of the stud-
ied issues, where various sample classes were assessed, the hierarchical 
model builder (HMB) was used, segregating the complete classification 
in a consecutive combination of two-input class PLS-DA models (clas-
sification decision tree). To evaluate and validate the predictive ability 
of the whole classificatory chemometric model, 60% of samples were 
randomly stratified as the calibration set and the remaining 40% as the 
external validation set. In this line, the performance of the developed 
classificatory method was checked through each class sensitivity 
(capability to detect true positives, i.e., samples belonging to a given 
class that have been correctly assigned) and specificity (capability to 
detect true negatives, i.e., samples that do not belong to a given class 
correctly assigned as negative), as well as the overall accuracy of the 
model (well-classified and misclassified sample ratio). 

Finally, SIMCA is based on the definition of a target class by a PCs 
subspace. In this study, one-class SIMCA was applied to sample 
authentication, and therefore, each SIMCA model was composed of a 
unique PCA submodel corresponding to a specific sample class. Then, 
since it consists of a distance-based method of class modelling, when a 
new sample is projected into the model, its class membership is assessed 
according to its distance from the PCA submodel —calculated from the 
reduced Q residuals and Hotelling T2 values (normalised to 95% confi-

dence limit) and combined using di =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
T2

red,i

)2
+ Q2

red,i

√

, being i the 

index of each given unknown sample to be classified— and a previously 
established decision threshold. The latter was optimised in each case, 
maximising the performance of SIMCA in the calibration step by 
reaching the minimum error. Moreover, same external validation as in 
the PLS-DA study was carried out. 

It should be pointed out that for each sample set, four different X- 
matrices were used as chemical descriptors in the PLS-DA and SIMCA 
models: FIA–HRMS fingerprints obtained with negative ionisation, with 
positive ionisation, and using a low-level (LLDF) or a mid-level data 
fusion (MLDF) strategy (Borràs et al., 2015). The LLDF X-matrix 
concatenated both negative and positive ionisation FIA–HRMS data. 
Instead, the MLDF only contained ten variables per each PLS-DA model 
involved in the classification decision tree. These variables corre-
sponded to those presenting the highest selectivity ratio among the 50 
with the highest variable importance in projection (VIP) values obtained 
in the LLDF loadings of each PLS-DA model involved in the classifica-
tion. In all cases, data was autoscaled to provide the same weight to each 
variable by suppressing differences in their magnitude and amplitude 
scales. 

3. Results and discussion 

3.1. FIA–HRMS fingerprint characterisation 

Before the chemometric analysis, the obtained FIA–HRMS finger-
prints were visually inspected, and some of the most intense ions were 
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putatively identified to assess sample matrix characterisation, taking 
advantage of high-resolution mass spectrometry (HRMS) capabilities. In 
this line, Table S1 summarises the putative identification of some of the 
most characteristic ions found in the food matrices under study, 
following Schymanski et al. HRMS identification levels (Schymanski 
et al., 2014). Public databases, containing MS2 data —mzCloud (High-
Chem LLC, Bratislava, Slovakia), Metlin (Smith et al., 2005), and The 
Human Metabolome Database (Wishart et al., 2018)— and polyphenolic 
content in food, such as Phenol-Explorer (Rothwell et al., 2013), were 
consulted. Criteria followed in this process were established as follows: 
5 ppm of exact mass tolerance, >90% of isotopic pattern fit, and MS2 

data agreement. 
The negative and positive ionisation FIA–HRMS spectra of a Cata-

lunya, La Rioja, and Castilla y León red wine sample are shown in Fig. S1. 
A priori, no noticeable interregional differences could be highlighted 
since the most intense ions were commonly found in all samples without 

following a characteristic pattern due to geographical origin. Among the 
putatively identified compounds, negative ionisation FIA–HRMS fin-
gerprints contained certain molecules known to be found in wine, such 
as several organic acids (being tartaric acid the base peak) (Ivanova- 
Petropulos et al., 2018), hydroxybenzoic (e.g., gallic acid) and hydrox-
ycinnamic acids (e.g., caffeic and caffeoyl tartaric acid) (Gutiérrez- 
Escobar, Aliaño-González, & Cantos-Villar, 2021), and monosaccharide 
and sugar-related compounds. Instead, amino acids and choline and 
furan compounds were found in positive ionisation spectra. Several 
anthocyanins, which influence the wine colour (Garrido & Borges, 
2013), were also found. Moreover, some coumarins, released from wood 
into the wine during the maturation stage (Hroboňová & Sádecká, 
2020), were detected in their [M + Na]+ form. 

Regarding paprika samples, as an example, Fig. 1 depicts typical 
negative and positive ionisation FIA–HRMS fingerprints for hot La Vera, 
Murcia, and the Czech Republic samples. At first glance, La Vera samples 

Fig. 1. Negative and positive ionisation FIA–HRMS fingerprints obtained for a La Vera, Murcia, and the Czech Republic paprika sample.  
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presented distinctive fingerprints in the negative mode comparing to the 
remaining samples. For instance, the m/z 279.2329, corresponding to 
the deprotonated molecule of linoleic acid, one of the major fatty acids 
found in Jaranda and Jariza Capsicum annuum L. varieties (Pérez-Gálvez, 
Garrido-Fernández, Mínguez-Mosquera, Lozano-Ruiz, & Montero-de- 
Espinosa, 1999) that are used in La Vera paprika production, was 
particularly intense in their negative ionisation spectra. In addition, 
these paprika fingerprints, reproducible among samples belonging to the 
same geographical origin, contained common compounds such as 
organic acids or certain mono- and polyunsaturated fatty acids. La Vera 
samples particularity was also highlighted in positive ionisation 
FIA–HRMS fingerprints that included many signals in the m/z range 
from 100 to 800. However, in this case, spectra were slightly altered in 
Murcia and the Czech Republic samples according to the paprika type, 
while significantly modified in La Vera ones. In this line, compounds 
such as capsaicinoids may be related to these differences (Arrizabalaga- 
Larrañaga et al., 2021). Moreover, several amino acids and other com-
pounds, including choline, 6-(hydroxymethyl)pyridin-3-ol, tropine, and 
4-hydroxy-1-methyl-2-pyrrolidine carboxylic acid, were also detected in 
the positive ionisation FIA–HRMS spectra as reported in Table S1. 

Finally, both negative and positive ionisation olive oil FIA–HRMS 
fingerprints were noticeably different from the remaining vegetable oil 

ones. Instead, as shown in Fig. S2, more similarities were found in olive 
oil spectra depending on their quality grade. Besides, while VOO and 
EVOO showed comparable fingerprints among samples belonging to the 
same group, more variability was observed in OO samples, which may 
be due to the different percentages of VOO added to them for taste 
improvement. As shown in Table S1, among other compounds, several 
polyphenolic compounds well-known to be found in olive oil were 
identified in the analysed ethanolic sample extract. In this line, tyrosols 
predominated the negative ionisation spectra, although other poly-
phenols such as luteolin or dihydro-p-coumaric acid were also detected 
(Farré, Picó, & Barceló, 2019). In the positive ionisation mode, tyrosols 
were detected, forming an adduct with Na. 

3.2. Red wine geographical origin classification and authentication 

In this study, FIA–HRMS fingerprints were proposed as chemical 
markers to address the geographical origin classification of three 
Spanish red wines: Catalunya, La Rioja, and Castilla y León. Thus, in a 
first attempt to evaluate their discriminating ability, an exploratory PCA 
was performed to both negative and positive ionisation data —104 ×
440 and 104 × 972 (samples × variables) dimension data matrices, 
respectively—, aiming to observe QC sample behaviour as well as 

Fig. 2. PLS-DA scores plot of LV1 vs. LV2 
obtained for: (A) the red wine samples ana-
lysed according to their geographical origin, 
using positive ionisation FIA–HRMS finger-
prints; (B) the paprika samples analysed ac-
cording to their geographical origin, using 
negative ionisation FIA–HRMS fingerprints; 
(C) the olive and vegetable oil samples ana-
lysed according to their botanical origin, 
using negative ionisation FIA–HRMS finger-
prints; and (D) the olive oil samples analysed 
according to their quality grade, using 
negative ionisation FIA–HRMS fingerprints. 
(For interpretation of the references to colour 
in this figure legend, the reader is referred to 
the web version of this article.)   
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sample groups and trends. Similar results were found in both cases. For 
instance, Fig. S3 shows the PCA scatter plot of scores on the PC2-PC1 
(explaining 28.49% of the variance) obtained using positive ionisation 
data. While QC samples were jointly located in the centre of the plot, 
indicating the lack of systematic errors, Catalunya samples were clearly 
distinguished at the bottom of the plot displaying negative PC2 values. 
Instead, La Rioja and Castilla y León samples shared more similarities 
since there was no evident discrimination between them (Fig. S3A). In 
this line, the representation of samples in the PCA scores plot according 
to non-Tempranillo and Tempranillo-based red wines (all La Rioja and 
most Castilla y León samples were mainly produced from Tempranillo 
grapes, while most Catalunya samples did not) allowed to prove its in-
fluence on sample distribution. A trend in the PC2 from non-Tempranillo, 
displaying negative values, to Tempranillo-based red wines, displaying 
positive values, was observed (Fig. S3B). 

After the exploratory chemometric analysis, QC samples were 
excluded from X-data matrices (resulting in 94 × 440 and 94 × 972 data 
matrices for negative and positive ionisation, respectively), which were 
then subjected to PLS-DA using the corresponding Y-data matrices, 
indicating sample geographical origin. As expected, the obtained PLS- 
DA scores plots improved non-supervised chemometric results for both 
negative and positive ionisation data. For instance, Fig. 2A depicts the 
scores plot of LV1 vs. LV2 obtained when using positive ionisation 
FIA–HRMS data. In this case, six LVs explaining the 87.98% Y-variance 
were required to build the PLS-DA model, allowing a good sample dis-
tribution according to their geographical origin. 

In view of these results, a classification decision tree consisting of 
two consecutive rule nodes —1) Catalunya vs. Others and 2) La Rioja vs. 
Castilla y León— was proposed to address red wine geographical origin 
classification. As previously mentioned in Section 2.4.2, negative ion-
isation, positive ionisation, LLDF, and MLDF FIA–HRMS data were 
tested. In this line, the data matrix dimensions and the number of LVs 
used in each PLS-DA calibration model involved, as well as the resulting 
external validation classification parameters (class sensitivity, class 
specificity, and global accuracy), can be found in Table 1. In this context, 
LLDF FIA–HRMS fingerprints provided the best external validation 
classificatory results with 86.8% accuracy. Contrarily, MLDF data, 
which contained much less sample information, only reached a 60.5% 
classification rate. 

Instead, considering the suitability of class-modelling chemometric 
methods in the authentication field (Rodionova, Titova, & Pomerantsev, 
2016), SIMCA was proposed to test the capacity of FIA–HRMS to 
generate a characteristic fingerprint for each red wine class. Table 2 
summarises the data matrix dimensions, the number of PCs established 
in each SIMCA model, and the assignation performance after the 
external validation. Satisfactory overall accuracy results were obtained 
for the four data matrices used (above 75.4%), although these values 
were generally slightly below those obtained in the classificatory study 
with PLS-DA. In fact, only in MLDF, SIMCA provided a better accuracy 
result than the obtained with the PLS-DA classification decision tree, 
mainly because of a substantial increase in La Rioja sensitivity and 
Castilla y León specificity. 

Table 1 
Calibration model parameters —data matrix dimensions (samples × variables) and number of LVs— for each of the PLS-DA models built in the classificatory studies 
and corresponding obtained external validation classification results —class sensitivity (%), class specificity (%), and global accuracy (%)—.  

RED WINE GEOGRAPHICAL ORIGIN  

Calibration: model parameters External validation: classification performance 

Catalunya vs. Others La Rioja vs. Castilla y León Catalunya La Rioja Castilla y León Accuracy 

Data matrix LVs Data matrix LVs Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 
FIA− HRMS (-) 56 × 440 2 26 × 440 4 80.0 94.4 70.0 89.3 87.5 90.0 78.9 
FIA− HRMS (+) 56 × 972 5 26 × 972 1 94.4 100.0 90.0 92.9 62.5 100.0 84.2 
LLDF 56 × 1412 3 26 × 1412 1 90.0 100.0 100.0 89.3 62.5 100.0 86.8 
MLDF 56 × 20 2 26 × 20 3 75.0 100.0 20.0 82.1 75.0 76.7 60.5 

PAPRIKA GEOGRAPHICAL ORIGIN  

Calibration: model parameters External validation: classification performance 

La Vera vs. Others Murcia vs. The Czech 
Republic 

La Vera Murcia The Czech Republic Accuracy 

Data matrix LVs Data matrix LVs Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 
FIA− HRMS (-) 66 × 553 1 23 × 553 2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
FIA− HRMS (+) 66 × 601 2 23 × 601 2 96.6 100.0 100.0 100.0 83.3 100.0 95.6 
LLDF 66 × 1154 1 23 × 1154 2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
MLDF 66 × 20 1 23 × 20 1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

OLIVE OIL 

Botanical origin  

Calibration: model parameters External validation: classification performance 

Olive oil vs. Others Olive Oil Accuracy 

Data matrix LVs Sensitivity Specificity 
FIA− HRMS (-) 53 × 368 1 100.0 100.0 100.0 
FIA− HRMS (+) 53 × 739 1 100.0 100.0 100.0 
LLDF 53 × 1107 1 100.0 100.0 100.0 
MLDF 53 × 10 1 94.4 100.0 96.9 

Quality  

Calibration: model parameters External validation: classification performance 

EVOO and VOO vs. OO EVOO and VOO OO Accuracy 

Data matrix LVs Sensitivity Specificity Sensitivity Specificity 
FIA− HRMS (-) 27 × 368 1 92.9 100.0 100.0 100.0 94.7 
FIA− HRMS (+) 27 × 739 3 85.7 100.0 100.0 92.9 89.5 
LLDF 27 × 1107 1 92.9 100.0 100.0 92.9 94.7 
MLDF 27 × 10 2 92.9 100.0 80.0 92.9 89.5  
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3.3. Paprika geographical origin classification and authentication 

The geographical origin authentication of paprika was also assessed 
through FIA–HRMS fingerprinting. In this line, three different European 
paprika samples —La Vera, Murcia, and the Czech Republic— were 
analysed in negative and positive ESI modes, providing 123 × 553 and 
123 × 601 (samples × variables) dimension data matrices, respectively. 
The obtained plots of scores of PC1 vs. PC2 are presented in Fig. S4. At 
first glance, QC samples appeared compactly in the centre of the plot, 
guaranteeing the validity of the obtained chemometric results. As ex-
pected after visual inspection of paprika FIA–HRMS fingerprints in 
Section 3.1, La Vera samples were manifestly differentiated from the 
other samples, standing on the right side of both PCA plots. Moreover, in 
the negative ionisation data PCA scores plot (Fig. S4A), Murcia samples 
were separated according to their type (hot and sweet), being hot 
samples nearly located to the Czech Republic ones. Instead, Murcia and 
Czech samples slightly overlapped in the positive ionisation data PCA 

scores plot (Fig. S4B), independently of their type. 
After QC exclusion, PLS-DA was applied to both matrices. Excellent 

geographical origin sample classification was achieved either in nega-
tive or positive ionisation modes. For example, the negative ionisation 
FIA–HRMS data scores plot of LV1 vs. LV2 (three LVs, describing 90.32% 
of Y-variance, were used to build the PLS-DA model) is depicted in 
Fig. 2B. To test and validate the classification ability of the acquired 
FIA–HRMS fingerprints, the following nodes were proposed to build a 
classification decision tree: 1) La Vera vs. Others and 2) Murcia vs. the 
Czech Republic. In this line, the predictive capability of the built PLS-DA 
models was excellent, as shown in Table 1. The lowest classification rate 
was 95.6%, obtained with the positive ionisation data matrix, while 
negative ionisation and data fusion matrices allowed the complete cor-
rect classification of the test set samples. Moreover, as shown in Table 2, 
similar results were obtained when subjecting FIA–HRMS fingerprints to 
SIMCA, proving the ability of the proposed model to authenticate the 
studied samples. Besides, in both PLS-DA and SIMCA studies, MLDF 

Table 2 
Calibration model parameters —data matrix dimensions (samples × variables) and number of PCs— for each of the SIMCA models built in the class assignation studies 
and corresponding obtained external validation assignation results —class sensitivity (%), class specificity (%), and global accuracy (%)—.  

RED WINE GEOGRAPHICAL ORIGIN  

Calibration: model parameters External validation: assignation performance 

Data 
matrix 

PCs Catalunya La Rioja Castilla y León Accuracy 

Catalunya La 
Rioja 

Castilla y León Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

FIA− HRMS 
(-) 

56 × 440 6 3 4 65.0 72.2 70.0 89.3 25.0 86.7 75.4 

FIA− HRMS 
(+) 

56 × 972 4 3 3 75.0 61.1 80.0 92.9 50.0 80.0 77.2 

LLDF 56 ×
1412 

6 3 4 55.0 72.2 70.0 96.4 25.0 90.0 76.3 

MLDF 56 × 20 2 4 2 80.0 88.9 50.0 89.3 75.0 93.3 84.2 

PAPRIKA GEOGRAPHICAL ORIGIN  

Calibration: model parameters External validation: assignation performance 

Data 
matrix 

PCs La Vera Murcia The Czech Republic Accuracy 

La Vera Murcia The Czech 
Republic 

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

FIA− HRMS 
(-) 

66 × 553 1 2 2 96.6 100.0 100.0 100.0 100.0 100.0 99.3 

FIA− HRMS 
(+) 

66 × 601 1 2 1 93.1 100.0 70.0 100.0 66.7 100.0 94.8 

LLDF 66 ×
1154 

1 2 1 96.6 100.0 80.0 100.0 83.3 100.0 97.0 

MLDF 66 × 20 3 3 2 89.7 100.0 80.0 100.0 50.0 100.0 94.1 

OLIVE OIL 

Botanical origin  

Calibration: model parameters External validation: assignation performance 

Data matrix PCs Olive Oil Accuracy 

Olive Oil Sensitivity Specificity 
FIA− HRMS 

(-) 
53 × 368 2 83.3 100.0 90.6 

FIA− HRMS 
(+) 

53 × 739 4 77.8 100.0 87.5 

LLDF 53 × 1107 1 94.4 100.0 96.9 
MLDF 53 × 10 1 94.4 100.0 96.9 

Quality  

Calibration: model parameters External validation: assignation performance 

Data matrix PCs EVOO and VOO Accuracy 

EVOO and VOO Sensitivity Specificity 
FIA− HRMS 

(-) 
27 × 368 3 85.7 100.0 89.5 

FIA− HRMS 
(+) 

27 × 739 3 78.6 100.0 84.2 

LLDF 27 × 1107 3 78.6 100.0 84.2 
MLDF 27 × 10 1 85.7 100.0 89.5  
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provided excellent results as LLDF, indicating that a profiling approach 
focusing on the adequate specific markers could achieve similar results 
to a fingerprinting approach, which is in agreement with previous 
studies (Barbosa, Campmajó, Saurina, Puignou, & Núñez, 2020). 

3.4. Olive oil botanical origin and quality classification and 
authentication 

Finally, several vegetable oils described in Section 2.3.3, including 
olive oil, were analysed through the FIA–HRMS fingerprinting method, 
aiming at both botanical origin and quality olive oil authenticity. Firstly, 
94 × 368 and 94 × 739 (samples × variables) matrices corresponding to 
negative and positive ionisation data, respectively, were subjected to 
PCA. After checking QC sample correct behaviour, excellent discrimi-
nation of olive oil in front of the other vegetable oil samples was 
observed in both cases. Besides, a trend among olive oil samples ac-
cording to their quality category was also found. For instance, Fig. S5 
depicts the PCA scores plot of PC1 vs. PC2 (describing 57.24% of the 
variance) obtained with the negative ionisation FIA–HRMS data matrix. 
In this case, olive oil samples were isolated from the other samples on 
the right side of the plot, displaying positive PC1 values. Moreover, PC1 
also allowed a visual separation of EVOO and OO samples, while most of 
the VOO samples were jointly located to EVOO. 

After the exploratory analysis, supervised classificatory PLS-DA was 
performed to address olive oil authentication. On the one hand, focusing 
on the botanical origin authentication issue, negative and positive ion-
isation data matrices were subjected to PLS-DA, providing similar re-
sults. For instance, Fig. 2C contains the PLS-DA scatter plot of scores on 
the LV2-LV1 —corresponding to the three LVs built model— obtained 
with the negative ionisation FIA–HRMS data matrix, where olive oil 
samples were discriminated on the left side of the plot, displaying 
negative LV1 values. Besides, among the other vegetable oil samples, 
located on the right side of the plot, soy oil and its mix with sunflower oil 
samples displayed positive LV2 values, whereas the remaining samples 
presented negative LV2 values. 

Since this study aimed to classify and authenticate olive oil in front of 
other vegetable oils, independently of their botanical origin, a two-input 
class PLS-DA single step —Olive oil vs. Others— was proposed. Table 1 
shows the most relevant parameters of the PLS-DA calibration models 
and the classification performance after the external validation. As a 
result, except for the MLDF fingerprints that allowed a 96.9% classifi-
cation accuracy, the constructed chemometric models provided the 
correct classification of all the test samples. Moreover, as shown in 
Table 2, excellent results were obtained when using SIMCA, particularly 
for LLDF and MLDF FIA–HRMS fingerprints, which allowed an overall 
accuracy result of 96.9%. 

Therefore, considering the great discrimination ability achieved with 
the MLDF FIA–HRMS fingerprints, which suggested the suitability of a 
profiling strategy to address this food authentication issue, the m/z 
signals that formed the matrix were studied, and some of them were 
putatively identified. In this line, the m/z 123.0451, 137.0243, and 
137.0606, found in negative ionisation FIA–HRMS spectra, were 
assigned as the deprotonated molecule of 4-methylcatechol, hydrox-
ybenzoic acid, and tyrosol, respectively; while in the positive ionisation, 
the m/z 415.1360 was identified as the [M + Na]+ form of methyl 
oleuropein aglycone. Instead, the remaining discriminating ions (m/z 
263.0534, 277.0329, 281.0644, 309.0595, and 735.4107 in the negative 
ionisation fingerprints, and 805.5800 in the positive ionisation ones) 
could not be identified. The fact that the identified compounds corre-
sponded to substances well-known for their presence in olive oil proved 
the correct variable selection strategy, detailed in Section 2.4.2, through 
VIP and selectivity ratio values (see Fig. S6). Moreover, when comparing 
the corresponding PCA scores plot with its loadings plot (Fig. S7), the 
selected ten variables were found on the right side of the plot, showing a 
direct correlation with olive oil samples. 

On the other hand, olive oil quality authentication was also 

evaluated by subjecting the acquired FIA–HRMS data —46 × 368 and 
46 × 739 (samples × variables), negative and positive ionisation data 
matrices— to PLS-DA. In this context, Fig. 2D represents the scatter plot 
of scores of LV1 vs. LV2, describing 56.11% of Y-variance, attained using 
negative ionisation fingerprints. Similarly to the previous exploratory 
analysis results, good discrimination along the LV1 between EVOO and 
OO samples was observed. Concerning VOO samples, they seemed to be 
nearly positioned to EVOO ones. Thus, considering the EVOO and VOO 
similarities found in both exploratory PCA and supervised PLS-DA and 
the scarcity of VOO samples in the sample set, they were conjointly 
considered in the following classification and authentication study. 
Again, as performed in the botanical origin classification, a two-input 
class PLS-DA model, consisting of EVOO and VOO vs. OO, was pro-
posed. As shown in Table 1, while positive ionisation and MLDF fin-
gerprints reached an 89.5% classification accuracy, the corresponding 
negative ionisation and LLDF ones achieved a 94.7%. Regarding the 
SIMCA study, as shown in Table 2, negative ionisation and LLDF 
FIA–HRMS fingerprints provided again the best results, reaching an 
accuracy of 89.5%. 

4. Conclusions 

The three representative cases under study (red wine, paprika, and 
olive oil) differed in the complexity of the samples as follows: (i) red 
wines presented similar FIA–HRMS fingerprints without following a 
clear characteristic pattern due to geographical origin and lacking spe-
cific markers for the different classes. Besides, the interregional diversity 
due to varietal, climatic and geographical features made sample classi-
fication a complex issue. (ii) Instead, for paprika samples, distinctive 
FIA–HRMS fingerprints were observed according to sample geograph-
ical origin. These differences could be related to the manufacturing 
processes and peculiarities of each origin. (iii) Finally, in the case of oils, 
a similar situation was faced since compositional FIA–HRMS finger-
prints of olive oils differed considerably from those of other vegetable 
sources (specific biomarkers could be encountered). 

Therefore, FIA–HRMS fingerprinting, combined with chemometrics, 
has proved to be a suitable high-throughput analytical approach to 
address the food classification and authentication issues under study 
since remarkable classification accuracies were obtained after external 
validation. Moreover, HRMS conferred great selectivity and molecular 
coverage, leading to rich fingerprints, resulting in satisfactory results 
when using either negative ionisation, positive ionisation, or LLDF data. 
Furthermore, the successful application of the MLDF strategy to some of 
the studied food authentication cases also suggested the eligibility of 
targeted profiling approaches, focusing on specific compounds, to assess 
them. 
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