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Linear unmixing protocol 
for hyperspectral image fusion 
analysis applied to a case study 
of vegetal tissues
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Rodrigo Rocha de Oliveira1, Pablo Loza‑Alvarez2 & Anna de Juan1*

Hyperspectral imaging (HSI) is a useful non‑invasive technique that offers spatial and chemical 
information of samples. Often, different HSI techniques are used to obtain complementary 
information from the sample by combining different image modalities (Image Fusion). However, issues 
related to the different spatial resolution, sample orientation or area scanned among platforms need 
to be properly addressed. Unmixing methods are helpful to analyze and interpret the information of 
HSI related to each of the components contributing to the signal. Among those, Multivariate Curve 
Resolution‑Alternating Least Squares (MCR‑ALS) offers very suitable features for image fusion, since 
it can easily cope with multiset structures formed by blocks of images coming from different samples 
and platforms and allows the use of optional and diverse constraints to adapt to the specific features 
of each HSI employed. In this work, a case study based on the investigation of cross‑sections from 
rice leaves by Raman, synchrotron infrared and fluorescence imaging techniques is presented. HSI 
of these three different techniques are fused for the first time in a single data structure and analyzed 
by MCR‑ALS. This example is challenging in nature and is particularly suitable to describe clearly the 
necessary steps required to perform unmixing in an image fusion context. Although this protocol is 
presented and applied to a study of vegetal tissues, it can be generally used in many other samples 
and combinations of imaging platforms.

Hyperspectral imaging (HSI) is a useful non-invasive analytical technique that allows preserving the morpho-
logical and chemical information associated with samples. This technique consists of collecting spectroscopic 
information associated with different points (pixels) of a scanned area in a sample. In this way, spatial and chemi-
cal information about the samples is provided and limitations linked to traditional single point spectroscopic 
techniques, such as the lack of spatial information, are clearly overcome. Nowadays, imaging platforms offer a 
wealth of spatial resolution scales and are adapted to the specificities of many spectroscopic (and spectrometric) 
 modalities1,2. Despite the clear value of the complementary information provided by the currently available 
imaging platforms, image fusion is still a challenge that does not have a generalized  solution3.

The size and complexity of the information provided by hyperspectral images need powerful chemometric 
techniques for their adequate interpretation. Very often, the goal of HSI is providing information about the 
nature and location of sample constituents. In the beginning of hyperspectral imaging, the compound location 
was described displaying maps at selected spectral channels and the compound spectral fingerprint was associ-
ated with spectra of pixels located in specific sample regions. However, such an approach is clearly insufficient 
for complex multicomponent samples, where often no selective spectral channels exist and the extraction of 
clear compound fingerprints is hindered by the colocation of components in the pixels of the image. Unmixing 
methods come then into play to provide pure spectral signatures and pure concentration maps of the image 
constituents and, hence, a global chemical, quantitative and morphological information of the samples studied.

The unmixing task can be tackled by linear and non-linear methods depending on the underlying model 
assumed to define the spectroscopic measurement, i.e., the spectroscopic signal in every pixel is defined as a 
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concentration-weighted linear combination of the pure spectra of the image constituents in linear models or the 
signal definition obeys more complex models in non-linear approximations. Linear unmixing methods reflect 
exactly the basic form of the spectroscopic Beer-Lambert law, where every component is defined by an invari-
ant spectral fingerprint that contributes to the signal measured proportionally to its concentration. Non-linear 
methods, instead, take into consideration that there may be variability in the spectral fingerprint of a particular 
component in certain instances. The non-linear unmixing problem is often solved by using deep learning meth-
ods based on the use of neural network  autoencoders4,5. Such an approach has found applicability basically in 
remote sensing scenarios, where the definition of component, e.g., soil, vegetation… and the conditions of the 
image acquisition may sometimes justify the assumption of a certain variability in the spectral signatures of com-
ponents. However, in a very large number of cases, particularly when image platforms located in the laboratory 
are used, the results provided by linear unmixing methods are a very good approximation of the real behavior of 
the spectroscopic measurement, need a lower computation time and allow a simpler implementation of external 
available information under a variety of  constraints6. As in any other data analysis context, the parsimony princi-
ple stating that the simplest model that provides a satisfactory description of the phenomenon studied has to be 
chosen prevails in this case and the protocol proposed in this work is based on linear unmixing methodologies.

Within the family of linear unmixing methods, Multivariate Curve Resolution-Alternating Least Squares 
(MCR-ALS)7 is a chemometric method that has been widely used for image analysis due to the flexible charac-
teristics offered in terms of the data structures that can be potentially studied and the diversity of information 
that the algorithm incorporates under the form of constraints to help in the modelling of concentration maps 
and spectral signatures of the pure  components7–9. Other linear unmixing methods, often used in the remote 
sensing area, tend to work forcing necessarily non-negativity and normalization constraints or using libraries of 
previously known spectral signatures and do not change the modus operandi when dealing with an individual 
image or with an image fusion  scenario10. Hence, the choice of the MCR-ALS method in this work.

MCR-ALS has been successfully applied to the analysis of single images or sets of related images acquired 
with the same spectroscopic  platform9. However, the use of this methodology for fusion of images from differ-
ent platforms is not extended yet, although few examples are reported to address problems such as the fusion of 
images with different spatial  resolutions11,12, with spectroscopic modalities showing different  dimensions13 or 
with the combination of spectroscopic and color  information12,14.

In a general multiplatform fusion context, images from each platform could be analyzed separately by MCR-
ALS, but the fusion of the information from the different image techniques provides a complete description of 
the sample constituents and more accurate  solutions3,9. Multiplatform image fusion allows exploiting the com-
plementary information provided by different spectroscopic techniques and obtaining simpler models including 
all the gathered information in a single complete, reliable, and robust model to answer to the scientific question 
of interest. Image fusion has started to emerge as an excellent methodology to analyze data of different chemical 
systems.

An area where image fusion can be particularly relevant is the research of the structure and composition of 
tissues in living organisms. Indeed, the natural complexity of the biological tissues looks as a problem that can 
be adequately addressed with the use of imaging platforms sensitive to different information and components. 
The results obtained can hopefully provide the necessary link between chemical structure and function required 
for the understanding of these systems.

An interesting case study of biological interest to apply image fusion strategies is the characterization of 
vegetal tissues. Indeed, different hyperspectral imaging techniques can be used simultaneously to obtain com-
plementary information for this particular biological system. In this respect, the combination of fluorescence, 
Raman and infrared imaging techniques is a good option. Fluorescence images collect the emission fluorescence 
spectra from natural fluorophores in plants, such as lignin,  chlorophylls15, while Raman images provide infor-
mation about cellulose, lignin, carotenes and other  components16. Finally, infrared images provide information 
about molecular components, such as proteins, lipids and  carbohydrates17. However, spatial resolution from 
conventional infrared HSI is insufficient for a good definition of micron vegetal tissue substructures. Synchrotron 
Radiation Fourier Transform Infrared (SR-FTIR) imaging, instead, has the necessary spatial resolution and helps 
to reveal the microstructures at tissue  level18.

In this work, SR-FTIR, Raman and fluorescence HSI from rice leaf cross-sections were acquired to study 
thoroughly the different constituents and structures found in the tissues of this plant. For the first time, SR-
FTIR, Raman and fluorescence HSI are fused and analysed by MCR-ALS. To do so, images from the different 
platforms had to be balanced in terms of spatial resolution, orientation and area scanned before being analysed. 
As a result, spectral signatures of plant components showing the relevant features of all different spectroscopic 
techniques used and the related distribution maps defining accurately the spatial structure of the biological ele-
ments identified were obtained. The steps followed and the gain obtained when using image fusion as compared 
with the analysis of images coming from individual platforms is clearly proven. Despite the intrinsic interest of 
the characterisation of components in vegetal tissues, the main goal of the work is providing a general framework 
that can be generally adopted to address linear unmixing in any multiplatform image fusion problem.

Experimental
Plant growth and sample preparation. Rice plants were obtained from Oryza Sativa Japonica Nippon-
bare seeds provided by the Center for Research in Agricultural Genomics (CRAG) at Autonomous University 
of Barcelona. This public university center complies with all necessary legislative regulations on the treatment of 
plant seeds and living organisms and the seeds used do not present any kind of hazardous risk for their growth 
and use. Seeds were germinated for two days at 30  °C in a wet environment. After germination, seeds were 
planted in small individual pots with a universal substrate BATLLE, composed by coconut fiber, peat moss, 



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:18665  | https://doi.org/10.1038/s41598-021-98000-0

www.nature.com/scientificreports/

composted vegetal material and perlite with pH 7.25. Rice plants were watered two times per week with 400 mL 
of Milli-Q water for 33 days under controlled conditions of temperature, light and humidity in an Environmental 
Test Chamber MLR-352H (PANASONIC) in the Institute of Environmental Assessment and Water Research-
Spanish National Research Council (IDAEA-CSIC).

Once the plants were grown, small pieces of plant leaves of different plants were collected and embedded 
in agarose. Straightaway, three cryosections of seven μm-thickness were obtained using a cryostat at the Parc 
Científic of Barcelona at − 20 ± 5 °C. Sections were placed on a calcium fluoride slide of 1 mm-thickness, covered 
with a calcium fluoride coverslide of 0.5 mm-thickness and sealed with nail polish. In every cross-section, dif-
ferent regions can be observed (Fig. 1). Mesophyll cells, where photosynthetic activity is located and chlorophyll 
or carotenoids can be found. The characteristic green color of the plants comes from this type of cells. Also, the 
epidermis can be observed. The function of the epidermis is to protect the plant tissue from external damages. 
Several compounds can be found there, such as resins that cover the epidermis to avoid water loss. In the vascular 
system, two parts are differentiated: xylem and phloem. Xylem is a type of lignified tissue that transports water 
and minerals and it is formed by a conglomerate of the bigger channels. Phloem is another type of lignified tissue 
that transports nutrients as sugar or other biomolecules. It is located on top of the xylem in a cross-section view. 
Finally, sclerenchyma cells can be located on the top and the bottom of the vascular system. Sclerenchyma cells 
are strongly lignified cells and give hardness to the plant.

Image acquisition
Synchrotron infrared image acquisition. All SR-FTIR HSI were collected at the SYNCHROTRON 
ALBA (Cerdanyola del Vallès, Catalunya, Spain, MIRAS beamline). The Fourier transform infrared spectrom-
eter used was equipped with a TE Cooled DLaTGS Detector Vertex coupled to a HYPERION 3000 Microscope. 
The detector of the IR microscope was a liquid-nitrogen-cooled 50 μm HgCdTe detector, covering the range of 
10000–600  cm−1. The microscope was operating using a 36 × objective. IR spectra were acquired in transmission 
mode by point mapping and every spectrum was associated with a pixel sized 3 × 3 μm2. Spectra were collected 
in the infrared region covering the range of 4000–1000  cm−1 with 4  cm−1 resolution and 64 accumulations. Back-
ground was collected every 25 spectra with 128 accumulations.

Fluorescence image acquisition. Fluorescence HSI were collected using a LEICA TCS SP8 STED 3X 
microscope (LEICA MICROSYSTEMS, Mannheim, Germany). A 405 nm laser beam with a power approxi-
mately of 160 μW focused through a 10 × objective LEICA HC Pl Apo was used as a light source. A Gated HyD 
hybrid detector in photon counting mode was used for the spectra collection. Spectra were collected by laser 
point scanning with an exposure of 0.825 μs/pixel with 70% of total laser power. Every line is formed approxi-
mately by 800 pixels and each line was accumulated two times to improve signal to noise ratio. The studied 
spectral emission range goes from 420 to 750 nm, with a spectral resolution of 5 nm and the pixel size of 0.25 × 
0.25 μm2.

Raman image acquisition. Raman HSI were collected using an INVIA RAMAN Microscope spectrom-
eter (RENISHAW, Gloucestershire, UK). A 532 nm laser beam focused through a 20 × objective Leica (NA = 0.4) 
with a power of 25 mW was used as a light source. Spectra were collected by point mapping with 0.25 s exposure 
time and 10 % of total laser power per pixel. The studied spectral range goes from 270 to 2015  cm−1, with a spec-
tral resolution of 1.55–1.95  cm−1 depending on the Raman shift scanned. Pixel size was of 2 × 2 μm2. The Raman 
spectrum is recorded on a deep depletion charge coupled device (CCD) detector (RENISHAW RenCam).

Phloem and
xylem vessels

Epidermis

Bulliform cells

Sclerenchyma cells

Bundle sheath cells Xylem cells

Figure 1.  Schematic and optic cross-section image of a rice leaf.
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Data analysis
HSI preprocessing. In the case of SR-FTIR images, due to the opacity of the sample in several regions, 
some IR spectra were saturated. These pixels were removed and not used in further analysis. Also, for all sam-
ples, infrared spectra were first cropped within 3000–1200  cm−1 spectral range. Wavenumbers out of this range 
were not used because of the signal saturation observed. Strong baseline artifacts were also detected. The second 
derivative was applied to the infrared spectra to remove offsets and linear baselines and to enhance the separa-
tion of overlapping peaks through the Savitzky-Golay  algorithm19. From the derivative spectra, only spectral 
regions with useful information were selected for further analysis (3000 to 2800  cm−1 and 1800 to 1360  cm−1).

In fluorescence images, emission fluorescence per pixel was low due to the high spatial resolution (pixel was 
sized 0.25 × 0.25 μm2) and to the low quantum yield of natural fluorophores for this instrumental set. To improve 
the spectroscopic signal quality, spectra of adjacent pixels were binned to create a pixel with a single spectrum 
(binning). The binning chosen was (3 × 3) pixels, which provided a final pixel size of 0.75 × 0.75 μm2. Despite 
the pixel binning, spatial resolution was still high and the spectral quality was improved.

In Raman images, all spectra showed a high fluorescence baseline contribution due to the natural fluoro-
phores in the rice tissue. Fluorescence baseline interferes with the Raman peaks hiding them and hardening the 
interpretation. Raman spectra were corrected by Asymmetric Least  Squares20 to remove fluorescence baselines. 
Also, cosmic peaks were corrected by interpolation of Raman intensities of nearest channels. In addition, the 
range 1100 to 1800  cm−1 was used for the analyses. An example of raw and preprocessed SR-FTIR, fluorescence 
and Raman spectra can be found in Fig. S1 in the Supporting Information.

Image linear unmixing: multivariate curve resolution‑alternating least squares (MCR‑ALS). An 
HSI can be visualized as a data cube where x and y are the pixel coordinates and λ the spectral dimension. In 
this cube, a full spectrum is associated with each pixel coordinate. If the HSI cube is unfolded, the data acquires 
a matrix structure D (I×J) (Fig. 2) that contains all pixel spectra of the image one under the other. Unmixing 
methods are able to describe the mixed information in the original pixel spectra in D through a bilinear model 
analogous to the Lambert-Beer law, where the total spectroscopic signal collected can be expressed as the sum 
of the signal contributions of each individual image constituent. Following the linear Beer-Lambert law, the 
contribution of each image constituent to the total signal collected can be mathematically expressed by the pure 
spectrum of the compound si

T weighted by its concentration in the different pixels, ci, defined by the term ci siT 
(Eq. 1). Finally, the typical bilinear model associated with unmixing methods is expressed in compact format 
as shown in Eq. (2), where the matrix ST contains the profiles of the pure spectra of the image constituents and 
the matrix C the related concentration profiles. The residuals of the model are expressed by E (I×J). The spectro-
scopic bilinear model of an image allows expressing the information of every sample constituent with a spectral 
signature siT and a concentration profile ci that conveniently refolded provides the related distribution map.

Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) is a multivariate least-squares based 
iterative resolution (or unmixing) method that alternatingly optimizes matrices C and ST under the action of 
constraints that help to provide chemically meaningful spectral and concentration profiles. MCR-ALS is used 
in many fields of application and is especially suitable for hyperspectral image  analysis7–9.

The method starts doing an estimation of the number of components present in the original data set D by 
Principal Component Analysis (PCA)21 or taking advantage of previous knowledge of the sample (note that when 

(1)D =

∑

i

cis
T
i + E

(2)D = CS
T
+ E

Figure 2.  Bilinear model of an HSI.
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a high number of components is detected in this step, the potential need for a non-linear unmixing method can 
be considered). Afterwards, an initial estimate of matrix C or ST (most often spectral estimates in HSI analysis) 
is built by a pure variable selection method based on Simple-to-use Interactive Self-modelling Mixture Analysis 
(SIMPLISMA)22 or on similar algorithms. Such an estimate and the matrix D are used to start the least-squares 
alternating optimization of the profiles in matrices C and ST of the bilinear model under the action of constraints 
until convergence is achieved. The convergence criterion can be a maximum number of iterations or a value 
related to the difference in fit improvement between consecutive iterations.

The quality of the MCR model fit is described by the lack of fit LOF (%), defined by

and the percent of variance explained, defined by

where dij is an element of D and eij is related to E. In a HSI context, when the final bilinear model is obtained, the 
pure spectral signatures of the image constituents are the profiles in the ST matrix and their pure distribution 
maps can be recovered refolding the related concentration profiles into the original spatial geometry of the image.

Often, several images may contain related information. When this is the case, it is possible to build multiset 
structures that contain several connected images. Multisets can be formed appending blocks of spectra from 
related images obtained with the same spectroscopic technique on under the other in a column-wise augmented 
fashion. In this case, the spectral dimension needs to be common for all images. A multiset can also be built 
appending spectra from images of the same sample obtained with different imaging platforms in a row-wise 
augmented fashion. In this case, the pixel dimension needs to be common for all images. The most complex 
and complete multisets can be built connecting images from different samples obtained with different platforms 
(see Fig. 3) in a row- and column-wise augmented fashion. MCR-ALS can also be used to analyze these multi-
set structures and a bilinear model is also obtained, where the matrix C and/or ST can also be formed by small 
blocks (submatrices) related to concentration profiles of the different images and/or to pure spectral signatures 
of the different platforms used.

The MCR-ALS analysis of a single image or an image multiset takes the benefit of the use of constraints on C 
or/and ST to obtain chemically meaningful and more accurate spectral signatures and distribution maps. Clas-
sical constraints, such as non-negativity, are often applied to concentration maps and to some spectroscopic 
 measurements23. Another useful constraint is the selectivity/local  rank24,25. In this context, this constraint may 
force particular pixels to show null concentration values or some spectral ranges to show null signal for particu-
lar image constituents. Such an information can come from previous knowledge or from image-adapted local 
rank analysis  methods26. Recently, a new generation of constraints has appeared that takes into account char-
acteristics of the spatial distribution of components as  well27,28. An asset of the use of constraints in MCR-ALS 
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Figure 3.  Scheme of the multiset structure issued from image fusion and related bilinear model. In this case, 
nine data blocks form the multiset: three samples imaged by three spectroscopic platforms.
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analysis is that they can be optionally set per component, per mode (C or ST) and per block in each of the C or 
ST submatrices in a multiset context. This flexibility allows the preservation of the specific characteristics of the 
spatial distribution of components in the different samples and the properties of the spectral signatures of the 
different spectroscopic techniques.

Studying adequately a multiplatform image multiset passes through the solution of problems linked to the 
multiset configuration and the multiset analysis. Thus, a proper configuration of the multiset needs a common 
pixel dimension among the images combined, i.e., having congruent pixels, and an efficient multiset analysis 
demands a proper balance of the information linked to the data blocks of the different platforms. A proper 
description of the sequence needed to solve these problems is carried out taking as example the data linked to 
the case study presented. In this case, the final multiset will have the same structure as shown in Fig. 3 and will 
be the result of fusing images from three different samples analyzed with Raman, fluorescence and SR-FTIR 
platforms. This multiplatform image fusion should follow the steps displayed in Fig. 4, which are:

Building a multiset with congruent pixels. Such a goal requires matching the pixel size of all images 
and the image area scanned. Afterwards, a spatial transformation (shift and rotation) of images is required to 
ensure pixel congruency. In the combination of fluorescence, SR-FTIR and Raman images of our case study, this 
will happen as follows:

Matching pixel size of all images and image area scanned. SR-FTIR images are those with largest pixel size, 3 × 3 
μm2 and smallest area scanned. The rest of imaging techniques are binned to achieve this pixel size. Thus, the 
pixels of the fluorescence HSI, sized 0.25 × 0.25 μm2, were binned by a factor of 12 × 12 to achieve the pixel size 
3 × 3 μm2. Raman HSI had a pixel size of 2 × 2 μm2. An inhouse developed MATLAB script was used to bin and 
interpolate the pixel values to achieve a 3 × 3 μm2-pixel size. Finally, the fluorescence and Raman HSI were also 
cropped until covering approximately the same area than SR-FTIR HSI.

Spatial transformations (shift and rotation of images) for pixel congruency. This step is oriented to compensate 
the pixel shift and/or rotation among the images to be combined. For this reason, HSI need to be moved in x and 
y directions and/or rotated until pixels are congruent among fluorescence, SR-IR and Raman HSI.

To obtain the transforming parameters, binarized maps issued from global intensity maps from each HSI tech-
nique can be used. The global intensity maps are 2D representations displaying the sum of all spectral intensities 
of the channels of each pixel spectrum in the image. Global intensity maps are binarized i.e., pixels are assigned 
a value equal to one (when signal is significant) or zero (when there is no detectable signal). When images have 
a clear contour, pixels on the sample have much higher intensity than pixels on the background sample support. 
This contour shape information can be used for the alignment because all images of the same sample must have 
the same contour, independently on the spectroscopic techniques used for imaging.

The SR-FTIR binarized map is always taken as reference for the alignment (Ar). Sequentially, shifts in in x 
and y and rotation angle θ were computed for fluorescence and Raman images (As) with the SR-FTIR reference 
image. To do that, initial estimates for shifts in x and y (dx, dy) and rotation α (Θ) are defined and the map of the 
image to be aligned is modified accordingly. An error function (Eq. 3), defined as:

is calculated among the binarized values of common pixels in the image to be aligned and the reference image. 
This is an iterative process that uses a SIMPLEX optimization algorithm and stops when the error defined in 
Eq. (3) gets sufficiently  small29. When shift and rotation parameters are found, the whole HSI is spatially trans-
formed to match the reference image. Only pixels from common sample areas scanned by all techniques are used 
to create the multiset used for further analysis.

Balancing the importance of the data blocks related to each platform in the multiset. The 
pixel spectra provided by the different imaging platforms can show significant differences related to the scale 
of the signal recorded and to the number of spectral channels in each measurement. If blocks of the raw pixel 
spectra are appended in the multiset, platforms that provide spectra with higher signal intensity and formed 
by a large number of spectral channels will have a major influence in the results obtained. A good quantitative 
representation of the overall signal contribution of an image is provided by the 2-norm of the related unfolded 
matrix D. Hence, to balance the importance of images coming from different platforms on the same sample, the 
data block of each image will be divided by its 2-norm before the multiset is built. This is a clear mathematical 
procedure to keep similar the weights of the different blocks of the multiset, less biased than trying to find suit-
able scaling factors by visual inspection.

Once a balanced and pixel-congruent multiset is built, MCR-ALS can be properly applied setting the appropri-
ate constrains to the profiles in each block of the C and/or ST matrices. The application of MCR-ALS to analyze 
single or fused images has been done using a freely downloadable graphical user interface under MATLAB 
environment that follows the steps described above and provides the possibility to incorporate in a flexible way 
the suitable  constraints30.
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Results and discussion
MCR-ALS was used to elucidate the sample constituents present in the cross-sections of rice leaves analyzed 
by SR-IR, fluorescence and Raman HSI. To show the gain of global information obtained by fusing images 

Figure 4.  General scheme of the image matching procedure. In order, images are resized until match pixel size. 
Then, they are cropped until have approximately the same area covered. Next, the images are binarized and 
aligned among them. Once optimal translational and rotational parameters are achieved, hyperspectral images 
are aligned.
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from different platforms, two different analyses were performed. On the one hand, three separate multisets (for 
fluorescence, for SR-IR and for Raman) containing three images each collected with the same platform were 
structured in a multiset extended in the column-wise direction and were subsequently analyzed by MCR-ALS. 
This per platform analysis gives a vision of the information that can be obtained without using image fusion. On 
the other hand, an MCR analysis of a multiset incorporating the images from all platforms (Fig. 3) was carried 
out to illustrate the gain of information linked to image fusion. To build the fused multiset, the alignment of 
the images previously described to achieve the congruence of pixels among platforms and the suitable balance 
between data blocks was carried out.

For all MCR-ALS analyses, the convergence criterion was 0.1% difference among lack of fit between con-
secutive iterations. The main results of MCR-ALS applied to the different multisets analyzed are summarized 
in Table 1.

As can be seen, the variance explained is satisfactory in all multisets taking into consideration the quality of 
the spectra analyzed. Thus, SR-FTIR provides the lowest variance explained due to the enhancement of noise 
when derivative spectra are used. Raman and fluorescence multisets show higher variance explained due to the 
quality of the original spectra. The analysis of the multiset using all platforms provides a good description of all 
images analyzed.

As it was expected, the results provided by the imaging platforms used in this work show differences in the 
number of components modelled due to the complementary information of the related spectroscopic techniques 
and the differences in the detectable response for the different biological tissues and molecules. These differences 
suggest the need of a multiplatform fusion to exploit the complementary information and achieve a complete 
description of the sample.

In the next subsections, a description of the components found by each spectroscopic technique and by the 
fused multiset containing all platforms is provided.

Fluorescence HSI multiset analysis. Initial spectral estimates found by a SIMPLISMA-based method 
pointed out to the presence of components similar to those identified in a previous  work13. Thus, some com-
ponents were identified as chlorophylls, which emit in wavelengths higher than 625 nm, lignins in lower wave-
lengths and an additional component linked to small vesicles, probably oil or silica bodies, inside the mesophyll 
cells and epidermis in leaves, emitting between these two families of compounds.

The multiset could be described by five components, as suggested by PCA. In the MCR optimization, the 
non-negativity constraint was applied to the concentration profiles and spectral signatures of all components 
because emission spectra are not negative. Considering the prior information mentioned above, selectivity/local 
rank was also applied to the spectral signature of chlorophylls, set to have null emission in wavelengths lower 
than 625 nm, and to the component presumably linked to vesicles, set to have null emission below 505 nm and 
above 680 nm. Figure 5 shows the resolved spectral signatures and the distribution maps of the three samples 
used in the fusion of images of all platforms.

Five components were identified as natural fluorophores in leaves. Component yellow and blue are identified 
as chlorophylls, showing a maximum at 682 nm. The maps show clearly that chlorophylls are located at the meso-
phyll cells, where there are chloroplasts and biochemical activity, such as the  photosynthesis15. Orange and green 
components could be lignins, since the emission range observed goes from 430 to 550 nm. As it can be observed 
in the distribution maps, lignins are present in plant cell walls, plant vascular system and in the epidermis of the 
 leaves15. Finally, the purple component, based on its location and its shape as a droplet or vesicle, is presumably 
identified as a type of body-lipid or body-silica. Yellow fluorescence with a long range can be observed. The 
characterization of these vesicles was not possible using only the fluorescence emission.

SR‑FTIR HSI multiset analysis. Three components were suggested by PCA in all SR-FTIR HSI to describe 
the multiset. During the iterations, non-negativity was applied only to the concentration profiles of all compo-
nents because pure signatures have negative values due to the second derivative preprocessing. Figure 6 shows 
the resolved spectral signatures and the distribution maps of the three samples analyzed. Three components 
could be identified with distinct IR spectral signatures. The blue component shows mainly protein bands (Amide 
I (1655  cm−1) and Amide II (1543  cm−1)31. It is possible to observe the location of the proteins mainly in the 
mesophyll cells, where there are proteins as enzymes related to the biochemical activity. The orange component 
shows bands associated with lignin (carbonyl (1732  cm−1))32 and it is possible to observe its presence in the vas-
cular system. The vascular system has cells fortified with lignin to give robustness to the plant. The yellow com-
ponent is related to lipid bands (methylene groups (2916 and 2846  cm−1))32. This yellow component is present in 
the epidermis. Often, leaves show a small layer of resins in their epidermis to avoid water loss. These results are 
in agreement with the biological compounds naturally present in leaves.

Table 1.  Summary of MCR-ALS results from the image multisets analyzed.

Multiset Techniques Nr. of components LOF (%) Explained variance (%)

1 Fluorescence 5 13 98

2 SR-FTIR 3 57 67

3 Raman 4 32 90

4 Fluorescence, SR-FTIR, Raman 6 31 91
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Raman HSI multiset analysis. Four components were suggested by PCA in all Raman HSI to describe 
the multiset. During the iterations, non-negativity constraint was applied to the concentration profiles and the 
pure spectral signatures of all components. In Fig. 7 it is possible to observe two components associated with 
biological contributions (in blue and orange) were identified, whereas two additional components (in gray) 
were attributed to instrumental noise detected in previous  works33. The blue component was characterized as 
β-carotene (with typical Raman features at 1155 and 1525  cm−1)34. β-carotene is a strongly colored red–orange 
pigment and during photosynthesis β-carotene normally serves as antenna pigments, transferring singlet exci-
tation energy to chlorophyll. Therefore β-carotene can be found at mesophyll cells, where chlorophyll is. The 
orange characterized component is lignin (with typical Raman features at 1598 and 1631  cm−1)35. Lignin can be 
found at the vascular system and sclerenchyma cells, which are strongly lignified.

Image fusion of fluorescence, SR‑FTIR and Raman HSI. MCR-ALS was applied to identify in a com-
plete way the constituents present in the rice leaves. Several MCR-ALS models were tested with different number 
of components. Six components were needed to explain the relevant variation in images. Adding more compo-
nents did not provide additional interpretable information. Several initial estimates based on SIMPLISMA or on 
the connection of resolved signatures coming from multisets of individual techniques were tested.

In a data fusion, constraints can be applied in Ci and Si
T submatrices in different ways. In all analyses, non-

negativity was applied to concentration profiles. Non-negativity was applied to fluorescence and Raman Si
T 

profiles, whereas SR-FTIR profiles were left unconstrained. Table 2 shows the identification of the six components 
resolved in the definitive MCR-ALS model. This identification was useful to set local rank constraints.

Several components are not detected by all techniques with the instrumental parameters used in this work. 
Thus, chlorophyll and lipids do not have Raman signal according to previous measurements. The contribution 

Figure 5.  Bottom plot, pure fluorescence spectra profiles. It can be observed five different components. 
Lignins have an emission in blue and green, while. Vesicles in yellow, and chlorophylls in orange. Top plot, pure 
distribution maps are showed.
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most linked to proteins in SR-FTIR does not have either fluorescence or Raman signal. Furthermore, fluorescence 
from β-carotene was not detected. For these reasons, selectivity/local rank was applied to force null signals in 
all components that are not detected in the suitable technique. Other local rank constraints related to spectral 
regions with null fluorescence were also applied in the analysis of the multiset of all fused techniques.

The results of the MCR-ALS analysis are shown in Fig. 8. Six components were identified. The blue component 
was characterized as chlorophyll. It is possible to observe in the distribution maps that chlorophyll is located at 
mesophyll cells on all samples. The fluorescence pure signature exhibits a typical emission spectrum of chloro-
phyll with a maximum of 682  nm15. The infrared spectrum has bands that could be related to the chlorophyll 
structure (alkanes (2930 to 2840  cm−1), ester (1741  cm−1) and alkenes (1660  cm−1). The green component was 
characterized as β-carotene. The component was located at mesophyll cells in distribution maps and Raman 

Figure 6.  Top plot, pure distribution maps for the three components. Bottom plot, pure SR-FTIR spectral 
signatures of the component related to lipids (in yellow), to proteins (in blue) and lignin (orange).
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Figure 7.  Top plot, pure distribution maps of the resolved components in the three samples. β-carotene, first 
column and lignin in the second column, the last two columns show the distribution maps related to the noise 
components. Bottom plot, MCR-ALS resolved pure Raman spectra profiles related to carotenes and lignin. In 
gray, the two spectral profiles related to noise.

Table 2.  Summary of the components identified and the imposed selectivity/local rank. *No signal was 
detected for the technique in the related component. Note that for infrared interval, no selectivity constraint 
was imposed. Several components were forced to be zero (labelled ‘All’) in certain techniques. Finally, for lipids 
and chlorophyll, some spectral regions of the fluorescence spectra were forced to be zero.

Component Identified as

Local rank constraint in ST spectral range (forced to 
be zero)

Fluorescence SR-IR Raman

1 Chlorophyll 420–625 – All*

2 Lignin 1 – – –

3 Lipids 505–680 – All*

4 Protein All* – All*

5 β-carotene All* – –

6 Lignin 2 – – –
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pure signature shows the typical Raman peaks at 1525 and 1157  cm−134. As is expected, β-carotene appears in 
the same leaf zone as chlorophyll. This component also shows a relevant protein band in SR-FTIR. This may be 
the consequence of β-carotenes binding specifically to some protein receptors. Orange and cyan components 
were characterized as types of lignin. Lignin can be observed on concentration map at vascular tissues. The 
presence of lignin was high in the sclerenchyma cells as well. For the orange component, the pure fluorescence 
spectrum has a maximum at 487 nm, while a maximum at 512 nm is observed for the cyan lignin. The pure 
infrared spectrum of the orange component has a band with maximum at 1730  cm−1 (carbonyl), but it was not 
observed for the cyan component. The pure Raman signatures of both components have two typical Raman 
features from lignin (1632  cm−1 and 1601  cm−1)35. The yellow component was identified as rich in lipids. The 
pure fluorescence spectral signature coincides with the pure signature presumably attributed to the epidermis 
and the vesicles. The SR-FTIR pure signature confirms the identity of this component, with two strong peaks at 
the lipid region (2916 and 2848  cm−1)32. Vesicles were not possible to be clearly observed in the concentration 
maps, probably due to the spatial binning.

Figure 8.  Top, pure distribution maps of the six components identified with the fused images for the three 
samples. Bottom, pure spectral signatures of fluorescence, Raman and SR-FTIR. SR-FTIR spectra were broken 
down in plots of two components for better visualization.
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The purple component was identified as rich in proteins. The pure infrared spectrum shows a strong peak 
at 1655  cm−1, typically of the group amide of the  proteins31. This component was located in structural regions 
in distribution map. This result can indicate that these proteins could interact with plant structural elements.

As it can be observed, the fusion gives richer information than the individual analysis since the distinction 
of components becomes easier due to their now extended multitechnique spectroscopic signature.

There is a clear synergic effect linked to the compensation of weak properties of a technique by stronger points 
in another one. For instance, fluorescence images have a good spatial resolution but poor spectroscopic features 
to identify the nature of many compounds, i.e. lipids were not possible to be identified using only fluorescence 
images since the fluorescence shape is not selective of functional groups. Instead, the fusion with SR-FTIR images 
allows characterizing unequivocally this component through characteristic bands in the infrared region, with 
much richer in spectral features. Along this line, the infrared spectra associated with Raman or fluorescence 
signatures help to identify molecular compounds (lipids and proteins) linked to typical constituents found in 
plant tissues (carotenes, lignin, chlorophylls, …).

The image fusion also allows distinguishing components with very similar signatures in a technique taking 
advantage of the clear distinction of the same components in another fused technique. The lignin components 
depict this situation. On the one hand, the difference in spectral signatures of the two lignin contributions in 
fluorescence helps in the distinction of the variants of the same compound in Raman spectroscopy, impossible to 
achieve when Raman images were analysed alone. On the other hand, the very characteristic Raman features for 
lignin help to confirm the identity of these components, a task more difficult to do only based on the fluorescence 
information. The increase in discriminating power is also seen in the six resolved infrared signatures in image 
fusion, which were reduced to three components when this technique was analyzed alone.

Conclusions
The operating procedure related to image fusion in a multiplatform scenario has been clearly described and 
the steps detailed, from the data preprocessing and image matching to the unmixing with MCR-ALS multiset 
analysis and interpretation of information can be generally applied to perform a complete characterization of 
the components in any imaged sample. The great benefits of joining different kinds of spectroscopic informa-
tion for a better morphological and chemical characterization of components has been clearly proven in a case 
study linked to a vegetal tissue.

The fusion strategy presented is the basic pipeline for many image fusion situations that can be encountered 
in practice. However, it is relevant to know that fusion approaches are being developed recently to compensate 
for drawbacks, such as the possible presence of relevant components located in image areas not common to all 
images or the loss of spatial resolution of some techniques to achieve pixel congruence with techniques that 
provide a lower level of spatial detail. Additionally, the adaption of algorithms that can combine images providing 
a linear spectrum per pixel, e.g., Raman, infrared, with others yielding a 2D spectroscopic landscape per pixel, 
e.g., excitation-emission spectra, has also been proposed. Although these approaches are not generally used yet, 
they open a new direction to make image fusion even more powerful.
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