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Abstract

Quality standards for single-case experimental designs (SCEDs) recommend inspecting six

data aspects: level, trend, variability, overlap, immediacy, and consistency of data patterns.

The data  aspect  consistency has  long been neglected  by visual  and statistical  analysts  of

SCEDs despite its importance for inferring a causal relationship.  However, recently a first

quantification has been proposed in the context of A-B-A-B designs, called CONsistency of

DAta Patterns (CONDAP). In the current paper, we extend the existing CONDAP measure

for assessing consistency in designs with more than two successive A-B elements (e.g., A-B-

A-B-A-B),  multiple  baseline  designs,  and  changing  criterion  designs.  We  illustrate  each

quantification with published research. 

Keywords:  Single-case  experimental  designs,  effect  sizes,  consistency,  statistical  analysis,  visual

analysis, multiple baseline design, changing criterion design
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Introduction

Quality standards for the conduct and analysis of single-case experimental designs (SCEDs)

recommend  inspecting  six  data  aspects:  level,  trend,  variability,  overlap,  immediacy,  and

consistency of data patterns between similar phases (Kratochwill et al., 2010). The two basic

approaches  for  analyzing  these  data  aspects  are  visual  and statistical  analyses,  which  are

complementary  rather  than  mutually  exclusive  (Tate  et  al.,  2016b).  Traditionally,  visual

analysis has been the dominant mode of analyses. However, due to the time-series nature of

SCED data and varying degrees of autocorrelation visual analysis is not recommended as a

stand-alone analytical methods for SCEDs  (Robey, Schultz, Crawford, & Sinner, 1999).  In

their  comparison  of  three  existing  tools  for  evaluating  the  quality  and  rigor  of  SCEDs,

Zimmerman et al. (2018, p.30) found that “although each tool incorporates components of

visual analysis to evaluate outcomes, quantitative measures are also frequently recommended

in addition to visual analysis”. Consequently, numerous quantifications have been developed

over the past decades in an attempt to supplement visual analysis of each data aspect with

statistical  analyses.  In  this  paper,  we  focus  on  the  data  aspect  consistency.  We  present

quantifications  for  assessing  the  degree  of  consistency  in  SCEDs  beyond  A-B-A-B

withdrawal designs (cf. classification by Gast, Ledford, & Severini, 2018) and discuss the

option to integrate the obtained quantifications as test statistics in randomization tests.

First, we define the data aspect consistency in its historical context and review its role

in inferring a causal  relationship  from SCEDs. Next,  we review the existing proposal  for

assessing consistency in A-B-A-B phase designs. We then present novel quantifications for

assessing consistency in designs with more than two successive A-B elements (e.g., A-B-A-

B-A-B), multiple baseline designs, and changing criterion designs.
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Consistency in SCEDs: Definition, History, and Relevance

Following the widely accepted What Works Clearinghouse guidelines for the conduct and

analysis of SCEDs 

‘Consistency of data in similar phases’ involves looking at data from all

phases within the same condition (e.g.,  all  ‘baseline’ phases; all ‘peer-

tutoring’ phases) and examining the extent to which there is consistency

in the data patterns from phases with the same conditions. The greater the

consistency,  the  more  likely  the  data  represent  a  causal  relation

(Kratochwill et al., 2010, p. 18). 

Contrary to the other five data aspects, consistency between similar phases is thus assessed

comparing data patterns from phases implementing the same experimental conditions. While

the definition by Kratochwill et al. can probably be traced back to the guidelines for visual

analysis of SCEDs offered by Horner et al. (2005), the origins of  consistency as a separate

data  aspect  date  back  to  Baer  (1977)  and  Parsonson  and  Baer  (1978)  who  stress  the

importance of assessing the congruity of experimentally similar phases. It was around this

time – in the 1970s and 1980s – that researchers started compiling comprehensive overviews

of SCE designs and analysis (Onghena, Tanious, De, & Michiels, 2019). Consistency is thus

one of  the  oldest  data  aspects  recommended  for  analysis  of  SCEDs.  Furthermore,  as  the

definition by Kratochwill et al. highlights, greater consistency between experimentally similar

phases is an important moderator of a causal relationship between the manipulation of the

independent variable and the scores on the dependent variable. 

A few years after Parsonson and Baer, Kazdin (1982) was among the first researchers

to discuss a second type of consistency in SCED data: the consistency of the effects. Contrary

to  the  consistency  between  experimentally  similar  phases,  consistency  of  the  effects  is

assessed for each potential demonstration of an effect:
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Consistency refers to […] the extent to which changes (in level, trend, or

variability)  are the same for each potential  demonstration of effect.  In

SCD research, the critical factor in determining a functional relation is

the consistency of behaviour change between conditions; consistent but

small  changes  in level  between conditions  are  superior  to inconsistent

changes of larger magnitude. (Ledford, Lane, & Severini, 2018, pp. 6-7)

This second type of consistency can increase our confidence in the existence of a causal

relationship  just  as  much as  the  consistency across  experimentally  similar  conditions.  As

Ledford  et  al.  (2018)  highlight,  consistent  but  small  changes  are  more  indicative  of  a

successful intervention than large changes than cannot be replicated. 

Distinguishing Two Types of Consistency for Different SCE Designs

It is important to clearly distinguish between the two types of consistency. The consistency of

data  patterns  is  not  necessarily  an  aim  of  an  experimental  intervention.  It  is  rather  an

indication that the introduction of the intervention (and possibly the withdrawal depending on

the design) led to a similar  pattern of responding. It  should be highlighted  that  a similar

pattern  of  responding is  conceptually  different  from low variability.  It  can,  for  example,

happen  that  a  subject  has  highly  variable  scores  on  a  dependent  variable  in  the  first

intervention phase (e.g., 3,15,8,21). If these scores are replicated in the second intervention

phase, the consistency of data patterns across phases representing the same condition is very

high (indicative of a similar pattern of responding) even if the variability in each individual

phase is high as well. Variability can be assessed within phases and changes in variability can

be  compared  across  phases,  whereas  the  consistency  of  data  patterns  is,  per  definition,

assessed between phases. Contrary to the consistency of data patterns, the consistency of the

effects is a direct result of the intervention.  For example,  the intervention could lead to a

consistent  change  in  mean  scores  between  adjacent  phases  each  time  the  intervention  is
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introduced. Moreover, note that a difference in variability (e.g., a reduction) across phases

belonging  to  different  conditions  could  be  an  aim  for  the  intervention,  whereas  the

consistency of data patterns from the same condition is not.

Furthermore, it is noteworthy that both types of consistency are conceptually different

for different SCE designs. While in phase designs and changing criterion designs intervention

effectiveness  is  demonstrated within participants,  in multiple  baseline designs intervention

effectiveness is demonstrated both within and between participants,  behaviors,  or settings,

which Hayes (1981) refers to as the combined-series strategy. For multiple baseline designs,

the  consistency  of  data  patterns  is  compared  between  baseline  phases  and  between

intervention phases for different participants, behaviors, or settings. If in a multiple baseline

across participants design the participants differ in their initial baseline measures, then the

consistency of experimentally similar phases will be low as well. In a situation like that, the

lack of consistency does not necessarily entail a lack of experimental control. Given that all

participants  started with a different  baseline level,  it  might  therefore be expected that the

consistency  of  the  data  patterns  remains  low  for  the  experimental  phases.  Similarly,  in

multiple baseline design it is less likely that the intervention produces a consistent effect for

all  participants,  behaviors,  or  settings.  However,  if  a  consistent  effect  is  produced  for

participants  starting  with  different  initial  baseline  levels,  this  would  entail  different

intervention phase levels (i.e.,  lack of consistency of data patterns within the intervention

condition).  In  phase  designs  and  changing  criterion  designs  however,  where  intervention

effectiveness is demonstrated within participants, a lack of consistency of data patterns can be

more indicative of a lack of experimental control. The exception is phase designs in which a

return to initial baseline levels is not possible during subsequent baseline phases (e.g., because

the  change  in  the  dependent  variable  is  irreversible).  A  final  remark  on  the  distinction

between the two types of consistency concerns only the changing criterion design. It might be
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argued that,  by definition,  the two types of consistency are conceptually  the same for the

changing criterion design. The consistency of data patterns in the changing criterion design

can be understood in terms of the extent to which the measurements align consistently with

the given criterion in each phase. For the changing criterion design, this is conceptually the

same as the consistency of the effect. The present paper explicitly deals with methods for

assessing the consistency of data patterns only. In the next section, we present an existing

proposal for assessing the consistency of data patterns in A-B-A-B designs.

Analyzing the Consistency of Data Patterns in SCEDs

Historically, visual analysis has been the dominant mode of analysis for SCEDs. Probably the

earliest systematic review of SCED analytical techniques employed by applied researchers

was  conducted  by  Kratochwill  and  Brody  (1978).  Kratochwill  and  Brody  reviewed  four

leading behavior modification journals for SCED studies published between 1963 and 1974

and found that the proportion of studies employing statistical inference ranged from 4% to

9%. Given these findings, Kratochwill and Brody concluded that “there is a need for more

attention to the technology of graphing. In a science that depends so heavily on visual analysis

[…] and its related statistical properties, it is necessary to derive some major guidelines in this

area” (p. 302). At the same time, Kratochwill and Brody issued a warning that sole reliance on

visual  analysis  may lead  to  erroneous  conclusions  as  evidence  about  the  flaws  of  visual

analysis  and  need  for  statistical  inference  criteria  started  accumulating  in  the  1970’s

(DeProspero & Cohen, 1979; Gentile,  Roden, & Klein,  1972; Jones, Vaught,  & Weinrott,

1977; Jones, Weinrott, & Vaught, 1978). In this context, the earliest systematic guidelines for

visual analysis of SCEDs were proposed by Parsonson and Baer (1978), which included, as

previously  mentioned,  the  first  type  of  the  data  aspect  consistency.  It  is  this  type  of

consistecy, the consistency of data patterns in experimentally similar phases, that we focus on
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in the present article. For existing proposals on the consistency of the effects, the interested

reader is referred to Manolov (2018) for multiple baseline designs and Tanious, De, Michiels,

Van den Noortgate, and Onghena (2019a) for A-B-A-B phase designs.

Regarding the consistency of data patterns in experimentally similar phases, only one

quantification has been proposed so far. Tanious et al. (2019) developed the CONsistency of

DAta Patterns (CONDAP) measure for quantifying the degree of consistency between data

patterns in A-B-A-B phase designs based on the Manhattan distance. The basic premise of

CONDAP is that if two data patterns are highly consistent,  then the standardized average

Manhattan distance should be accordingly low. Therefore, lower CONDAP values indicate

higher consistency and higher CONDAP values indicate  lower consistency.  For A-B-A-B

phase designs, CONDAP can be calculated as shown in Equation 1.

     CONDAP=

1
k ns

∑
j=1

k

∑
i=1

ns

│ sij−lij │

√ (ns−1 )∗SDs
2+(nl−1 )∗SDl

2

ns+nl−2

         

   (1)

The numerator in Equation 1 is the mean Manhattan distance across all comparisons of  k

sequences of equal length  n for the two phases being compared. In an A-B-A-B design, for

each condition, there are two experimentally similar phases. If both phases have the same

number of data points, the number of compared sequences is always equal to one and only

one comparison of the two phases is necessary. If the two phases differ in lengths, the longer

phase is shortened to a sequence that is of equal lengths to the shorter phase. The shorter

phase is then compared to each sequence of the longer phase that is equal to the lengths of the

shorter phase. Sijis the ith data point for the jth sequence from the shorter phase and lij is the

ith data point for the jth sequence from the longer phase. Figure 1 visualizes the calculation of

CONDAP for an A-B-A-B design where the B1 phase has five measurements (8,6,7,7,6) and
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the  B2  phase  has  three  measurements  (7,5,9).  The  CONDAP  for  Figure  1  can  then  be

calculated as follows. First, the sum of the vertical dashed lines (the Manhattan distances) for

each panel is calculated and divided by three (which is the length of the shorter phase) to

obtain  the  average  Manhattan  distance  per  comparison  of  equal  length  of  the  two  data

patterns. Between each panel, the shorter phase is shifted by one measurement occasion to the

right. Second, the three average Manhattan distances are then summed up and divided by the

number of comparisons, in this case three. Finally, this overall average Manhattan distance is

then divided by the pooled standard deviation of the two phases as proposed by Van den

Noortgate and Onghena (2008) to obtain the scale invariant CONDAP (whose value would be

1.16 for the current example). If all experimentally similar phases have a standard deviation

of zero, then the denominator of CONDAP would be zero as well, and it is recommended to

calculate  the  overall  average  Manhattan  distance  without  standardization  (Tanious  et  al.,

2019)

[INSERT FIGURE 1 HERE]

Based on a systematic review of a sample of 119 applied A-B-A-B studies, Tanious,  De,

Michiels, Van den Noortgate,  and Onghena (2019b) proposed the following guidelines for

interpreting CONDAP: very  high, 0 ≤ CONDAP ≤ 0.5; high, 0.5 < CONDAP ≤ 1; medium, 1

< CONDAP < 1.5; low, 1.5 < CONDAP ≤ 2; very low, CONDAP > 2. The two data patterns

in Figure 1 are thus medium consistent.  It is important to note that these guidelines were

developed  specifically  for  designs  using  successive  A-B comparisons.  We will  use  these

guidelines throughout the article for other designs for illustrative purposes and comparability,

but they should be interpreted with caution.

Consistency of Data Patterns: When Should it Be Assessed?

It is noteworthy that the What Works Clearinghouse panel uses an A-B-A-B phase design as

an example for demonstrating their developed guidelines. The immediate question following
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from that is whether consistency is only desirable in A-B-A-B designs. The definition by

Kratochwill et al. refers to ‘consistency of data in similar phases’. From this statement, it can

be deduced that each manipulation of the independent variable must occur at least twice in

order to assess consistency. By definition, this excludes phase designs such as A-B, A-B-C,

A-B-C-D, and A-B-BC-C in which each unique manipulation of the independent variable is

only  introduced  once.  In  addition,  there  are  phase  designs  in  which  only  one  of  the

manipulations of the independent variable is introduced twice. Examples of such designs are

A-B-A, B-A-B, A-B-C-A, and A-B-C-B. In such designs, the consistency of data patterns can

only  be  selectively  assessed  for  the  experimental  condition  that  was  introduced  twice.

Furthermore,  even in  phase designs where each manipulation  of the independent  variable

occurs at least twice (e.g., A-B-A-B), consistency cannot always be assessed, in relation to the

number of measurements  available.  In line with quality  standards for SCEDs, each phase

should contain a minimum of three data points to meet minimum evidence standards (e.g.,

Beeson & Robey, 2006; Kratochwill, et al., 2010) and five data points per phase are required

to meet evidence standards without reservation (Ganz & Ayres, 2018; Horner et al., 2005;

Kratochwill  et  al.,  2010, 2013;  Tate  et  al.,  2016b;  U.S.  Department  of  Education,  2016).

Additionally,  consistency  is  assessed  by  comparing  data  patterns  that  emerge  over  time

making it implausible to quantify consistency for very short time-series. For these reasons, we

recommend against quantifying consistency of data patterns with less than three data points

per phase. By the same logic, it is not plausible to assess the consistency of data patterns for

one particular kind of SCEDs: the alternating treatments designs. This design utilizes rapid

and repeated manipulations of two or more conditions (Wolery, Gast, & Ledford, 2018) and

“the  crucial  factor  of  the  design  is  the  unique  intervention  phase  in  which  two separate

interventions  are  administered  concurrently”  (Kazdin,  2011,  p.  198).  Due  to  the  rapid

alternation  of  treatments,  there  are  no  distinguishable  phases  in  this  design  so  that  no
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consistent data patterns across experimentally similar phases can emerge. In  the

following  sections,  we  extend  the  existing  CONDAP  measure  for  designs  in  which

consistency of data patterns is desirable: multiple baseline designs, phase designs with more

than two consecutive A-B comparisons, and changing criterion designs.

Extensions of CONDAP for more than four Phases and Multiple Baseline Designs

The  basic  A-B-A-B phase  design  can  be  extended  by  as  many  phases  as  the  researcher

believes are necessary and feasible. One such extension is the A-B-A-B-A-B design in which

one more baseline and one more experimental phase are added to the A-B-A-B structure. The

advantages of adding one more A-B pattern include the following: repeated possibilities for

demonstrating  experimental  control  over the dependent  variable,  extended study until  full

clinical treatment has been achieved, and added flexibility (Barlow, Nock, & Hersen, 2009).

Figure 2 shows an example of an applied study from the autism literature using this design.

Angell, Nicholson, Watts, and Blum (2011) examined the effectiveness of a multicomponent

adapted  Power  Card  strategy  to  decrease  latency  during  interactivity  transitions  for  three

children with developmental disabilities. The dependent variable was interactivity transitions

that  occurred  within  the  classroom.  This  was  measured  as  the  latency  of  students  with

developmental  disabilities  in  response  to  teacher  cues  to  initiate  classroom  interactivity

transitions. The baseline phases included typical classroom conditions. During intervention

phases, several components were added to the students’ routines which included presentation

of the Power Card, verbal cues by the teacher,  and verbal praise by the teacher.  Figure 2

shows the data of Quincy, an 11-year-old male diagnosed with autism.

[INSERT FIGURE 2 HERE]

As the definition by Kratochwill et al. (2010) suggests, consistency of similar data patterns is

assessed separately  for  each manipulation  of  the  independent  variable.  In  the example  in

Figure 2, we can thus assess the consistency of data patterns for the three baseline phases and
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the three intervention phases separately. This can be achieved by adding one additional step to

the  CONDAP  formula  for  A-B-A-B  designs.  Whereas  in  an  A-B-A-B  design  only  one

comparison is needed between the A1and A2 phase on the one hand and the B1 and B2 phase

on the other, an A-B-A-B-A-B requires additional comparisons to incorporate the A3 and B3

phases. To achieve this, we can first calculate separate CONDAP values for each comparison

between  A1 and  A2, between  A1 and  A3, and  between  A2 and  A3. The consistency matrix

below shows the results of this first step. 

A1 A2 A3

A1 0 1.06 2.37
A2 0 1.65
A3 0

The diagonal values of the matrix equal zero because each phase is perfectly consistent

with  itself  (i.e.,  identical  data  patterns)  as  indicated  by  a  CONDAP  value  of  zero.

Subsequently, an average across all three comparisons can be calculated to obtain the overall

consistency of baseline  data  patterns:  (1.06 + 2.37 + 1.65) /  3 = 1.69.  The baseline data

patterns thus show low consistency using the interpretative guidelines developed for A-B-A-B

designs. Following the same steps for the B-phases leads to obtaining a CONDAP value of

1.45  indicative  of  medium  consistency.  Beyond  the  application  of  the  interpretative

benchmarks, the consistency is lower for the baseline data patterns and this agrees well with

the visual analysis of the data. Visual inspection of Figure 2 reveals that the A-phases are all

highly variable  and show differences  in  level  whereas  the B-phases  are  less variable  and

differences  in  level  are  smaller  than  between A-phases.  The calculated  CONDAP values

express these differences in terms of higher consistency between experimental phases than

baseline phases.

For  assessing  the  consistency in  multiple  baseline  designs,  the  same steps  can  be

followed. Multiple baseline designs across subjects can be defined as follows.
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In the multiple  baseline design across subjects,  each individual  targeted for

treatment is exposed to the same environment. Treatment is delayed for each

successive subject in time-lagged fashion because of the increased length of

baselines required for each. The functional relationship between treatment and

target behavior can be determined only when such treatment is applied to each

subject in succession. (Barlow et al., 2009, p. 234)

If the goal is to change several distinct target behaviors in a single participant, a multiple

baseline  across  behaviors  design  can  be  used  (Rvachew,  1988).  In  such  a  design,  the

intervention is introduced in a time-lagged fashion to different target behaviors to demonstrate

experimental control of the intervention over each target behavior. Figure 3 shows an example

of a multiple baseline across subjects design. Scheeler, Morano, and Lee (2018) used this

design to investigate the effectiveness of a training program for four paraeducators working

with  students  diagnosed  with  Autism  spectrum  disorder.  During  baseline  sessions,  the

paraeducators received only delayed feedback from a special education classroom teacher.

During intervention sessions, the paraeducators received immediate feedback from the special

education classroom teacher via bug-in-ear technology. The dependent variable displayed in

Figure 3 is percentage of contingent specific praise statements delivered by the paraeducator

to the students reported as the percentage of totals praise statements. 

[INSERT FIGURE 3 HERE]

To calculate the consistency across data patterns of experimentally similar phases, we can

follow the same logic  as  in  the  A-B-A-B-A-B example.  The only difference  is  that  in  a

multiple baseline across subjects design, we compare experimentally similar phases across

subjects  instead  of  within  a  subject.  Given that  Scheeler  et  al.  (2018)  worked with  four

participants, we need to add one more row and column to the consistency matrix for A-B-A-

B-A-B designs to incorporate the additional comparisons. This also holds true for designs
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consisting of adjacent A-B comparisons with more than six phases.  The consistency matrix

below shows the results of all  consistency comparisons for the intervention phases of the

Scheeler et al. data.

B1 B2 B3 B4

B1 0 1.3
3

1.02 1.28

B2 0 1.15 1.67
B3 0 1.20
B4 0

In a second step, which is identical to the consistency assessment for A-B-A-B-A-B designs,

we can calculate the average across all comparisons: (1.33 + 1.02 + 1.28 + 1.15 + 1.67 + 1.20)

/ 6 = 1.27.  The consistency is higher than, for example, in the data patterns of the Angell et

al. data set. Following the same steps for the baseline phases, leads to obtaining a CONDAP

value of 1.17. In general, the number of consistency comparisons c per experimentally similar

phase –the upper right triangle in the consistency matrix– for  A-B-A-B-A-B and multiple

baseline designs equals:

     c=
(np

2−n p)
2

                            (2)

In Equation 2,  np represents the number of experimentally similar phases. For example, the

Scheeler et al. dataset contained four phases for each intervention. The number of consistency

comparisons c for each experimentally similar phase thus equals (42−4 )
2

=6.

Extensions of CONDAP for Changing Criterion Designs

The changing criterion design has been introduced as a distinct design in a seminal paper by

Hartmann and Hall (1976). As the name suggests, in this design, an individual is subjected to
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changing criterions (goals) for the rate of the target behavior. Barker, McCarthy, Jones, and

Moran (2011) describe the procedures for this design as follows:

A criterion is set that represents a target (goal) for the participant to meet. This

criterion  (or  goal)  will  change  throughout  the  course  of  the  study.  It  is

anticipated that the variable improves in increments to match the criterion that

is specified as part of the intervention (Kazdin, 1982). Normally, rewards or

incentives  are provided to facilitate  the attainment  of a designated criterion

[…] In the changing criterion design, the required level of a target variable is

altered  repeatedly  (e.g.,  increasing  the  amount  of  daily  exercise  time)  to

improve performance of this variable over time. (p. 109)

The changing criterion design is especially useful when immediate large changes in target

behavior are either impossible or undesirable because in this design the researcher can apply

gradual shifts toward a desired goal (Klein, Houlihan, Vincent, & Panahon, 2017). When the

dependent variable  in a changing criterion design changes according to the predetermined

criterion levels, an intervention effect is demonstrated (Kinugasa, Cerin, & Hopper, 2004).

Figure 4 shows an example of an applied changing criterion design. Voulgarakis and Forte

(2015) used this design to examine the effectiveness of an escape extinction and negative

reinforcement-based approach to  treating  food refusal  in  a  child  with cerebral  palsy.  The

dependent variable displayed in Figure 4 is the number of instances of the child depositing a

bite  of  food  into  his  mouth  during  a  30-minute  period.  During  the  first  phase,  baseline

measures were collected with no intervention taking place. The criterions for the subsequent

intervention  phases  were  5,  7,  10,  7,  and 12 bites.  During  intervention  phases,  the  child

received positive verbal reinforcement and was allowed to exit the meal as well as meal area

upon reaching the criterion. The upper left panel of Figure 4 shows the raw data.

[INSERT FIGURE 4 HERE]
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In such a design,  the assessment  of consistency is  highly desirable.  If  the rates  of  target

behavior displayed by the participant are consistent with the criteria set by the researcher, then

our confidence in the existence of a causal relationship increases. 

However,  since the criterion changes in each consecutive phase,  the assessment of

consistency  for  this  design  differs  from the  assessment  of  consistency  in  the  previously

discussed phase designs and multiple baseline designs for two reasons. First, there is only one

baseline phase in the beginning of the study in which no intervention is present. After the

initial baseline phase, no withdrawal of the intervention takes place (Barlow et al., 2009). The

assessment of consistency of baseline phases is thus neither possible nor desirable for the

changing criterion design. Second, in a changing criterion design the criterion rate for the

target behavior set by the researcher changes for each consecutive phase. Therefore, the data

patterns themselves are expected to be  inconsistent if the intervention is successful and the

rate  of  target  behavior  changes  with  each  criterion  change.  Accordingly,  we  recommend

inspecting the consistency of data patterns in relation to the criterion in each phase rather than

the consistency of the raw data. Moreover, unlike A-B-A-B, A-B-A-B-A-B, and multiple-

baseline  designs,  the assessment  of  consistency in  a  changing criterion  design would not

require distinguishing between consistency of data in similar phases (which is the focus of the

current text) and consistency of effects. Actually, for a changing criterion design, there would

be only one kind of consistency: the degree to which the measurements obtained match the

criterion levels set by the researcher, in the different subphases of the intervention phase. In

that sense, the assessment of consistency in a changing criterion design, as described here, is

even more  important  for  inferring  a  causal  relation  between the reinforcer  and the target

behavior, because it does not need to be complemented with a second type of consistency. 

One  measure  of  intervention  effectiveness  for  changing  criterion  designs  that  is

sensitive  to  the  differences  between  the  scores  and  the  criterion  is  the  Mean  Absolute
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Difference which “is calculated by taking the difference between the scores and the criterion

at each measurement occasion, dropping the sign, summing all these absolute differences, and

dividing by the total number of scores” (Onghena et al., 2019, p. 4). Following the logic of the

Mean  Absolute  Deviation,  we  propose  to  use  the  difference  between  the  scores  and  the

criterion  in  each  phase  for  assessing  the  consistency  of  data  patterns  with  a  slight

modification. Instead of taking the absolute difference, we take the difference between each

score and the criterion as is in order to preserve the original data patterns. The added vertical

dashed lines in upper right panel of Figure 4 show these differences. For example, for the first

experimental subphase the difference between the scores and the criterion of five are 0, 1, and

0. Converting each score to a difference score in this way gives the data shown in the lower

left  panel  of  Figure 4 whereby the  baseline  phase is  dropped because no intervention  or

criterion  was  present  in  that  phase  and  not  assessment  of  consistency  is  possible.

Subsequently, the difference scores can be used to assess the consistency between all pairs of

subphases in the same way as for A-B-A-B-A-B and multiple baseline designs. For the scores

depicted in Figure 6 we obtain the following consistency matrix where the numbers indicate

the order in which the subphases occurred during the experiment.

1 2 3 4 5
1 0 1.15 0.58 0 1.63
2 0 1.73 1.15 1.63
3 0 0.58 1.22
4 0 1.63
5 0

Taking the average across all comparisons gives a CONDAP of 1.13 indicative of medium

consistency when applying the benchmarks developed for A-B-A-B designs. 

In general, the number of consistency comparisons c for changing criterion designs equals:

c=
(n p−1 )2−np

2
                 (3)
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For changing criterions designs, the baseline phases needs to be subtracted from the overall

number of phases before squaring the number of phases. 

Discussion

Historically, the consistency of data patterns across experimentally similar phases has a long

tradition in the visual analysis of SCED data. In line with recent literature acknowledging the

complementarity of visual and statistical analyses, the aim of the present paper was to extend

the existing CONDAP measure for quantifying consistency in A-B-A-B designs to designs

with  more  than  two  adjacent  AB  comparisons,  multiple  baseline  designs,  and  changing

criterion designs. Using published data sets for illustrative purposes, we showed how in each

design consistency can be assessed by means of a consistency matrix.  Moreover, we have

developed  R  code  for  obtaining  the  quantifications:  A  user-friendly  web-application

implementing CONDAP is freely available at  https://manolov.shinyapps.io/CONDAP/. The

user has to specify the data file as indicated in the examples and, the software provides the

CONDAP matrix and the average CONDAP values. The web application further provides

graphical  representations  of  baseline  phases’  consistency  and  intervention  phases’

consistency. In addition, the user can generate a time series graph of the raw data.

The focus of this article was on the data aspect consistency because this data aspect

has  only  recently  been quantified  for  the  first  time  and only  in  the  context  of  A-B-A-B

designs.  Given  the  importance  of  the  data  aspect  consistency  for  inferring  a  causal

relationship in SCEDs, extensions of the existing CONDAP for A-B-A-B designs to other

designs  can  have  great  added  value.  Notwithstanding  this  importance  of  consistency  in

analyzing data obtained from SCEDs, it is important to keep in mind that consistency of data

in similar phases should always be assessed alongside the other five data aspects suggested in

the What Works Clearinghouse guidelines (Kratochwill et al., 2010): level, trend, variability,

https://manolov.shinyapps.io/CONDAP/
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overlap, and immediacy, as well as the consistency of effects. An inferential testing procedure

for all data aspects has been proposed by Tanious, De, and Onghena (2019).

Furthermore, inspecting the consistency matrix itself rather than the average CONDAP

only can lead to a better understanding of the effects of a new treatment and experimental

control.  For  example,  in  the  changing  criterion  design,  the  overall  CONDAP  indicated

medium consistency when using the guidelines for A-B-A-B designs for illustrative purposes.

Looking at the consistency matrix, we can see that intervention subphases three and four are

highly consistent which is remarkable because subphase three was an increase in the criterion

whereas  subphase  four  was  a  decrease  in  the  criterion.  Such consistency across  different

criterion changes, including a reversal to a lower level, is indicative of experimental control

(cf. Kinugasa et al., 2004). 

It should also be noted that CONDAP can be extended to extensions of the designs

presented in this article. One such extension is the range-bound changing criterion design in

which a lower and upper bound are specified for each intervention phase (McDougall, 2005).

McDougall  suggests an upper bound of 10% above the desired mean for each phase and a

lower  bound  10%  beneath  the  desired  mean  for  each  phase.  According  to  McDougall,

advantages of the range-bound changing criterion design include: establishing a ceiling for

acceptable improvement to prevent counter-therapeutic effects (e.g., to avoid injury in sports

training  interventions),  establishing  a  floor  of  acceptable  performance  for  gradual

improvement,  and  added  flexibility  to  adapt  to  the  subject’s  individual  circumstances.

CONDAP can be calculated for this design by assigning a value of zero for all data points

within the acceptable range, assigning a positive value for each score equal to the distance on

the y-axis above the upper limit, and assigning a negative value for each score equal to the

distance on the y-axis under the lower limit. With these distance scores for the range-bound
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changing criterion design, CONDAP can be calculated in the same way as for the single-point

changing criterion design.

Limitations and Future Research

The CONDAP extensions presented in this article are subject to a few limitations that offer

potential avenues for future research. First, each extension of CONDAP was demonstrated

stepwise using only one published applied data set to explain each extension in depth. Future

studies could integrate the presented CONDAP extensions in simulation studies or systematic

reviews. Such studies could help in cross-validating the measures with trained visual analysts

and find out what are the typical CONDAP values found in published literature. A second

related  limitation  is  that  the  presented  guidelines  for  interpreting  CONDAP  values  were

developed  based  on  a  systematic  review  of  A-B-A-B designs.  We do  not  recommend  a

straightforward application of these guidelines to other designs as this might systematically

over-  or  underestimate  the  degree  of  consistency  in  experimentally  similar  phases.  As

discussed previously, neither the underlying logic, nor the demonstration of an intervention

effect is the same in an A-B-A-B design, multiple-baseline design, and in a changing criterion

design. This is also why the CONDAP calculation for changing criterion designs is slightly

different. Moreover, it has to be taken into account that a multiple-baseline design usually

entails  across  participants  replication,  whereas  A-B-A-B  and  changing  criterion  designs

replicate within a participant. The development of interpretative CONDAP guidelines specific

to each design is therefore an important  challenge for future research.   Again,  systematic

reviews and cross-validation with trained visual analysts might help in developing guidelines

specific  to  each design.  A third potential  avenue for future research refers to the type of

consistency being assessed. In the presented study, we focused solely on the consistency of

data patterns in experimentally similar phases. A second -and arguably equally important-
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type of  consistency is  the consistency of  the  effects.  In the context  of A-B-A-B designs,

Tanious et  al.  (2019a) proposed the CONsistency of the EFFects (CONEFF) measure for

assessing the change in each data aspect between similar phase changes. Future studies might

focus on extending CONEFF to the designs presented in this article so that both types of

consistency can be assessed. A fourth potential avenue for future research is the development

of software to integrate the presented consistency measures as test statistics in randomization

tests.

Conclusion

Consistency of experimentally similar phases is an important indicator of a causal relationship

in SCEDs. In this  article,  we presented  extensions  of the existing  CONDAP measure for

assessing  consistency  in  phase  designs  with  more  than  two successive  A-B comparisons,

multiple baseline designs, and changing criterion designs. Calculating CONDAP alongside

effect  size measures  for  level,  trend,  variability,  overlap,  and immediacy can be valuable

supplements to mere visual analysis. In the online supplementary material, we provide generic

R-code for executing all analyses presented in this article. 
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Figure 1. CONDAP calculation for an A-B-A-B phase design with unequal phase lengths 
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Figure 2.  Example of an A-B-A-B-A-B design. Data from Angell,  Nicholson, Watts,  and
Blum (2011) 



CONSISTENCY IN SCEDS 26

Figure 3.  Example  of a multiple  baseline across participants  design.  Data from Scheeler,

Morano, and Lee (2018)
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Figure 4.  Example of a changing criterion design. Red horizontal lines indicate the criterion 
for each phase. Upper left panel: raw data; upper right panel: difference between each score 
and the corresponding (vertical dashed lines); lower left panel: converted difference scores 
from upper right panel. Data from Voulgarakis and Forte (2015).
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