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ABSTRACT 

During propofol-remifentanil induced general anesthesia, burst suppression (BS) EEG patterns 

commonly occur in around 50% of the patients, with an increasing incidence with age. However, 

this phenomenon has been reported to be an indicator of too high anesthetic doses and produce 

adverse outcomes such as postoperative delirium, cognitive deficits, and it has even reported to be 

a postoperative mortality predictor. 

In light of the above, the present study aims to address the lack of predictive techniques for BS 

occurrence anticipation by developing Machine Learning predictive models such as SVM, KNN, 

RF, and XGB. Therefore, a large dataset including different monitored parameters during propofol-

remifentanil induced general anesthesia from many patients has been used for both training and 

testing the models, as well as for final validation of the selected model. 

Obtained results present an acceptable overall performance of the SVM model with a ROC-AUC 

score of 0.829, and a feature importance analysis shows a high influence of age and BIS value for 

the final prediction. Nonetheless, 25% of the predictions have been reported to have accuracies 

under 0.6, questioning the reliability of the model and making it useful as an orientative aiding tool 

for anesthesiologists, but not the ultimate decisive factor. Hence, further studies involving more 

variability on the data, validation techniques and confidence intervals for each process, and an 

exhaustive feature selection analysis, along with the repetition of the study with different ML 

algorithms should be performed to improve the predictive ability of the current model and achieve 

better performances. 

Keywords: General anesthesia, Anesthesia monitoring, Burst Suppression, Predictive model, 

Machine Learning 
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1. INTRODUCTION 

The number of annual surgical procedures performed under general anesthesia in Europe is 

estimated at approximately 29 million interventions [1]. In addition, the current aging of the 

population due to the increase in life expectancy worldwide, predicts an increase in the number of 

surgeries under general anesthesia in the coming decades [2]. 

The main purpose of general anesthesia is to relieve the sensation of pain during a surgical 

procedure; hence, through the administration of anesthetic drugs, a reversible state of 

unconsciousness, amnesia, analgesia and akinesia is induced [3]. However, this condition also 

involves significant changes in the physiologic balance of the body including cardiovascular, 

respiratory, renal, hepatic and endocrine systems, caused by anesthetic drugs [4]. Therefore, it is 

of vital importance to perform a complete monitoring of the patient in order to artificially maintain 

the optimal physiological conditions during general anesthesia. 

One of the effects related to the administration of anesthetic drugs is the phenomenon of EEG burst 

suppression (BS), which is mainly caused by a too high dose of drugs [5], and according to some 

authors could lead to adverse outcomes [6][7]. These possible unfavorable effects prove the need 

of developing predictive models that can allow anesthesiologists to anticipate the phenomenon of 

BS, thus reducing the potential risks they may involve. 

1.1. DESCRIPTION OF THE PROJECT 

The clinical need of a system that could predict the occurrence of BS to avoid its appearance and 

the potential side effects associated was the starting point to develop the present project, which 

aims to generate an individualized predictive model capable of continuously indicating the likelihood 

of BS occurrence in the following two minutes. This way, during an intervention under general 

anesthesia, each second the model will display an index showing the probability of BS two minutes 

ahead of time, according to currently monitored physiological signs as well as continuous drug 

input. 

The project has been carried out with the SPEC-M (Systems Pharmacology Effect Control and 

Modeling) research group in the Department of Anesthesiology at Hospital Clínic de Barcelona. 

The data used for the study belongs to the SPEC-M group and it has been collected since 2013 in 

the operating room number 4 of the CMA Unit of the Hospital Clínic. This operating room carries 

out gynecological procedures, and data is assembled from patients undergoing a general 

anesthesia surgery. 

At present, the database consists of more than 1500 patients, with a large majority of women. 

However, in order to further increase its volume of data, at the beginning of this project a two-month 

stay was carried out in the aforementioned operating room to continue with the data collection. 

1.2. OBJECTIVES 

As already stated, the present study aims to conceive a prediction system for BS during surgeries 

undergoing general anesthesia. Hence, the main goal consists on building a model able to predict, 
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each second during an intervention, the probability of BS occurrence within two minutes. In order 

to accomplish this general goal, different tasks and more specific objectives are required, which 

are described below. 

- Regarding data acquisition 

→ Data acquisition from patients during general anesthesia surgeries 

A short stay in the CMA operating room will be carried out in order to increase the 

amount of available data of the SPEC-M database. Another objective is to get 

familiar with patient management as well as with the meaning of the kind of data 

collected that will be used in the development of the project. The duration of the 

stay allowed to increase the database up to 50 more patients, approximately. 

→ Use of the intraoperative Data Acquisition Set 

The mentioned data acquisition implies the use of the intraoperative Data 

Acquisition Set, which allows to collect the monitored physiological parameters in 

real time during procedures under general anesthesia. During the automatic 

collection of data, a manual register of relevant events is performed. 

- Regarding research in Biomedical Engineering field 

→ Bibliographic research 

Understand the physiological causes and effects of BS, as well as the current 

studies and knowledge on this topic, including studies on BS prediction. 

In addition, research on the current State of the Art in patient monitoring during 

procedures under general anesthesia will also be carried out. 

→ Review and improve current skills on data analysis, statistics and Machine 

Learning (ML) predictive models 

Gather information on the basis of ML models, along with the statistics, data 

analysis and information extraction behind them. This does not only imply 

knowledge acquisition on ML, but also on programming and its use in the present 

study.  

- Regarding data management and the development of a BS predictive model 

→ Elaborate a program for data analysis of the current database 

From an already existing database belonging to the SPEC-M group, all the data 

must be analysed as a means to determine which parameters must be taken into 

account for BS prediction. 
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Moreover, data must be processed in order to be properly prepared for further 

analysis, implying a checking of the available data as well as to perform en errors 

detection. 

→ Elaborate a program for BS prediction 

Develop different ML models so as to find the most accurate one, understanding 

as such the one that has a better performance. 

Finally, this model must be applied to different patients with the aim of assessing 

which would be its functioning and behavior if tested in real patients. 

1.3. METHODOLOGY AND OUTLINE 

The duration of the present study is five months, from September 2021 to January 2022. This time 

period includes the execution of the entire project, from the development of the first general idea of 

the project, the exhaustive research on the topic and the two-month stay at the operating room for 

data acquisition, through the execution of the program for BS prediction with its validation, and 

ending with the drafting of the final project report. 

Once the need for a BS prediction system was known, the present study was structured and 

different tasks were detailed in order to accomplish the previously mentioned objectives. These 

tasks were grouped and structured in six stages, shown in Figure 1 and described below. 

 
Figure 1. Methogology flowchart 

First of all, the study started with the two-month stay at the CMA operating room for data acquisition. 

During this first stage, an initial bibliographical research was done, not only into anesthesia and 

BS, but also in ML basics and algorithms and a market analysis. This review has provided some 

basic knowledge on the current status on the subject, essential before continuing with the study. 

Secondly, the processing of the existing database was performed by developing a Python script 

using the Spyder environment for programming. This program has been designed so it can collect 

all the data from the database and select relevant parameters and information and structure them 

in a suitable way for further usages, while eliminating unrelated data. 

Next, another Python script was elaborated in order to build a BS predictive model. This program 

allows to develop different ML models, so an exhaustive comparation and analysis has been done 

with the aim of selecting the model presenting a better performance and accuracy. The chosen 

model has been later tested on a large number of patients as to simulate its behavior when applied 

in real-time. 

Finally, the obtained results have been evaluated and discussed, and the final report of the study 
has been carefully written and detailed. 
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1.4. SCOPE AND SPAN 

According to the previously mentioned objectives, and the tasks detailed in the previous section, 

the present study will include an extensive research on the State of the Art of studies regarding BS 

prediction on patients undergoing general anesthesia. If any, the current BS predictive models will 

be evaluated in order to know their usage conditions, characteristics and limitations. 

After the market analysis, the study will contain different project management methods as to ensure 

the maximum efficiency and optimal conditions during the execution of the entire project. 

Concretely, an execution schedule will allow to define the different tasks to be carried out, 

specifying the time required for each of them and the order in which they must be performed, as 

well as their cost. Moreover, a GANTT diagram will be built in order to display the temporary 

planning of the project in a visual way, showing the different activities to be performed, 

simultaneously or not, throughout the project, along with the optimal deadlines for each task. 

Once the background research is done and the current status on the topic is analyzed, the tasks 

involving the final goal of this project will be able to start. This crucial part of the project will include 

both the data processing and the building of several ML models for BS prediction, together with 

full-scale evaluation of each of the obtained models, allowing to make an evidence-based selection 

of the most favorable one. To end with, the resulting BS predictive model will be tested and 

valideted with an extense amount of patients, and the development and operation of the project 

itself will be evaluated. This last assessment will enable to compare the resources and deadlines 

initially established with those finally used; thus, it will allow to estimate the success of the project 

and whether it has been carried out in accordance with the expected. 

1.5. LIMITATIONS 

Regarding the limitations of the project, it should be noted that since the data collection has been 

done in the gynecology operating room of the Hospital Clínic of Barcelona, the vast majority of 

patients in the database are women and, also in a high proportion, of white people. Hence, the final 

results, although representing well the population in our environment, will not be representative for 

all global population nor extrapolable to any person, since no masculine patients are taken into 

consideration, and other ethnic groups are likely to be underrepresented in the used data. 

Nonetheless, since gender and ethnic group do not greatly affect brain function, data can be 

considered to accurately represent general patients behavior and results could be cautiously 

applied both to male patients and patients of different ethnicities. 

In addition, given that the project is carried out in the framework of a Final Degree project, the final 

testing and validation of the obtained predictive model will not be carried out in a real-life surgery 

in an operating room with a physical patient, but will be implemented on a computer using patients 

from the current database. Nevertheless, the obtained result can be compared to what would be 

expected in a real-life application, so the validation can be considered reliable and meaningful. 

Moreover, since all the data for the model developement is obtained from propofol-remifentanil 

induced general anesthesia surgeries, the obtained predictive model will only be useful for BS 

prediction during anesthesia of the same type. 
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2. BACKGROUND 

2.1. GENERAL ANESTHESIA 

General anesthesia is a drug-induced, reversible condition which involves certain behavioral and 

physiological characteristics, such as hypnosis, analgesia, amnesia and akinesia. These effects, 

resulting from the administration of anesthetic drugs, entail severe side effects such as 

cardiovascular inestability, respiratory depression, and an altered function of the thermoregulatory 

systems. Consequently, anesthesiologists must adopt measures in order to maintain the 

physiological conditions inside the normality range and homeostatic equilibrium [3][8]. 

In addition to the mentioned effects, general anesthesia also produces alterations on the EEG 

patterns, the most common of which is a gradual increase of low-frequency and high-amplitude 

activity as the level of general anesthesia intensifies. Due to the similarity of the EEG patterns 

under general anesthesia and the known ones from a sleep or coma state (Figure 2), general 

anesthesia is often considered a drug-induced reversible coma [9]. 

 
Figure 2. Electroencephalographic (EEG) Patterns during the Awake State, General Anesthesia, and Sleep [3] 

The following sections will provide a brief review on the different effects desired to reach with 
anesthesia, along with a concise description of the drugs used to achieve these effects. 

2.1.1. TARGET EFFECTS OF GENERAL ANESTHESIA 

During a surgical procedure, anesthesiologists play a key role on protecting the patient from the 

aggressiveness of the procedure itself. In order to achieve the aforementioned reversible drug-

induced coma state, different pharmacological effects must be combined. 
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2.1.1.1. HYPNOSIS 

Hypnosis or unconsciousness is described as a drug-induce impairment of perceptive awareness, 

which involves the loss of cognitive functions required for responding to verbal, tactile or painful 

stimulation, comprising attention, perception and even spoken commands [10]. Hence, in clinical 

situations, hypnosis is assumed when patients fail to respond verbal stimuli or mild shaking [11]. 

Induction of hypnosis leads the patient to disregarding the external, generating a well-being and 

deep relaxation feeling followed by eyelid heaviness and regular breathing. Clinically, hypnosis 

state involves a reduction of respiratory rate and can be examinated by checking eyelid flickering, 

loose of muscular activity and relieve of facial tension, which usually causes dropping of the jaw 

and a slight opening of the mouth, sometimes including a deep yawning reflex [12]. 

Among the drugs able to produce hypnosis, GABAA receptor agonists, such as propofol, can be 

highlighted because its use is pretty much present in 90% of anesthesia induction. The hypnotic 

state can be monitored and analysed through EEG and EEG derived parameters [13][14], and it is 

crucial to continuously evaluate its depth in order to avoid an excessive or insufficient effect. 

2.1.1.2. ANALGESIA 

Analgesia is known as the absence or modulation of pain perception when recieving a noxious 

stimuli. This state is an essential effect to target due to the intensity of painful stimuli during a 

surgical intervention, which otherwise would be unbearable. 

This analgesic effect is achieved by blocking the pathways responsible of transmitting the noxious 

stimuli recieved by the nociceptive receptors to the cortex [15]. A way of blocking this pathway is 

by the use of opioids such as remifentanil. Analgesia induces collateral effects such as respiratory 

depression and sometimes muscle rigidity; thus, it is essential to monitor this state [16]. Although 

it can not be directly measured, it is possible to indirectly evaluate it by monitoring hemodynamic 

and EEG changes. 

2.1.1.3. AMNESIA 

Amnesia is defined as a profund loss of memory and impossibility to retain information, which can 

be induced during surgery in order to improve the stress suffered by the patient in a surgical 

procedure situation [17]. Each anesthetic produces amnesia by affecting on distinct pathways and 

at different doses [18], but given the fact that patients who are truly unconscious are also on 

amnesia, this effect is maintained by ensuring unconsciousness [9]. 

2.1.1.4. AKINESIA 

Akinesia or immobility is the loss of movement capacity, which is induced during the procedure to 

facilitate the surgeon’s job, resulting in an improved exposure and precision [9], and also allowing 

the endothracheal intubation during the induction and maintenance of the anesthetic state [19]. 

This absence of movement is usually achieved by the administration of the so-called 

neuromuscular blocking agents, being the most commonly used succinylcholine and rocuronium. 
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There are different types of neuromuscular blocking agents, each with its own target and 

mechanism of action [20]. 

Immobility can be monitored through an electromyography (EMG), measuring the electrical activity 

of a specific nerve. Moreover, mechanomyography (MMG) and acceleromyography (AMG) can 

also be useful by measuring muscles actual movement. 

2.1.2. ANESTHESIC DRUGS 

The amount of agents cabaple of achieving the priorly described effects is large. Nevertheless, 

these drugs must be carefully selected and combined so they produce the most benefitial effect 

[16]; thus, it is of high clinical interest to find synergistic interactions between agents, since these 

would enable the use of smaller doses of each drug, consequently reducing potential side effects 

[20]. Depending on the effect they produce, anesthesics can be classified as shown in Table 1, 

where some of the most common agents can be observed. 

Table 1. Common intravenous anesthetics classified according their effect [21] 

Hypnotics Opioids Muscle relaxants 

Propofol Fentanyl Cisatracurium 

Thiopental Sufentanil Vecuronium 

Etomidate Remifentanil Pancuronium 

Ketamine Morphine Rocuronium 

  Succinylcholine 

Anesthetics can be classified according to its administration pathway; hence, they can be either 

inhalational or intravenous. The so-called total intravenous anesthesia (TIVA) refers to the 

exclusive use of the intravenous route for anesthetic administration. 

Both techiniques are widely used and many indicators must be taken into account when selecting 

the most appropriate administration type for each patient and procedure. However, one factor to 

consider is that TIVA may present some advantages over inhalational anesthetics in terms of 

inflammatory and immunomodulatory effects, as well as better outcome and recovery [22][23][24]. 

Although intravenous drugs can be administered manually, target controlled infusion systems (TCI) 

are often used [25]. These use pharmacokinetic and pharmacodynamic models in order to compute 

the amount of anesthetic to deliver over time; this way, the desired level of anesthetic effect can be 

rapidly changed if required [26]. Compared to manual drug administration, TCI allows a more 

accurate control of the desired pharmacodynamic effect, along with shorter recovery time [27]. 

In the operation room from the CMA in Hospital Clínic, a TCI-TIVA induced anesthesia based on a 

synergic combination of propofol, remifentanil and rocuronium, when needed, is used for those 

surgeries requiring general anesthesia in order to achieve all the aforementioned effects. This 

combination of agents is known to produce a synergic effect, thus positively complementing each 

other in pharmacodynamic terms and even enabling a reduction of the required dosage for both 

drugs [20]. Due to their usage in the CMA in Hospital Clínic, these anesthesics are reviewed in the 

following sections. 
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2.1.2.1. PROPOFOL 

Propofol is an intravenous agent which quickly produces an hypnotic effect, due to its lipophilic 

nature that allows it to rapidly cross the blood-brain barrier and reach the CNS. Hence, induction 

of hypnosis is fast, and its effect can be maintained either by continuous infusion or intermittent 

injection. Furthermore, propofol produces more immobility and is associated with rapid recovery 

and a low incidence of nausea and vomiting after the anesthesia. 

However, in some cases it can produce pain or a stinging feeling during injection, and it produces 

a drop in blood pressure as well as a reduction in heart rate. However, these last consequences 

can be monitored and controlled by keeping a continuous infusion at low doses [28][29]. 

In order to achieve the whole anesthetic state, according to the abovementioned effects, it is usually 

used alongwith opioids, which provide analgesia. 

2.1.2.2. REMIFENTANIL 

Remifentanil is a fast opioid analgesic agent which, due to its rapid mechanism of action, is suitable 

for TIVA, in which effective agents are required [30]. It is associated with deeper analgesia and 

anesthesia, resulting in fewer responses to noxious stimuli and with a fast recovery time, among 

others [31]. 

Nonetheless, remifentanil causes respiratory depression as well as bradichardia and hypotension. 

These effects, though, can be controlled by controlling ventilation, which is already required in 

general anesthesia, and by keeping administration by infusion [32]. 

2.1.2.3. ROCURONIUM 

Rocuronium is a non-depolarizing neuromuscular blocker used to achieve immobility and muscle 

relaxation during surgery. Despite its longer duration of action compared to other agents, its main 

advantage is its rapid effect and reversibility [33]. 

In procedures under propofol-remifentanil anesthesia, tracheal intubation without using muscular 

relaxant agents could cause hypotension and bradycardia; hence, the use of muscular blockers 

such as rocuronium remarkably reduce these effects [34]. 

Regarding its use in the CMA in Hospital Clínic, rocuronium is only used before tracheal intubation, 

while during laryngeal mask airway introduction it is not required due to its low complication 

incidence [35]. 

2.2. ANESTHESIA MONITORING 

As stated previously, autonomous homeostatic control is lost under general anesthesia, so the 

administration of the correct anesthetics in the precise dose are fundamental for homeostatic 

equilibrium maintainance. Hence, monitoring of both for vital constants and drug doses is crucial to 

maintain the patient in the physiological normality range as well as to provide an individualized 

anesthetic management. 
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The following sections will be focused on briefly describing the different monitoring systems used 

in the CMA in Hospital Clínic during a surgical procedure under general anesthesia, classified as 

basic and advanced monitoring systems. 

2.2.1. BASIC MONITORING SYSTEMS 

2.2.1.1. ELECTROCARDIOGRAM 

An electrocardiogram (ECG) measures the electrical activity of the heart through different 

electrodes placed on the skin of the patient. It provides direct and derived information on different 

parameters, such as heart rate, heart rythm and ST signals, among others. 

Variations on these parameters can be due to changes on the homeostatic equilibrium, as well as 

on the hypnotic and analgesic effect, highlighting the need to monitor cardiac activity [36]. 

2.2.1.2. ARTERIAL BLOOD PRESSURE 

Arterial blood pressure (BP) is also used for monitoring the cardiovascular function, as it 

continuously measures the blood flow pressure exerted on the arterial walls. It can either be 

measured in an invasive way by using intra arterial catheters, or non invasively by using cuffs [37]. 

As well as ECG, out-of-range values of BP might produce important physiological changes as well 

as effect on the overall anesthetic effect. 

2.2.1.3. PULSE OXIMETRY 

Pulse oximetry is a noninvasive technique for oxygenation monitoring. It quantifies oxygen blood 

saturation through a sensor usually placed on the index fingertip of the patient, by applying 

spectrophotometric methods able to measure hemoglobin levels and pulse rate, among others [38]. 

2.2.1.4. CAPNOGRAPHY 

Capnography consists on monitoring the ventilatory function of the patient by measuring the 

concentration or partial pressure of CO2 in respiratory gases. During anesthesia, capnography is 

used to ensure proper CO2 elimination from the lungs, along with correct ventilation and pulmonary 

perfusion [39]. 

2.2.2. ADVANCED MONITORING SYSTEMS 

2.2.2.1. ELECTROENCEPHALOGRAM 

Electroencephalogram (EEG) is one of the main monitoring systems and plays a key role on 

anesthesia monitoring. It measures the electrical activity of the cortical area of the brain through 

several electrodes placed on the forehead of the patient; thus, it is a powerful continuous indicator 

of the anesthetic effect produced by the administered drugs, since these cause changes in the EEG 

waves. 
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Under general anesthesia, each EEG waveform 

are related with different anesthetic states, as 

described in Figure 3. As can be observed, as a 

general rule, anesthesia is responsible of a 

gradual reduction on frequency along with an 

increase of high amplitude waves as the level of 

unconsciousness deepens [3]. 

As could be observed in Figure 3, at stages of 

deep anesthesia, a phenomenon called “burst 

suppression” can occur, which involves an 

alternating pattern of bursts (high frequency and 

high amplitude waves) and periods of isoelectric 

EEG with absence of electric activity [40]. This 

pattern, except in cases of brain ischaemia or 

other factors, is an indicator of a too deep 

anesthesia; thus, ideally it should be avoided. 

Given the complicated interpretation of raw EEG 

waveforms in the time domain, data extraction 

from these signals is challenging. Therefore, 

using the principles of the Fast Fourier Transform (FFT), a frequency decomposition of the signals 

can be performed, obtaining a plot with the different frequencies on the x-axis and their power on 

the y-axis [41]. 

This enables to classify different waveforms according to their characteristic frequencies and, thus, 

identify anesthetic stages (Table 2). 

Table 2. Spectral frequency bands derived from EEG and their clinical meaning [41][42] 

Waveform Frequency range (Hz) Clinical interpretation 

Beta (β) 13 – 25 Wide awake, consciouss 

Alpha (α) 9 – 12 Awake, relaxed, consciouss 

Theta (θ) 5 – 8 Light sleep, relaxed 

Delta (δ) 1 – 4 Deep sleep 

Hence, EEG monitoring provides information on which waveform is predominant over time; 

therefore, it is a powerful indicator of the anesthetic state of the patient. 

2.2.2.2. BISPECTRAL INDEX (BIS) 

As previously stated, raw EEG signals are difficult to evaluate, requiring high expertise from the 

anesthesiologist. To facilitate this analysis, advanced signal processing algorithms have been 

developed in order to extract parameters that could be easily evaluated. A popular EEG derived 

parameter is the well-known Bispectral Index (BIS), which uses a confidential algorithm able to 

measure the pharmacodynamic anesthetic effect on the CNS by displaying a single index value 

ranged from 0 to 100, corresponding values to “no brain activity” and “fully awake”, respectively. In 

Figure 3. Raw electroencephalogram waveforms of 

propofol-induced anesthesia [41] 
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propofol induced aesthesia, in order to maintain an optimal hypnosis effect, BIS values should 

range from 40 to 60 [43]. 

This value is obtained from four electrodes placed on the forehead of the patient and, besides the 

BIS index, BIS monitor also provide a predicted trend graph of the BIS values over time, the raw 

EEG signals in real-time, EMG activity, and different signal quality indicators, such as SQI, which 

the highest its value, the more reliable the BIS index [44]. 

Despite the powerful information provided by the BIS index, it is important to highlight the need to 

monitor all the previously mentioned parameters, since the overall anesthetic state can not only be 

monitored through EEG. Hence, hemodynamic variables and autonomic and somatic responses, 

among others, must also be considered before defining the effect of anesthesia on the patient. 

2.3. BURST SUPPRESSION 

As already stated, an often observed EEG pattern phenomenon is the so-called “burst suppression” 

(BS), which comprises high-voltage activity (bursts) and isoelectrical EEG (suppression of activity). 

Outside from anesthesia, this pattern can be found in patients suffering from brain pathologies, 

such as coma, severe brain trauma, epilepsia, stroke, Ohtahara syndrome and hypothermia. As 

previously mentioned, it can be a consequence of a deep anesthetic effect. In fact, the absence of 

BS during sleep is a differential feature between sleep and general anesthesia [5]. Besides too 

intense anesthetic effect, known risk factors for BS include older age and previous comorbidities, 

such as COPD [45]. 

Although it can even be considered desirable in some specific conditions, such as for patients 

treated for severe seizures, when referring to surgeries under general anesthesia with too intense 

anesthetic effects BS has been associated to adverse outcomes [5][46]. 

According to different studies, it is believed that sustained states of BS during anesthesia might 

harm the brain, and it can also be related to postoperative delirium or even cognitive deficits 

[47][48]. However, other studies have found that EEG-guided anesthesia resulted in a decrease of 

BS time during surgery, but the incidence of postoperative delirium was not reduced [49]. Moreover, 

despite BS was associated with high anesthetic doses and comorbidities, it has been seen that 

EEG suppression can be a predictor of postoperative mortality only when accompanied with low 

mean arterial pressure [45]. 

Regardless of the controversy, it can be assumed that BS can be related to adverse outcomes, 

specially when combined with other factors, and that it does not have benefitial effects when 

referring to surgeries under general anesthesia. Hence, a predictive model for BS would be a 

powerful technique as to avoid EEG suppression patterns. 

2.4. PREDICTIVE MODELS 

Nowadays, technology and data processing systems have revolutionized the operating way in all 

fields, even making possible what seemed impossible. Regarding the medical field, these 

improvements are the result of combining medicine with computer sciences and engineering. 
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Diagnosis and health status forecasts of patients, alongwith monitoring and classification of 

biomedical signals are essential tasks of medical care with a common main goal: predicting the 

medical contitions of the patient in order to anticipate and avoid possible adverse outcomes. Hence, 

predictive models have been developed as to properly reproduce the patient’s condition with the 

aim to make predictions [50]. 

Predictive models use known data, statitics and mathematical algorithms to predict outcomes. In 

general, this predictive models are known as Artificial Intelligence (AI), which can be defined as a 

field concering all computational techniques aiming to mimic and reproduce human intelligence for 

predicting results [51]. This offers a great number of benefits compared to human-performed 

predictions, such as flexibility and adaptability, followed by a more accurate pattern recognition 

through large amounts of data and variables. All these advantages are also accompanied with a 

fast computing capability, way faster than humans [52]. Inside AI, different disciplines can be 

distinguished. Among these, Machine Learning (ML) is considered to be an major subfield and it is 

widely used for predictive models in healthcare. 

2.4.1. MACHINE LEARNING 

By definition, ML refers to “computational methods for improving performance by mechanizing the 

acquisition of knowledge from experience”; hence ML models use already collected data in order 

to develop algorithms able to predict an outcome when new unobserved data is introduced [51]. 

When developing a ML model, the data used for the development of the algorithm is known as 

Train data, since it is used for training the model so it is later able to predict results. In order to test 

obtained models, a set of data known as Test data is used to test the performance and accuracy 

of the developed model. ML models can be classified in four large categories, which are supervised, 

unsupervised, semisupervised and reinforcement learning. 

The main distinction between supervised and unsupervised learning models is the use of labeled 

training data. While supervised algorithms use data in which there is prior knowledge on the final 

output values that should be obtained, unsupervised models use not labeled data. A combination 

of these two types results in semisupervised algorithms. As for reinforcement learning models, they 

are based on algorithms which use a punishment-reward approach for making predictions on a 

dynamic environment [51]. 

Depending on the available data and on the expected performance and application of the desired 

model, one class or other will be used, or even a combination of them. Once the type of learning is 

known, however, there is a wide range of algorithms avaiable for each class, and the challenge 

relies on selecting the most optimal one. Since there is no rule on which algorithm to choose 

depending on each situation, many of them must be tried and compared in order to pick the best 

performing one. 

Given the fact that the present study aims to build a BS predictive model, and basing the decision 

on the structure of the collected and available data, four different models have been developed 

using supervised learning. Hence, only the algorithms supporting these models will be described. 
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2.4.2. MACHINE LEARNING SUPERVISED ALGORITHMS 

As mentioned, there is no way to know which algorithm will have a better performance prior to 

testing them. For this reason, several models must be built in order to compare their results and 

select the one with higher accuracy. In the present study, four different supervised learning 

algorithms have been chosen under the recommendations from the supervisors, which will be 

described below. 

2.4.2.1. SUPPORT VECTOR CLASSIFIER 

Support Vector Classifiers (SVC) are a class of Support Vector Machines (SVM), which are 

supervised ML approaches which analyse datasets in order to predict outcomes. Usually, this 

model is used for binary classification and prediction; thus, a SVC is able to classify data in two 

different outputs by examinating an input dataset. However, as seen in Figure 4, SVM can also 

classify data into multiple classes [51]. 

In order to understand the principle behind SVC algorithm, a large dataset with many different 

inputs and each input belonging to one of two classes must be assumed. With this dataset, the 

SVC model would develop an algorithm able to represent each of these inputs as a point in a space 

in which data for both classes would be divided by a gap. This way, by mapping new data into this 

space, the model is able to predict the class of this input according to the position of new data with 

respect to the gap. The space in which data is mapped will be N-dimensional, N being the number 

of features inside the input data [53]. The output of the model can either be the predicted class in 

which the input belongs to, or the probability for the data to belong to the different classes. 

For now, the classification method 

described works by drawing a line 

between classes for a 2-

dimensional space, a plane when 

referring to 3-dimensional spaces, 

or a hyperplane for higher 

dimensionalities; these are known 

as linear classifications. However, 

SVC models include a parameter 

known as kernel, which allows to 

modify the so-called linear 

classification in order to obtain a 

decision boundary with different 

shapes. Four types of kernels along 

with their classification behavior 

can be observed in Figure 4. 

Figure 4. Decision boundaries approaches of different types of kernels 

for SVC models  [54] 
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2.4.2.2. K-NEAREST NEIGHBORS 

The K-Nearest Neighbors (KNN) supervised ML algorithm is a classification method based on the 

hypothesis that observations of the same class will have similar feature values, resulting in close 

points if each sample was mapped in a space. 

Basing classification on this premise, new samples can be categorized by using the information 

and knowledge of the k nearest neighbors, being k a variable parameter. This way, an observation 

is mapped in the same space of other samples, and the distance from this point to the k nearest 

observations is used to weigh the influence of each neighbor so that a close neighbor influences 

more than a distant one [51][55]. 

There is no rule find the optimal k value; therefore, different values must be tested and compared 

in order to select the most favorable number of neighbors for the most accurate performance. 

2.4.2.3. RANDOM FOREST 

Random Forest (RF) is an ensemble supervised learning method, which are methods built from 

combining several other algorithms and classifiers in order to improve the performance and 

accuracy of the resulting model [56]. In the case of RF, the algorithm is based on decision trees 

classifiers. 

Decision trees are predictive classification algorithms which split data into subsets and apply 

conditions on features to predict the output class. These conditions are structured in the form of a 

tree, and the final output for each combination of conditions, which is known as leaf, will classify 

observations according to the fulfilled conditions [57]. 

Regarding RF classifiers, these are built by creating several decision trees from the training data 

and computing an average of all their outputs to obtain the final RF predictive model. This way, the 

final RF model takes into consideration different condition combinations in order to provide the final 

classification; thus, accuracy gets increased in comparison with using one simple decision tree. 

Besides classification, RF models provide a deep analysis on the weight of each feature for the 

final classification decision, which is useful in terms of knowing which variables are more important 

and decisive for classification. 

2.4.2.4. XGBOOST 

Extreme Gradient Boosting (XGBoost, XGB) is also an ensemble supervised learning method 

based on decision trees classifiers. Instead of building a bunch of treen in parallel and combining 

them at the end, XGBoost creates one tree at the time, and the created tree is added to the previous 

ones if there is any missing data [58]. 

This is done by differently weighting correctly classified and missclassified samples. This method 

usually results in an important reduction of computing time and, like RF classifiers, it performs a 

feature importance analysis in order to recognize those variables with higher relevance for the final 

classification [59]. 
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2.4.3. MACHINE LEARNING MODELS PERFORMANCE EVALUATION 

Once ML models are built and implemented, their performance needs to be properly evaluated in 

order to ensure a correct predictive behavior and to know the fiability and reliability of the 

predictions. In order to test a model, data different from the one used for the training must be used. 

Otherwise, the model would be overfitted, meaning that the predictions perfectly match with the 

expected results because the data for the test would have also been used for training the model; 

this must be considered mistaken since predictive models can not be perfect. 

In order to evaluate classification models, different methods and metrics can be used. The ones 

employed in the present study are described below. 

2.4.3.1. ACCURACY SCORE 

Accuracy score is a value representing the number of correctly classified predictions with respect 

with the overall predictions; thus, it is computed by dividing the number of correctly predicted 

samples over the total number of predicted samples. 

According to this calculation, the higher the accuracy score, the better the performance of the model 

and the more reliable their predictions. 

2.4.3.2. CONFUSION MATRIX 

Although accuracy gives an easy and fast interpretation on the performance of the model, it does 

not represent some prediction differences that, when talking about ML applied to medicine, could 

involve important results. This way, it is often important to differentiate, among the correctly 

predicted observations, the rate of true positive (TP) and true negative (TN) observations. 

Moreover, it is also useful to distinguish, among the misclassified samples, the rate of observations 

classified as positive but should be negative, known as false positive (FP), and the ratio of samples 

classified as negative but should be positive, the so-called false negative (FN). 

These four scores can be displayed in a visual and simple way using a confusion matrix (CF), which 

is structures as showed in Table 3. 

Table 3. Confusion matrix layout comparing the real values with the predicted ones 

 Positive class Negative class 

Positive prediction TP FP 
Negative prediction FN TN 

From CF, different rates can be obtained in order to evaluate the above mentioned concepts. The 

most simple one is the previously described accuracy which, using the newly described concepts, 

can be obtained as shown in Equation 1. 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 Eq. 1 
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Another useful parameter is the one indicating the ratio of correctly predicted positive outcomes 

over the entire number of actual positive outcomes. This, which is known as True Positive Rate 

(TPR) or sensitivity, can be computed according to Equation 2. 

 
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

Eq. 2 

Along with the TPR, it can also be obtained a True Negative Rate (TNR), also referred to as 

specificity. Analogously, this ratio can be obtained as in Equation 3. 

 
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

 

Eq. 3 

 

2.4.3.3. ROC CURVE 

Given the fact that for the desired goal of the models built in the present study the required output 

of the models should not be a class, but a probability of belonging to one class or the other, another 

evaluation method has to be considered. 

When obtaining a probability, this score has to be used to predict, with more or less certainty, if the 

observation will belong to one class or another. This classification is done by setting a threshold at 

which the values above it will be classified to one class, while the scores below will belong to the 

other class. As can be expected, though, the performance of the model, as well as the accuracy, 

sensitivity and specificity concepts previously described, will depend on the stablished threshold. 

In order to evaluate the performance of the model over different thresholds, a reciever operating 

characteristic (ROC) curve can be obtained. 

This ROC curve graphically plots 

relationship between sensitivity and 1 – 

specificity for all the values the threshold 

can take. As a way to measure and assess 

the overall performance of the model, the 

area under the ROC curve (AUC). The 

values of AUC will range from 0 to 1, being 

1 an ideal and perfect model and 0 a 

perfectly inaccurate model. Between these 

limits, a value of 0.5 reflects that half of the 

predictions are correct, thus indicating that 

the model randomly classifies the 

observations, resulting in a useless but not 

adverse model. Hence, a predictive model 

is expected to have values between 0.5 and 

1. Inside this range, scores between 0.7 - 
Figure 5. Example of ROC curve [60] 
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0.8 can be considered acceptable; values ranging 0.8 - 0.9 are considered excellent; and values 

above 0.9 can be assumed as outstanding. Nonetheless, it must be pointed that these ranges and 

limits are general approximations; in each particular scenario these assumptions could be 

considered differently [60]. 

In Figure 5 an example ROC curve is represented, and its corresponding AUC would be the entire 

area comprised below the curve. As can be observed, there is a straight line from the origin to the 

top right corner which represents the shape of the ROC curve if the AUC was 0.5. This is always 

displayed as a fast and simple way of assessing the actual ROC curve for the evaluated model, as 

if its curve is above the line, the model will have an AUC over 0.5. The model represented within 

Figure 5 has an area over 0.5, since the ROC curve is above the random-classification line. 

2.5. STATE OF THE ART 

General anesthesia is the use of anesthetic drugs in order to induce a reversible status of 

unconsciousness, amnesia, analgesia and akinesia [3]. Due to changes and side effects on the 

homeostatic equilibrium, it is crucial to monitor the behavior of the hypnotic agents as to maintain 

the patient in a safe normality range. Therefore, during a surgery under general anesthesia, 

different systems are used to control the physiological state of the patient by measuring and 

monitoring parameters, such as ECG, arterial blood pressure, pulse oximetry, capnography, EEG, 

and the EEG-derived BIS index. 

Among the possible adverse outcomes resulting from the administration of drug and the induced 

anesthetic state, some studies suggest that the phenomenon of BS, often observed during 

anesthesia, might be involved in postoperative delirium, cognitive deficits, or even considered a 

predictor of postoperative mortality if accompanied by some other factors [5][45][46][47][48]. 

Nonetheless, other studies do not show any direct relation between BS during anesthesia and 

postoperative delirium [49]. 

All in all, there is no evidence that BS suppression may imply some advantageous or benefitial 

effect on the patient when occurred under general anesthesia, and all the studies on the topic point 

to adverse results under the presence of BS, or no effects at all. Hence, according to the present 

knowledge on the subject, it would be desirable to avoid the occurrence of BS during surgeries 

under general anesthesia. 

In this direction, the final goal of the present study is to build and implement a BS predictive model 

as a way to provide an individualized anesthesia as well as more protection both during and after 

the surgery under general anesthesia. 

2.5.1. BURST SUPPRESSION 

BS is known to appear in patients suffering from comorbidities, and in situations in which too high 

doses of anesthetics have been administered. Due to the impossibility to change the comorbidities 

of the patient, the target for avoiding BS must be focused on the administered dose of drugs. 

Existing EEG monitors include a measure of the burst suppression rate (BSR or SR), which is an 

EEG-based parameter which measures the ratio of suppressions in a period of time, considering a 



 

18 

suppression those voltages lower than 5µV within the EEG signal [61]. This parameter is a powerful 

indicator during anesthesia, since it reflects the amount of BS at the present time and the 

anesthesiologist can adapt the drug administration as to reduce the BSR. However, it would not be 

useful in order to completely avoid and anticipate to BS as the value is in real-time; thus, when it 

indicates that there is BS it is because it has already appeared. 

Here lies the need of constructing predictive models able to provide enough information to the 

anesthesiologists so they can decrease and adapt the administered drug doses in order to 

anticipate to BS and, thus, reduce possible adverse outcomes. 

2.5.2. PREDICTIVE MODELS 

As for now, after an exhaustive reaserch on the topic, no external studies regarding predictive 

models for BS under general anesthesia have been found. In this aspect, the importance of 

developing a BS predictive system in order to cover this need is clear. 

Within the SPEC-M research group, two similar studies have been carried out in the frame of Final 

Degree Projects. The first one was named “Burst Suppression Occurrence under General 

Anesthesia”, done in 2016 by Carlos Gil, and the last one was the project written by Marcel Pons 

in 2019, “Occurrence of the EEG Burst Suppression Pattern during General Anesthesia and its 

Hemodynamic Effects”. 

Both works develop a predictive model for BS occurrence by using a Logistic Regression model. 

However, no studies using other ML algorithms have been carried out; hence, and due to the 

aforementioned fact that there is no ultimate method of knowing the best-performing ML algorithm, 

but many have to be tested and compared, the present work aims to build and implement a BS 

predictive model based on different ML methods for surgeries under general anesthesia. 
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3. MARKET ANALYSIS 

As previously mentioned, this study aims to cover the need to obtain a system capable of predicting 

BS with the purpose of being able to anticipate its occurrence during a surgery under general 

anesthesia and, consequently, avoid possible adverse outcomes related to it both during and after 

the intervention. According to these objectives, the present section focuses on the applications and 

uses of the BS predictive model, as well as to future prospects. 

3.1. POTENTIAL USERS 

The BS predictive model is a system able to indicate the probability of BS occurrence within a 

period of two minutes. Due to the known possible adverse outcomes when BS appears on a surgery 

under general anesthesia, this model would be a powerful tool in these procedures. Therefore, its 

role in the operating room would give relevant information to the anesthesiologist on the future 

anesthetic effect of the currently-administered drugs; this way, the physician would be able to 

control and adjust the anesthetics infusion in order to anticipate and prevent a possible occurrence 

of BS. 

Given that all surgical procedures used for the development of the BS predictive model were 

surgeries under propofol-remifentanil induced general anesthesia, the final obtained model will only 

be applicable in same-conditions situations. Similarly, since all the patients from the available 

dataset are women, the resulting model from this study would fit optimally to new data coming from 

patients with similar characteristics although this does not prevent crom cautiously using it under 

different conditions. 

Finally, one of the parameters that the model requires to optimize its predictions is the age of the 

patient and the monitoring of different physiological parameters, since the model has been trained 

with data including these. These parameters are the mean non-invasive arterial blood pressure 

(NIBP), the effect-site concentrations of propofol and remifentanil, the BIS index and the ECG heart 

rate; thus, ECG, EEG, and arterial blood pressure monitoring will be indispensable, although they 

would already be a must for simply correctly monitoring anesthesia during the intervention. 

3.2. MARKET EVOLUTION 

The applications of ML predictive models are being widely spread into many different fields, among 

which medicine is not an exception. Their main usages, however, include diagnostic analysis of 

chronic diseases [62] and adverse outcomes prediction, but few is done regarding intraoperative 

prediction of adverse events, such as BS. In fact, there is no commercially available solution to 

predict BS in the clinical setting where only clinical eye of the attending physician is the only control 

method. 

As for anesthesia monitoring, EEG-guided procedures enable to monitor the effects of drugs and 

control the anesthetic status of the patient. Therefore, all general anesthesia surgeries include an 

EEG device and, increasingly, a BIS monitor, so all the surgeries which meet the above-stated 

conditions already have the infrastructure to use the BS predictive model presented with this study. 
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3.3. FUTURE MARKET PROSPECTIVES 

Given the fact that BS does not only occur in women nor in propofol-remifentanil induced general 

anesthesia, more data could be collected in order to enable te use of the developed model in other 

situations, such as in surgeries in men and for procedures under general anesthesia induced for 

different anesthetic agents. 

In order to expand the uses of the model, therefore, a large amount of data should be acquired 

from male patients, and from patients under general anesthesia induced by other anesthetics. 

Once the data has been collected, the current database could either be expanded to include data 

from men or surgeries induced by other anesthetics, or different models could be created using the 

same methodology as the current one. 
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4. CONCEPTION ENGINEERING 

As previously stated, due to the lack of predictive power of the current intraoperative anesthesia 

monitors, the development of a BS predictive model would be a great advance in order to anticipate 

and avoid BS with its respective possible side effects both during and after a surgery under general 

anesthesia. The options to carry out the model building are wide and diverse; thus, the present 

section aims to describe different available options, as well as to explain the reasons behind the 

final options selection. 

4.1. OPTIONS DESCRIPTION 

Prior to the model building, different execution options and aspects of the development itself must 

be considered and evaluated. Therefore, the different programming languages available, as well 

as the different existing ML algorithms must be assessed. 

4.1.1. PROGRAMMING LANGUAGE 

According to the programming skills and knowledge on different programming languages, the three 

considered languages for the script used both for the data processing and the predictive model 

building and testing are the following: 

- MATLAB 

MATLAB is a programming language developed by MathWorks consisting in a free numeric 

computing environment widely used for data manipulation, numeric computing, algorithms 

implementation and plotting of data, among many others. Besides the language itself, it 

includes a wide range of complementary toolboxes which enable different scientific and 

engineering applications [63]. 

- R 

R is free software generally used for statistical computing. Its computing abilities can be 

expanded by using open-source user-created packages available online, which offer a wide 

range of tools for statistical and data analysis, graphical visualization, modeling and predicting, 

among others [64]. 

- Python 

Python is a free dynamic programming language used for multiple programming situations. 

Alongwith a large amount of libraries and modules, the capabilities of Python can be expanded 

for different applications such as data analytics and processing, graphical interfaces and image 

processing, along with others [65]. 

Regarding predictive models building, testing and implementing, the three programming languages 

offer similar characteristics and usages; thus, all three could be considered valid for the purpose of 

this study. 
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4.1.2. MACHINE LEARNING ALGORITHMS 

As previously mentioned, and according to the structure of the available data, supervised ML 

algorithms must be used. These algorithms are classified in two classes: classification and 

regression. The first one referres to the algorithms able to predict class labels for a given data. As 

for regression algorithms, these are those which predict a continuous result from a given set of 

variables. Therefore, the main difference between both classes is that classification algorithms 

predict class labels while regression algorithms predict a continuous quantity [66]. 

The desired model to construct in the present study aims to predict whether BS will appear or not 

within a period of two minutes, and its occurrence probability. At first, this may seem a regression 

problem, since the desired output is a continuous value. However, what the model should predict 

is if there will or there will not be BS and the certainty of the prediction, not the BSR value, which 

is what the output would indicate if a regression algorithm were used. This being so, the algorithms 

used for building different models in order to at the end compare them and select the one with best 

performance will be based on a classification analysis. 

There are several different classification algorithms, all of which would be suitable for the present 

case. However, given the fact that they are all expected to give similar results, and due to time and 

computational limitations with the available equipment, only four of these algorithms will be used, 

and the obtained results will be considered representative. The most common existing classification 

algorithms are listed below. 

- Naive Bayes (NB) 

- Linear Discriminant Analysis (LDA) 

- Logistic Regression (LR) 

- K-Nearest Neighbors (KNN) 

- Support Vector Classifier (SVC) 

- Decision Tree (DT) 

- Random Forest (RF) 

- Adaptive Boosting (AdaBoost) 

- Extreme Gradient Boosting (XGBoost) 

- Stochastic Gradient Descent (SGD) 

All these are able to predict if BS will occur in a 2-minute period when a set of data is introduced, 

as well as to obtain the probability of the input data to be labeled as BS or not, thus indicating the 

reliability of the predicted class. 

4.2. OPTIONS SELECTION 

Once the different options for carrying out this study have been presented and analyzed, the most 

optimal ones, the most favorable ones in terms of accuracy and optimization of time and resources 

must be carefully selected. 

Regarding the programming language, given that all three options would be suitable for the study 

and none of them presents advantages over the others in terms of data processing and predictive 

model building and performance, the selection criteria was based on previous experience with each 
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of the languages. This way, Python has been preferred to be the programming language used for 

the code to be developed. 

As for the different ML classification algorithms, the selection has been made according to the 

software-developing supervisor criteria and having into consideration which are the most widely 

used algorithms. Besides, since the other studies on the topic both built a BS predictive model by 

using LR, it has been considered more appropriate to use different algorithms. Therefore, the 

selected algorithms used to build four different BS predictive models in order to compare their 

performances have been KNN, SVC, RF and XGBoost. 

On the whole, a Python script will be developed in order to properly process the available dataset 

and four BS predictive models will be built by using the KNN, SVC, RF and XGBoost supervised 

classification algorithms. These models will later be tested, compared and assessed in order to 

finally select the most accurate and best performing one. 
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5. DETAILED ENGINEERING 

The present section describes in detail the followed steps for the project development. Therefore, 

the data acquisition and processing methods, the construction and comparison of the different 

predictive models, and the implementation of the model with better results will be thoroughly 

detailed below. 

5.1. DATA ACQUISITION 

The dataset used for the present study has been provided by the SPEC-M research group from 

Hospital Clínic de Barcelona. Data is recorded anonymously from patients undergoing propofol-

remifentanil induced general anesthesia surgeries in the operating room number 4 from the CMA 

in Hospital Clínic, which is mainly assigned for gynecological procedures, under the authorization 

of the Ethics and Clinical Research Committee (CEIC) of the same hospital (Ref. nº 2013/8356); 

therefore, the vast majority of data belongs to women. 

The data collection began in 2013 and by the date it contains about 1500 patients. However, 

everyone involved in the SPEC-M research group, as well as the students who collaborate with it, 

are committed on keeping it on growing. With this goal, a two-month stay at the formerly mentioned 

operating room was done from September to Novemeber 2021, coinciding with the beginning of 

this project. 

Data recording is performed using the monitors already employed to monitor the patient and the 

anesthetic effect, which collect different patient parameters every second throughout the entire 

intervention. At the end of the procedure, the information of all the different variables over time is 

synchronized and put together, resulting in a single record per patient which is stored in a computer 

as a CSV file. 

The different monitoring and recording equipments are arranged in the anesthesiology control 

tower of the SPEC-M research group. This structure, which can be observed in Figure 6, includes 

three monitoring devices and the TCI-TIVA system. Table 4 includes a description of each of these 

monitors along with the adquisition techique used and the commercial company of the deviced 

used in the mentioned operating room. 

Table 4. Monitoring devices description and their commercial company 

DEVICE ACQUISITION METHOD COMMERCIAL COMPANY 

BIS VISTA® Bilateral 
Monitoring System 

Electrodes placed on the 
forehead 

Aspect Medical Systems, 
Inc., Norwood (MA), USA 

Conox® 
Electrodes placed on the 

forehead 
Quantium Medical, Mataró, 

Spain 

Dräger Infinity® Gamma 

Three electrodes placed on 
the chest, a cuff on the arm 
and a pulsioximeter on the 

index finger 

Dräger, Lübeck, Germany 

TCI-TIVA Orchestra® Base 
Primea and two Module DPS 

Intravenous infusion 
Fresenius Kabi, 

Homburg, Germany 



 

25 

As priorly stated, each monitoring device allows to measure and control different parameters, which 

are recorded in the aforementioned CSV file for each patient and stored in the SPEC-M database. 

The monitored parameters are listed and described in Table 5, alongside with the device that allows 

its register. Demographic parameters such as age, gender, weight and height are previously known 

variables which, since are required and manually introduced to the TCI-TIVA system, in Table 5 

are considered among the variables obtained through this device, although they are not actually 

monitored. As for the patient ID and the temporal variable, since their registration is automated and 

they are not monitored nor used by any device, no monitor is linked with them. 

Besides these automatically monitored parameters, several events that occur during the anesthesia 

could be relevant when performing studies on the obtained data, such as the insertion moment of 

the LMA, the presence of movement and the administration of other drugs, among others. 

Therefore, they are manually registered using an adapted keyboard and synchronized with the 

other variables through the Rugloop® software. 

Table 5. Monitored parameters and their description classified according to their acquisition device 

DEVICE PARAMETER DESCRIPTION 

- Patient ID Identification number of the patient 
- Time Time register throughout the procedure (s) 

BIS VISTA® Bilateral Monitoring 
System 

BIS Bispectral index 
EMGBIS Electromiogram intensity index 
BSBIS Burst Suppression index 
SQI09 Signal Quality Index of the BIS 

Conox® 

qCON Hypnotic effect index 
qCONEMG Electromiogram intensity index 
qCONBS Burst Suppression Index 
qCONSQI Signal Quality Index of the qCON 

qCONqNOX Analgesic effect index 
nHz EEG spectrum (n = 0-127 Hz) 

Dräger Infinity® Gamma 

HR Heart Rate 
NIBPsys Systolic blood pressure (mmHg) 
NIBPdia Diastolic blood pressure (mmHg) 

NIBPmean Mean blood pressure (mmHg) 
RR Respiratory Rate 

SPO2 Oxygen saturation 

TCI-TIVA Orchestra® Base 
Primea and two Module DPS 

CpRemi Remifentanil plasmatic concentration 
CeRemi Remifentanil effect-site concentration 

RateRemi Remifentanil infusion rate 

VolRemi Remifentanil infusion volume 
CpPropo Propofol plasmatic concentration 
CePropo Propofol effect-site concentration 

RatePropo Propofol infusion rate 
VolPropo Propofol infusion volume 

Age Current age of the patient 
Weight Current weight of the patient 
Height Current height of the patient 

Sex Gender of the patient 

Rugloop® software Events Surgery-related events 
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Figure 6. Anesthesia control tower with the monitoring and anesthesia-infusion devices (left) and adapted keyboard 

for surgery-related events registration (right) 

This exhaustive data acquisition entails the obtention of a high-resulution and semi-automatically 

created dabasase including a CSV file per patient with information on the previously mentioned 

parameters over time. From these, a subset of data including 457 patients has been used for the 

BS predictive model building. 

5.2. DATA PROCESSING 

Before building a ML predictive model, all the data both for the training and the testing sets must 

be accuretely processed and modified in order to have it structured according to the models 

requirements. This section includes a complete description of all the used methods and decisions 

taken with the final goal of achieving a data frame structured in conformity with the ML algorithms 

demands. In parallel to the study, and for purely informative purposes, the incidence of BS in the 

studied population has been estimated and analysed. 

5.2.1. DATA FRAME CONSTRUCTION 

ML predictive models require a well-structured data frame containing all the different measured 

features, which are arranged as columns of a matrix, and a large amount of observations of these 

features, which are organized in rows of the same matrix. Moreover, in the case of supervised 

algorithms, an extra column corresponding to the known label for each observation is needed for 

the training dataset. This is the case for the present study, in which the ML predictive models will 

be based on supervised algorithms and, thus, the training of the model requires a data frame with 

a large amount of observations and the known output for them.  

Besides, each second of every patient is considered an independent observation, since the 

prediction of BS will depend only on the parameters measured at the time; hence, the probability 

of BS occurrence within two minutes will be displayed each second during the intervention and will 

depend on the monitored variables at that very moment. 

Therefore, each patient provides as many observations as the duration of its intervention in 

seconds. This assumption makes it irrelevant to know to which patient correspond each 

observation, since the desired model aims to predict the occurrence of BS by only considering the 
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monitored variables at a certain moment; thus, all the observations from all the available patients 

can be put together in the same data frame. 

As a result, an initial large data frame can be obtained by constructing a matrix with all the features 

as columns, and the data from all the available patients concatenated as different rows.  

5.2.1.1. LABEL OBTENTION 

In light of the above, the training data frame of the model needs a large matrix with the known 

output for them, the so-called label. According to this, the input features to the model will be all the 

measured parameters, and the expected output will be the BS occurrence probability. Hence, as 

supervised models, the required data frame will include all the recorded variables as features, and 

a new variable indicating the occurrence or not of BS after two minutes, which will be used as label. 

This way, the model will be trained by analysing all the features recorded at the same time and 

their resulting label. 

This new variable, referred to as Future_BIS, which is represented as a new column in the data 

frame, will be obtained by taking the SR parameter and applying a two-minute shifting. By doing 

this, it is important to highlight that the 2 last minutes of the intervention will not have this parameter, 

so these observations should be removed, as well as the 120 first values of the SR parameter. 

Given the classification nature of the selected predictive models, the label must be binarized in 

order to represent two classes: BS occurrence and no BS. Therefore, all values greater than 0 will 

be considered as BS occurrence and replaced with a 1, while scores equal to 0 will not be modified 

and will represent those observations with no BS within two minutes. 

5.2.1.2. SIGNAL QUALITY ASSESSMENT 

Due to limitations in the acquisition and measuring devices, some obtained values might be noisy 

or not much accurate; thus, it is important to drop them out of the data frame since could lead to 

erroneous results. This reliability of the recorded data is measured by the signal quality index (SQI); 

according to its score, and considering a signal greater than 60 to be sufficiently valid, those 

observations below this threshold will be disregarded. 

5.2.1.3. GENDER SELECTION 

As mentioned earlier, the data has been collected and recorded from patients undergoing propofol-

remifentanil induced general anesthesia in the gynecology operating room of the CMA in Hospital 

Clínic; for this reason, the vast majority of the data correspond to women. However, some 

procedures belonging to men have also been monitored. Since the gender proportion is not 

representative, it has been considered more convenient to neglect those patient recording 

corresponding to men and focus the whole study in data from women. 

With this purpose, the variable indicating the gender of the patients has been analysed in order to 

detect and exclude those coming from procedures performed on men. 
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5.2.1.4. FEATURE SELECTION 

The recorded and collected data from the patients includes a large number of variables regarding 

the overall anesthetic and physiological status of the patient during the intervention. However, when 

aiming to predict BS, some of them become meaningless or dispensable, either due to their 

dependence on other variables, thus providing redundant information, or due to its irrelevance in 

the appearance or not of BS according to the criteria of the project supervisor. 

Thus, a feature selection has been carried out, reducing the amount of variables from 34 to 6; 

therefore, the resulting data frame consists of 7 columns, 6 of them corresponding to features, and 

the last one to the previously obtained label, as can be observed in Table 6. 

Table 6. Feature and label structure of the data frame 

FEATURES LABEL 

Age Remi_Ce Propo_Ce BIS ECG_HR NIBP_Mean Future_SR 
 

5.2.1.5. OBSERVATIONS SELECTION 

Although it would be ideally expected to have information on all of the aforementioned selected 

parameters at each second throughout the intervention, this assumption would be far from reality. 

The propofol and remifentanil effect-site concentrations, as well as the heart rate measured with 

the ECG (ECG_HR) are intermittently-monitored variables which, with no detectable pattern, at 

some seconds are not recorded, so some observations have features with null values. Therefore, 

taking into account that the number of observations in which these are not monitored is much 

smaller than the amount of observations in which data from all the variables is available, and 

considering more suitable to use less amount of data instead than inventing the missing values by 

interpolation or other methods in order to fill the blanks, it has been concluded that these 

observations can be ignored. 

Moreover, given the fact that each monitoring device starts its recording at different times, 

depending on the moment of placement of the different electrodes, and taking into consideration 

that drug infusion starts later than the monitoring, some observations belonging to the beginning of 

the surgery will also be neglected, since they have null values for some of the features. Similarly, 

observations from the end of the intervention will also be disregarded, since the anesthetic infusion 

finishes before the monitoring devices, and the electrodes are not all removed at the same time. 

This removal of certain observations will be performed by deleting those rows of the data frame 

having some null value for any of the features. 

5.2.1.6. COMPENSATION OF THE PROPORTION OF DIFFERENT LABELS 

Ideally, the training set for ML predictive models should have a similar proportion of observations 

for each label in order to equally train the model for predictions on all the classes. According to the 

nature of BS periods, their length and abundance during surgeries usually represent a very small 

proportion of the total intervention time, making it difficult to obtain similar proportions for both 

labels. 
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An option would be to reduce the number of observations with no BS to the same number of 

observations with a positive BS label. However, this would drastically reduce the size of the data 

frame and, given the importance of having a large amount of different data for a better training of 

the models, this solution has been rejected. 

In order to compensate as much as possible for the difference between the number of observations 

for each class, those patients without any BS period have been removed from the study; this way, 

the number of observations from the no-BS label was considerably reduced. 

5.2.1.7. SCALING 

As required by the ML predictive models, all data must be numerical and inside a same range, usually 

between 0 and 1; this way, all features will be equally weighted and predictions will not be interfered for the 

measuring scale of each variable. 

Hence, the scaling of the data frame was performed per rows and each value was normalized according to 

Equation 4. 

 
𝑧𝑖 =  

𝑥𝑖 − min (𝑥)

max(𝑥) − min (𝑥)
 Eq. 4 

Where x is the entire set of values for a particular feature, xi represents a specific value from x, and zi 

corresponds to the new scaled value for xi. 

5.2.1.8. FINAL OVERVIEW OF THE INCLUDED PATIENTS AND DATA 

According to the previous considerations, the used data for the study has been considerably 

reduced from the initial amount of observations. However, given that each second of every patient 

is a different observation and, hence, the starting number of observations was immense, the final 

amount of observations was still large enough. A schematic overview of the followed criteria and 

considerations for the final data frame obtention can be observed in Figure 7. 

 
Figure 7. Overview of the exclusion and selection process of data 
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After the processing of the initial data, 

the resulting data frame included the 

information of the different features 

for each observation that would later 

be used for the predictive model 

building. The structure and 

arrangement of this matrix are shown 

in Figure 8, in which the different 

features and the label conform to the 

columns of the data frame, and the 

rows include all the remaining 

observations. Due to the large 

number of observations available, 

only a small part of these is shown in 

the figure as an example. 

 

5.2.2. BURST SUPPRESSION INCIDENCE ASSESSMENT 

Given the fact that the presence of BS at some time during propofol-remifentanil induced general 

anesthesia has been related to age, all the patients in the database were classified into five groups 

of age and the occurrence of BS has been examined by using the SR parameter as well as the age 

of the patients. 

The criteria for determining BS appearance was limited to looking at whether the SR parameter 

acquired values greater than 0 for periods greater than 15 seconds. Simplifying, the length of 

periods with BS, the number of periods, and its intensity have not been quantified in any way. 

5.3. OUTLIERS ANALYSIS 

Once the matrix was created and processed, an outliers analysis was performed to identify possible 

anomalous observations in the data frame. This process was carried out to reassure that there are 

no erroneous data caused by artifacts or noise in the measurement of the variables. 

Outliers can be removed by not considering the tails of a normal distribution of data; thus, data has 

to follow this type of distribution. Otherwise, outliers can not be detected nor rejected since they 

might not be inside the first or last percentiles of the data. 

Figure 8. Structure of the input matrix for the ML models 
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This being so, a full-scale analysis was 

performed in order to determine which 

statistical distribution was followed by each 

variable, if there was any. Hence, each 

variable was plotted using a qq-plot against 

four different already known distributions 

(normal, uniform, exponential, and 

Laplacian), since this graphical method 

allows to compare two distributions, as 

seen in Figure 9. According to the similarity 

between the data and the reference line 

from the known distribution, it can be 

assessed whether the data follows this 

distribution or not. 

In addition, since qq-plots provide only qualitative information, a Shapiro-Wilks test has been also 

performed on each variable as a way of quantifying their similarity with the normal distribution. This 

method allows considering whether if the data follows a normal distribution or not from the resulting 

p-value; therefore, in the case of this being less than 0.05, it can not be considered that the data is 

distributed in a normal way; otherwise, normality cannot be rejected. 

In the case of identifying any outliers in some of the features, those observations containing these 

outliers would be removed from the data frame since they could include erroneous information, 

which would directly affect posterior analysis and the performance of the predictive models. 

5.4. DATA SPLIT 

Once the Python script for all the processes above has been developed, the patients were manually 

and arbitrary distributed according to a 80/20% split for the training and test datasets, respectively. 

After this split, the Python script was applied separatedly to each set with the aim of obtaining two 

data frames that followed all the mentioned conditions, one for the training of the models, and a 

second one to test them. The number of patients before and after the split, as well as the final 

number of patients remaining after the patient exclusion can be observed in Figure 10. 

 
Figure 10. Schematics of the patients before and after the train-test split and the data processing 

Figure 9. QQ-plot description 
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Since the testing of the models consists on applying the already trained model to new data so it 

can perform its predictions, the column with the labels had to be separated from the features before 

the models testing. 

With all these processes, the matrixes required for the training and testing of the models were ready 

to use. Regarding the matrix for the training, it included all the features and labels. As for the testing, 

two matrixes were obtained, one with the features, which was the one later used to test the models, 

and another one with the labels, used to evaluate the performance of the model by comparing this 

labels to the predicted ones. 

5.5. MACHINE LEARNING MODEL TRAINING AND TEST 

After all the processing of the data, the outliers analysis, and the split of the data, the remaining 

steps for the study were the building, training and testing of all the previously mentioned models. 

Each model has some parameters that can be adjusted in order to improve the performance of the 

models. However, there is no way to select these parameters other than by testing them and 

comparing how the models work; hence, for each model different options were tried and assessed 

by comparing its AUC score. 

5.5.1. MODELS BUILDING 

5.5.1.1. SVC 

For the SVC model, two parameters had to be selected with the aim of achieving the best performance 

possible. One of these was the kernel of the model, which adjusted the decision boundaries, and the gamma 

(γ) constant, which adjusts the classification. Therefore, 16 different models were built in order to finally 

select the best-performing one. These models were all the possible combinations for four different kernels 

and four different γ, as can be seen in Table 7. 

Table 7. Different kernels and γ used for the SVC models 

Kernel Linear Polynomial RBF Sigmoid 

Gamma (γ) Automatic 0.025 0.05 Scale 

 

5.5.1.2. KNN 

Regarding the KNN model, the number of neighbors to take into consideration for making the 

prediction is also an adjustable parameter. Therefore, the model was tested with 10, 50, 100 and 

500 number of neighbors. 

5.5.1.3. RF AND XGB 

As for the RF and XGB models, the same variable related to the number of estimators to use is 

also an adjustable parameter. Similarly to the previous models, thus, four different values were 

tried in order to later assess their performances and select the most optimal one. Therefore, these 

two models were tested with 50, 100, 200 and 500 estimators. 
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5.5.2. TRAINING, TESTING AND EVALUATION 

Once all the models were built, the already prepared data for the training was introduced to each 

model so they could get trained from all the observations and their respective labels. After this 

process, the data from the testing group of patients was also introduced to the model so it could 

perform its predictions on the label of each observation. 

The predictive ability of each model was assessed by comparing the predicted labels to the known 

ones. This way, the accuracy score and the AUC value could be obtained for every model, thus 

enabling to evaluate the performance of all the models individually, as well as to know which ones 

offer better predictions. The criteria followed for the selection of the final model was the AUC; thus, 

the model with the highest value would be the most optimal one to implement on patients. In the 

case where more than one model matched with the highest AUC value, the final decision would be 

based on the required time for the training, so the model which performs it faster would be selected. 

5.6. MODEL IMPLEMENTATION 

Finally, the selected model was individually applied to all the patients from the testing set, thus 

simulating a real use of the model. In order to evaluate the predictions, and due to the large number 

of patients, only the best and worst predictions in terms of accuracy were selected. 

Given the fact that the models require scaled input data, and that when aiming to introduce 

observations from an individual patient the Age feature can not be scaled since its value is the 

same for all the observations, a solution had to be found. Hence, the age of the patients was divided 

by 100 in order to obtain a value ranging from 0 to 1. Despite not being exactly the numbers for 

which the models had been trained to, errors can be considered negligible and the results reliable. 

5.7. PYTHON MODULES 

In order to perform all the previous analysis as well as to obtain graphical results, several Python 

modules have been used, which are briefly described below. 

As for the initial data processing, the modules numpy, os, pandas, statsmodels, pyplot and 

seaborn have been used. The pandas and numpy modules both provide powerful and high-

performance tools and methematical functions to store and manipulate data structures and 

matrixes. Regarding the os module, it allows the script to interact with the operating system; thus, 

it is a useful package for file manipulation. As for seaborn, it is a simple and intuitive data 

visualization module used to obtain and display the obtained results. 

The outliers analysis, in turn, the statsmodels module enabled the obtention of qq-plots in order 

to compare two distributions of data, while the scipy.stats package provided the required 

functions for the Shapiro-Wilks test. 

Concerning the development and evaluation of the ML predictive models, the sklearn module 

provided the needed functions for the SVM, KNN and RF models as well as for the obtention of the 

accuracy score and ROC curves. The XGB model was obtained from the package xgboost. 
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6. RESULTS AND DISCUSSION 

All the previously mentioned steps allowed to evaluate BS incidence by age groups, as well as to 

develop and test different ML predictive models and implement the most optimal one to a set of 

patients, which was the main goal for this project. Hence, the present section includes all the 

obtained results, validations and assessments for the entire study, as well as a concise discussion 

about all of them and the overall implications and limitation of the project. 

6.1. BS OCCURRENCE ANALYSIS 

As already stated in Section 5.2.2, BS occurrence is known to have a relation with age; hence the 

presence of BS periods was assessed for five different groups of age, using those patients whose 

age is specified in their recorded data. 

As it can be observed in Figure 11a, there are only two patients under the age of 20; for this reason, 

the 50% incidence of BS obtained is not representative of this age group and cannot be considered 

reliable, a fact that is visually explained by the error bar of this age group in Figure 11b. As for the 

group of ages over 80, although the number of patients is quite low, it can be considered enough 

to assess the BS ocurrence with reliability, as the error bar of this group of age shows. 

Therefore, regarding all groups of age except for the first one, it can be observed that the incidence 

of BS occurrence is always over 50%, with a constant increase with age, leading up to 90.9% of 

patients with some BS period in patients over 80. 

 
Figure 11. (a) Number of patients by groups of age (b) barplot of BS occurrence by groups of age and its respective 

error bars 

These results highlight the importance of developing a predictive technique for BS anticipation and 

prevention during propofol-remifentanil induced general anesthesia. 

6.2. OUTLIERS ANALYSIS 

After processing the data from all the initial patients, the outliers analysis was performed to study 

the distribution of each feature to identify outliers and reject them afterwards. Therefore, qq-plots 

comparing the distribution of each parameter with four already known distributions were obtained, 

as shown in Figure 12. 
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Figure 12. QQ-plots of each feature over four different known distributions 

As it can be observed, no variable correctly follows any distribution. However, to quantitatively 

ensure whether the data follows a normal distribution, a Shapiro-Wilks test was performed on each 

feature. The resulting p-values from the test were all below the standard threshold of 0.05, therefore 

implying that any feature can be considered to follow a normal distribution. Having obtained these 

results, there is no way of identifying outliers for any variable; hence, no more data was discarded 

except for the already neglected in the data processing process. 

6.3. MODELS VALIDATION AND SELECTION 

After the data processing and the distribution analysis, the different models were built, trained and 

tested in order to assess their performances. With the 80/20% split of the initial patients in the 

training and testing sets respectively, and the subsequent data processing, the distribution groups 

of ages of the remaining patients can be observed in Figure 13. Despite the lack of patients with 

ages below 20 and the reduced amount of patients over 80 years of age, the aging effect will not 

change much if younger patients were added since according to different studies the effect of 

ageing on BS is significant for ages over 65 years old. Therefore, although further improvements 
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could include a database with a higher representation of patients within these age ranges, the 

results are not expected to significantly change. 

 
Figure 13. Boxplot of the distribution of the patients by groups of age for the training (left) and testing (right) sets 

This evaluation was performed by obtaining the AUC score for each model with different adjustable 

variables; hence, for the KNN, RF and XGB models, four different AUCs were obtained. However, 

since for the SVC 16 different models were built, only the four ones with higher AUC values were 

plotted. The results for all the models are displayed in Figure 14. 

 
Figure 14. ROC curves for each model with its AUC score, and optimal threshold for the model with highest AUC 
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First of all, it is important to highlight the relative significance of the obtained threshold. This value 

is computed by assessing which values of sensitivity and specificity lead to the highest accuracy. 

However, this threshold cannot be extrapolated to any application of the model, as it will depend 

on the false positives (FP) and false negatives (FN) that are considered to be allowed. 

Hypothetically, if a binary classification was desired, thus indicating if BS will occur within two 

minutes instead of the probability of its occurrence, the obtained threshold could be used to 

maximize accuracy. Still, the medical implications of both FP and FN should be assessed in order 

to ensure the reliability of the obtained threshold or the need to adjust it to the application needs. 

As for the AUC scores, the first conclusion that can be drawn from these resuls is that predictions 

from the KNN models are way worse than the other models, having its highest AUC value in the 

lower limit of the 0.7-0.8 range, which is considered acceptable. Regarding the models from SVC, 

RF and XGB, all their AUCs are in the higher limit of the 0.7-0.8 range or in the 0.8-0.9 range, which 

allows to consider predictions as excellent. As shown, SVC with RBF kernel and γ = 0.25 achieves 

the highest AUC; thus, it was considered the most optimal model for implementing on patients. 

Despite the good results of the models, there may still be room for improvement in order to obtain 

the most possible accurate predictions. One option would be to perform multiple-class 

classifications, thus classifying the SR variable on different range labels representing the degree 

of BS, since this would lead to more variability in the data. In this case, instead of replacing all 

values greater than 0 with a 1, different classes could represent the level of BS. However, the 

development of these models requires previous studies in order to assess which thresholds should 

be used when classifying degrees of BS and to know the medical significance of these classes, as 

well as a comparative study with the actual models in order to assess whether permormance has 

been improved or not.  

Finally, it is important to take into account that the obtained AUCs should be validated with a 95% 

confindence interval in order to ensure similar performances when applying the predictive model 

[67][68]; hence, further improvements of the study must include confidence intervals. 

6.4. FEATURE IMPORTANCE 

As a way of assessing the weight of each parameter on predicting the occurrence of BS so that the 

anesthesiologists can understand what factors influence the most when making a prediction, a 

feature importance analysis has been used, for simplicity, only in the RF and XGB models; hence, 

barplots indicating the relevance of each feature for both models are displayed in Figure 15. 

 
Figure 15. Feature importance for RF and XGB models 
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It is important to highlight that these feature importance analysis offer a qualitative and orientative 

measure on the influence of each factor over the prediction of the model; thus, it can only be used 

to provide assistance in interpretation on the factors influence. However, there is no consensus on 

the way feature importance is quantified, so the results can not be considered much reliable and 

should be treated carefully. 

Therefore, as can be seen at first sight, the features influencing the most are age and BIS value for 

RF and XGB models. This high influence of these two features matches with the expected results 

as age is directly related to BS occurrence and BIS accounts for the anesthetic effect on patient 

and, thus, the level of brain activity. 

Another conclusion that can be drawn from these results is that the propofol effect-site 

concentration does not have as much influence as would be expected given its hypnotic effect and, 

hence, its direct relation with BS. In fact, at first it would be expected that the concentration of 

propofol should have more influence than age for BS prediction. A possible explanation could be 

the small variability on the values of effect-site concentration of propofol, since in the collected data 

this parameter always has values inside a relatively reduced range while features such as age and 

BIS oscillate inside a wider range. According to this, it is possible that when keeping the propofol 

concentration in a range very close to that of the training data, age becomes a more relevant factor. 

Another possible justification could be that similar propofol concentrations lead to very different 

responses. However, this results can only be explained by assumptions due to the small variability 

for the propofol concentration of the available data and the limitations of the feature importance 

analysis itself. 

In light of the above, it can be concluded that age and BIS value can be considered features with 

a strong influence on the predictive ability of the models and it can be useful in terms of providing 

orientative assistance to the anesthesiologist, although this cannot be blindly believed due to the 

low reliability of the metric. As a way of expanding the feature importance analysis, a correlation 

matrix was obtained as shown in Figure 16, in which colors close to 1 imply a strong positive 

correlation, colors near -1 represent strong negative correlation, and colors around zero suggest a 

weak or null correlation. 

According to the correlation 

matrix, age and BIS can also be 

assumed to be the most important 

factors in determining BS 

occurrence, which matches the 

previous results. However, due to 

the fact that any statistical metric 

by itself is capable of providing 

reliable results, as each is 

computed and considers features 

differently, a full-scale analysis 

considering a large set of metrics 

and combining multiple feature 
Figure 16. Confusion matrix for the features and the label 
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importance quantifiers should be performed. This way, the lack of agreement when drawing 

conclusions from individual feature importance quantifiers could be reduced, since this method 

would improve the results by decreasing the variance of the influence of each feature [69]. 

6.5. MODEL IMPLEMENTATION ON PATIENTS 

Despite the limitations when evaluating the performance of the models, the results obtained could 

be considered reliable enough and, therefore, the selected model was tested with individual patient 

data. The AUC score is a way of assessing the overall performance of the model, but when 

implementing it individually the accuracy can oscillate within a wide range; therefore, as a way of 

assessing the entire predictive ability of the selected model, only the best and the worst 

performances in terms of accuracy are displayed in Figure 17. In the figure, the top plots show the 

probability of BS occurrence within two minutes over time, and the horizontal line drawn in the top 

plots indicates the optimal threshold obtained with the ROC-AUC curves, which it is used to binarize 

the BS occurrence prediction, as is shown in the second plots. As for the bottom plots, they 

correspond to the known occurrence of BS within two minuts at each second of the intervention; 

hence, there is a two-minute shift of this plot in order to easily compare it with the previous ones, 

which indicate the future occurrence of BS. 

 
Figure 17. Highest and lowest accuracy performances of the BS occurrence predictive model 

As it can be seen, the best performance is actually very adjusted to the real values on BS 

occurrence and, taking only into account this result, it could be considered reliable enough to 

implement the model as a tool to assist the anesthesiologist in adjusting the doses of anesthetics 

in order to prevent episodes of BS. However, the results obtained from the performance with less 

reliability show a very low predictive ability of BS occurrence, which could lead to decisions that are 

inconsistent with the actual condition of the patient. 
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Moreover, in order to evaluate the distribution of each predicted probability over the known BS 

occurrence, the plots in Figure 18 were obtained. In it, it can be assessed the probability distribution 

of those observations with a known positive label, as well as to those with known negative labels. 

 
Figure 18. Distribution of the predicted probabilities against the label they should predict for the highest and the 

lowest accuracy performances 

As can be observed, in the implementation showing the worst performance, a large proportion of 

observations that should lead to a negative value actually shows scores above 0.6 and with a mean 

value almost at 0.8, and observations with a known positive value are mainly distributed below a 

0.5 probability, with a mean value close to 0.2. On the other hand, in the best-performance scenario, 

it can be clearly seen that observations that should be labeled as negative have probabilities mainly 

below 0.2, with a mean value close to 0, and the observations known to correspond to a positive 

label show probabilities over 0.7, with a mean value of almost 1. 

Due to this huge difference in accuracy between the best and the worst performances, the 

distribution of accuracies was obtained as a way of assessing the proportion of patients with 

sufficiently good and reliable predictive performances, as can be seen in Figure 18. 

 
Figure 19. Accuracy frequency barplot and accuracy distribution boxplot 

As it can be noted, the first percentile of accuracies are below 0.6, thus implying that the remaining 

75% of the obtained accuracies have values greater than 0.6, with a mean score ranging between 

0.7 and 0.8. In other words, the 75% of the patients in which the model was implemented the 
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accuracy scored values over 0.6; hence, it can be considered that the obtained model has an 

acceptable predictive ability and could be useful in advising the anesthesiologist when adjusting 

the doses of anesthetics. 

However, since the model is not reliable enough and has some limitations, the BS occurrence 

probability obtained cannot be taken as absolute truth and the index must be understood as an 

orientative indicator. 

6.6. IMPLICATIONS 

Despite the high quality of the collected data in terms of the number of parameters continuously 

monitored, and the large amount of patients recorded, the data processing considerably decreased 

the number of used patients, thus reducing variability among some parameters, such as age. This 

variability is also limited by the type of patients undergoing general anesthesia procedures in the 

CMA in Hospital Clínic, since almost all the patients are white women with ages above 40, thus 

underrepresenting young population, male gender and ethnical diversity. Nonetheless, since 

gender and ethnic group are not considered much significant factors for brain function, and age 

becomes an important factor when it goes beyond 65, the used data accurately reflects the general 

behavior of patients. 

The high ROC-AUC scores obtained in the developed models evidence the predictability of BS 

occurrence, hinting that there is room for anticipating this phenomenon during propofol-remifentanil 

induced general anesthesia. However, due to its poor performance in a 25% of the implementations 

on patients, the final selected model is far from being reliable, and further studies regarding the 

lack of confidence intervals and a more exhaustive feature selection should be carried out in order 

to improve the present model and obtain more reliable predictions. 

Therefore, the proposed solution needs to be considered as an aiding tool for the anesthesiologist 

in terms of providing orientative knowledge on the current status of the patient and a probability 

predictive index of BS occurrence, which could be taken into account when adjusting the 

anesthetics doses. Besides, although it has been trained only with white women, the model can be 

considered a robust initial approach which could also be cautiously implemented on patients with 

these different conditions due to the previously mentioned low significance of these conditions. 

6.7. LIMITATIONS 

Bearing in mind that the proposed solution is mainly based on data analysis and processing, it can 

be expected that an important part of the limitations of the final predictive model will be due to 

limitations on the initial data as well as on its processing. 

It is important to take into consideration that the initial feature selection was performed by previous 

knowledge on the influence of each parameter in BS occurrence, but it lacked statistical 

background. Therefore, in order to ensure the influence between variables, as well as to assess 

their relationship with BS occurrence, different feature importance analysis should be performed at 

the beginning of the study. In addition, after excluding the features with less influence for BS 

occurrence predictions, several ML predictive models could be built, trained and tested with 
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different combinations of the remaining features in order to find the best-performing one, and also 

as a way of assessing once again the importance of each feature when predicting BS. 

Regarding the data processing, the lack of validation techniques such as cross validation and 

confidence intervals in each performed process might lead to less reliable results. Accordingly, 

other statistical metrics should be adopted in future studies in order to improve the accuracy and 

credibility of the obtained predictions, as well as a full-scale feature extraction. 

Lastly, it should be noted that the implementation of these models is limited to those interventions 

under propofol-remifentanil induced general anesthesia which include all the mentioned monitoring 

systems. Otherwise, the model would not have all the continuously required parameters and 

indexes to obtain the desired BS occurrence predictions. 

In order to increase validity of the model, information regarding the disease state and medication 

intake of the patients should be included in the database, as well as procedures with general 

anesthesia induced by inhalation agents, which can easily be incorporated as new covariate factors 

in the model.  
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7. EXECUTION SCHEDULE 

The required tasks and phases for acomplishing the initial objectives of the study, as well as the 

time devoted to each task and the overall schedule are covered in this section as a way of 

organizing, prioritizing and optimizing all the steps during the execution. 

7.1. TASKS DEFINITION 

First of all, the entire project was decomposed in small tasks to fulfill in order to respect the duration 

of the project and its established deadline. Hence, this section includes a brief definition of all the 

phases of the study, along with the estimated time for each task, which are shown in Table 8. 

Table 8. Overview of the tasks of the project, their description and their estimated duration time (in days) 

PROJECT PREPARATION 5 

Visit to CMA in Hospital Clínic 
1 Visit to CMA in order to see the workspace environment, the monitoring devices and the 

anesthesia control tower 

Bibliographic background research 
3 Introduction on the subject, reading of previous studies from the research group, and 

personal interests search 

Topic selection 
1 Analysis of interests of the reasearch group, different topic proposals and final selection 

according with personal interests 

DATA ACQUISITION 17 

Existing database examination 
1 

Inspection of the already collected data, the recorded parameters and its structure 

New data acquisition 

16 Stay at the gynecological operating room in the CMA in Hospital Clínic for data collection 
from patients undergoing propofol-remifentanil induced general anesthesia 

DATA PROCESSING 63 

Data frame construction 

49 
Data manipulation in order to obtain a final matrix with all the available data after 
processing it to fulfilling the requirements of ML predictive models. This phase includes 
the label obtention, the signal quality assessment, a gender, feature and observations 
selections, a compensation of the proportion of different labels and a feature scaling 

Burst Suppression incidence assessment 

4 Evaluation of the incidence of BS occurrence by groups of age on the initial patients 
available for the study 

Outliers analysis 

9 Analysis of the statistical distribution of each feature as a way of identifying possible 
outliers and rejecting them, if found 

Data split into training and test datasets 

1 Division of the available patients into a training and a test datasets following a 80/20% 
split, respectively 

ML PREDICTIVE MODELS BULDING 23 

Model training 
5 

Training of each model with the training dataset of patients after preprocessing its data 
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Model testing 
2 

Testing of each model by applying it to the test dataset 

Model evaluation and selection 

4 Obtention of the ROC-AUC curves for each model and assessment of the results to select 
the most optimal model 

Model implementation 

12 Implementation of the model with all the patients from the test dataset, evaluation of its 
best and worse predictions of the model in terms of accuracy, and assessment of the 
overall performance 

PROJECT WRITING 44 

Written report 
37 

Writing of the final report of the project 

Presentation 
7 

Realization of a brief final presentation of the project 

 

7.2. TIMING AND PHASES – GANTT DIAGRAM 

After defining all the phases and the required tasks to accomplish all the initial goals, a schedule 

must be generated in order to obtain and assess the deadline for each task in order to carry out 

the whole project within the overall deadline. With this objective, a GANTT diagram is provided in 

Figure 20 within the present section, along with the GANTT legend from which the chart is obtained, 

which can be observed in Table 9. This diagram allows to visualize in a simple way the tasks to be 

carrying out at each moment, as well as to know which tasks must be performed simultaneously. 

Table 9. GANTT legend 

DESCRIPTION START DATE DURATION END DATE 

Visit to CMA in Hospital Clínic 13 Sep. 1 13 Oct. 
Bibliographic background research 14 Sep. 3 17 Sep. 
Topic selection 28 Sep. 1 28 Sep. 
Existing database examination 19 Sep. 1 19 Sep. 
New data acquisition 13 Sep. 45* 27 Oct. 
Data frame construction 4 Oct. 49 21 Nov. 
Burst Suppression incidence assessment 18 Nov. 4 21 Nov. 
Outliers analysis 22 Nov. 9 30 Nov. 
Data split into training and test datasets 1 Dec. 1 1 Dec. 
Model training 2 Dec. 5 6 Dec. 
Model testing 7 Dec. 2 8 Dec. 
Model evaluation and selection 9 Dec. 4 12 Dec. 
Model implementation 13 Dec. 12 24 Dec. 
Written report 16 Dec. 37 21 Jan. 
Presentation 22 Jan. 7 28 Jan. 

* Data was collected for 16 days spread over 7 weeks, with an overall duration of 45 days 
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Figure 20. GANTT diagram for the project execution 
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8. TECHNICAL VIABILITY – SWOT ANALYSIS 

The project development directly depends on several aspects both external and internal which 

might affect the previous work, the course of the project, and its final success once completed. 

Hence, an exhaustive and full-scale analysis determines the course of the project and allows to 

anticipate and constantly review those aspects that can be improved. Bearing this in mind, a SWOT 

analysis was performed due to its utility in identifying the positive and negative factors involving the 

project, both from an external (opportunities and threats) and internal (strengths and weaknesses) 

point of view, as displayed in Table. 

Table 10. SWOT analysis on the project 

STRENGTHS 

Already existing database including up to 1500 patients 

Help and guidance from professionals and master students 

Previous Python experience and knowledge 

Resulting model based on real data 

WEAKNESSES 

Availability of only 457 patients from the database 

Limited prior knowledge on anesthesia monitoring 

No previous experience with ML predictive models 

OPPORTUNITIES 

Interest in individualized anesthesia is on the rise 

Hospital Clínic and the SPEC-M research group support the study 

ML models are still not implemented in anesthesiology 

No similar studies have been carried outside the SPEC-M resarch group 

Several studies report possible adverse effects with the occurrence of BS 

THREATS 

Lack of consensus regarding the adverse outcomes of BS occurrence 

No similar studies on the topic to compare and validate results 

Monitoring devices required must be installed and incorporated in the operating room 

Database expansion depends on the number of surgeries carried out 

Legislation and regulation 
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9. ECONOMIC VIABILITY 

With the aim of having a record and knowledge on the total cost of the development of a BS 

occurrence predictive model, an estimated study of costs and budgets has been carried out by 

taking into account all the expenses, both direct and indirect, involving the overall project. These 

costs, classified into material and human resources, are detailed in the present section and 

displayed in Table 11. 

9.1. MATERIAL RESOURCES 

9.1.1. HARDWARE REQUIREMENTS 

The data collected during the stay at the CMA in Hospital Clínic was not subsequently used for the 

data processing and predictive model, since the new data acquisition was carried out with the aim 

of expanding the existing database, but the patients used for the study were already collected. In 

addition, some of the used equipment for the monitoring of the patients consisted of disposable 

material, thus being difficult to estimate since the number of patients from the database is 

constantly increasing. Bearing these two facts in mind, the study of costs for the hardware 

requirements of the project was estimated for the number of patients included in the study; thus, 

taking into consideration the acquisition of data from 457 patients. 

Moreover, it has be taken into account that not all the used devices for general anesthesia 

monitoring are exclusive for this project, since some of these are already required for a proper 

control of the anesthetic state of the patients. Therefore, only the BIS VISTA® Bilateral Monitoring 

System has been included, considering that this monitor is not always used in operating rooms but 

it is explicitly required for the present study, as well as the computer required for recording and 

storing the collected data. 

Finally, given that the data processing included computationally expensive techniques, a powerful 

computer is required which, since the project is not carried out in any office or fixed location, has 

been considered more preferable for it to be a laptop. 

9.1.2. SOFTWARE REQUIREMENTS 

The data analysis and processing, as well as the ML models building, training, testing and final 

implementation on patients was performed using open source software such as Python. In addition, 

the recorded data is stored in .xlsx files, so Microsoft Excel® was used to examine the patients data, 

and the final report and presentation used Microsoft® 365 services. Lastly, the storing of the 

recorded data uses the Rugloop® free software, able to access the monitoring devices and save 

them in a file. 

9.2. HUMAN RESOURCES 

As a way of assessing the human resources required for successfully carrying out the project, and 

according to the previously detailed tasks and the overlapping of some phases, it has been 

considered that the project had an overall duration of 138 days, from September 13, 2021 to 
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January 28, 2022. During these days, all the mentioned tasks were performed by an undergraduate 

student, and support and supervision tasks were performed both by a Master student and a 

professional anesthesiologist. Hence, taking into consideration the amount of hours devoted to the 

project, the expertise, and according to the current standards and cost of living, the the salary of 

each person per hour worked has been decided to be of 10€ for the undergraduate, 15€ for the 

Master student, and 30€ for the professional supervisor. 

9.3. COSTS AND BUDGET 

All the previously detailed costs are concisely detailed in Table 11, estimating the cost of each item 

for the project as well as its overall budget. 

Table 11. Costs and budget for the entire project 

 

  

 UNIT/HOUR PRICE (€) UNITS/HOURS TOTAL (€) 

MATERIAL RESOURCES - HARDWARE 
BIS VISTA® Bilateral 
Monitoring System 

5740 1 5740 

BIS VISTA® electrodes 13.25 457 6055.25 
HP ProPne 400 G6 895 1 895 
    

SUBTOTAL   12690.25 
    

MATERIAL RESOURCES – SOFTWARE 

Python software - 1 - 

Microsoft Office® 365 69 1 69 

Rugloop® software - 1 - 
 

SUBTOTAL   69 
 

HUMAN RESOURCES 

Undergraduate student 10 400 4000 

Master student 15 10 150 

Professional supervisor 30 20 600 
 

SUBTOTAL   4750 
 

TOTAL   17509.25 
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10. REGULATORY AND LEGAL ASPECTS 

The developement of the present project, both regarding the equipment used and the data 

collection and manipulation, has to follow and agree with the current regulations and legislations. 

Therefore, some regulatory issues need to be considered. 

Regarding the data acquisition, the patients whose data is recorded have previously consent the 

data collection and usage in studies. However, given the fact that when a patient entries to the pre-

operative room its medical history is automatically available for all the professionals assisting the 

surgery, the Ley Orgánica 3/2018, also known as Ley Orgánica de protección de datos personales 

y garantía de los derechos digitales has to be carefully respected in order to ensure data 

confidentiality during the intervention and of all the information regarding personal aspects of the 

patient [70]. 

As for the developed predictive model based on ML algorithms, it can be classified in the category 

of Software as Medical Device (SaMD), as well as some other ML models applicable to healthcare. 

Hence, it must follow the directives set by the US Food and Drug Administration (FDA), responsible 

for the regulation of drugs and medical devices [71], or by the corresponding and appropriate 

government agencies in each country. 

According to the European Union, however, there are no regulations regarding the use of ML in 

healthcare. If the developed BS occurrence predictive model was improved in terms of accuracy, 

since it displays an index which could influence the anesthesiologist on adjusting and manipulating 

the anesthesic administration and, thus, immediately affect physiological parameters, it could be 

classified as IIb device. 

Finally, in order to introduce the predictive model to the market, a detailed manual specifying the 

operation of the device, as well as the type of data it requires and recommendations on how to 

interpret the results must be submitted to FDA or similar agencies, depending on the 

comercialization country, for evaluation and, if permitted, the BS predictive model could be 

distributed. 
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11. CONCLUSIONS AND FUTURE LINES 

The reported possible adverse outcomes regarding BS occurrence, as well as its high incidence 

under propofol-remifentanil induced general anesthesia evidence the need of developing predictive 

methods in order to anticipate and avoid this phenomenon. This can be accomplished using ML 

techniques, which currently are gaining popularity on many fields including healthcare; however, 

they are still not much implemented in operating rooms and patient monitoring. Therefore, this 

project aims to prove the potential benefits of introducing ML into surgical environments while 

proposing a solution to the lack of BS occurrence predictive power in current monitoring devices. 

According to the obtained results, it has been proved that BS occurrence is susceptible to prediction 

through ML predictive models trained with a high-quality large database. The model achieving the 

highest ROC-AUC score has been shown to be the SVC with RBF kernel and γ = 0.25 with a value 

of 0.829; thus, it has been the selected model for BS occurrence predicting. Nonetheless, after 

implementing the model to several patients, it was seen that a 25% of the predictions had a 

predictive accuracy below 0.6, which can be considered to be a significantly large proportion of 

unaccurate predictions. Therefore, the current model is a robust initial approach that has to be 

understood as an orientative guidance tool for the anesthesiologist when assessing the anesthetic 

state of the patient and adjusting drug administration, but it should not be taken as absolute truth 

due to its low reliability. 

Regarding the analysis on the influence of each used feature in the BS occurrence predictions, 

both feature importance metrics included in RF and XGB predictive models and correlation matrix 

statistics from the SVC results show a high influence of age and BIS values on their predictions, 

followed by the propofol effect-site concentration. Since at first it might be expected a higher 

influence of the hypnotic agent, further studies should be performed with more variability in the data 

and using different metrics in order to ensure the reliability of these results. 

In light of the above, the predictive ability of the obtained model achieves an acceptable 

performance but shows that there is still room for improvement. Hence, model refinement should 

include a larger dataset involving patients under general anesthesia induced by inhalation agents 

and information regarding disease state and medication of the patients, which can be easily 

incorporated as covariate factors. As for the data processing, different validation techniques such 

as confidence intervals should be applied to each process, and more statistical metrics could lead 

to a more reliable feature importance assessment. In addition, an exhaustive feature selection 

testing the models with different combinations of the recorded parameters could be carried out, 

along with a full-scale study on the performance of more ML models in order to test whether an 

enhancement in the predictive power can be achieved. 

To conclude, the proposed solution must be interpreted as a helpful tool for future BS occurrence 

assessment, but its current low reliability should always be kept in mind. If further studies achieved 

an improved performance of the model, the ultimate goal would be to integrate it within the 

monitoring devices already used in surgical environments and patient monitoring. Eventually, if 

outstanding results were accomplished, the model could be integrated with the TCI system as a 

way of automatically adjust drug administration according to the BS occurrence prediction. 
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APPENDICES 

# -*- coding: utf-8 -*- 

""" 

Created on Thu Oct 28 17:37:49 2021 

 

@author: Joana 

""" 

 

import pandas as pd 

import os 

import numpy as np 

import statsmodels.api as sm 

from matplotlib import pyplot as plt 

import scipy.stats 

from sklearn import svm 

from sklearn.metrics import roc_auc_score, roc_curve, accuracy_score 

from sklearn.neighbors import KNeighborsClassifier 

from sklearn.ensemble import RandomForestClassifier 

from xgboost import XGBClassifier 

import seaborn as sns 

 

directory = os.getcwd() 

 

# ==================================================================== 

# FUNCTION TO CHECK IF A LIST HAS ALL EQUAL VALUES 

# ==================================================================== 

 

def is_unique(s): 

    a = s.to_numpy() 

    return (a[0] == a).all() 

 

# ==================================================================== 

# FUNCTION TO CREATE A MATRIX WITH DATA FROM ALL PATIENTS. -FILE PATH- 

# MUST SPECIFY WHETHER DATA COMES FROM TRAIN OR TEST DATASET 

# ==================================================================== 

 

def create_matrix(file_path): 

     

    db_in = pd.read_csv(file_path) 

     

    # DELETE IRRELEVANT FEATURES 

     

    del [db_in['WEIGHT'], db_in['HEIGHT'], db_in['SYSTIME'], 

    db_in['EVENT'], db_in['REMI_RATE'], db_in['REMI_VOL'], 

db_in['REMI_CT'], 

    db_in['PROPO_RATE'], db_in['PROPO_VOL'], db_in['PROPO_CT'], 

db_in['SEF'], 

    db_in['EMG'], db_in['TOTPOW'], db_in['TV'], db_in['RR'], 

    db_in['RR_CO2'], db_in['PLETH_SAT_O2'], db_in['PLETH_HR'], 

db_in['NIBP_DIA'], 

    db_in['NIBP_SYS'], db_in['ID'], db_in['BMI'], db_in['REMI_CP'], 

db_in['PROPO_CP']] 

             

 

 



 

II 

    # DELETE ROWS WITHOUT SR VALUES 

     

    for i in range(len(db_in)): 

        if pd.isna(db_in.loc[i, 'SR']) == True: 

            db_in = db_in.drop(i)  

    db_in = db_in.reset_index(drop=True) 

     

    # CREATE A NEW COLUMN WITH SR VALUES WITHIN 120 SECONDS 

     

    future_sr = [] 

    future_sr_arr = np.empty((120,1)) 

    future_sr_arr[:] = np.nan 

    future_sr_arr = future_sr_arr.flatten() 

    future_sr_nan = future_sr_arr.tolist() 

    db_in = db_in.reset_index(drop=True) 

     

    for i in range(len(db_in)-120): 

        future_sr.append(db_in['SR'][i+120]) 

    future_sr = future_sr + future_sr_nan 

     

    db_in['FUTURE_SR'] = future_sr 

    db_in = db_in.reset_index(drop=True) 

     

    # DELETE ROWS WITH SOME NaN VALUE OR SQI<60 

     

    for column in list(db_in): 

        for i in range(len(db_in)): 

            if pd.isna(db_in.loc[i, column]) == True: 

                db_in = db_in.drop(i)    

        db_in = db_in.reset_index(drop=True) 

         

    for i in range(len(db_in)): 

        if db_in.at[i,'SQI'] <= 60: 

            db_in = db_in.drop(i) 

     

    db_in = db_in.reset_index(drop=True) 

     

    # REPLACE VALUES IN FUTURE_SR>0 FOR 1, IT MEANS THERE IS BS 

         

    for i in range(len(db_in)): 

        if db_in.at[i, 'FUTURE_SR'] > 0: 

            db_in.at[i, 'FUTURE_SR'] = 1 

    db_in = db_in.reset_index(drop=True) 

     

    # DELETE SQI AND SR COLUMNS 

     

    del [db_in['SQI'], db_in['SR']] 

     

    # IF THE PATIENT IS A MAN OR IF BS DOES NOT OCCUR, IT IS NOT USED 

     

    try: 

        if is_unique(db_in['FUTURE_SR']) == True: 

            del db_in 

            return 

         

        elif db_in['SEX'][0] != 'F': 

            del db_in 



 

III 

            return 

         

        else: 

            del db_in['SEX'] 

            return db_in 

     

    except: 

        return 

 

# ==================================================================== 

# FUNCTION TO REMOVE OUTLIERS FROM BELOW PERCENTILE 15 AND OVER #  

# PERCENTIL 85 IF DATA DISTRIBUTION IS NORMAL  

# ==================================================================== 

 

def outlier_removal_normal(df, df_normal_data): 

    df_numeric = df_normal_data.select_dtypes(include=np.number) 

    Q1 = df_numeric.quantile(0.15) 

    Q3 = df_numeric.quantile(0.85) 

    IQR = Q3 - Q1 

    outliers = (df_numeric<(Q1-1.5*IQR))|(df_numeric>(Q3 + 1.5*IQR)) 

    indexes = [] 

    for idx, row in outliers.iterrows(): 

        if True in row.tolist(): 

            indexes.append(idx) 

    df = df.drop(indexes) 

    df = df.reset_index(drop=True) 

     

    return df 

 

# ==================================================================== 

# FUNCTION TO SCALE AND NORMALIZE EACH FEATURE TO VALUES RANGING 0 - 1 

# ==================================================================== 

 

def normalize(df): 

    df = (df-df.min())/(df.max()-df.min()) 

     

    return df 

 

# ==================================================================== 

# FUNCTION TO OBTAIN DISTRIBUTION QQ-PLOTS 

# ==================================================================== 

 

def plot_distributions(df, distributions, distributions_names, t): 

    for col in df.columns: 

        fig, axes = plt.subplots(ncols=2, nrows=2, sharex=False) 

        x = 0 

        for k, ax in zip(df.columns, np.ravel(axes)): 

            sm.qqplot(df[col], distributions[x], line='s', ax=ax, 

markerfacecolor='Maroon', markeredgecolor='Maroon', alpha=0.9, 

marker='.', markersize = 0.1) 

            

ax.set_title(str(distributions_names[distributions.index(distributions

[x])]), fontsize=14) 

            ax.xaxis.get_label().set_fontsize(12) 

            ax.yaxis.get_label().set_fontsize(12) 

            ax.get_lines()[1].set_color("Darkslategrey") 

            ax.get_lines()[1].set_linewidth("2") 



 

IV 

            x = x+1 

        fig.suptitle(f'{col}', size = 16) 

        plt.tight_layout() 

         

        fig.savefig(os.path.join(directory, 'QQ-Plots', str(col) + '_' 

+ t + '.png')) 

        plt.close(fig) 

 

# ==================================================================== 

# FUNCTION TO FIND THE OPTIMAL THRESHOLD IN TERMS OF ACCURACY 

# ==================================================================== 

 

def Find_Optimal_Cutoff(target, predicted): 

 

    fpr, tpr, threshold = roc_curve(target, predicted) 

    i = np.arange(len(tpr))  

    roc = pd.DataFrame({'tf' : pd.Series(tpr-(1-fpr), index=i), 

'threshold' : pd.Series(threshold, index=i)}) 

    roc_t = roc.iloc[(roc.tf-0).abs().argsort()[:1]] 

 

    return list(roc_t['threshold']) 

 

# ==================================================================== 

# FUNCTION TO APPLY A MODEL TO ALL TEST PATIENTS AND OBTAINS RESULTS  

# FROM THE BEST AND WORST PERFORMANCES 

# ==================================================================== 

 

def model_example_performance(ml_model, threshold): 

    highest_accuracy = 0 

    lowest_accuracy = 1 

    highest_accuracy_predicted_data = [] 

    highest_accuracy_real_data = [] 

    lowest_accuracy_predicted_data = [] 

    lowest_accuracy_real_data = [] 

    highest_accuracy_patient_time = [] 

    lowest_accuracy_patient_time = [] 

    accuracies = [] 

         

    for file in os.listdir(os.path.join(directory, 'Database', 

'Test')): 

        try: 

            df_pat = create_matrix(os.path.join(directory, 'Database', 

'Test', file)) 

            df_pat_time = df_pat['TIME'] 

            df_pat = df_pat.drop(['TIME'], axis = 1) 

             

            df_pat_age = df_pat.drop(['REMI_CE', 'PROPO_CE', 'BIS', 

'ECG_HR', 'NIBP_MEAN', 'FUTURE_SR'], axis = 1) 

            df_pat_other = df_pat.drop(['AGE'], axis = 1) 

            df_pat_other = normalize(df_pat_other) 

            df_pat_age = df_pat_age/100 

 

            df_pat = pd.concat([df_pat_age, df_pat_other], axis=1) 

             

            df_pat_np = df_pat.to_numpy() 

                         

            x_test, y_test = df_pat_np[:, :-1], df_pat_np[:, -1] 
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            y_predicted_proba = ml_model.predict_proba(x_test)[:, -1] 

 

            y_predicted = ml_model.predict(x_test) 

            accuracy = accuracy_score(y_test, y_predicted) 

            accuracies.append(round(accuracy, 2)) 

             

            if accuracy >= highest_accuracy: 

                highest_accuracy = accuracy                 

                highest_accuracy_predicted_data = y_predicted_proba 

                highest_accuracy_real_data = y_test 

                highest_accuracy_patient_time = df_pat_time.to_list() 

                 

            if accuracy <= lowest_accuracy: 

                lowest_accuracy = accuracy 

                lowest_accuracy_predicted_data = y_predicted_proba 

                lowest_accuracy_real_data = y_test 

                lowest_accuracy_patient_time = df_pat_time.to_list() 

         

        except: 

            continue 

         

    highest_accuracy_threshold = 

np.where(highest_accuracy_predicted_data>=threshold, 1, 0) 

    lowest_accuracy_threshold = 

np.where(lowest_accuracy_predicted_data>=threshold, 1, 0) 

         

    return (highest_accuracy, lowest_accuracy, 

            highest_accuracy_predicted_data, 

highest_accuracy_real_data, 

            lowest_accuracy_predicted_data, lowest_accuracy_real_data, 

            highest_accuracy_patient_time, 

lowest_accuracy_patient_time, 

            accuracies, 

            highest_accuracy_threshold, lowest_accuracy_threshold) 

 

# ==================================================================== 

# FUNCTION TO OBTAIN FEATURE IMPORTANCE BARPLOT 

# ==================================================================== 

 

def show_values_on_bars(axs, h_v, space): 

    def _show_on_single_plot(ax): 

        if h_v == "v": 

            for p in ax.patches: 

                _x = p.get_x() + p.get_width() / 2 

                _y = p.get_y() + p.get_height() + 

(p.get_height()*0.01) 

                value = round(float(p.get_height()), 3) 

                ax.text(_x, _y, value, ha = "center")  

        elif h_v == "h": 

            for p in ax.patches: 

                _x = p.get_x() + p.get_width() + float(space) 

                _y = p.get_y() + p.get_height() - (p.get_height()*0.5) 

                value = round(float(p.get_width()), 3) 

                ax.text(_x, _y, value, ha="left") 

 

    if isinstance(axs, np.ndarray): 

        for idx, ax in np.ndenumerate(axs): 
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            _show_on_single_plot(ax) 

    else: 

        _show_on_single_plot(axs) 

         

# ==================================================================== 

# FUNCTION THAT CHECKS IF A PATIENT HAS BS OCCURRENCE PERIODS 

# ==================================================================== 

 

def has_burst_suppression(df): 

    df['SR'] = df['SR'].fillna(0) 

    for i in range (len(df)): 

        if (df['SR'] == 0).all() == False: 

            return 1 

        else: 

            return 0 

         

# ==================================================================== 

# FUNCTION THAT CLASSIFIES PATIENTS IN GROUPS OF AGE 

# ==================================================================== 

 

def classify_ages(ages): 

    age_groups = [] 

    for age in ages: 

        if 0<=age<20: 

            age_groups.append('0-19') 

        if 20<=age<40: 

            age_groups.append('20-39') 

        if 40<=age<60: 

            age_groups.append('40-59') 

        if 60<=age<80: 

            age_groups.append('60-79') 

        if 80<=age: 

            age_groups.append('>80') 

    return age_groups 

 

# ==================================================================== 

# CHECK BURST SUPPRESSION INCIDENCE BY GROUPS OF AGE 

# ==================================================================== 

 

####### BS PERCENTAGE BARPLOT BY AGE GROUP AND NUMBER OF PATIENTS 

DISTRIBUTED BY AGE GROUP 

 

is_bs = [] 

number_patients_train = 0 

number_patients_test = 0 

ages = [] 

 

for file in os.listdir(os.path.join(directory, 'Database', 'Train')): 

    df_patient = pd.read_csv(os.path.join(directory, 'Database', 

'Train', file)) 

    if pd.isna(df_patient['AGE'][0]) == False: 

        ages.append(df_patient['AGE'][0]) 

        is_bs.append(has_burst_suppression(df_patient)) 

        number_patients_train = number_patients_train + 1 

    else: 

        continue 
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for file in os.listdir(os.path.join(directory, 'Database', 'Test')): 

    df_patient = pd.read_csv(os.path.join(directory, 'Database', 

'Test', file)) 

    if pd.isna(df_patient['AGE'][0]) == False: 

        ages.append(df_patient['AGE'][0]) 

        is_bs.append(has_burst_suppression(df_patient)) 

        number_patients_test = number_patients_test + 1 

    else: 

        continue 

         

my_palette = {'0-19': 'Olivedrab', '20-39': 'Maroon', '40-59': 

'DarkOrange', '60-79': 'Tomato', '>80': 'Darkslategrey'} 

 

bs_ages = {'Burst Suppression': is_bs, 'Age group': 

classify_ages(ages)} 

 

plt.figure() 

ax = sns.barplot(x='Age group', y='Burst Suppression', data=bs_ages, 

            estimator=lambda x: sum(x==1)*100.0/len(x), palette = 

my_palette, 

            order = ['0-19', '20-39', '40-59', '60-79', '>80']) 

for p in ax.patches: 

   ax.annotate('{:.1f}'.format(p.get_height()), (p.get_x()+0.05, 

p.get_height()+1.5)) 

 

plt.title('Burst Suppression occurrence \n for each age group', 

fontsize = 16) 

plt.xlabel('Groups of ages (years)', fontsize = 12) 

plt.ylabel('Burst Suppression occurrence (%)', fontsize = 12) 

plt.gca().spines['top'].set_visible(False) 

plt.gca().spines['right'].set_visible(False) 

plt.tight_layout() 

 

plt.savefig(os.path.join(directory, 'Other_plots', 

'BS_percentage_per_age_group.png')) 

plt.close() 

 

plt.figure() 

ax = sns.countplot(data=bs_ages, x="Age group", order = ['0-19', '20-

39', '40-59', '60-79', '>80'], 

             palette = my_palette) 

for p in ax.patches: 

   ax.annotate('{:.1f}'.format(p.get_height()), (p.get_x()+0.25, 

p.get_height()+1.5)) 

    

plt.title('Number of patients \n for each age group', fontsize = 16) 

plt.xlabel('Groups of ages (years)', fontsize = 12) 

plt.ylabel('Number of patients', fontsize = 12) 

plt.gca().spines['top'].set_visible(False) 

plt.gca().spines['right'].set_visible(False) 

plt.tight_layout() 

 

plt.savefig(os.path.join(directory, 'Other_plots', 

'Number_of_patients_per_age_group.png')) 

plt.close() 

 

del number_patients_train, number_patients_test 
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# ==================================================================== 

# MATRIX OBTENTION 

# ==================================================================== 

 

###### TRAINING 

 

frames = [] 

number_patients_train = 0 

ages = [] 

 

for file in os.listdir(os.path.join(directory, 'Database', 'Train')): 

    df_patient = create_matrix(os.path.join(directory, 'Database', 

'Train', file)) 

    try: 

        ages.append(df_patient['AGE'][0]) 

        frames.append(df_patient) 

        number_patients_train = number_patients_train + 1 

    except: 

        continue 

     

print('Number of patients for the Training: ', number_patients_train) 

 

df_train = normalize(pd.concat(frames)) 

df_train = df_train.reset_index(drop=True) 

df_train = df_train.drop(['TIME'], axis = 1) 

 

d_ages = {'Group': classify_ages(ages), 'Age': ages} 

 

my_palette = {'0-19': 'Olivedrab', '20-39': 'Maroon', '40-59': 

'DarkOrange', '60-79': 'Tomato', '>80': 'Darkslategrey'} 

 

# AGES BOXPLOT TRAIN 

 

plt.figure() 

sns.boxplot(x = "Group", y = "Age", data = d_ages, 

            order = ['0-19', '20-39', '40-59', '60-79', '>80'], 

            palette = my_palette, showmeans = True, 

            meanprops = {"marker":"o", 

                       "markerfacecolor":"white",  

                       "markeredgecolor":"black", 

                      "markersize":"5"}) 

plt.title('Ages distribution of the Train patients', fontsize = 16) 

plt.xlabel('Groups of ages (years)', fontsize = 12) 

plt.ylabel('Ages', fontsize = 12) 

plt.gca().spines['top'].set_visible(False) 

plt.gca().spines['right'].set_visible(False) 

plt.tight_layout() 

 

plt.savefig(os.path.join(directory, 'Other_plots', 'ages_train.png')) 

plt.close() 

 

del frames, ages 
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###### TEST 

 

frames = [] 

number_patients_test = 0 

ages = [] 

 

for file in os.listdir(os.path.join(directory, 'Database', 'Test')): 

    df_patient = create_matrix(os.path.join(directory, 'Database', 

'Test', file)) 

    try: 

        ages.append(df_patient['AGE'][0]) 

        frames.append(df_patient) 

        number_patients_test = number_patients_test + 1 

    except: 

        continue 

 

print('Number of patients for the Test: ', number_patients_test) 

 

df_test = normalize(pd.concat(frames)) 

df_test = df_test.reset_index(drop=True) 

df_test = df_test.drop(['TIME'], axis = 1) 

 

d_ages = {'Group': classify_ages(ages), 'Age': ages} 

 

# AGES BOXPLOT TEST 

 

plt.figure() 

sns.boxplot(x="Group", y="Age", data=d_ages, 

            order=['0-19', '20-39', '40-59', '60-79', '>80'], 

            palette=my_palette, showmeans=True, 

            meanprops={"marker":"o", 

                       "markerfacecolor":"white",  

                       "markeredgecolor":"black", 

                      "markersize":"5"}) 

plt.title('Ages distribution of the Test patients', fontsize = 16) 

plt.xlabel('Groups of ages (years)', fontsize = 12) 

plt.ylabel('Ages', fontsize = 12) 

plt.gca().spines['top'].set_visible(False) 

plt.gca().spines['right'].set_visible(False) 

plt.tight_layout() 

 

plt.savefig(os.path.join(directory, 'Other_plots', 'ages_test.png')) 

plt.close() 

 

del frames, ages 

 

###### GET DATA FOR OUTLIERS ANALYSIS 

 

continuous_distributions = [scipy.stats.norm, scipy.stats.uniform, 

scipy.stats.expon, scipy.stats.laplace] 

continuous_distributions_names = ['Normal', 'Uniform', 'Exponential', 

'Laplace'] 

 

df_continuous = df_train.drop(['AGE', 'FUTURE_SR', 'NIBP_MEAN', 

'ECG_HR'], axis = 1) 
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# ==================================================================== 

# QQ-PLOTS OBTENTION 

# ==================================================================== 

 

t = 'BOR' 

 

plot_distributions(df_train, continuous_distributions, 

continuous_distributions_names, t) 

 

p_values_bor = {} 

for col in df_train.columns: 

    p_values_bor[col] = scipy.stats.normaltest(df_train[col])[1] 

 

print('P-values before Outliers removal: ', p_values_bor) 

 

t = 'AOR' 

 

df_outlier = outlier_removal_normal(df_train, df_continuous) 

plot_distributions(df_outlier, continuous_distributions, 

continuous_distributions_names, t) 

 

p_values_aor = {} 

for col in df_continuous.columns: 

    p_values_aor[col] = scipy.stats.normaltest(df_outlier[col])[1] 

 

print('P-values after Outliers removal: ', p_values_aor) 

 

# ==================================================================== 

# CORRELATION MATRIX WITH THE TRAIN PATIENTS 

# ==================================================================== 

 

plt.figure() 

corr_train = df_train.corr() 

sns.heatmap(corr_train, annot=True, cmap = 'YlOrBr', linewidths=.5, 

vmin=-1, vmax=1) 

plt.tight_layout() 

plt.savefig(os.path.join(directory, 'Other_plots', 

'Correlation_matrix.png')) 

plt.close() 

 

# ==================================================================== 

# ==================================================================== 

#                       MACHINE LEARNING 

# ==================================================================== 

# ==================================================================== 

 

# ==================================================================== 

# SEPARATE DATA IN X_train, Y_train, X_test, Y_test 

# ==================================================================== 

 

df_train_np = df_train.to_numpy() 

df_test_np = df_test.to_numpy() 

features_names = df_test.columns[:-1] 

 

x_train, x_test, y_train, y_test = df_train_np[:, :-1], df_test_np[:, 

:-1], df_train_np[:, -1], df_test_np[:, -1] 
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# ==================================================================== 

# SVM KERNELS AND GAMMAS TOGETHER 

# ==================================================================== 

 

kernels = ['linear', 'poly', 'rbf', 'sigmoid'] 

kernels_names = ['Linear', 'Polynomial', 'RBF', 'Sigmoid'] 

gammas = [0.25, 2, 7, 10] 

colors = ['Maroon', 'Olivedrab', 'Darkslategrey', 'Tomato'] 

line_styles = ['solid', 'dotted', 'dashed', 'dashdot'] 

aucs = [] 

fpr = [] 

tpr = [] 

k = [] 

g = [] 

aucs_final = [] 

kernels_final = [] 

gammas_final = [] 

th = [] 

th_final = [] 

 

number_of_rows = x_train.shape[0] 

random_indices = np.random.choice(number_of_rows, 

size=int(number_of_rows*0.01), replace=False) 

random_rows_x = x_train[random_indices, :] 

random_rows_y = y_train[random_indices] 

 

plt.figure(figsize=(7,7)) 

 

for i in range(len(kernels)): 

    for j in range(len(gammas)):  

        SVM_classifier = svm.SVC(kernel = kernels[i], C = 7, 

probability = True, 

                                  gamma = gammas[j], random_state = 

95) 

        SVM_classifier.fit(random_rows_x, random_rows_y) 

        y_pred_svm = SVM_classifier.predict_proba(x_test)[:, -1] 

         

        print('Training with gamma ', gammas[j], ' and kernel kernel 

', kernels[i]) 

         

        false_positive_rate, true_positive_rate, thresholds = 

roc_curve(y_test, y_pred_svm) 

        th.append(Find_Optimal_Cutoff(y_test, y_pred_svm)[0]) 

        aucs.append(roc_auc_score(y_test, y_pred_svm)) 

        fpr.append(false_positive_rate) 

        tpr.append(true_positive_rate) 

        k.append(kernels_names[i]) 

        g.append(gammas[j]) 

 

for i in range(4): 

    max_index = aucs.index(max(aucs)) 

    kernels_final.append(k[max_index]) 

    gammas_final.append(g[max_index]) 

    aucs_final.append(aucs[max_index]) 

    th_final.append(th[max_index]) 

     

    plt.axis('scaled') 
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    plt.xlim([0, 1]) 

    plt.ylim([0, 1]) 

    plt.title('Support Vector Machine model', weight='bold', fontsize 

= 16) 

    plt.plot(fpr[max_index], tpr[max_index], color = colors[i], alpha 

= 0.5, lw = 2, linestyle = line_styles[i]) 

    plt.xlabel("1 - Specificity", fontsize = 12) 

    plt.ylabel("Sensitivity", fontsize = 12) 

    plt.gca().spines['top'].set_visible(False) 

    plt.gca().spines['right'].set_visible(False) 

     

    del aucs[max_index], fpr[max_index], tpr[max_index], k[max_index], 

g[max_index], th[max_index] 

 

plt.legend(['%s with Gamma = %s (AUC = %s) - Threshold = %s' % 

(kernels_final[0], gammas_final[0], round(aucs_final[0], 3), 

round(th_final[0], 3)), 

            '%s with Gamma = %s (AUC = %s)' % (kernels_final[1], 

gammas_final[1], round(aucs_final[1], 3)), 

            '%s with Gamma = %s (AUC = %s)' % (kernels_final[2], 

gammas_final[2], round(aucs_final[2], 3)), 

            '%s with Gamma = %s (AUC = %s)' % (kernels_final[3], 

gammas_final[3], round(aucs_final[3], 3))], 

            fontsize = 12, loc = 4) 

 

plt.axvline(th_final[0], color = 'maroon', linewidth = 1) 

plt.tight_layout() 

plt.plot([0, 1], [0, 1], linestyle='--', lw=2, color='Black', 

label='Random guess') 

plt.savefig(os.path.join(directory, 'ROC_curves', 

'ROC_curves_SVC.png')) 

plt.close() 

 

del false_positive_rate, true_positive_rate, thresholds, aucs, 

SVM_classifier, th 

 

# ==================================================================== 

# KNN 

# ==================================================================== 

 

number_neighbors = [10, 50, 100, 500] 

aucs = [] 

th = [] 

plt.figure(figsize=(7,7)) 

 

for i in range(len(number_neighbors)): 

    KNN_classifier = KNeighborsClassifier(n_neighbors = 

number_neighbors[i], 

                                          weights = 'uniform', 

algorithm = 'auto', 

                                          leaf_size = 5, n_jobs = -1) 

     

    KNN_classifier.fit(x_train, y_train) 

    y_pred_knn = KNN_classifier.predict(x_test) 

     

    print('Training with ', number_neighbors[i], ' neighbors') 
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    false_positive_rate, true_positive_rate, thresholds = 

roc_curve(y_test, y_pred_knn) 

    th.append(Find_Optimal_Cutoff(y_test, y_pred_knn)[0]) 

    aucs.append(roc_auc_score(y_test, y_pred_knn)) 

     

    plt.axis('scaled') 

    plt.xlim([0, 1]) 

    plt.ylim([0, 1]) 

    plt.title('K-Nearest Neighbors model', weight='bold', fontsize = 

16) 

    plt.plot(false_positive_rate, true_positive_rate, 'g', color = 

colors[i], alpha = 0.5, lw = 2, linestyle = line_styles[i]) 

    plt.xlabel("1 - Specificity", fontsize = 12) 

    plt.ylabel("Sensitivity", fontsize = 12) 

    plt.gca().spines['top'].set_visible(False) 

    plt.gca().spines['right'].set_visible(False) 

 

plt.legend(['%s neighbors (AUC = %s)' % (number_neighbors[0], 

round(aucs[0], 3)), 

            '%s neighbors (AUC = %s)' % (number_neighbors[1], 

round(aucs[1], 3)), 

            '%s neighbors (AUC = %s)' % (number_neighbors[2], 

round(aucs[2], 3)), 

            '%s neighbors (AUC = %s)' % (number_neighbors[3], 

round(aucs[3], 3))], 

            fontsize = 12, loc = 4) 

             

plt.tight_layout() 

plt.plot([0, 1], [0, 1], linestyle='--', lw=2, color='Black', 

label='Random guess') 

plt.savefig(os.path.join(directory, 'ROC_curves', 

'ROC_curves_KNN.png')) 

plt.close() 

 

del false_positive_rate, true_positive_rate, thresholds, aucs, th 

 

# ==================================================================== 

# RANDOM FOREST 

# ==================================================================== 

 

number_estimators = [50, 100, 200, 500] 

plt.figure(figsize=(7,7)) 

 

aucs = [] 

th = [] 

 

for i in range(len(number_estimators)): 

     

    RF_classifier = RandomForestClassifier(n_estimators = 

number_estimators[i], 

                                           min_samples_split = 5, 

min_samples_leaf = 2, 

                                           max_depth = 10, n_jobs = -

1, random_state = 95) 

     

    RF_classifier.fit(x_train, y_train) 

    y_pred_rf = RF_classifier.predict_proba(x_test)[:,-1] 
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    print('Training with ', number_estimators[i], ' estimators') 

     

    false_positive_rate, true_positive_rate, thresholds = 

roc_curve(y_test, y_pred_rf) 

    th.append(Find_Optimal_Cutoff(y_test, y_pred_rf)[0]) 

    aucs.append(roc_auc_score(y_test, y_pred_rf)) 

     

    plt.axis('scaled') 

    plt.xlim([0, 1]) 

    plt.ylim([0, 1]) 

    plt.title('Random Forest model', weight='bold', fontsize = 16) 

    plt.plot(false_positive_rate, true_positive_rate, 'g', color = 

colors[i], alpha = 0.5, lw = 2, linestyle = line_styles[i]) 

    plt.xlabel("1 - Specificity", fontsize = 12) 

    plt.ylabel("Sensitivity", fontsize = 12) 

    plt.gca().spines['top'].set_visible(False) 

    plt.gca().spines['right'].set_visible(False) 

 

plt.legend(['%s estimators (AUC = %s)' % (number_estimators[0], 

round(aucs[0], 3)), 

            '%s estimators (AUC = %s)' % (number_estimators[1], 

round(aucs[1], 3)), 

            '%s estimators (AUC = %s)' % (number_estimators[2], 

round(aucs[2], 3)), 

            '%s estimators (AUC = %s)' % (number_estimators[3], 

round(aucs[3], 3))], 

           fontsize = 12, loc = 4) 

 

plt.tight_layout() 

plt.plot([0, 1], [0, 1], linestyle='--', lw=2, color='Black', 

label='Random guess') 

plt.savefig(os.path.join(directory, 'ROC_curves', 

'ROC_curves_RF.png')) 

plt.close() 

 

del false_positive_rate, true_positive_rate, thresholds, aucs, th 

 

# ==================================================================== 

# RANDOM FOREST FEATURE IMPORTANCE - 100 NEIGHBORS 

# ==================================================================== 

 

RF_classifier = RandomForestClassifier(n_estimators = 100, 

                                           min_samples_split = 5, 

min_samples_leaf = 2, 

                                           max_depth = 10, n_jobs = -

1, random_state = 95) 

     

RF_classifier.fit(x_train, y_train) 

y_pred_rf = RF_classifier.predict_proba(x_test)[:,-1] 

 

importance = RF_classifier.feature_importances_ 

     

data={'feature_names':features_names,'feature_importance':importance} 

fi_df = pd.DataFrame(data) 
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my_palette_2 = {'AGE': 'DarkOrange', 'REMI_CE': 'SeaGreen', 

'PROPO_CE': 'Maroon', 'BIS': 'Tomato', 'ECG_HR': 'Olivedrab', 

'NIBP_MEAN': 'Darkslategrey'} 

 

# plot feature importance 

plt.figure() 

ax = sns.barplot(x = fi_df['feature_importance'], y = 

fi_df['feature_names'], palette = my_palette_2) 

show_values_on_bars(ax, "h", 0.005) 

plt.title('Random Forest Feature Importance', fontsize = 16) 

plt.xlabel('Feature importance', fontsize = 12) 

plt.ylabel('Feature', fontsize = 12) 

axs = plt.gca() 

right_side = axs.spines["right"] 

right_side.set_visible(False) 

upper_side = axs.spines["top"] 

upper_side.set_visible(False) 

plt.tight_layout() 

plt.savefig(os.path.join(directory, 'Feature_importance', 

'Feature_importance_RF_nosorted.png')) 

plt.close() 

 

del importance, fi_df, ax, axs, right_side, upper_side 

 

# ==================================================================== 

# XGBOOST 

# ==================================================================== 

 

number_estimators = [50, 100, 200, 500] 

plt.figure(figsize=(7,7)) 

 

aucs = [] 

th = [] 

 

for i in range(len(number_estimators)): 

     

    XGboost_classifier = XGBClassifier(n_estimators = 

number_estimators[i], eval_metric='mlogloss', 

                                           max_depth = 10, n_jobs = -

1, random_state = 95, 

                                           use_label_encoder =False) 

     

    XGboost_classifier.fit(x_train, y_train) 

    y_pred_xgb = XGboost_classifier.predict_proba(x_test)[:,-1] 

     

    print('Testing with ', number_estimators[i], ' estimators') 

     

    false_positive_rate, true_positive_rate, thresholds = 

roc_curve(y_test, y_pred_xgb) 

    th.append(Find_Optimal_Cutoff(y_test, y_pred_xgb)[0]) 

    aucs.append(roc_auc_score(y_test, y_pred_xgb)) 

     

    plt.axis('scaled') 

    plt.xlim([0, 1]) 

    plt.ylim([0, 1]) 

    plt.title('XGBoost model', weight='bold', fontsize = 16) 
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    plt.plot(false_positive_rate, true_positive_rate, 'g', color = 

colors[i], alpha = 0.5, lw = 2, linestyle = line_styles[i]) 

    plt.xlabel("1 - Specificity", fontsize = 12) 

    plt.ylabel("Sensitivity", fontsize = 12) 

    plt.gca().spines['top'].set_visible(False) 

    plt.gca().spines['right'].set_visible(False) 

     

plt.legend(['%s estimators (AUC = %s)' % (number_estimators[0], 

round(aucs[0], 3)), 

            '%s estimators (AUC = %s)' % (number_estimators[1], 

round(aucs[1], 3)), 

            '%s estimators (AUC = %s)' % (number_estimators[2], 

round(aucs[2], 3)), 

            '%s estimators (AUC = %s)' % (number_estimators[3], 

round(aucs[3], 3))], 

           fontsize = 12, loc = 4) 

 

plt.tight_layout() 

plt.plot([0, 1], [0, 1], linestyle='--', lw=2, color='Black', 

label='Random guess') 

plt.savefig(os.path.join(directory, 'ROC_curves', 

'ROC_curves_XGB.png')) 

plt.close() 

 

del false_positive_rate, true_positive_rate, thresholds, aucs 

 

# ==================================================================== 

# XGBOOST FEATURE IMPORTANCE - 100 NEIGHBORS 

# ==================================================================== 

 

XGB_classifier = XGBClassifier(n_estimators = 100, use_label_encoder 

=False, 

                               eval_metric = 'mlogloss', 

                               max_depth = 10, n_jobs = -1, 

random_state = 95) 

     

XGB_classifier.fit(x_train, y_train) 

y_pred_xgb = XGB_classifier.predict_proba(x_test)[:,-1] 

 

importance = XGB_classifier.feature_importances_ 

     

data={'feature_names':features_names,'feature_importance': importance} 

fi_df = pd.DataFrame(data) 

 

# plot feature importance 

plt.figure() 

ax = sns.barplot(x=fi_df['feature_importance'], 

y=fi_df['feature_names'], palette = my_palette_2) 

show_values_on_bars(ax, "h", 0.005) 

plt.title('XGBoost Feature Importance', fontsize = 16) 

plt.xlabel('Feature importance', fontsize = 12) 

plt.ylabel('Feature', fontsize = 12) 

axs = plt.gca() 

right_side = axs.spines["right"] 

right_side.set_visible(False) 

upper_side = axs.spines["top"] 

upper_side.set_visible(False) 



 

XVII 

plt.tight_layout() 

plt.savefig(os.path.join(directory, 'Feature_importance', 

'Feature_importance_XGB_nosorted.png')) 

plt.close() 

 

del importance, fi_df, ax, axs, right_side, upper_side 

 

# ==================================================================== 

# TEST WITH PATIENTS 

# ==================================================================== 

 

SVM_classifier = svm.SVC(kernel = 'linear', C = 7, probability = True, 

gamma = 'auto', random_state = 95) 

SVM_classifier.fit(random_rows_x, random_rows_y) 

 

threshold = 0.191 

 

highest_accuracy, lowest_accuracy, highest_accuracy_predicted_data, 

highest_accuracy_real_data, lowest_accuracy_predicted_data, 

lowest_accuracy_real_data, highest_accuracy_patient_time, 

lowest_accuracy_patient_time, accuracies, highest_accuracy_threshold, 

lowest_accuracy_threshold = model_example_performance(SVM_classifier, 

threshold) 

 

print('Highest accuracy = %s' % highest_accuracy, 'Lowest accuracy = 

%s' % lowest_accuracy) 

 

# ==================================================================== 

# BEST AND WORST PERFORMANCES PLOTS - BS VS. TIME 

# ==================================================================== 

 

fig, axs = plt.subplots(3, gridspec_kw={'height_ratios': [3, 1, 1]}, 

figsize=(8, 10)) 

fig.suptitle('Lowest performance scenario', fontsize = 16) 

axs[0].plot(lowest_accuracy_patient_time, 

lowest_accuracy_predicted_data, color = 'Maroon', alpha = 0.75) 

axs[1].plot(lowest_accuracy_patient_time, lowest_accuracy_threshold, 

color = 'Darkslategrey', alpha = 0.75) 

axs[2].plot(lowest_accuracy_patient_time, lowest_accuracy_real_data, 

color = 'DarkOrange') 

axs[0].axhline(threshold, linewidth=1, color = 'Olivedrab') 

fig.supxlabel("Time", fontsize = 12) 

axs[0].set(ylabel='Predicted BS (probability)') 

axs[1].set(ylabel='Predicted BS') 

axs[2].set(ylabel='Actual BS') 

plt.ylim([0, 1]) 

plt.xlim(0) 

sns.despine(left=False, bottom=False, right=True, top=True) 

fig.tight_layout() 

fig.align_labels() 

 

fig.savefig(os.path.join(directory, 'Other_Plots', 

'Lowest_performance.png')) 

plt.close() 

 

fig, axs = plt.subplots(3, gridspec_kw={'height_ratios': [3, 1, 1]}, 

figsize=(8, 10)) 
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fig.suptitle('Highest performance scenario', fontsize = 16) 

axs[0].plot(highest_accuracy_patient_time, 

highest_accuracy_predicted_data, color = 'Maroon', alpha = 0.75) 

axs[1].plot(highest_accuracy_patient_time, highest_accuracy_threshold, 

color = 'Darkslategrey', alpha = 0.75) 

axs[2].plot(highest_accuracy_patient_time, highest_accuracy_real_data, 

color = 'DarkOrange') 

axs[0].axhline(threshold, linewidth=1, color = 'Olivedrab') 

fig.supxlabel("Time", fontsize = 12) 

axs[0].set(ylabel='Predicted BS (probability)') 

axs[1].set(ylabel='Predicted BS') 

axs[2].set(ylabel='Actual BS') 

plt.ylim([0, 1]) 

plt.xlim(0) 

sns.despine(left=False, bottom=False, right=True, top=True) 

fig.tight_layout() 

fig.align_labels() 

 

plt.savefig(os.path.join(directory, 'Other_Plots', 

'Highest_performance.png')) 

plt.close() 

 

# ==================================================================== 

# BEST AND WORST PERFORMANCES PROBABILITY DISTRIBUTION 

# ==================================================================== 

 

zeros_low = [] 

ones_low = [] 

zeros_high = [] 

ones_high = [] 

 

for i in (range(len(lowest_accuracy_real_data))): 

    if int(lowest_accuracy_real_data[i])==0: 

        zeros_low.append(i) 

    else: 

        ones_low.append(i) 

         

for i in (range(len(highest_accuracy_real_data))): 

    if int(highest_accuracy_real_data[i])==0: 

        zeros_high.append(i) 

    else: 

        ones_high.append(i) 

 

d_low = {'0': [lowest_accuracy_predicted_data[i] for i in zeros_low], 

'1': [lowest_accuracy_predicted_data[i] for i in ones_low]} 

d_high = {'0': [highest_accuracy_predicted_data[i] for i in 

zeros_high], '1': [highest_accuracy_predicted_data[i] for i in 

ones_high]} 

 

df_low = pd.DataFrame(list(zip(lowest_accuracy_real_data, 

lowest_accuracy_predicted_data)), 

                columns =['Real Burst Suppression', 'Predicted Burst 

Suppression Probability']) 

 

df_high = pd.DataFrame(list(zip(highest_accuracy_real_data, 

highest_accuracy_predicted_data)), 
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                columns =['Real Burst Suppression', 'Predicted Burst 

Suppression Probability']) 

 

entire_df_h = pd.DataFrame(list(zip(highest_accuracy_real_data, 

highest_accuracy_predicted_data, ['Best 

performance']*len(highest_accuracy_predicted_data))), 

                         columns = ['Real Burst Suppression', 

'Predicted Burst Suppression Probability', 'Performance']) 

entire_df_l = pd.DataFrame(list(zip(lowest_accuracy_real_data, 

lowest_accuracy_predicted_data, ['Worst 

performance']*len(lowest_accuracy_predicted_data))), 

                         columns = ['Real Burst Suppression', 

'Predicted Burst Suppression Probability', 'Performance']) 

 

 

entire_df = pd.concat([entire_df_h, entire_df_l]) 

 

##### LOWEST PERFORMANCE 

 

plt.figure() 

sns.violinplot(x='Real Burst Suppression', y='Predicted Burst 

Suppression Probability', data=df_low, 

                    inner=None, palette = 'YlOrBr') 

sns.catplot(x='Real Burst Suppression', y='Predicted Burst Suppression 

Probability', 

            kind="violin", data=df_low, palette = 'YlOrBr') 

 

plt.ylim(0, 1) 

plt.title('Worst distribution of predicted values \n over real 

values', fontsize = 16) 

plt.tight_layout() 

plt.savefig(os.path.join(directory, 'Other_Plots', 

'SwarmPlots_lower.png')) 

plt.close() 

 

##### HIGHEST PERFORMANCE 

 

plt.figure() 

sns.violinplot(x='Real Burst Suppression', y='Predicted Burst 

Suppression Probability', data=df_high, 

                    inner=None, palette = 'YlOrBr') 

sns.catplot(x='Real Burst Suppression', y='Predicted Burst Suppression 

Probability', 

            kind="violin", data=df_high, palette = 'YlOrBr') 

 

plt.ylim(0, 1) 

plt.title('Best distribution of predicted values \n over real values', 

fontsize = 16) 

plt.tight_layout() 

plt.savefig(os.path.join(directory, 'Other_Plots', 

'SwarmPlots_higher.png')) 

plt.close() 

 

##### PERFORMANCES TOGETHER 

 

plt.figure() 
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sns.violinplot(x="Real Burst Suppression", y="Predicted Burst 

Suppression Probability", hue="Performance", 

    data=entire_df, split=False, inner="box", palette = 'YlOrBr') 

plt.title('Distribution of predicted values over real values', pad = 

30, fontsize = 16) 

plt.xlabel("Real Burst Suppression", fontsize=12) 

plt.ylabel("Predicted Burst Suppression Probability", fontsize=12) 

plt.legend(loc='lower left', bbox_to_anchor=(0., 1.02, 1., .102), 

          fancybox=True, shadow=True, ncol=2, title=False, 

          mode="expand", borderaxespad=0.) 

sns.despine() 

plt.tight_layout() 

plt.savefig(os.path.join(directory, 'Other_Plots', 

'SwarmPlots_TOGETHER.png')) 

plt.close() 

 

# ==================================================================== 

# ACCURACIES DISTRIBUTION  

# ==================================================================== 

 

x = [x for x in range(len(accuracies))] 

accuracies.sort() 

 

plt.figure() 

plt.plot(x, accuracies, color = 'Maroon', alpha = 0.6) 

plt.axhline(y=accuracies[x.index(round(np.percentile(x, 25), -1))], 

color='Darkslategrey', linestyle='--', linewidth=0.9) 

plt.fill_between(x, y1=0, y2=accuracies, where=(x <= np.percentile(x, 

25)), color='Maroon', alpha=0.3) 

plt.xlabel('Patients', fontsize = 12) 

plt.ylabel('Accuracy', fontsize = 12) 

plt.title('Accuracy distribution', fontsize = 16,  pad='10.0') 

plt.tight_layout() 

plt.gca().spines['top'].set_visible(False) 

plt.gca().spines['right'].set_visible(False) 

plt.xlim(0) 

plt.ylim(0) 

plt.savefig(os.path.join(directory, 'Other_Plots', 

'Accuracy_distribution_patients.png')) 

plt.close() 

 

plt.figure() 

sns.histplot(x=accuracies, kde=True, color = 'Maroon', alpha = 0.3, 

edgecolor='White', linewidth=2) 

plt.xlabel('Accuracy', fontsize = 12) 

plt.ylabel('Frequency', fontsize = 12) 

plt.title('Accuracy frequency', fontsize = 16, pad='10.0') 

plt.axvline(x = accuracies[int(round(np.percentile(x, 25), 0))], 

color='Darkslategrey', linestyle='--', linewidth=0.9) 

plt.tight_layout() 

plt.gca().spines['top'].set_visible(False) 

plt.gca().spines['right'].set_visible(False) 

plt.savefig(os.path.join(directory, 'Other_Plots', 

'Accuracy_frequency_patients.png')) 

plt.close() 

 

plt.figure() 
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sns.set(style="ticks") 

f, (ax_box, ax_hist) = plt.subplots(2, sharex=True,  

                                    gridspec_kw={"height_ratios": 

(.15, .85)}) 

 

sns.boxplot(accuracies, ax=ax_box, color = 'Maroon') 

sns.distplot(accuracies, ax=ax_hist, color = 'DarkOrange', bins = 7) 

 

ax_box.set(yticks=[]) 

sns.despine(ax=ax_hist) 

sns.despine(ax=ax_box, left=True) 

 

plt.xlabel('Accuracy', fontsize = 12) 

plt.ylabel('Density', fontsize = 12) 

plt.suptitle("Accuracy frequency", fontsize=16) 

plt.axvline(x = accuracies[int(round(np.percentile(x, 25), 0))], 

color='Darkslategrey', linestyle='--', linewidth=0.9) 

plt.tight_layout() 

plt.gca().spines['top'].set_visible(False) 

plt.gca().spines['right'].set_visible(False) 

plt.savefig(os.path.join(directory, 'Other_Plots', 

'accuracy_histogram_boxplot.png')) 

plt.close() 

 

 

 

 

 

 

  

 

 

 


