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Introduccio

En general, quan hom comenca a explorar qualsevol camp d’una ciencia s’interessa per
les situacions genériques; és a dir, es centra en els comportaments que apareixen en la
“majoria” dels casos que ens trobarem a la vida real.

Aquesta metodologia permet entendre el nou problema més facilment ja que els casos
no genérics (o degenerats) sén menyspreats (al menys a priori) en un primer estudi.
D’aquesta manera la casuistica és més simple i la teoria general pot ésser desenvolupada
amb més facilitat.

Malgrat que aquest és un bon procediment cientific, la finalitat de la ciéncia és explicar
la realitat de la forma més completa possible. Per aixd, quan el cas general esta ja
descrit (potser no en la seva totalitat, pero si bastant desenvolupat), hom pot estudiar
els casos no generics: les excepcions. No hem d’oblidar que en la natura no tots els
processos segueixen una regla general. Aquests casos excepcionals ens aporten sovint
nous tipus de comportament. Per tant, podem apendre molt de les excepcions, tant
a nivell intrinsec (situacions que difereixen del comportament qualitatiu general), com
per les noves técniques que es desenvolupen per entendre-les.

Dins de certs contextes, és genéric trobar-se amb cassos degenerats. Pensem per ex-
emple en el cas de families parametriques, f,, les quals ens descriuen comportaments
diferents segons el valor de p. En aquesta situacié és genéric (és a dir, succeeix per la
majoria de les families) trobar-se valors del parametre pg pels quals el comportament
de f,, és degenerate.

Molts dels processos naturals que involucren moviment es poden expressar en termes
d’un sistema dinamic, ja sigui continu: com una eqiiacié diferencial,



il

o discret, en termes d’una aplicacio:
T+ f(z).

Logicament, en ’estudi dels sistemes dinamics apareixen també moltes degeneracions.
Anem a exposar una de les més simples, de fet, possiblement la més senzilla, que ens
podem trobar. Suposem que tenim un sistema dinamic continu en R™ amb un punt fix
Iqg-

dz

at X(z), z € R", X(zo) = 0. (1)

Aplicant el teorema de Taylor al voltant del punt fix obtenim:

% — DX(ao)(@ ~20) + O(lle — zoll).

Per tant, prou a prop de zg, sembla que la part dominant d’aquest sistema dinamic ve
donada per la seva part lineal. De fet, aixd és cert sempre i quan els valors propis de
DX (zo) tinguin part real diferent del zero. En aquest cas, el teorema de Hartman ens
assegura que existeix una funcié bijectiva bicontinua que aplica solucions del sistema
inicial (1) en un entorn del zy, a solucions del sistema lineal

dr _
dt

el qual té solucions explicites donades per:

DX (zo)(z — o)

z(t) = zg + ePXE (0 — 74) z(0) = =°.

Diem que el sistema (1) i el sistema lineal anterior s6n topologicament conjugats. Als
punts fixos d’un sistema dinamic que compleixen que la diferencial del camp avaluada
en el punt fix no té valors propis amb part real nul.la s’els anomena hiperbolics.

La degeneracié que ens ocupa és la relativa als valors propis de la part lineal del sistema
dinamic al voltant d’un punt fix (o bé d’una orbita peridodica). Aquesta es produeix
quan DX (zg) té algun valor propi amb part real igual a zero. Suposem, per exemple,
que DX (zg) té un valor propi igual a 0, llavors, fent un canvi de variables si cal, tenim
que si escribim z = (21, 23, . .. ,Z,), al voltant del punt fix zg la dindmica de la variable
z, ve donada per:

d.’.'El

=L = 0(llz - zoll?).
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Per tant, la informacié sobre la dinamica de la variable z; ve donada pels termes
quadratics (o potser d'ordre superior), és a dir ’aproximacié lineal no és valida en
aquests casos. Als punts fixos g, tal que DX(zg) té algun valor propi igual a 0
s’els anomena punts parabolics (o parcialment parabolics si n’hi ha alguna direccié
hiperbolica). Analogament si considerem sistemes dinamics discrets:

z — f(z)

ens trobarem amb la mateixa situacié si la diferencial de ’aplicacié f avaluada en el
punt fix té valors propis 1 o —1.

Llavors, és clar que la classificacié de sistemes amb punts fixos no hiperbolics no depén
de la part lineal de la diferencial del camp en el punt fix, sino dels primers termes no
lineals del camp. Aixi un sistema amb la mateixa part lineal pot tenir comportaments
ben diferents. Per exemple amb la part lineal igual a:

(50)

ens podem trobar comportaments com els segiients:
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Mentre que, per exemple, si tenim un sistema dinamic amb un punt fix tal que la seva
part lineal és:

Ay 0

0 X

amb A Ay < 01ireals, el retrat de fase al voltant del punt fix és, qualitativament, sempre

el mateix:

R\NI/

independenment dels valors de A; i A; i dels termes d’ordre superior que defineixen el
sistema.

Varietat central

Com ja hem mencionat, un sistema dinamic continu amb un punt fix hiperbolic pot ser
transformat (prop del punt fix) en un sistema lineal. Quan el punt fix és no hiperbolic




tenim un resultat semblant, malgrat que no tan satisfactori, per estudiar el sistema
dinamic al voltant del punt fix.

Considerem un camp X tal que 'origen és un punt fix no hiperbolic. Sigui E*° P'espai
lineal que generen els subspais propis de valors propis amb part real igual a 0 i siguin
E™ i E° els subespais lineals generats pels subspais propis de valors propis amb part
real positiva i negativa respectivament. Llavors, sabem que existeixen varietats W,
(varietat invariant estable) , W}, (varietat invariant inestable) i W, (varietat invariant
central), invariants pel flux generat pel camp X i tangents als espais E°, E* i E°
respectivament al punt fix.

Recordem que, aixi com es pot demostrar que les varietats estable i inestable sén
uniques, la varietat central no ho és en general. Fixem-nos, per exemple en el retrat

de fase del sistema:

el qual, a prop del punt fix, és

N

/

En aquest cas, E° és el subespai generat pel vector (1,0) i per tant, ja que totes les
solucions contingudes en el semipla = < 0 sén tangents a E°, sén varietat central.

En qualsevol cas, fixada qualsevol de les varietats centrals, podem conjugar topologica-
ment el camp X al voltant del punt fix a un camp de la forma:

T, = Xc(mc)

By = @

i:s = —.'1:3
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on T = (¢, Tu, Ts) 1 Xe = Xjwe_. Per tant, podem restringir 'estudi al voltant del punt
fix a la varietat central local W, ja que en la resta de direccions el comportament és

ben conegut. Hem reduit doncs la dimensi6 del problema.

Es també un fet conegut que W, i W, tenen el mateix grau de diferenciabilitat que
el sistema dinamic, aixé no és cert en el cas de la varietat central, la diferenciabilitat
de la qual pot variar segons el domini de definicié que agafem. Veure [46], [13] i [86]

per més detalls.

Tornem un moment als exemples (a), (b) i (¢c). Observem que, en tots els casos la
varietat central és tot R?, ja que E° = R?, perd en els casos (a) i (b) tenim orbites
que tendeixen a l'origen quan ¢ — +00 i quan t — —oo. Per tant, en alguns casos de
punts fixos no hiperbolics podem definir la varietat estable e inestable local relativa a
U C W, (dins de la varietat central) de manera natural:

Wie(zo) = {z€U:pt,z)eU Vt>0i¢(tz) — 2o quan t — +oo}
Wi (zo) = {z€U:p(t,z) €U Vt<0ip(t,z) — o quan t — —o0}

ocC

on zo és un punt fix del sistema i ¢(t,z) és la soluci6 de & = X(z).

El problema de decidir si un punt fix parabolic d’un camp o una aplicacié té associades
varietats estable e inestable (dins de la varietat central), no esta resolt en el cas general,
perd es poden trobar alguns resultats d’existéncia i unicitat d’aquestes varietats. Per
exemple, per aplicacions 2-dimensionals en les que la diferencial en el punt fix és la
identitat cal mencionar els treballs de McGehee, Easton i Robinson en [63], [70], [26],
[62] i [14]. També en el darrer capitol d’aquesta memoria donem condicions suficients
d’existeéncia i unicitat de varietat invariant estable per aplicacions amb la diferencial
igual a la identitat en dimensié n arbritaria. Per a aplicacions en dos dimensions amb
la diferencial en el punt fix igual a:
11
(1) @

destaquem el resultats de J.Casasayas, E.Fontich i A.Nunes en [8] i de E.Fontich en
[30]. Sén d’aquesta darrera classe d’aplicacions les equacions en diferéncies de segon
ordre de la forma:

Yk+1 — 2Uk + Ye—1 = f(Yx),

on f(0) = f'(0) = 0, si expressem la recurréncia anterior de la forma

(e ) =705 )= (2 0) (5 )+ Crn )
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on és clar que DF(0,0) és similar a la matriu (2), per tant, via un canvi lineal de
variables estem en el cas actual. També és d’aquesta classe, la “standard map” gen-
eralitzada:

F(z,y) = (z+y+eV(z),y +eV(z))
amb V una funcié periodica, tal que V(0) = V'(0) = 0.

La forma més estandar de trobar les varietats invariants locals central, estable e in-
estable associades a un punt fix és descriure-les com a grafs de funcions:

Wi = grapho* = {(z,y) : y = ¢*(2)} = BRI

Es també interessant saber quin tipus de regularitat té ¢*. Suposem que 'origen és
un punt fix no hiperbolic, llavors, és curiés de fer notar que, en el cas analitic, les
varietats invariants locals no sén analitiques a l’origen en general, mentre que en el cas
hiperbolic les varietats tenen la mateixa regularitat que el camp. Per exemple, pensem
en un cas molt senzill. Considerem el sistema hamiltonia associat a:
y?
Hz,y) =L+ V()

amb V(z) = 23+0(z*). Llavors, és clar que y = %/2,/1 + O(z) és la varietat inestable
local i que y = —2%2,/1 + O(z) és la varietat estable local i a més cap de les dues és
analitica a l'origen. En qualsevol cas, si que es pot demostrar, sota certes condicions,
que les varietats estable i inestable local d’un punt fix parabolic, sén analitiques en un
sector complex de la forma

Q={zeC:0<|z|<r 1 |arg(z)| <n}
amb 7 i n quantitats positives.

Per 1ltim, dir que tots els resultats d’existéncia i unicitat de varietats invariants asso-
ciades a punts fixos parabolics, logicament imposen condicions sobre la part no lineal
de 'aplicacio, la qual cosa dificulta la comprovacié de les hipotesis.

Exemples on apareixen punts fixos degenerats

Malgrat que, com hem mencionat anteriorment, la condicié d’ hiperbolicitat d’un con-
junt invariant: un punt fix, una orbita periddica, etc., d'un sistema dinamic, és una
condicié generica (part real dels valors propis de la diferencial diferents de 0 en el cas de
fluxos o de modul diferent de 1 el cas d’un difeomorfisme), alguns fendmens interessants
no poden explicar-se dins d’aquest contexte.



viii

Considerem un exemple molt senzill, el cas de families de camps X,, diferenciables
dependents d'un parametre pu. Diem que la familia X, té una bifurcacié a p = 0 si
i només si, per a tot entorn V' de p = 0 en 'espai de parametres, existeixen p; i uo,
valors del parametre diferents que pertanyen a V, tals que les equacions associades
als camps X, i X, exhibeixen diferents comportaments qualitatius. Fixem-nos en les
bifurcacions locals més simples, és a dir aquelles en les que canvia el caracter i el nombre
de punts fixos. Sigui po un punt fix de X;. Es conegut que si perturbem un camp
vectorial amb un punt fix hiperbolic el sistema pertorbat continua tenint un punt fix
hiperbélic. Per tant, una condicié necessaria per obtenir bifurcacions d’aquesta mena
és que pp sigui no hiperbolic, pensem, per exemple, en les bifurcacions més senzilles:
sella-node (& = pu—z?), transcritica (¢ = pz — z3), pitchfork (¢ = u—z?), etcétera. En
totes elles, per u = 0, I'origen és un punt fix parabolic. Per tant, un bon coneixement
de la dinamica d’un sistema al voltant d’un punt fix no hiperbolic, ens ajudara a
entendre la transicié entre els comportaments per u < 0i x> 0. Igualment, en el cas
d’aplicacions, les bifurcacions locals també apareixen en punts fixos no hiperbolics.

Abans de descriure altres fenomens que involucrin sistemes dinamics amb objectes in-
variants no hiperbolics, introduirem breument la nocié de sistema integrable: suposem
que tenim una equacié diferencial

& = f(z)

que descriu I’evolucié d’un sistema en R". Diem que una funcié F : U C R® — R és
una integral primera del sistema si F' és constant al llarg de les solucions del sistema
(és a dir F(z(t,z0)) = ¢, on z(t,zo) és la soluci6 tal que z(0,zo) = o). Suposem ara
que tenim n — 1 integrals primeres funcionalment independents,

Fi(z),... ,Fa1(x)

llavors una solucié z(t, o) del sistema & = f(z) pot ser totalment descrita com la corba
interseccié de les hipersuperficies

Fi(z) = Fi(zo)

Fu—l(x) = Fn—l(:rﬂ)

excepte pel que fa a la parametritzacié respecte el temps. En aquest cas diem que el
sistema és integrable.

Un tipus de sistemes molt important, ja que de fet molts dels fendomens mecanics es
regeixen per sistemes d’aquesta mena, sén els anomenats sistemes hamiltonians. Diem
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que un sistema és hamiltonia si existeix una funcié, que anomenem hamiltonia del
sistema, H : U C R*™ — R tal que

= ayH(-T:y)
y = —0:H(z,y).

Es clar que H és una integral primera del sistema. Es diu que el sistema hamiltonia té
m graus de llibertat.

La dos forma simpléctica estandard, dota U C R®*™ d’estructura simpléctica. Aquesta
estructura permet que la nocié de sistema hamiltonia integrable pugui reduir-se a
I'existéncia de m integrals primeres Fy = H, F3, ..., F, (el hamiltonia n’és una) les
quals estan en involucié, és a dir:

{F;, F}} = 0. F;9,F; — 9, F;0;F; = 0

i les seves derivades s6n linealment independents a un obert dens. Aquest resultat és
degut a Liouville-Arnorld (veure [3]).

A continuacié descrivim alguns fenomens que involucren sistemes dinamics amb ob-
jectes parabolics.

El primer d’ells és el de les ressonancies paraboliques. Una resonancia parabolica es
produeix quan un sistema hamiltonia integrable amb 2 graus de llibertat amb un cer-
cle de punts fixos parabolics és perturbat. En [71] V.Rom -Kedar prova que aquesta
qualitat és generica per a families 1-parametriques (fendomen de codimensi6 1) de hamil-
tonians amb 2 graus de llibertat prop d’integrables, és a dir, sistemes que sén petites
pertorbacions de sistemes hamiltonians integrables. Experiments numerics apunten
que el moviment a prop de ressonancies paraboliques exhibeix un nou tipus de com-
portament caotic no detectat fins ara. Hi ha encara un cas més degenerat, denominat
ressonancia parabolica plana, el qual es manifesta en un model que prové d’un estudi
atmosferic real, concretament de l'estudi de sondes metereologiques. Aquest model
proporciona un mecanisme per transportar particules amb velocitats inicials petites a
prop de I'Equador fins a latituds altes. Veure [71] i les referéncies en ell per més detalls.

L’estudi fet en aquest darrer article, respecte a les ressonancies paraboliques, és gener-
alitzat en el cas de hamiltonians amb n graus de llibertat amb n > 3 en [56] i [57].

En [48], Hanfmann tracta torus de dimensié baixa amb una freqiiéncia normal nul.la en
sistemes hamiltonians de n graus de llibertat. Aquests torus s’anomenen normalment
parabolics. Hanfmann considera families de sistemes hamiltonians a prop d’integrables
en un entorn de torus invariants normalment parabolics. Sota certes condicions de



transversalitat té lloc una bifurcacié quasi-periodica centre-sella (A < 0 no tenim torus
invariants, A = 0 el torus és normalment parabolic i A > 0 el torus és de tipus sella).
L’autor demostra la persisténcia de la bifurcacié centre-sella i dels torus normalment
parabolics parametritzats per conjunts de Cantor “grans”. Hanfmann aplica aquests
resultats a la dinamica del solid rigid.

En el problema pla de tres cossos una orbita parabolica és una trajectoria d'una
particula que s’apropa a l'infinit amb velocitat zero, mentre que les trajectories de
les altres dues particules resten acotades per temps positius. Una orbita del problema
pla de tres cossos s’anomena oscil.latoria si el limit superior (al llarg del temps) de la
separaci6 entre les particules és infinit, pero el limit inferior és finit. Sembla clar, doncs,
que les Orbites oscil.latories van i venen infinites vegades tendint (d’alguna manera) cap
a infinit. Per aix0 una bona manera d’atacar aquest problema és trobar “solucions
homocliniques a l'infinit”. Per tant sembla logic intentar portar I'infinit a algun objecte
invariant. En el cas del problema pla de tres cossos, McGehee i Easton en [27] proben
que 'infinit es pot veure com una tres esfera foliada de orbites periodiques. McGehee
considera tres problemes: el problema restringit, el problema de Sitnikov (veure [78]),
i quan els tres cossos es mouen sobre una recta, i en [63] demostra que (després de
certs canvis de variable ) I'infinit es pot reduir a una orbita periddica. Més tard, R.
Martinez et al en [62] demostren, entre d’altres coses, que, en el problema restringit
el.liptic de tres cossos, la varietat de I'infinit esta també foliada d’orbites periodiques.

Una manera d’atacar el problema de trobar orbites oscil.latories és demostrant que
aquestes orbites periodiques, les quals recordem que representen 1'infinit del sistema
inicial, tenen varietat estable i inestable i que aquestes es tallen transversalment. Aque-
sta no és una condicié suficient (veure [27]), perd si que sembla necessaria per demostrar
I'existéncia d’orbites oscil.latories. En els problemes tractats per McGehee en [63] i en
el problema el.liptic restringit [62] trobar aquestes solucions homocliniques implica
I'existéncia d’orbites oscil.latories i per tant de caos.

En tots aquests exemples, les orbites periodiques associades a l'infinit que s’han trobat
s6n degenerades. Concretament la diferencial de ’aplicacié de Poincaré associada a
dita orbita periodica té valors propis 1. En els problemes considerats per McGehee i
per R. Martinez et al és la identitat i en el problema pla de tres cossos té una part
hiperbolica, és a dir, en aquest cas la diferencial és de la forma

I 0

0 A
amb I € Mjxz i A és una matriu hiperbolica. McGehee va demostrar en [63] que
(sota condicions que generen una certa hiperbolicitat feble) aplicacions en dimensié 2



amb un punt fix de tipus parabolic tal que la diferencial de ’aplicaci6 en el punt fix
és la identitat, tenen varietat estable associada la cual es pot expressar com el graf
d’una funcié. Aquesta funcié és Lipschitz, si I’aplicacié és Lipschitz, i analitica en el
cas d’aplicacions analitiques. No es demostra el cas diferenciable. Més tard aquest
resultat va ser generalitzat en [26] (en el cas Lipschitz) i [70] (pel cas C*) per fluxos
de la forma

z = pe(z,y)+ Ok
¥ = By+aq(z,y)+ Ok

onz € R?% y € R®ipiq polinomis homogenis de grau k, k > 2. Conseqiientment
I’aplicaci6é temps unitat d’aquesta eqiiacié diferencial és de la forma

) z + Pi(z,y) )
+0
( y ) ~ ( Ay + Qu(z,7) e
on Py, @y sén polinomis homogenis de k, k > 2, i els valors propis de la matriu A sén
de modul diferent de 1.

Tot aixd ens indica que les orbites paraboliques formen una varietat suau. Robinson,
Xia, Moeckel i R. Martinez en [70], [88], [66] i [62] respectivament demostren I'existéncia
d’orbites oscil.latories en alguns exemples del problema de tres cossos.

Aquest darrer fenomen ens va motivar a plantejar-nos el problema de donar condicions
suficients per l'existéncia de varietat invariant estable d’una aplicaci6 en R™ amb un
punt fix tal que la diferencial de I’aplicacié avaluada en el punt fix sigui la identitat en
R™, aixi, previsiblement, podriem trobar orbites oscil.latories en problemes de més de
tres cossos.

A part d’aquest problema, I'objetiu d’aquest treball és demostrar una férmula asimpto-
tica per mesurar el trencament de separatrius,associades a punts fixos parabolics, per
una classe de sistemes hamiltonians d’un grau i mig de llibertat rapidament forgats.
Considerem sistemes hamiltonians amb un punt fix parabolic tals que la diferencial del
sistema avaluada en el punt fix és
01
(20)

i demostrem que la magnitut del trencament és exponencialment petita respecte a la
freqiiencia de la pertorbacié.

En aquest treball hem estudiat basicament els dos darrers problemes mencionats. Con-
seqiientment la tesi esta dividida en dues parts. En la primera estudiem la mesura del



trencament de separatrius associades a punts fixos parabolics i en la segona donem un
teorema d’existéncia de varietats invariants associades a un punt fix de difeomorfismes
n-dimensionals amb la diferencial avaluada en el punt fix és la identitat.

Part I: Trencament de separatrius

Passem ara a introduir la nocié de separatriu d’un sistema hamiltonia. Recordem que
un sistema dinamic continu en R" és integrable quan té n — 1 integrals primeres fun-
cionalment independents. En el cas d'un sistema Hamiltonia, el teorema de Liouville-
Arnold (veure [3]) ens assegura que un sistema hamiltonia és integrable si té m = n/2
(contant el hamiltonia) integrals primeres Fy = H, F3, ... , F}, en involucié

w

{F, F;} = 0. Fi9,F; — 0,Fi0,F; = 0
i les seves derivades sén linealment independents en un obert dens.

Supossem que tenim un sistema hamiltonia integrable, la dinamica en aquest cas és
ben coneguda. En efecte, anomenem F = (Fy, F,... ,F,) i M. = F~'(c). Llavors,
M, és una subvarietat invariant pel flux de dimensié m. A més, si M, és conexa i els
camps

o,F,

sén complerts (les seves solucions estan definides per a tot temps), llavors si la varietat
M, no és compacte, és homeomorfa a T* x R™* i si M, és compacte i conexa, llavors és
homeomorfa a un torus m-dimensional. En qualsevol dels dos casos, amb un canvi de
variables adequat, el flux del sistema hamiltonia sobre M, és conjugat a una traslacié:

o(t,z,y) = (z+tw (mod2r),y + tv)

on w i v depenen de c. Per tant un sistema hamiltonia integrable és totalment pre-
dictible (o regular): no n’hi ha comportament estocastic (no predictible).

Dins del contexte dels sistemes hamiltonians integrables, fixem la nostra atencié en els
que, per alguna constant cy, la varietat M, esta formada per un objecte invariant P (un
punt fix, una orbita periodica, un torus, etc.) i les seves varietats invariants estable
e inestable. Suposarem que existeixen branques de les varietats estable e inestable
que coincideixen, és a dir W**(P) = W**(P). Aquestes varietats estan foliades
per solucions del sistema hamiltonia que tendeixen al objecte invariant quan el temps
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tendeix a 400, si estem sobre la varietat estable, 0 a —0o si estem sobre la inestable.
Aquesta varietat invariant rep el nom de separatriu.

Aquest nom prové de considerar el cas de sistemes hamiltonians d’un grau de llibertat
amb varietats invariants estable e inestable associades a punts fixos. En aquest con-
texte, les separatius “separen” diferents tipus de comportament dinamic. Per exemple,
pensem en el cas del péndol, el moviment del qual ve regit per les equacions:

T=y y=—sinz z €S, y € R.

El seu retrat de fase és ben conegut:

separatriu

~ )
\M

i

=

El punt de repés (0, 0) és estable. Si donem una empenta (una velocitat inicial) més pe-
tita que 2 al péndol situat en la posicié de repds, oscil.lara al voltat del punt d’equilibri
(la seva trajectdria és una oOrbita periodica) i si la velocitat inicial és més gran estricte
que 2, el péndol gira en el mateix sentit creuant la part de dalt del péndol representada
pel punt (7, 0). Si la velocitat inicial és igual a dos, llavors la solucié tendeix al punt
d’equilibre inestable, el punt (7,0). A aquesta darrera solucié se li anomena separatriu
i és clar que separa dos tipus de moviment ben diferents.

Tot i que en dimensions més altes les separatrius no separen (ja que sén subvarietats
de la meitat de la dimensié del espai) se les continua anomenant pel mateix nom.

Considerem, doncs, un sistema hamiltonia amb dos conjunts invariants (punts fixos,
orbites periddiques, etc.), amb varietats estable e inestable. Supossem que W**(P;) =
Wwt(Py) i Wt (P) = Wt (P), on Wt (P) i W%*(P,) sén branques de les
varietats W**(P;) i W**(P,) respectivament. Tenim el que s’anomena connexié het-
eroclinica (si P, # P,) o homoclinica si P, = P;. Aquesta és una situacié genérica
dins dels camps hamiltonians, perd quan pertorbem amb una pertorbacié periddica, en



general, aquesta connexié es trenca donant lloc al fenomen anomenat trencament de
separatrius:
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El fenomen del trencament de separatrius va ser descrit per Poincaré, peré va ser
Melnikov (amb les idees proposades per Poincaré) qui va donar una bona eina analitica
per mesurar-lo. Aquesta eina és coneguda com el métode de Poincaré-Melnikov (veure
[46] i [1] per una bona introduccié). Aquest métode ens déna una férmula asimptética
de primer ordre per mesurar aquest trencament.

Per fixar idees, suposem que tenim el sistema

& = f(z) + pg(t, z)

onz € R?iperpu=0el sistema no pertorbat té una connexié homoclinica associada
a un punt fix de tipus sella. Es el cas més simple. Si la pertorbacié és prou petita, el
sistema pertorbat té una orbita periodica hiperbolica o i per tant, existeixen varietats
estable e inestable de . La férmula proposada per Melnikov per mesurar la magnitud
d’aquest trencament d(tp) en un temps o fixat (d(ty) és la distancia entre les varietats
invariants del sistema perturbat) és

d(to) = M (to) + O(u?)

on M(tg) és la integral de Melnikov, la qual depén de la connexié homoclinica i de g.
Podem assegurar la existéncia de punts homoclinics (punts que pertanyen a la varietat
estable e inestable de o) transversals si existeix algun ¢q tal que M (o) = 01 M'(t9) # 0.
Es ben conegut que l’existéncia de punts homoclinics transversals en dimensié 2 déna
lloc a comportament cadtics (teorema homoclinic d’Smale).
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Suposem ara que la pertorbacié té freqiiencia rapida, és a dir el periode és €T' amb
e > 0 petit. Llavors, es pot demostrar que la integral de Melnikov és O(e~%/¢) amb
a > 0 una certa constant. Per tant en aquest cas la funcié de Melnikov, a priori, és una
bona aproximacié de la mesura del trencament només si . = o(e~%/¢), el que ens déna
un marge molt petit de valors de u i per tant de les perturbacions possibles pels quals
poder obtenir conclussions. En aquest cas el métode de Melnikov (en la seva forma
elemental) no és, a priori, una bona eina per mesurar el trencament de separatrius.

Recentment Lombardi [61] ha donat métodes rigurosos per estudiar el que ell anomena
integrals oscil.latories que sén integrals del tipus

I(e) = /—+°° eitfsg(mg(t, €))dt

o0

on zo és una solucié particular del sistema & = F(z,t,¢) caracteritzada, per exemple,
pel seu valor al infinit. Per exemple, si zy és la varietat estable d’una orbita periodica
o d'un punt fix. Aquests tipus d’integrals sén les que apareixen al aplicar el métode de
Poincaré-Melnikov i per tant pot ser molt 1itil en el futur. Aquest treball tracta prob-
lemes en els quals apareixen fenomens exponencialment petits en sistemes reversibles.
Per exemple, considerem un camp vectorial en R* en forma normal i trunquem a qual-
sevol order. El sistema no perturbat és el sistema truncat i considerem la cua de la
forma normal com una pertorbacié. En [61] es prova, prop d'un cert tipus de res-
sonancia, la persisténcia de connexions homocliniques a orbites periodiques de tamany
exponencialment petit. La ressonancia és deguda al canvi de caracter del punt fix. Dos
dels valors propis sén de la forma +iw + O(p) i els altres dos A;, A2 s6n diferentes i
reals per u > 0, Ay = A\ = 0 si el parametre p = 0 i imaginaris si 4 < 0. Per tant tenim
aqui també un model de pertorbacié en el qual apareix un punt parabolic coexistint
amb una part oscil.latoria.

Molts autors han treballat el fenomen del trencament de separatrius amb pertorba-
cions periodiques de freqiiéncia rapida, per demostrar que, en alguns casos i sota certes
hipotesis, la funcié de Melnikov déna una bona aproximacié de la mesura del trenca-
ment de separatrius.

En [54], Lazutkin estudia l'aplicacié standard i raona (perd no proba rigurosament)
que ’angle d’interseccié entre les varietats estable e inestable és de la forma

o = Zloule™ VA1 + O(e")]

amb r > 0. La constant ©, € C ha de ser calculada numéricament. De fet, donat que és
el terme dominant de ’expressié de I'angle de separacid, el més important és demostrar



que no és zero. En [81], Suris demostra que aquest coeficient és diferent del zero per
I’aplicacié standard i proposa una manera alternativa de calcular aquesta constant,
pero continua sent necessari computar-la numericament. També, en [42] Gelfreich et al
demostra analiticament que ©; no és zero per I'aplicacié d’Henén. En [55] es calcula
numéricament aquesta constant per la aplicacié semistandard i en [12] per ’aplicacié
de Hénon.

Es important destacar que, en [54], s’introdueixen noves eines analitiques per 'estudi
del trencament de separatrius les que han estat pioneres i han influit decisivament en el
desenvolupament de I'area. Aquesta técnica ha estat utilitzada fortament en aquesta
memoria. (Veure [42] per una bona exposicié d’aquesta técnica).

En [34] i [33] E. Fontich i C.Simé estudien el trencament de separatrius per a families
a prop de la identitat de difeomorfismes de classe C" i analitiques respectivament.
Sota hipotesis bastant generals es donen cotes superiors de la distancia entre varietats
invariants. Concretament, en [34] es demostra que la distancia entre les varietats
invariants estd acotada per Ke™! en el cas C", i per families analitiques, en [33], es
prova una cota superior exponencialment petita, de ’ordre de e~kl/e pel trencament de
varietats invariants i es donen valors de K oOptims en general.. Obviament, I’avantatge
de treballar amb difeomorfismes és que es pot donar un resultat semblant en el cas de
fluxos passant per l'aplicacié de Poincaré (veure [31]). L’inconvenient és que és molt
més dificil treballar amb sumes infinites (1'analeg discret de la funcié de Melnikov) que
amb integrals.

Com hem dit abans, és més avantatgés treballar amb difeomorfismes analitics que amb
fluxos, no obstant, molts dels treballs relacionats amb el trencament de separatrius sén
per fluxos, el que ens indica que el problema de donar expressions assimptétiques (o bé
cotes superiors i inferiors) pel trencament de separatrius és substancialment més dificil
en el cas d’aplicacions. En [69], R. Ramirez treballa en aplicacions simpléctiques i déna
una manera sistematica d’avaluar la funcié de Melnikov (que en el cas d’aplicacions
és una suma infinita). A més es déna una férmula asimptética per I’area engendrada
entre les varietats invariants d’aplicacions que es poden veure com perturbacions de
I'aplicacié de McMillan [64] i per billards.

El fenomen de trencament de separatrius ha estat estudiat ampliament en el cas dos
dimensional amb sistemes de la forma

z = f(2) + pePy(z, t/e, €)

on i i € > 0 sén parametres a priori independents i tals que l'origen és un punt fix
de tipus sella. Aixi el sistema no perturbat és per p = 0. S’ha discutit molt en quan
al grau d’optimabilitat de p. En [31] es donen cotes superiors del trencament per a



valors negatius de p, concretament p > —1/2. Si simplifiquem el model i considerem
eqiiacions de segon ordre de la forma

T+ f(.f) = ngg(x!tzas E)

llavors en [32] es donen cotes superiors pel trencament de separatrius per a valors de
p > —2. En [49], Holmes et al aconsegueixen donar cotes superiors i infereriors del
trencament de separatrius per sistemes bastant generals per a valors de p > 8. La
situacié millora quan tractem sistemes concrets. L’exemple més estudiat és el pendol.
En [45] i en [21] es donen expressions asimptotiques del trencament de separatrius per
I'equacié

& +sinz = pePsint/e

per p > 51 p > 0 respectivament. Posteriorment A. Delshams i M.T. Seara en [20],
van aconsseguir una expressio asimptotica del trencament de separatrius per sistemes
més generals sempre i quan p sigui més gran que una certa quantitat que depen de la
pertorbacié6 i de I'ordre de la singularitat de la orbita homoclinica. Gelfreich en [43]
també va donar una expressio asimptética del trencament de separatrius, peré és dificil
de saber quin p necessitem per poder aplicar-ho. Per tltim en [44] Gelfreich estudia
en alguns exemples concrets el cas p < 0. El métode proposat és la utilitzacié d'un
sistema auxiliar les varietats invariants del qual s6n una bona aproximacié a prop de
les singularitats de les varietats invariants del sistema inicial.

Tots aquests casos treballen amb sistemes hamiltonians d’un grau i mig de llibertat o bé
aplicacions que preserven area tals que 1’origen és un punt fix hiperbolic del hamiltonia
no pertorbat. Un altre contexte on apareix el fenomen de trencament de separatrius és
quan considerem pertorbacions quasi-periodiques. Com per exemple en [22], [23] i [36].
En aquest cas l'analisi és molt més complicat que en el cas de tenir una pertorbacié
periodica en el temps.

Un altre fenomen relacionat amb el trencament de separatrius és la difussié d’Arnold.
Si pertorbem un sistema hamiltonia de m graus de llibertat integrable Hy(I), per
una pertorbacié hamiltoniana, en general, el sistema pertorbat H(I,y) = Hy(I) +
eH,(I,¢) deixa de ser integrable i apareixen comportament no predictibles (caotics).
No obstant, la teoria KAM (veure ens assegura que “molts” dels torus invariants de
dimensi6 maxima (en aquest cas m) que teniem en el sistema no perturbat Hj es
conserven lleugerament deformats. Les accions de les orbites que permaneixen en
aquests “forats”, en els quals el teorema KAM no ens garanteix 1'existéncia de torus
invariants, podrien tenir un desplacament d’ordre 1 independentment del tamany de
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que no és zero. En [81], Suris demostra que aquest coeficient és diferent del zero per
I'aplicacié standard i proposa una manera alternativa de calcular aquesta constant,
perd continua sent necessari computar-la numeéricament. També, en [42] Gelfreich et al
demostra analiticament que ©; no és zero per 'aplicacié d’Henén. En [55] es calcula
numéricament aquesta constant per la aplicaci6é semistandard i en [12] per l'aplicacié
de Hénon.

Es important destacar que, en [54], s'introdueixen noves eines analitiques per ’estudi
del trencament de separatrius les que han estat pioneres i han influit decisivament en el
desenvolupament de I’area. Aquesta técnica ha estat utilitzada fortament en aquesta
memoria. (Veure [42] per una bona exposicié d’aquesta técnica).

En [34] i [33] E. Fontich i C.Simé estudien el trencament de separatrius per a families
a prop de la identitat de difeomorfismes de classe C" i analitiques respectivament.
Sota hipotesis bastant generals es donen cotes superiors de la distancia entre varietats
invariants. Concretament, en [34] es demostra que la distancia entre les varietats
invariants estd acotada per Ke"! en el cas C", i per families analitiques, en [33], es
prova una cota superior exponencialment petita, de I'ordre de e~*/¢ pel trencament de
varietats invariants i es donen valors de K optims en general.. Obviament, I’avantatge
de treballar amb difeomorfismes és que es pot donar un resultat semblant en el cas de
fluxos passant per 'aplicacié de Poincaré (veure [31]). L’inconvenient és que és molt
més dificil treballar amb sumes infinites (I’analeg discret de la funcié de Melnikov) que
amb integrals.

Com hem dit abans, és més avantatgds treballar amb difeomorfismes analitics que amb
fluxos, no obstant, molts dels treballs relacionats amb el trencament de separatrius sén
per fluxos, el que ens indica que el problema de donar expressions assimptétiques (o bé
cotes superiors i inferiors) pel trencament de separatrius és substancialment més dificil
en el cas d’aplicacions. En [69], R. Ramirez treballa en aplicacions simpléctiques i déna
una manera sistematica d’avaluar la funcié de Melnikov (que en el cas d’aplicacions
és una suma infinita). A més es déna una férmula asimptética per ’area engendrada
entre les varietats invariants d’aplicacions que es poden veure com perturbacions de
I’aplicacié de McMillan [64] i per billards.

El fenomen de trencament de separatrius ha estat estudiat ampliament en el cas dos
dimensional amb sistemes de la forma

2= [f(2) + uePg(z, t/e,€)

on 4 i € > 0 sén parametres a priori independents i tals que 1'origen és un punt fix
de tipus sella. Aixi el sistema no perturbat és per u = 0. S’ha discutit molt en quan
al grau d’optimabilitat de p. En [31] es donen cotes superiors del trencament per a
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valors negatius de p, concretament p > —1/2. Si simplifiquem el model i considerem
eqliacions de segon ordre de la forma

&+ f(z) = peg(z,t/e,¢)

llavors en [32] es donen cotes superiors pel trencament de separatrius per a valors de
p > —2. En [49], Holmes et al aconsegueixen donar cotes superiors i infereriors del
trencament de separatrius per sistemes bastant generals per a valors de p > 8. La
situacié millora quan tractem sistemes concrets. L’exemple més estudiat és el pendol.
En [45] i en [21] es donen expressions asimptotiques del trencament de separatrius per
’equacié

Z +sinx = pePsint/e

per p > 51 p > 0 respectivament. Posteriorment A. Delshams i M.T. Seara en [20],
van aconsseguir una expressio asimptética del trencament de separatrius per sistemes
més generals sempre i quan p sigui més gran que una certa quantitat que depen de la
pertorbacié i de I'ordre de la singularitat de la orbita homoclinica. Gelfreich en [43]
també va donar una expressié asimptética del trencament de separatrius, peré és dificil
de saber quin p necessitem per poder aplicar-ho. Per tltim en [44] Gelfreich estudia
en alguns exemples concrets el cas p < 0. El métode proposat és la utilitzacié d’un
sistema auxiliar les varietats invariants del qual sén una bona aproximacié a prop de
les singularitats de les varietats invariants del sistema inicial.

Tots aquests casos treballen amb sistemes hamiltonians d’un grau i mig de llibertat o bé
aplicacions que preserven area tals que 'origen és un punt fix hiperbolic del hamiltonia
no pertorbat. Un altre contexte on apareix el fenomen de trencament de separatrius és
quan considerem pertorbacions quasi-periodiques. Com per exemple en [22], [23] i [36].
En aquest cas 'analisi és molt més complicat que en el cas de tenir una pertorbacié
periodica en el temps.

Un altre fenomen relacionat amb el trencament de separatrius és la difussié d’Arnold.
Si pertorbem un sistema hamiltonia de m graus de llibertat integrable Hy(I), per
una pertorbacié hamiltoniana, en general, el sistema pertorbat H(I,p) = Hy(I) +
eH,(I,p) deixa de ser integrable i apareixen comportament no predictibles (caotics).
No obstant, la teoria KAM (veure ens assegura que “molts” dels torus invariants de
dimensié maxima (en aquest cas m) que tenfem en el sistema no perturbat Hy es
conserven lleugerament deformats. Les accions de les orbites que permaneixen en
aquests “forats”, en els quals el teorema KAM no ens garanteix 1’existéncia de torus
invariants, podrien tenir un desplacament d’ordre 1 independentment del tamany de
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la pertorbacié. Si fos aixi, pel teorema de Nekhoroshev:
1
L(t) ~ 1(0) = 0(1)  pera0 <t < -exp(l/e%),

hauria de ser un desplacament molt lent. L’exemple proposat per Arnold, [2], demostra
que aquest fenomen pot succeir a través de cadenes de torus invariants parcialment
hiperbolics amb varietats estable e inestable, les quals s’intersequen transversalment.
Quan considerem sistemes analitcs una de les majors dificultats és que el trencament
de separatrius és exponencialment petit en general. Veure [4] per una bona introduccié

d’aquest fenomen.

El nostre objectiu és donar una férmula asimptética per mesurar el trencament de les
separatrius en sistemes hamiltonians d’un grau i mig de llibertat tals que l'origen és
un punt fix parabolic del sistema no pertorbat. Concretament, la diferencial del camp

en (0,0) és
(30)

Nosaltres hem seguit basicament I'esquema de demostracié de [20]. Perd degut a que
molts dels seus raonaments fan servir fortament el caracter hiperbolic del punt fix, hem
hagut d’introduir noves técniques per tal que siguin valides en el cas parabédlic. Per
aix6 també hem utilitzat eines introduides per Lazutkin [54], [53] i utilitzades més tard
per Gelfreich [43]. Es important mencionar que la majoria dels nostres arguments sén
també valids per cas hiperbdlic.

Presentacio del problema, hipotesis

Treballem amb sistemes Hamiltonians d’ un grau i mig de llibertat, amb Hamiltonia
de la forma

2

H(@,y,t/€) = =+ V(2) + ueha(3, v, t/c,€, )

on

e suposem que el potencial V(z) és un polinomi d’ordre 3 com a minim, és a dir

V(z) = az”™ + O(z™*) ambn >3ia#0.



Per tant 'origen és un punt fix parabolic amb diferencial
01
0 0/
Per la pertorbacié hy, posem les segiients condicions:

e suposem que és C°, analitica en (z,y,u) i que té ordre k > 3 en les variables
(z,y), complint la condicié que

2k —2 > n. (3)

Observem que el cas k < n (el cual és un cas de bifurcaci6) esta permes per
n > 4. A més suposem que és 2me-periodica i que té mitjana zero respecte la
variable 8 = t/e:

2w
h(z,y,0)dd = 0.

0

Es important destacar que només necessitem que la pertorbacié sigui continua respecte
t/e.

Necessitem ara les hipotesis relacionades amb el sistema no pertorbat. Suposem que el
sistema no pertorbat (u = 0) té un orbita homoclinica, la qual anomenem o = (g, Fo)-

e Les singularitats de 1’orbita homoclinica vy amb el modul de la part imaginaria
més petit sén singularitats de tipus branca d’ordre r € Q en punts de la forma
+ia.

Amb els métodes estandards per mesurar el trencament de separatrius és totalment
essencial que l'0rbita homoclinica tingui alguna mena de singularitat. De fet en el
cas hiperbolic, en [31] es demostra que existeix p, 0 < p < pg = min{m/A1,7/|X2|}
(on A; i A2 sén els valors propis de la diferencial avaluada al punt fix) tal que I'orbita
homoclinica és analitica en una banda complexa de la forma

D(p) ={z€C:|Imz| < p}

i no pot extendre’s a D(p’) si p > pg > 0. (Observem, perd que la nostra hipotesi
exclou la possibilitat de tenir singularitats essencials sobre la recta Imz = +p). En
canvi per trobar cotes superiors es suficient demanar que 7, sigui analitica en D(p).



Aquesta darrera hipotesi no es pot obviar, és a dir, creiem que és dificil comprovar que
es compleix a partir del hamiltonia. Per veure la dificultat suposem que estem en un
cas senzill. Suposem que el potencial V(z) és negatiu per a z € (0, 1) i és un polinomi.
Llavors, és facil veure que sempre hi ha singularitats tipus branca (o pols si el grau del
potencial és 4) en punts de la forma +ia. En efecte, (veure [52] per més detalls) sigui
V(z) = anz" + ... + a;z™ amb n < m. Fent el canvi z = 1/w, la soluci6 del sistema
no pertorbat és

1 w™2-2
H(w) = / _ dw.
w V/2(an + ...+ apw™")
Una singularitat de 1'orbita homoclinica s’assoleix a
1 wm{2—2
10)=to = —i | ————————————————dw € iR

—2(an + ...+ apw™™")
jaque ap+ ... +ap,w™ " <0siwe (0,1). A més
1

t(w) = ~um* (1= + Ow))

i per tant
t(w) = to + w™? (c + O(w))

on ¢ € C és una constant. Aillant w en funcié de t(w) — to i desfent el canvi w = 1/z
obtenim que

2= (1 + O(t — to)¥(m-2))

c
(t — tg)2/(m~2)
a prop de ty € iR.

Pero, fins i tot en aquest cas més simple, veritablement és dificil comprovar que les sin-
gularitats amb part imaginaria més petita siguin precisament de la forma +ia. Pensem
que 'estudi exhastiu és molt complicat ja que cal estudiar els possibles valors d’integrals
del tipus

P
i
1 V—2V(u)
on |h| = +o00 i donar condicions sobre el potencial V' per tal que, els valors amb part
imaginaria més petita siguin purament imaginaris. Veure [61] per una petita discussi6
sobre aquest tema.



El fet de tenir orbites homocliniques amb singularitats de tipus branca no és un fet
exclusiu del cas parabolic, per tant, podem ampliar els casos en els quals es pot aplicar
el resultat donat en [20] per punts hiperbolics.

Com hem dit abans, és important la grandessa o petitessa de p. Aquesta ve determinada
basicament pel Lema d’extensié (el qual extén la parametritzacié de les varietats locals
a dominis molt a prop de les singularitats de 1'orbita homoclinica).

Hem hagut de fer una assumpci6 relacionada amb r (I’ordre de la singularitat de 1'orbita
homoclinica) i amb ’ordre de les singularitats +ia respecte de la funcié hy (yo(t+s), t/€),
el qual, seguint la notacié de [20], hem anomenat £.

e La condicié que necessitem és

p—£2>0.

Creiem que no és Optima. Per exemple, en el cas del péndol pertorbat, considerat per
Gelfreich en [43], amb la nostra hipotesi necessitariem p > 0 i Gelfreich treballa amb
valors de p < 0.

Hem considerat també un exemple particular en el cas que l'ordre del potencial és 3 i
k = 2, el qual no estava considerat en les anteriors hipotesis. Obviament aquest és un
cas de bifurcacié perque quan el parametre p és diferent del zero, (sota certes condicions
sobre la pertorbacid) I’origen és un punt fix hiperbolic i quan aquest parametre s’anul.la,
ens trobem en el cas parabolic. A aquest cas, 'hem anomenat, cas feblement hiperbolic.
Les hipotesis que necessitem en aquest cas sén les mateixes que en el cas parabolic.
Concretament hem considerat sistemes de la forma

H(:z:,y,t/s,,u, 6) = ho(ﬂ:,y) +,U,Eph1($,y,t/8,p., 6)

on
2
ho(z,y) = % -z} +z* i hy(z,y, t/e, ) = haa(x, v, t/e, 1, €) + haa(z, y, t/€, p, €)
amb
72 2
hia(2, Y, t/€, by €) = 5 91(t/e, by €) + zyga(t/e, p, €) + ga(t/e, py €)

i hia(z,y,t/e, p, €) és d'ordre més gran o igual que 3 en les variable (z,y).



e En el cas feblement hiperbolic, substituim la condicié donada per (3) per la
seguent

2
/ 9200, p,€)G1(8, p, €)dd > 0.
0

on G, esta determinada per l'eqiiacié 9yG; = ¢ i tenir mitjana zero.

La resta d’hipotesis enunciades anteriorment també sén asumides en aquest cas.

Aquesta darrera és la condicié que necessitem perque l'origen sigui un punt de tipus
sella del sistema pertorbat. Recentment [37], ha considerat aquest tipus de bifurcacié
en el cas d’aplicacions que preserven area. En [38], han estat considerades ressonancies
d’ordres més alts.

Tot i que 'objectiu és I'estudi de trencament de separatrius en sistemes hamiltonians
amb punts fixos parabolics, totes les demostracions que hem fet, excepte les dels capitols
tres i quatre (on trobem unes parametritzacions especials de les varietats invariants

locals) son facilment adaptables també per punts hiperbolics.

Hem demostrat una expressi6 asimptética de I'area engendrada per les varietas invari-
ants entre dos punts homoclinics consecutius sg i 55 donada per

S0
A = pe? [/ M(v,e)dv + O(Eb,,uc)e‘“"e]
50

on b i ¢ s6n constants positives les quals estan totalment especificades i depenen de 7,
p i £. Recordem que a és el mddul de les singularitats +ia de la o6rbita homoclinica.

Passem ara a enunciar el principal corol.lari. Sigui

‘](miys ) = {hﬂ':hl -73 y! z'}k(m y !kﬂ
k#0

la qual avaluada a I’0rbita homoclinica té una singularitat a © = Zia com a molt
d’ordre £ + 1. Observem, al voltant de les singularitats u = +ia, Jii(y0(u)) té la
forma:

Je1(v0(w)) = JE O(uTi—)m(l + h.o.t.).

Si suposem que
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e Jii(70(u)) té una singularitat d'ordre exactament £ + 1 a u = =ai, és a dir si
Ji'o # 0 (la qual és una condici6 genérica) llavors

1
A~ p.Ep £+187T[.)T:0|m

—afe

on I' és la funcié Gamma.

Esquema general de la primera part

En el primer capitol, veiem quin és el comportament asimptotic de la parametritzacié
de ’orbita homoclinica. Demostrem que, com sembla logic, aquest comportament és
potencial, és a dir, existeix 7" > 0 tal que, si t € C, Ret > T, la varietat estable es
comporta com 1/t9, amb ¢ un cert nombre positiu i analogament, la varietat inestable
és de la forma 1/(—t)? per t € C, Ret < —T.

En els tercer i quart capitols, hem trobat una bona parametritzacié v*(¢, s) (x = s, u) de
les varietats invariants en els cassos totalment parabolic i feblement hiperbolic respec-
tivament. Aquesta parametritzacié satisfa quatre condicions importants: la primera és
que v* és solucio respecte la variable t € R, és analitica respecte s i que

v (t + 2me, s) = v*(t, s + 2me).

D’aquesta manera dotem a la variable s d’un caracter dinamic, ja que, per exemple,
la varietat estable d’una aplicacié de Poincaré és doncs, {7*(0,s)}, i la dinamica de
I’aplicacié de Poincaré sobre ella és simplement

P(v*(0,8)) = ~v*(0, s + 2me).
La darrera condicié que satisfara y* és que és del tipus
Y*(t,8) — Yo(t + s) = uePa*(t, s).
Per trobar aquesta parametritzacié hem buscat una equacié de punt fix per ¢ imposant
la condicié d’invariancia
Pi(y*(t,s)) = v*(t + 27e, 8)

on P'(z,y) = ¢(t + 2me,t,z,y) essent ¢ el flux del sistema hamiltonia pertorbat i la
condicid

v*(t + 2me, s) = ¥*(t, s + 2me).
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Seguidament, en el cinqué capitol, veiem que la varietat estable local del sistema hamil-
tonia es pot expressar com el graf d'una funcié analitica. En el cas en el que la pertor-
bacié conserva el caricter totalment parabolic, hem utilitzat el resultat de [30] el qual
es pot aplicar gairebé directament en el nostre cas. En el cas feblement hiperbolic,
sabem que les varietats es poden escriure com el graf d'una funcié analitica en un en-
torn de l'origen, pero, logicament, aquest entorn dependra, a priori, dels parametres
1 1 g, ja que els valors propis de la diferencial en depenen. Per tant, en el cas que
hem anomenat feblement hiperbolic, hem generalitzat el resultat de [30] a un entorn
de l'origen que no depén del parametres de pertorbacio.

En el sisé capitol, hem construit coordenades de caixa de flux , és a dir coordenades
en les quals el flux redrega. Aquestes coordenades estan definides en un entorn de la
varietat estable que no conté el origen, pero si que és proper a ell. Les hem construit,
seguint varios passos:

e Hem parametritzat les solucions del sistema perturbat amb dos parametres. Un
és el temps i un altre és un parametre complex, s, de tal manera que les solu-
cions compleixen que sén analitiques respecte s i la dinamica de l'aplicacié de
Poincaré és simplement un desplagament: s — s+ 2me. Aquest darrer fet, ens
esta dient, que el parametre s és un parametre dinamic. Aquesta és potser la
part més important de tot el capitol. La demostracié utilitza les eines que van
ser introduides per Lazutkin en [53] i han estat utilitzades també en [41].

e Després demostrem, gracies a aquesta bona parametritzacié, que les solucions
w(t+s,t/e) tallen a una seccid (real) transversal al flux, per a certs valors (to, so),
i que per tant, podem redregar el flux en un entorn de la varietat estable. Es
important remarcar que aquesta entorn de la varietat estable no depén de € i p.
A més veiem que aquest canvi, que depén del temps, és analitic respecte z, y i
2me periddic en t.

e Degut a que aquest canvi no és canonic en general, demostrem que, si el sistema
és Hamiltonia, donat un canvi tal que

S=1 i E=0
podem definir un canvi de variables canonic que tambe redreca el flux.
En el seté capitol, si la condicié p— € > 0 és satisfeta extenem la varietat inestable fins

el domini on les variables de caixa de flux estan definides. La demostraci6 és la mateixa
que en [20]: trobar una bona aproximacié6 de les varietats invariants i després demostrar



'existéncia de solucions en el domini que volem mitjangant un métode iteratiu o una
aplicacié del teorema del punt fix.

Per ultim en el darrer capitol d’aquesta primera part es demostra que I’area dels 1obuls
engendrats per les varietats invariants entre dos punts homoclinics consecutius és ex-
ponencialment petita. L’esquema de la demostracié és el mateix que en [20], amb la
salvetat que nosaltres hem considerat també orbites homocliniques amb singularitats
de tipus branca, és a dir “pols d’ordre racional” i per tant, els calculs sén una mica

més farragosos.
Part I1I: Varietats invariants

Es de tots conegut que les varietats invariants associades a objectes invariants (un punt
fix, una orbita periodica, etc) d’un sistema dinamic, ens donen una informacié essencial
per 1'analisi de la estructura dinamica del sistema. Quan 'objecte invariant té alguna
mena d’hiperbolicitat, hi ha resultats satisfactoris que fan referéncia a 'existéncia,
regularitat i unicitat de varietats invariants en dimensions arbitraries. Veure, per
exemple [50] [51] [58] [28].

Presentacié del problema, hipotesis

En la segona part d’aquesta memoria, hem considerem aplicacions de la forma

z = z+p(z,y)+ f(z,9)
y — y+q(x,y)+g(z,y)

onz € R*, y € R™, pi q sén polinomis homogenis de grau N, i N, respectivament
amb N, i N, més gran que 2. Les funcions f i g sén o(||(z,y)[|"?) i o(||(z,y)||V?)
respectivament.

Demanem que existeixi V' € R™ un entorn de l'origen invariant per I’aplicacié
z — =+ p(z,0) + f(z,0).

Es a dir que si z € V, llavors z + p(z,0) + f(z,0) també pertanyi a aquest conjunt.
Concretament, una condicié suficient és que

e Yz €V, dist(z + p(z,0), V(r)°) > Aljz|| on A # 0.
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Degut a que volem trobar una varietat estable de la forma
Wie = {(z,y) € V xR™ : y = o(z)}
sembla l6gic demanar que l'aplicacié “contraigui” en la direcci6 de les = i “expandeixi”
en la direccid de les y. Més concretament, demanem que
e Les matrius
—Dp(z,0), Dq(z,0)
tenen els termes diagonals positius i sén estrictament diagonal dominant. A més,

D,q(z,0) = 0 en un entorn de l'origen.

Es relativament senzill veure que, si ens restringim a dominis de la forma ||y|| < B||z|,
llavors, ja que f i g sén termes d’'ordre més gran que p i g respectivament

lz+p(z,9) + fl@ )l <llzll i lly+a(z,9) +g(z,9)] > llyll-
Aquestes condicions sén una generalitzacié a dimensions grans de les donades en [63].
Podriem dir que ens generen una hiperbolicitat debil.

Hem demostrat la existéncia i unicitat de varietats invariants a I'origen donades com
a graf d'una funcié

p:VCR"—- R™

Hem considerat els casos en que l'aplicacié és Lipschitz o analitica i veiem que ¢ és
també Lipschitz o analitica respectivament. No considerem el cas diferenciable.

La demostracié és una generalitzacié a dimensié arbritaria de les técniques utilitzades
per McGehee en [63].

Conclusions
Sobre el trencament de separatrius

Per a probar el teorema 1.2.1, hem seguit ’esquema proposat en [20]. Perd hem
substituit tots els arguments que involucren el fet de que el punt fix és hiperbolic
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en [20], per nous arguments valids en el cas de que el punt fix sigui parabolic o un punt
fix el qual bifurca de parabolic a hiperbolic quan € = 0.

Hem donat condicions suficients per a l’existéncia de varietats invariants en aquests
cassos, representades com a grafs de funcions definides en dominis complexos indepen-
dents dels parametres.

També hem donat parametritzacions d’aquests varietats en funcié de dos parametres
(t, s) amb bones propietats. Aixé inclou cassos on l'ordre respecte les variables espaials
de la perturbaci6 és més petit que l'ordre (respecte les mateixes variables) del sistema
no pertorbat (hipotesis HP4).

Pels sistemes que hem considerat, hem construit variables de caixa de flux (o variables
temps-energia) en certs dominis complexos independents dels parametres. Per construir
aquestes noves variables, només demanem que la perturbacié sigui continua en el temps.

Nosaltres creiem que aquestes eines, o millor dit les idees per probar-les, podrien ser
1itils per resoldre altres problemes.

Per exemple, donar una proba unificada de la mesura del trencament de separatrius
independentment del caracter del punt fix.

Per el moment, la nostra demostracié de ’existencia de coordenades de caixa de flux i
el capitul destinat al calcul efectiu de I’area dels 16buls generats per les varietats estable
e inestable, ja sén valides pel cas hiperbolic.

Passem ara a comentar algunes possibles millores d’algunes de les hipotesis asumides
en el teorema 1.2.1.

e Nosaltres hem treballat amb potencials polinomics. D’aquesta manera ens asse-
gurem que n’hi ha singularitats de I’orbita homoclinica que sén pols o bé singu-
laritats tipus branca (“branching points”). Pero, de fet, només necessitem que
la singularitat més petita sigui d’aquests tipus. Aixi, treballem amb potencials
i pertorbacions polinomiques (respecte les variables z, y). El cas analitic, no ha
estat estudiat en aquesta memoria i seria interesant estudiar exemples d’aquest
tipus en el futur.

e Respecte al tamany de la pertorbacié, existeixen evidéncies numeriques per a
pensar que la hipotesi HP5 (p > ¢, en particular p > 0) no és éptima. Pensem
que aquesta és la hipotesi més dificil de millorar.

Creiem que per tractar aquests dos cassos, seria necessari desenvolupar noves técniques,
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sobretot en ordre a demostrar el lema d’extensio.

e Sobre la pertorbacié h; també impossem que sigui d’ordre k en les variables z, y
amb k satisfent la condicié: 2k — 2 > n (recordem que n és el ordre del poten-
cial). Pensem que aquesta hipotesi és més tecnica que necessaria. Observem que
aquesta hipotesi permet cassos de bifurcacid, pero, per dir-ho d’alguna manera,
no massa degenerats.

e Creeim també que, usant aproximacions d’ordres més alts de la funcié de ”split-
ting”, podriem tractar els cassos en els que Jf[, = 0, (la hipotesis HP7 demana

Jio #0)

Un problema que trobem interesant i que podria ser un proper pas al treball realitzat en
aquesta memoria, és estudiar el trencament de separatrius per aplicacions amb punts
fixos parabolics.

També ens sembla interesant generalitzar les eines introduides en aquesta part de la
memoria a dimensions altes, especialment la construccié de variables de caixa de flux
en algun entorn de la varietat estable.

Sobre ’existencia de varietats invariants

Hem generalitzat els resultats de varios articles, comengant amb [63], a dimensions
altes. Una qiiestié que hem hagut de resoldre és trobar un bon conjunt de hipotesis
amb les que comencar.

Voldriem mencionar que hem hagut de substituir arguments que en el cas unidimen-
sional sén practicament immediats, per arguments que involucren teoria del grau en el
cas Lipschitz i una versié multidimensional del teorema de Rouché en el cas analitic.

El primer que ens agradaria fer és probar l'optimalitat (o no) de les hipotesis del
teorema 9.4.1.

També pensem que seria interessant trobar més exemples (per exemple en mecanica
celest, o en altres camps) en els que aplicar el nostre teorema.

Un problema relacionat que podria ser estudiat amb técniques similars és I'existéncia
de varietats invariants per a aplicacions n-dimensionals amb punts fixos parabolics amb

diferencial de la forma
Ji 0
0 J !



on Jy 1 J; s6n matrius de dimensions arbitraries i tenen la forma
J1 =1d+N, Jo=1d

i N és una matriu nilpotent. Per el moment, no coneixem exemples motivadors d’aquest
problema.
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Introduction

In general, when beginning to explore any scientific field, one focuses on the generic
situations; that is, one centers on the behaviours that appear in “most” of the cases
encountered in practice.

This methodology allows an easier understanding of the problem, since the non-generic
(or degenerate) cases are left out (at least a priori) in a first approach. This way, the
casuistic is simpler and the general theory can be developed more easily.

Although this is a good scientific procedure, the aim of science is to explain reality in
the most complete way possible. So, when the general case has been already described
(perhaps not completely, but at least in a good part), one should study the non-generic
cases: the exceptions. It should not be forgotten that, in nature, not all the processes
follow a general rule. The exceptional cases often provide new types of behaviour.
Therefore, a lot can be learned from the exceptions, as much at an intrinsic level
(situations that differ from the general qualitative behaviour) as for the new techniques
that are developed in order to understand them.

In certain contexts, it is generic to encounter degenerate cases. Let us think, for
instance, about the case of parametric families, f,, which describe different behaviours
depending on the value of p. In this situation, it is generic (that is, it occurs in most
of the families) to find values of the parameter po for which the behaviour of f,, is
degenerate.

Many of the natural processes involving movement can be formulated in terms of a

dynamical system, be it continuous: as a differential equation,
dz
— =X(z

or discrete, in terms of a function:

z — f(x).
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Of course, in the study of dynamical systems many degenerations appear as well. Let
us show one of the most elementary, in fact possibly the simplest one, that can arise.
Assume that we have a continuous dynamical system in R™ with a fixed point zg:

j—j = X(z), z € R", X(z0) = 0. (1)

Applying Taylor’s theorem around the fixed point we get:

% = DX (20)(z — 7o) + O(ll — o]?).

Therefore, close enough to zg, it appears that the dominant part of this dynamical
system is given by its linear part. In fact, this holds given that the eigenvalues of
D X (zo) have nonzero real part. In such case, Hartman’s theorem ensures the existence
of a bijective bicontinuous function which maps solutions of the initial system (1) in a
neighbourhood of z, to solutions of the linear system

dz
E = DX(!I?U)(.‘B = :L'g)
which has explicit solutions given by:
z(t) = 2o + ePX @) (20 — z) z(0) = z°.

One says that system (1) and the linear system above are topologically conjugate. The
fixed points of a dynamical system such that the differential of the field at the fixed
point has no eigenvalues with zero real part are called hyperbolic points.

The degeneration that we deal with concerns the eigenvalues of the linear part of
the dynamical system around a fixed point (or a periodic orbit). This arises when
DX(zp) has some eigenvalue with real part equal to zero. Assume, for instance, that
DX (zp) has 0 as an eigenvalue; then, after a change of variables if necessary, writing

x = (x1,Z2,... ,Z,), around the fixed point zy the dynamics of the variable z; is given
by:

d.’L‘l 2

e O(llz — =ol|”).

Therefore, the information about the dynamics of the variable z; is given by the
quadratic (or maybe of higher order) terms, that is, the linear approximation is not
valid in such cases. The fixed points zo, such that 0 is an eigenvalue of DX (zy),
are called parabolic points (or partially parabolic points if there exists any hyperbolic
direction). Analogously, if we consider discrete dynamical systems:

z - f(z) '
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we will encounter the same situation if the differential of the map f evaluated at the
fixed point has 1 or —1 as eigenvalues.

Then, it is clear that the classification of systems with non-hyperbolic fixed points does
not depend on the linear part of the differential of the field at the fixed point, but on
the first non-linear terms of the field. Thus, two systems with the same linear part can
have very different behaviours. For instance, with linear part equal to:

(00)

we may encounter the following behaviours:
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While, for example, given a dynamical system with a fixed point such with linear part
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equal to:

A 0
0 A

with A;A; < 0 and real, the phase portrait around the fixed point is, qualitatively,

always the same:

AN/

independently of the values of A\; and A; and of the higher order terms defining the
system.

Central manifold

As we mentioned already, a continuous dynamical system with a hyperbolic fixed point
can be transformed (near the fixed point) into a linear system. When the fixed point
is not hyperbolic, there is a similar result, perhaps not so satisfactory, that allows to
study the dynamical system around the fixed point.

Consider a field X such that the origin is a non-hyperbolic fixed point. Let E° be the
linear subspace generated by the eigenspaces of eigenvalues with real part equal to 0
and let E* and E* be the linear subspaces generated by the eigenspaces of eigenvalues
with positive and negative real part, respectively. Then, it is known that there exist
manifolds W, (stable invariant manifold), W}, (unstable invariant manifold) and W,
(central invariant manifold), invariant under the flow generated by the field X and
tangent to the spaces E°, E* and E° respectively at the fixed point.

Recall that, even though it can be shown that the stable and unstable manifolds are
unique, in general the central manifold is not. Consider for instance the phase portrait
of the system:



which, near the fixed point, is

™

In this case, E° is the subspace generated by the vector (1,0) and, therefore, since all
the solutions contained in the half-plane =z < 0 are tangent to E°, they are central
manifold.

In any case, fixing any of the central manifolds, the field X can be topologically con-
jugated around the fixed point to a field of the form:

i:c = Xc (3:::)
Ty = Ty
:-83 = _2:5

where = = (Z.,Zy,zs) and X, = X we,. Hence, the study around the fixed point can
be restricted to the local central manifold W, since in the remaining directions the
behaviour is well known. Thus, we have reduced the dimension of the problem.

It is also a known fact that W} and W} have the same degree of differentiability than
the dynamical system. This does not hold in the case of the central manifold, whose
differentiability can vary depending on the definition domain chosen. See [46], [13] and
[86] for more details.

Let us go back for a moment to examples (a), (b) and (c). Notice that, in all cases, the
central manifold is all of R?, since E° = R?, but in cases (a) and (b) there are orbits
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tending to the origin when ¢ — 400 and when t — —o0. Therefore, in some instances
of non-hyperbolic points one can naturally define the local stable and unstable manifold
relative to U C W, (inside the central manifold):

Wie(zo) = {z€U:p(t,z)eU Vt>0i¢(t,z) — zo quan t — +00}

Wiizo) = {z€U:p(t,z)eU Vt<0ip(t,z) = xo quan t — —oc0}
where zy is a fixed point of the system and ¢(t, z) is the solution of & = X (z).
The problem of deciding whether a parabolic fixed point of a field or a map has associ-
ated stable and unstable manifolds (inside the central manifold), has not been solved
in general, but there are some existence and uniqueness results for these manifolds. For
instance, for 2-dimensional maps having the identity as differential at the fixed point,
one can mention the works of McGehee, Easton and Robinson in [63], [70], [26], [62] and
[14]. Also, in the last chapter of this memoir we give necessary and sufficient conditions

for the existence and uniqueness of invariant stable manifold for maps with identity
differential in arbitrary dimension. For maps in two dimensions with differential at the

fixed point equal to:
11
(o1) @)

let us point out the results of J.Casasayas, E. Fontich and A. Nunes in [8] and E.Fontich
in [30]. Examples of these last class of maps are the second order difference equations

of the form:
Yrtr1 — 2Uk + Y1 = fyk),
where f(0) = f'(0) = 0, if the recurrence above is written as
Ye N\ p( Y1) = 21)(yk—1)+( 0 )
(yk+1 ) ( Yk ) ( 10 Yk Fye)

where it is clear that DF(0,0) is similar to the matrix (2). Therefore, by means of a
linear variable change we are in the current case. The generalized standard map also

belongs to this case:
F(z,y) = (z+y+eV(z),y +eV(z))
with V a periodic function such that V(0) = V’(0) = 0.

The most standard way of finding the local central, stable and unstable manifolds
associated with a fixed point is to describe them as graphs of maps:

Wi, = graph * = {(z,y):y= ©*(z)} * = §,U,C.
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It is also interesting to know the type of regularity of ¢*. Assume that the origin is
a non-hyperbolic fixed point, then it is a remarkable fact that, in the analytic case,
the local invariant manifolds are not analytic at the origin in general, while in the
hyperbolic case the manifolds have the same regularity than the field. For instance, let
us take into account a very simple case. Consider the Hamiltonian system associated
with:

2
H(z,y) = =+ V(a)

with V(z) = 2®+O(z*). Then, it is clear that y = 2%2,/1 + O(z) is the local unstable
manifold and that y = —2%2,/1 + O(z) it the local stable manifold. Moreover, neither
of them is analytic at the origin. In any case, what can be shown under certain
conditions is that the local stable and unstable manifolds of a parabolic fixed point are
analytic in a complex region of the form

Q={zeC:0<|z|<r 1 |arg(z)| <n}

with r and 7 positive.

Finally, let us mention that all the existence and uniqueness results for invariant man-
ifolds associated with parabolic fixed points, reasonably impose restrictions over the
nonlinear part of the map, which makes checking the hypothesis difficult.

Examples with degenerate fixed points

Although, as we already mentioned, the hyperbolicity condition of an invariant set:
a fixed point, a periodic orbit, etc., of a dynamical system, is a generic condition,
(nonzero real part of the eigenvalues of the differential in the case of flows, or module
different from 1 in the case of a diffeomorphism), some interesting phenomena cannot
be expressed in this context.

Consider a very simple example, the case of families of differentiable fields X, depending
on a parameter p. The family X, is said to have a bifurcation at x = 0 if and only
if, for any neighbourhood V of p = 0 in the space parameters, there exist y, and u,,
different values of the parameter belonging to V, such that the equations associated
with the fields X, and X,, exhibit different qualitative behaviours. Take into account
the simplest local bifurcations, that is, those in which the character and number of the
fixed points changes. Let py be a fixed point of Xj. It is well known that if we perturb
a vector field with a hyperbolic fixed point, the perturbed system continues to have a
hyperbolic fixed point. Hence, a necessary condition to obtain such bifurcations is that
po be non-hyperbolic, the simplest cases being: saddle-node (z = pu — z?), transcritical
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(¢ = px — z®), pitchfork (& = p — z3), etcetera. In all of them, for u = 0, the origin
is a parabolic fixed point. Therefore, a good knowledge of the dynamics of a system
around a non-hyperbolic fixed point will help us understanding the transition between
the behaviours for 4 < 0 and g > 0. In the same way, in the case of maps, the local
bifurcations also appear at non-hyperbolic fixed points.

Before describing other phenomena involving dynamical systems with non-hyperbolic
invariant objects, let us briefly introduce the notion of integrable system. Assume that

we have a differential equation
z = f(z)

describing the evolution of a system in R™®. A function F : U C R® — R is called a
first integral of the system if F' is constant along the solutions of the system (that is,
F(z(t,zp)) = ¢, where z(t, zo) is the solution with z(0,zy) = zo). Assume now that
we have n — 1 first integrals functionally independent,

Fl(.‘L'), S ,Fn_l(:r)

then a solution z(t,zg) of the system & = f(z) can be totally described as the curve
intersection of the hypersurfaces

F1(.'.C) = F](xg)

Fn—l(z‘) = Fn—l(xﬁ)

except for the parametrization respect of the time. In this case we say that the system
is integrable.

A very important class of systems, since in fact a lot of the mechanical phenomena
follow systems of this kind, are the so-called Hamiltonian systems. A system is said
to be Hamiltonian if there exists a function, called the Hamiltonian of the system,
H :U C R*™ — R such that

T = O,H(z,y)
) = —0.H(z,y).

It is clear that H is a first integral of the system. The Hamiltonian system is said to
have m degrees of freedom.

The standard symplectic two-form endows U € R*™ with a symplectic structure. This
structure allows the notion of integrable Hamiltonian system to be reduced to the



existence of m first integrals Fy = H, F;,...,F, (the Hamiltonian is one of them)
which are pairwise in involution, that is:

{F;, F;} = 0, F:0,F; — O, F;0,F; = 0.
and whose differentials are linearly independent on a dense open subset.

In what follows we describe some phenomena involving dynamical systems with parabo-
lic objects.

The first one is that of parabolic resonances. A parabolic resonance is produced when
an integrable Hamiltonian system with 2 degrees of freedom with a fixed point circle is
perturbed. In [71] V.Rom -Kedar proves that this quality is generic for 1-parametric
families (a codimension 1 phenomena) of Hamiltonians with 2 degrees of freedom near-
integrable, that is, systems that are small perturbations of integrable Hamiltonian
systems. Numerical experiments suggest that the movement near to parabolic res-
onances exhibits a new kind of chaotic behaviour not detected so far. There is an
even more degenerate case, called planar parabolic resonance, which arises in a model
coming from a real atmospheric study, specifically the study of meteorological probes.
This model gives a device to transport particles with small initial speeds near to the
Equator to high latitudes. See [71] and its reference list for more details.

The study carried in this last article, with respect to the parabolic resonances, is
generalized to the case of Hamiltonians with n degrees of freedom with n > 3 in [56]
and [57].

In [48], HanfSmann deals with low dimension tori with zero normal frequency in Hamil-
tonian systems with n degrees of freedom. These tori are called normally parabolic.
HanfBmann considers families of near-integrable Hamiltonian systems in a neighbour-
hood of normally parabolic invariant tori. Under certain transversality conditions a
quasi-periodic center-saddle bifurcation takes place (A < 0 there are no invariant tori,
A = 0 the torus is normally parabolic and A > 0 the torus is of type saddle). The
author proves the persistence of the center-saddle bifurcation and of the normally
parabolic tori parametrized by “big” Cantor sets. HanfBmann applies these results to
the dynamics of the rigid solid.

In the planar three-body problem a parabolic orbit is the trajectory of a particle going
to infinity with zero speed, while the trajectories of the other two particles remain
bounded for all positive times. An orbit of the planar three-body problem is called
oscillatory if the upper limit (along time) of the separation between particles is infinite,
but the lower limit is finite. Thus it seems clear that the oscillatory orbits come and go
infinitely often going (somehow) to infinity. Hence a good way to look at this problem



is to find solutions that are “homoclinic at infinity”. Therefore it seems natural to
take to infinity some invariant object. In the case of the planar three-body problem
McGehee and Easton prove in [27] that the infinity set may be seen as a three-sphere
foliated by periodic orbits. McGehee considers three problems: the restricted problem,
the Sitnikov problem (see [78]), and the 1-dimensional three-body problem, and proves
in [63] that (after certain changes of variable) the infinity may be reduced to a periodic
orbit. Later, R. Martinez et altr prove in [62], among other things, that in the elliptic
restricted three-body problem the infinity manifold is also foliated by periodic orbits.

An approach to the search for oscillatory orbits is to prove that these periodic orbits,
which we recall represent the infinity in the original system, have transversally inter-
secting stable and unstable manifolds. This is not a sufficient condition (see [27]), but
it seems to be necessary to prove the existence of oscillatory orbits. In the problems
treated by McGehee in [63] and in the elliptic restricted problem ([62]) to find these
homoclinic solutions implies the existence of oscillatory orbits, hence of chaos.

In all these examples, the periodic orbits associated to infinity that have been found
are degenerate. More precisely, the differential of the Poincaré mapping associated to
an above mentioned periodic orbit has the eigenvalue 1. In the problems considered
by McGehee and by R. Martinez et al this differential is the identity, and in the planar
three-body problem it has a hyperbolic part, i.e., it has the form

I 0
(04)
and A a hyperbolic matrix. McGehee proved in [63], under conditions generating
a weak version of hyperbolicity, that 2-dimensional mappings with a fixed point of
parabolic type such that their differential at the fixed point is the identity have an
associated stable manifold which may be expressed as the graph of a function. This
function is Lipschitz if the mapping is Lipschitz, and analytic if the mapping is so. The

smooth case remains open. This result was later on generalized in [26] (in the Lipschitz
case) and [70] (in the C™ case) to flows of the form

= pk(ﬁ, y) G Ok+1
= BY + q(z,y) + Ors1

where z € R?, y € R? and p, ¢ are homogeneous polynomials of degree k > 2. Conse-
quently the unit time mapping of this differential equation has the form

(2) = (&HaEn ) +ou



where P, Qi are homogeneous polynomials of degree k > 2, and the eigenvalues of the
matrix A have modulus # 1.

All this indicates that parabolic orbits form a smooth manifold. Robinson, Xia, Moeckel
and R. Martinez in [70], [88], [66] and [62] respectively prove the existence of oscillatory
orbits in some instances of the three-body problem.

The above phenomenon was our motivation to look for sufficient conditions for the
existence of a stable invariant manifold of a mapping in R® with a fixed point such
that the differential of the mapping in it be the identity, so, predictably, we could find
oscillatory orbits in problems with more than three bodies.

Besides this problem, the goal of this work is to prove an asymptotic formula to measure
the splitting of separatrices for a class of Hamiltonian systems with one and a half
degrees of freedom, rapidly forced, associated to parabolic fixed points. We consider
Hamiltonian systems with a parabolic fixed point such that the differential of the

system at it is
01
0 0)’

and we prove that the magnitude of the splitting is exponentially small with respect
to the frequency of the perturbation.

In this work we have studied basically the two above mentioned problems. Conse-
quently it is divided in two parts. In the first part we study the measure of the splitting
of separatrices associated to parabolic fixed points, and in the second we obtain an ex-
istence theorem for invariant manifolds associated to a fixed point of a n—dimensional
diffeomorphism such that the differential at the point is the identity.

Part I: Separatrix splitting

We proceed now to introduce the notion of separatrix of a Hamiltonian system. Let
us recall that a continuous dynamical system in R™ is integrable when it has n — 1
functionally independent first integrals. In the case of a Hamiltonian system, the
Liouville-Arnold theorem (see [3]) tells us that a Hamiltonian system is integrable if
there exist m = n/2 first integrals: Fy = H, F;, ... , F,, which are pairwise in involution

{E, FJ} — BIF‘(’:?&,F} = 6yF,6EF; - 0

and whose differentials are linearly independent on a dense open subset.
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Let us suppose that we have an integrable Hamiltonian system. Its dynamics are
well known: denote F' = (Fy, F3, ..., F,) and M, = F~'(c); M, is an m—dimensional
submanifold invariant under the flow of the system. Moreover, if M, is connected and
the fields

= 8,F:

are complete (defined for all times), then if the manifold M, is not compact it is
homeomorphic to T¥ x R™* and if M, is compact it is homeomorphic to an m—
dimensional torus. In any of the two cases, after a suitable change of variable the flow
of the system is conjugate to a translation:

o(t,z,y) = (¢ +tw (mod2m),y + tv)

where w and v depend on ¢. Therefore an integrable Hamiltonian system is completely
predictable (or regular): there is no stochastic (unpredictable) behavior.

In the context of integrable Hamiltonian systems, we focus our attention on those
such that, for some constant ¢y, the manifold M., is formed by an invariant object P
(a fixed point, a periodic orbit, a torus, etc.) and its stable and unstable invariant
manifolds. We will assume that there exist coinciding branches of the stable and
unstable manifolds, i.e. W¥(P) = W{(P). These manifolds are foliated by solutions of
the Hamiltonian system converging on the invariant object when time goes to +oo if
we are on the stable manifold, or to —oco if we are on the unstable one. This invariant
submanifold is called the separatrix.

This name comes from the case of Hamiltonian systems with one degree of freedom
with stable and unstable manifolds associated to fixed points. In this context, separa-
trices “split” different dynamic behaviors. For instance, let us think of the case of the
pendulum, whose movement is governed by the equations:

T=y Y= —sinz r e S, y€R.

Its phase portrait is well known:
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The static point (0,0) is stable. A push (initial speed) of less than 2 to the static
pendulum will make it oscillate around the equilibrium point (its trajectory a periodic
orbit), and an initial speed strictly bigger than 2 will make the pendulum swing over
the top of the stable region. If the initial speed is exactly 2, the solution converges to
the unstable equilibrium point (m,0). The last solution is called a separatrix, and it
clearly splits two very different movements.

Even though in higher dimensions separatrices, being half-dimensional submanifolds,
do not split the space they receive the same name.

Let us consider then a Hamiltonian system with two invariant sets (fixed points, pe-
riodic orbits, etc.), with stable and unstable submanifolds. Suppose that W3 (P;) =
WY(P,) and Wi(P,) = Wi(P,), where W{*(P;) and W}"“(P,) are branches of the
submanifolds W**(P,) and W*"(P,) respectively. We have either a so called hetero-
clinic connection (if P, # P;), or a homoclinic one if P; = P,. This situation is generic
among Hamiltonian fields, but under a generic periodic perturbation this connection
breaks giving rise to a phenomenon called separatrix splitting:
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The phenomenon of separatrix splitting was described by Poincaré, but it was Mel-
nikov (with the ideas proposed by Poincaré) who produced a good analytic tool to
measure it. This tool is known as the Poincaré-Melnikov method (see [46] and [1] for
an introduction). This method yields a first order asymptotic formula to measure the
splitting.

To fix ideas, let us suppose that we have the system
& = f(z) + pg(t, z)

where 2 € R? and that for 4 = 0 the unperturbed system has a homoclinic connection
associated to a fixed point of saddle type. This is the simplest case. If the perturbation
is small enough, the perturbed system has a hyperbolic periodic orbit ¢ and therefore
there exist stable and unstable manifolds for . The formula proposed by Melnikov for
measuring the magnitude of this splitting d(¢y) in a fixed time t, (where d(Zo) is the
distance between the invariant submanifolds of the perturbed system) is

d(to) = pM(to) + O(k?)

where M (t;) is the Melnikov integral, which depends on the homoclinic connection
and on g. We can assure the existence of homoclinic points (points belonging to both
the stable and unstable manifolds of o), and they are transversal if there exists any ¢,
such that M (ty) = 0 and M'(¢,) # 0. It is well known that the existence of transversal
homoclinic points in dimension 2 gives rise to chaotic behaviors (Smale’s homoclinic

theorem).

Suppose now that the perturbation has a fast frequency, that is the period is eT" with
e > 0 small. It can be proved then that the Melnikov integral has order O(e~%/¢) for
some constant a > 0. Consequently, in this case the Melnikov function is a priori a
good measure of the splitting only if u = o(e%/¢), which gives us a very small range
of values for p and therefore for the perturbations under which we may still reach
conclusions. In this case the Melnikov method (in its elementary form) is not, a priori,
a good tool to measure separatrix splitting.

Lombardi ([61]) has recently given rigorous methods for studying what he calls oscil-
latory integrals, which are integrals of the type

where 7 is a particular solution of the system z = F(z,t,¢) characterized, e.g., by its
value at infinity if o is the stable manifold of a periodic orbit or of a fixed point. This is
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the kind of integrals that appears when applying the Poincaré-Melnikov method, thus
it may be very useful in the future. This work treats problems in which exponentially
small phenomena in reversible systems occur. Consider for example a vector field in R*
in normal form, and truncate it at any order. The unperturbed system is the truncated
system, and we consider as a perturbation the tail of the normal form. The persistence
of homoclinic connections in periodic orbits of exponentially small size near a certain
kind of resonance is proved in [61]. The resonance is due to the change of character
of the fixed point. Two of the eigenvalues are of the form +iw + O(u), and the other
two Ay, Ap are different and real for p > 0, Ay = A; = 0 for 4 = 0, and imaginary for
1 < 0. Therefore we have obtained a model of perturbation in which a parabolic point
coexists with an oscillatory part.

Many authors have studied the phenomenon of separatrix splitting with fast frequency
periodic perturbations, in order to prove that in certain cases the Melnikov function
yields a good approximation of the measure of separatrix splitting.

In [54] Lazutkin studies the standard mapping and reasons (without rigorously proving
it) why the intersection angle between the stable and unstable manifolds has the form

= gjelje-*%u +0(eN)

with » > 0. The constant ©; € C has to be numerically computed. In fact, given
that it is the dominant term in the expression of the separation angle, the main goal
is to prove that it is not zero. In [81] Suris proves that this coefficient is not zero
for the standard mapping and proposes an alternative, although still numerical, way
to compute this constant. Also, in [42] Gelfreich et al prove analytically that ©; is
not zero for the Henon map. In [55] this constant is numerically computed for the
semistandard mapping and in [12] for the Henon map.

It is important to point out that [54] introduces pioneering new analytic tools for
the study of separatrix splitting which have decisively influenced the development of
this area. These techniques have been strongly used in this memoir (see [42] for an
exposition of them).

In [34] and [33] E. Fontich and C. Simé study separatrix splitting in families in a
neighbourhood of the identity of diffeomorphisms of class C™ and C“ respectively.
Under fairly general hypothesis upper bounds are obtained for the distance between
invariant manifolds. More precisely, it is proved in [34] that the distance between
invariant manifolds is bounded by Ke™~! in the C" case, and in [33] an exponentially
small upper bound of order e=*/¢ for the splitting of invariant manifolds in the analytic
case, plus generally optimal values of K. Of course, the advantage of working with
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diffeomorphisms is that one may obtain a similar result in the case of flows by means
of the Poincaré mapping (see [31]). The drawback is that it is much harder to work
with series (the discrete analogue of the Melnikov function) than with integrals.

As we said before, working with analytic diffeomorphisms is more advantageous than
with flows. Nevertheless, many of the works concerning separatrix splitting deal with
flows, which indicates that the problem of finding asymptotic expressions (or upper and
lower bounds) for separatrix splitting is substantially harder in the case of mappings.
In [69] R. Ramirez works with symplectic mappings and gives a systematical way to
evaluate the Melnikov function (which in the case of mappings is an infinite series).
Moreover an asymptotic formula is derived for the area span between the invariant
manifolds for mappings that may be seen as perturbations of the McMillan mapping
([64]) and for billiards.

The separatrix splitting phenomena has been widely studied in the two-dimensional
case with systems of the form

5 = f(2) + ueg(z, t/e, )

where p and € > 0 are parameters a priori independent and such that the origin is a
saddle-type fixed point. Thus the perturbed system occurs at y = 0. There has been
a lot of discussion about the optimal degree of p. In [31] upper bounds are given for
the splitting for negative values of p, specifically p > —1/2. If the model is simplified,
considering equations of the form

&+ f(x) = peg(z,t/e,¢)

then in [32] upper bounds are given for the splitting of separatrices for values of p > —2.
In [49], Holmes et al are able to give upper and lower bounds for the splitting of
separatrices for quite general systems and for values of p > 8. The situation improves
when dealing with specific systems. The most studied example is the pendulum. In
[45] and in [21], asymptotic expressions are given for the separatrix splitting of the
equation

Z+sinz = pePsint/e

for p > 5 and p > 0 respectively. Later on, A. Delshams and M.T. Seara in [20], could
get an asymptotic expression of the separatrix splitting for more general systems given
that p is bigger than a certain quantity which depends on the perturbation and of the
singularity order of the homoclinic orbit. Gelfreich in [43] also gives an asymptotic
expression for the separatrix splitting, but it is difficult to find out which p is needed



xvii

in order to apply it. Finally, in [44] Gelfreich studies in some specific examples the
p < 0 case. The proposed method is the use of an auxiliary system whose invariant
manifolds are a good approximation near the singularities of the invariant manifolds
of the initial system.

In all these cases, one deals with Hamiltonian systems of one and a half degrees of
freedom or area-preserving maps such that the origin is a hyperbolic fixed point of
the non-perturbed Hamiltonian. Another situation where the separatrix splitting phe-
nomenon appears is when one considers quasi-periodic perturbations. As, for instance,
in [22], [23] and [36]. In this case the analysis becomes much more complicated than
in the case of having a time periodical perturbation.

Another phenomenon related to the separatrix splitting is Arnold diffusion. If an
integrable Hamiltonian system with m degrees of freedom Hy (/) suffers a Hamiltonian
perturbation, in general the perturbed system H(I,¢p) = Ho(I) + eH (I,¢) is no
longer integrable and non-predictable (i.e. chaotic) behaviors appear. Nevertheless,
KAM theory assures that “many” of the top dimension invariant tori (m in this case)
appearing in the non-perturbed system Hj remain slightly deformed. The actions of
the orbits that remain in these “holes”, in which the KAM theorem does not guarantee
the existence of invariant tori, could suffer an order 1 shift independently of the size of
the perturbation. If so, then by Nekhoroshev’s theorem:

L(t) = L(0)=0(1) pera0<t< éexp(l/s“),

it should be a very slow shift. The example proposed by Arnold, [2], shows that this
situation can occur through chains of partially hyperbolic invariant tori with stable
and unstable manifolds transversely intersecting each other. When considering analytic
systems, one of the greatest difficulties is that the separatrix splitting is, in general,
exponentially small. See [4] for a good introduction to this phenomenon.

Our aim is to give an asymptotic formula to measure the separatrix splitting in Hamil-
tonian systems of one and a half degrees of freedom such that the origin is a parabolic
fixed point of the non-perturbed system. Specifically, the differential of the field at

(0,0) is
(50):

We have followed basically the scheme of the proof in [20]. But, due to the fact that
many of their arguments strongly use the hyperbolic character of the fixed point, we
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have had to introduce new techniques which are also valid in the parabolic case. To
this end we have also used tools introduced by Lazutkin [54], [53] and used later by
Gelfreich [43]. It is worth remarking that most of our arguments are also valid for the

hyperbolic case.
Presentation of the problem, assumptions

We will work with Hamiltonian systems with one and a half degrees of freedom, with
Hamiltonian of the form

2
H(z,y,t/e) = 5 + V(@) + ue"hi(z,,t/e,€, )

where

e we assume that the potential V(z) is a polynomial of order at least 3, that is,
V(z) = az™ + O(z™*) with n > 3 and a # 0.

Therefore, the origin is a parabolic fixed point with differential
01
0 0)°
For the perturbation h;, the following conditions will be imposed:
e we assume that it is C?, analytic in (z,y, ) and that it has degree k > 3 in the
variables (z,v), verifying the condition

2k —2 > n. (3)

Notice that the k < n case (which is a bifurcation case) is permitted for n > 4.
Moreover, we assume that h is 2we-periodical and that it has zero average with
respect to the variable 0 = t/e:

2w
/ h(z,y,0)dd = 0.
0

It is worth noticing that we only need that perturbation to be continuous with respect
to t/e.

We need now the assumptions concerning the non-perturbed system. Assume that the
non-perturbed system (g = 0) has a homoclinic orbit, which we will call o = (ag, 5o).
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e The singularities of the second component of the homoclinic orbit f; with smallest
module of their imaginary part are order r € QQ branch-type singularities at points
of the form +ia.

With the standard methods used to measure the splitting of separatrices it is absolutely
essential that the homoclinic orbit has some kind of singularity. In fact in the hyperbolic
case, in [31] it is shown that there exists p, 0 < p < pp = min{n/A1,7/|A2]} (where
A1 > 0 and Ay < 0 are the eigenvalues at the fixed point) such that the homoclinic
orbit is analytic in a complex strip of the form

D(p) ={z€ C:|Imz| < p}

and that it is not analytic in D(p') if o’ > p > 0. (Notice, however, that our assumption
excludes the possibility of having essential singularities on the line Imz = +p). In
contrast, to find upper bounds it is enough that 7, be analytic in D(p).

This last hypothesis cannot be obviated, that is, we believe that it is difficult to check
from the Hamiltonian that it is fulfilled. To see this difficulty, assume that we have a
simple case. Suppose that the potential V(z) is negative for z € (0,1) and that it is
a polynomial. Then, it is easily seen that there are always branch-type singularities
(or poles if the potential has degree 4) at points of the form +ia. Indeed, (see [52] for
more details) let V(z) = a,2™ + ... + a,z™ with n < m. After the variable change
z = 1/w, the solution of the non-perturbed system is

1 ,wmj2—2 p
t(w) = w.
(w) /1; V2(an + ...+ apuwm™ ")

A singularity of the homoclinic orbit is attained at

1 w22
t0)=tg=-1 | ————7—os—-—dw€iR
+ Qpw™ ™)

since ap + ...+ aupw™ " < 0 if w € (0,1). Moreover

) = —wm? (et ow))

and hence

t(w) = to +w™? 7 (c 4+ O(w))



where ¢ € C is a constant. Isolating w in terms of t(w) — ¢, and undoing the change
w = 1/z we obtain that

z = (14 O(t — tg)¥(™=2)

c
(t o to)zf(m—zj
near ty € iR.

But, even in this simplest case, it is really difficult checking that the singularities with
smallest imaginary part are precisely of the form +ia. Take into account the fact that
an exhaustive study becomes very complicated, since it involves studying the possible
values of integrals of the form

B
1
[ —
1 -2V (u)
where |h] = +o0 and giving conditions on the potential V so that the values with

smallest imaginary part are purely imaginary. See [61] for a short discussion on this
subject.

Having homoclinic orbits with branch-type singularities is not an exclusive fact of the
parabolic case, hence we can extend the cases to which the result given in [20] for
hyperbolic points can be applied.

As we mentioned above, the bigness or smallness of p is important. This is basically
determined by the extension lemma (which extends the parametrization of the local
manifolds to domains very close to the singularities of the homoclinic orbit).

We have also needed to make an assumption concerning r (the order of the singularity
of the homoclinic orbit) and the order of the singularities +ia with respect to the
function hy(yo(t + s),t/€), which, following the notation of [20], we have called £.

e The condition we need is

p—£€>0.

We believe that it is not optimal. For instance, in the case of the perturbed pendulum,
considered by Gelfreich in [43], with our hypothesis we would need p > 0 and Gelfreich
works with values of p < 0.

We have also considered a particular instance with potential of order 3 and k = 2,
which was not covered by the previous hypothesis. This is obviously a bifurcation



case because when the parameter p is nonzero, and under certain conditions on the
perturbation, the origin is a hyperbolic fixed point, and when p vanishes we run into
the parabolic case. We have called this the weakly hyperbolic case. The hypothesis
that we need in this case are the same as in the parabolic case. Concretely we have
considered systems of the form

H(:I:, Y, t/E) = hﬂ(ms y) + #Ephl(ms v, t/Es 1,y 6)
where

2
h'()(r: y) = % = 3:3 + $4 1 h](xsy:tfsr.u'r E) = hlZ(m: Y, t/eiﬂ': 6) %+ h13($1 yrt/sv H, 6)

with
.'132 y2
h12($: Y, t/E: K, E) = ?91 (t/el My E) + xyg2(t/5: 22 E) * 593@/6! K,y E)

and hi3(z,y,t/e, p,€) has order greater or equal to 3 in the variables (z,y).

e In the weakly hyperbolic case, we replace the condition given by (3) by the
following one

27
/ 92(0, u,€)G1(6, p, €)df > 0.
0

where G, is determined by the equation dyG; = g¢; and the fact its average is
zero.

The rest of the hypotheses for the parabolic case are also assumed in this case.

The last one is the condition that is required for the origin to be a saddle point of the
perturbed system. Recently [37] has considered this type of bifurcation in the case of
area—preserving mappings. In [38] higher order resonances have been considered.

Even tough the goal is the study of separatrix splitting in Hamiltonian systems with
parabolic points, all of our proofs are easily adapted for hyperbolic points as well, except
in chapters three and four, where we find special parameterization of the invariant
manifolds.

We have established an asymptotic expression for the area span by the invariant man-
ifolds between two consecutive homoclinic points sy and 3y of the form

3o
A= ,us"/ M (v,€)dv + O(e®, u°)
50



where b and c are explicitly determined positive constants, depending on 7, p and 4.
Recall that a is the modulus of the singularities +ia of the homoclinic orbit.

We state now the main corollary. Let

J({L‘, Y, 9) = {h’U! hl}(ﬂ:, Y, 9) e Z Jk(x! y)eika
k#£0

which, when evaluated on the homoclinic orbit, has a singularity at u = %ia of order
at most £ + 1. We observe that using expansions around the singularities © = *ia,

J11(7v0(u)) has the form
1

Je1(v0(u)) = J::ttl,om(l +h.ot.).

If we assume that

e Ji1(v(u)) has a singularity of order exactly £+ 1 at u = +ia, ie. if qu # 0,
which is a generic condition, then

. L
A ~ pef £+18W|J1J:0lme /e

where I is Euler’s Gamma function.

General scheme of the first part

In the first chapter, we get the asymptotic behavior of the parametrization of the
homoclinic orbit. We prove that, as was to be expected, this behavior is potential,
that is, there exists 7' > 0 such that if ¢t € C, Ret > T, the stable manifold behaves
like 1/t? with g a certain positive number, and, analogously, the unstable manifold has
the form 1/(—t)? per t € C, Ret < —T.

In the third and fourth chapters, we have found a good parametrization y*(t,s) (¥ =
s,u) of the invariant manifolds in the completely parabolic and weakly hyperbolic
cases respectively. This parametrization satisfies four important conditions: first, 4" is
a solution with respect to the variable ¢ € R, it is analytic with respect to s and

7' (t + 2me, s) = y*(t, s + 2me).
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In this way we endow the variable s with a dynamic character since, for instance, the
stable manifold of a Poincaré map is 7°(0, s) and the dynamics of this Poincaré map
on it is simply

P(7°(0, 8)) = 7°(0, s + 2me).
The last condition satisfied by * is that it is of the type
Y*(t,8) = 7o(t + 8) + pePtlo(t, s).

In order to find this parameterization, we have sought a fixed point equation for o by
imposing the invariance condition

Pi(y*(t,s)) = v*(t + 2me, 5)

where P'(z,y) = @,(t + 27¢,t, z,y), with ¢, being the flow of the perturbed Hamilto-
nian system, and

Y (t + 2me, 5) = ¥*(t, s + 2me).

Afterwards, in the fifth chapter, we show that the local stable manifold of the Hamil-
tonian system may be expressed as the graph of an analytic function. In the case when
the perturbation preserves the completely parabolic character we have used the result
of [30], which may be applied almost directly to our case. In the weakly hyperbolic
case we know that the manifolds may be described by the graph of an analytic function
in a neighbourhood of the origin, but, of course, this neighbourhood depends a priori
on the parameters p and €, as the eigenvalues of the differential do. Therefore, in the
case that we have called weakly hyperbolic we have generalized the result of [30] to a
neighbourhood of the origin that does not depend on the perturbation parameters.

In the sixth chapter, we have built the flow box coordinates, i.e., coordinates in which
the flow straightens. These coordinates are defined in a neighbourhood of the stable
manifold not containing the origin, but close to it. We have built them following several
steps:

e We have parametrized the solutions of the system perturbed by two parameters.
One of these is time, and the other is a complex parameter s such that the
solutions are analytic with respect to s and the dynamics of the Poincaré mapping
are simply s + 2me. This last fact tells us that s is a dynamic parameter. This
is possibly the main part of the chapter. The proof uses the tools introduced by
Lazutkin in [53] and used as well in [41].
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e We prove afterwards, thanks to this good parametrization, that the solutions
w(t+s,t/e) intersect a (real) section transverse to the flow for some value (¢, so),
thus we are able to straighten the flow in a neighbourhood of the stable manifold.
It is important to point out that this neighbourhood of the stable manifold does
not depend on € or pu. Moreover, we show that this change, which depends on
time, is analytic with respect to x,y and 2me—periodic in ¢.

e Due to the fact that this change is not canonical in general, we prove that if the
system is Hamiltonian, given a change such that

S=1 and E=0

we may define a canonical change of variables which also straightens the flow.

In the seventh chapter, if the condition p — ¢ > 0 is fulfilled we extend the unstable
manifold to the domain where the variables of the flow box are defined. The proof is
the same as in [20]: to find a good approximation of the invariant manifolds and then
to establish the existence of solutions in the sought domain by an iterative method or
a fixed point theorem.

Finally, in the last chapter of this first part it is proved that the area of the lobes
generated by the invariant manifolds between two homoclinic points is exponentially
small. The scheme of proof is the same as in [20] , except that we have also considered
homoclinic orbits with branch type singularities, i.e. “poles of rational order” and
consequently the computation is somewhat heavier.

Part II: Invariant manifolds

It is a truth universally acknowledged that the invariant manifolds associated to in-
variant objects (a fixed point, a periodic orbit, etc.) of a dynamical system yield
essential information for the analysis of the dynamic structure of the system. When
the invariant object satisfies some hyperbolicity property there are satisfactory results
concerning the existence, regularity and uniqueness of invariant manifolds in arbitrary
dimensions, see for instance [50],[51],[58],[28].

Presentation of the problem, assumptions



In the second part of this memory, we have considered mappings of the form

r x+p(:1:,y)+f(m,y)
y = y+aqz,y) +9(z,y)

where z € R", y € R™, p and g are homogeneous polynomials of degrees N,, N, >
2 respectively. The functions f and g have orders o(||(z,y)|)* and o(||(z,)]||)™
respectively.

We require that there exist a neighbourhood of the origin V' C R™ invariant under the
map

¢+ z +p(z,0) + f(z,0)
That is, if z € V then z+p(z,0)+ f(z, 0) also belongs to this set. A sufficient condition
is

e Yz € V, dist(z + p(z,0), V(r)¢) > A|z|"r, where A # 0.

As we seek to find a stable manifold of the form
Wie ={(z,y) € V x R™ : y = ()}
it seems natural to demand that the mapping be “contracting” in the directions of z,
and “repulsive” in the directions of y. More precisely, we require that
e The matrices
—Dp(z,0), Dq(z,0)
have the terms in the diagonal positive and are strictly diagonal dominant. More-

over Dq(z,0) = 0 in a neighbourhood of the origin.

It is relatively simple to check that, if we restrict ourselves to domains of the form
lyll < Bl|z||, then as f and g are terms of higher order than p and ¢ respectively

lz+p(z,y) + flz, o)l < llzll 1 |ly+a(z,y)+g(z,v)]| > |yl

These conditions are a generalization to higher dimension of those given in [63]. We
could characterize them as inducing a weak hyperbolicity.
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We have proved the existence and uniqueness of invariant manifolds at the origin given
as the graph of a function

w:V CR"— R™,

We have considered the cases when the mapping is Lipschitz or analytic, and we show
that ¢ is as well Lipschitz or analytic respectively. We do not consider the differentiable

case.

The proof is a generalization to arbitrary dimension of the techniques employed by
McGehee in [63].

Conclusions
On the splitting of separatrices

To prove Theorem 1.2.1 we have followed the scheme of proof proposed in [20]. However
we substitute all arguments which involve the fact that the fixed point is hyperbolic
in [20] by new arguments valid in the case of a parabolic fixed point or a point which
bifurcates from parabolic to hyperbolic just at € = 0.

We have given conditions for the existence of invariant manifolds in such cases, repre-
sented as graphs of functions defined in complex domains independent of the parame-
ters.

We also have given parameterizations of these manifolds in terms of two parameters
(t,s) with good properties. This includes cases where the order of the perturbation
with respect to the space variables is less than the order (with respect to the same
variables) of the unperturbed system (hypothesis HP4).

For the systems we are considering, we have constructed flow box (or time-energy) vari-
ables in certain complex domains independent on the parameters. We do it assuming
that the perturbation is just continuous with respect to time.

We believe that these tools, or rather the ideas to prove them, will be useful to other
problems.

For instance to provide an unified approach to the splitting of separatrices indepen-
dently of the character of the fixed point.

At the moment, our proof of the existence of flow box coordinates and the chapter
devoted to the effective calculation of the area of the lobes generated by the stable and
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the unstable manifold, already hold in the hyperbolic case.

Let us comment some possible improvements on some of the hypotheses assumed in
Theorem 1.2.1.

e We have worked with polynomial potentials and perturbations (with respect to
z and y). In this way we ensure us that all the singularities of the homoclinic
orbit are poles or branching points. But, in fact we only need the singularity with
smaller imaginary part to be a pole or a branching point. The case of analytical
potentials or analytical perturbations in z, y variables has not been studied in
this memoir and could be interesting to explore some examples of this type.

e There are numerical evidences which support to think that the hypothesis HP5
(p > ¢, in particular p > 0) is not optimal. We think that to improve this
hypothesis is an interesting problem.

In order to treat these cases new techniques would have to be developed, specially a
new version of the Extension Theorem.

e On the perturbation h; we have imposed that it has order k in the variables z,
y satisfying 2k — 2 > n (we recall that n is the order of the potential). We think
that this hypothesis is more technical than necessary. This hypothesis allows
some cases of bifurcation, but, roughly speaking, not too much degenerated.

e We also think that, approaching the splitting function to higger orders, we could
deal with cases when J{'; = 0 (the hypothesis HP7 askes Ji, # 0).

A problem we find interesting and could be investigated as a next step of this memoir
is the problem of the splitting of separatrices for maps with a parabolic fixed point.

Another interesting problem is to generalize to higger dimensions the tools introduced
in this part of the memoir, specially the construction of flow box coordinates in some
neighbourhoods of the stable manifold.

On the existence of invariant manifolds

We have generalized the results of several papers starting with [63] to higger dimensions.
One question we had to solve is to find a right set of hypotheses to start with.
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We would like to mention that we have had to substitute some simple arguments in the
one dimensional setting by degree theory for the Lipschitz case and a multidimensional
version of Rouché’s theorem for the analytic case.

With respect to Theorem 9.4.1, a first step in order to improve it could be to investigate
the optimally (or not) of the hypotheses of the Theorem.

We also think that it would be interesting to find more examples (in the field of celestial
mechanics, for instance or in other applied fields) such that our theorem applies.

A related problem that could be studied with quite similar techniques, is the exis-
tence of invariant manifolds for n-dimensional maps with parabolic fixed points, whose

differential is of the form
J1 0
0 Jp

where the matrices J; and J, are of arbitrary dimension and they have the form
Ji=Id+N and J=1Id

where NN is a nilpotent matrix. However, at present, we do not know any motivating
examples.
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Splitting of separatrices



Chapter 1

Notation and main results

The goal of this first Chapter is to present the main problem we consider, the hypotheses
we assume, and the rigorous statement of the main results of the first part of this

memoir.

Of course we have to begin by introducing the relevant notation to be able to write
precise statements.

At the end we give some examples when the above mentioned results apply.

1.1 Notation and hypotheses

We study the splitting of separatrices in two cases which we call the parabolic case
and the weak hyperbolic case. Next we describe the settings of these cases and the
hypotheses we will need.

1.1.1 The parabolic case

We consider Hamiltonian systems of one and a half degrees of freedom with Hamiltonian
H(I, Y, t/sl M, 6) = hg(l’, y) + ﬂephl(ms Y, t/61 My 6)

where
2

ho(@,y) = %+ V(2),
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V(z) is a polynomial of degree m and order n, that is
V(z) = —a,z" — -+ — apa™

with 3 < n < m. With these assumptions, for the unperturbed system (i.e. the system
when p = 0) the origin is a parabolic fixed point and the derivative of the corresponding

the vector field at (0,0) is
01
00/

The differential equations associated to the system are

T = y+p5”3yh1(rs,y,§:#,5) (1 1 1)
b et ek ) .

We will assume the following hypothesis related to the unperturbed system (u = 0).
Note that the unperturbed system is autonomous and independent on .

Hypothesis for the unperturbed system

HP1. We suppose that for 4 = 0 there exists and homoclinic orbit. It is not
restrictive to suppose that it is in the energy level equal to zero. Moreover we
suppose that the coefficient of the first term of V, a, > 0. We denote the time
parameterization of the homoclinic orbit by

Yo(u) = (co(u), Bo(u))
with some chosen (fixed) initial condition 7,(0) = (zo, yo) on the homoclinic orbit.

We suppose that yp(u) is analytic in a complex strip | Imu| < a with branching
points at u = +ia, i.e., there exists p > 0 such that for u € C satisfying

lu—ta| <p arg(u — ia) € ol &
2 2
~o(u) can be expressed as
LN _i\/a _ d_ ey
aﬁ(u) - ('U. _ ia)p/’q (1 + O('U- Za) ); ﬁo(u) = -——-———-—(u = 3'0,)1+qu(1 -+ O(u 3(1) ‘?)_
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and for u € C such that

- 3
|lu+ial < p arg(u +ia) € (%,%)

7o(u) can be expressed as

dy

0(t) = gy (1 + O —i0)%), folw) =

(u + ia)P/a (1 + O(u +1ia)*/?).

Moreover on u = =+ia there are not other singularities of 7. We define

r=1+2>1.
q

Remark 1.1.1 We observe that, if we assume that Bo(u) has a “potential” branching
point at u = u*, then for u in a neighbourhood of u* we have that

o(t) = 7= uf; (14 Ofu — ut)Ym-) (1.1.2)

fow) =~ (L + Ou— ) (RE)

Indeed, it is clear that ag s a solution of the equation
T =+/—2V(z).
Performing the change w = 1/x we obtain the equation

du w™/3-2

dw V2(am + wam-1 + ... + W™ "a,)

which, in a neighbourhood of w = 0, can be written as
du
dw

Integrating this relation we obtain

u—ut = wm™22(c; + O(w)).

= w™?%(co + O(w)).

Inverting the last equation and going back to the variable x we obtain the claimed
expressions (1.1.2) and (1.1.3).

As a consequence, the exponents of u — u* are rational numbers.
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Hypotheses over the perturbation

HP2. The function hy(z,y,0, u,€) is C°, 2r-periodic in 6, has zero mean:

2
/ a2, 3,6, 1,€) dB = 0
0

and it is real analytic with respect to (z,y, y).

HP3. The function hy(z,v,0, 1, €) is a polynomial of order k in the (z,y) variables.
That is

K

hl(m:yagaﬂi 5) = Z a'ij(91 Hy e)miyj-

i+j=k

HP4. If the order of the perturbation k is greater than 3, we assume that
2k—-2>n for k£ > 3.
Remark 1.1.2 We observe that HP4 implies that the origin is also a parabolic fized

point of the unperturbed system and the derivative of the vector field evaluated at this
point is the same as the one of the unperturbed system, that is

(00)

Consider the terms a;;(0, p, €)z*y’ of hy evaluated on 7. We define £ to be the greatest
order of the branching points +ia corresponding to a;;(, i, €)afy(u) G5 (u). That is:

¢ = max{i(r — 1) + jr : a;;(0, p,€) # 0}.

Also we define

v=p—L£

HP5.The constant v is greater or equal than 0.



1.1 Notation and hypotheses 7

Remark 1.1.3 Hypothesis HP5 measures the growth of the perturbation term

P”Ephl (ml Y, t/E, Hy E)

evaluated at the homoclinic orbit close to the singularities. In fact, if hypothesis HP5
is assumed:

pe”|[ha(vo(u), /e, €)oo = O(n),

for |Imu| <a—c¢.

Remark 1.1.4 A consequence of hypotheses HP1-HPS5, is that if p < 1, then Oyhy =
0. Indeed, if £ > 1, then by hypothesis HP5, p > 1. Therefore, we consider the case
¢ < 1. By definition of £ and using that r > 1, we have that for any pair of positive
integers, i, j such that a;;(6, u,€) # 0,

1>8>i(r—1)+jr>jr>j

Therefore, 7 = 0 and this implies that hy has no terms with the variable y. Therefore
Oyhy = 0.

1.1.2 The weak hyperbolic case

What we call the weak hyperbolic case is in fact a bifurcation case, in the sense that
when p = 0 the origin is a parabolic fixed point and when p # 0 the character of
the origin becomes elliptic or hyperbolic. In this case, for the sake of concreteness,
we consider a given non-perturbed system. More precisely we consider Hamiltonian
systems with Hamiltonian

H(z,y,t/e) = ho(z,y) + pePhy(z,y,t/e, p €)

where
2

ho(@,y) = % + V()

and

V(z) = —z% + 2
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Concerning to the perturbation, we assume that it has the form
h‘l(x: Y, t/&', H 5) = hl?(:E: Y, t/E,‘, Hy 5) + has (:II, Y, t/E, Hy E)

with
52 y?
h*lQ(x1 Y, t/E, Hy E) = E’gl (t/E, Hy 6) + myg2(t/€) My E) + 593({:/6: H, 8)
and hi3(z,y,t/e) is of order greater or equal than 3 in (z,y) variables.
The associated differential equations are
T = y+ ;LEP(.’L'gz(t/E, £ 6) * yg3(t/£! K, E) % 6th’13($: Y, t/Es Hy E)) (114)
. 3272 - 41"3 o #Ep(xgl (t/E! Hy 5) T yg2(t/5: Ly E) + ayhli}(m: Y, t/El 1y 5))

We introduce the functions G; for i = 1, 2,3 determined by the conditions:

2w
BQG-Q = Gi, Gi(g, ey E)dg =0
0

We assume hypotheses HP1-HP5 of the previous subsection and moreover we impose
that:

HP6. With the above introduced notation

2
/ 9200, p,€)G1(6, p,€)df < 0.
0

Remark 1.1.5 Hypothesis HPG6 implies that H; # 0 and then k = 2. We sill see that
r = 2 and therefore £ € N. In fact, since g, #0, £ > 2r —1 = 3.

Remark 1.1.6 In Chapter 4 we will study the Poincaré map of (1.1.4) and there we
will see that HP6 implies that the origin is a saddle point when p # 0.

Remark 1.1.7 We remark that, in the weak hyperbolic case, hypothesis HP4 does not
apply.
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1.2 Main results

Using that the Poincaré map is area preserving we will prove the existence of primary
homoclinic points which will be the zeros of the Melnikov function M (s, e) defined by

M) = [ " {ho, b} (vo(t + 5), t¢) dt.

We denote by A the area of the lobe generated by the stable and unstable manifold
between two homoclinic points and by 9 the angle between the stable and unstable
invariant manifolds at a homoclinic point. We observe that, since the Poincaré map is
area preserving, the area A will not depends on the homoclinic points.

The main results of Part I are:

Theorem 1.2.1 Under hypotheses HP1-HPG6, for e — 0%, u — 0, the following
formulae hold:

Sp . )
A= ‘u'ep/. M('U, E)d’U =5 O(#252v+r,“2Ev+p+m,#Ep+1+aa)e—a;‘s’
s0

M'(so,€)
170(s0) 1%

where so < 3 are the two zeros of the Melnikov function (associated to two consecutive
homoclinic points), closest to zero and

sint = HEP + O(#2E2u+r-2“u2£u+p+ig—2, #Epvl-kio)e—afe,

i 1 in the parabolic case
7\ 1/2 in the weak hyperbolic case.

We define the function

J(z,y,0) = {ho, b1 }(z,y,0).

By the hypothesis on hy, J is 2-periodic in 6 and has zero average with respect to 6.
Then we can consider its Fourier expansion

J(.‘L’,y,g) s Z Jk(may)eikg'
k#0
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Moreover, for all k € Z, Ji(y0(u)) has a branching point of order at most £ + 1 at
u = +ia. Therefore, near the singularity u = ia, Ji(vo(u)) for k£ < 0 has the form

Te) = oz ( Toet 3 i m)qu)

m=0
and for k > 0, Ji(vo(u)), near the singularity u = —ia has the form

Ahﬂ@):(——L——(ﬁ$+§:J$Au+mVW).

u + ia)tt! e

Here we observe that J,/; = rﬁ,o-

We consider the following condition:

HP?7. The Fourier coefficients Ji; evaluated on (u), that is Jy1(yo(w)), have sin-
gularities of order exactly £ + 1 at the points u = +ai.

Remark 1.2.2 The hypothesis HP7 is generic because it is equivalent to suppose that
a determinate coefficient of the Laurent expansion of Ji1(v(u)) is different from zero.

We can obtain an asymptotic expression of the Melnikov function and consequently of
the area of the lobe and of the angle which can be compute explicitly.

Corollary 1.2.3 If HP1-HP7 holds, then fore — 0%, u— 0

1
T(+1)°

—afe

A~ pe"t8r|Jf|

1 1
|sind| ~ pe |ty m—e Y —m—
ol T D TGl

where I' is the Gamma function.

1.3 Examples

Examples of unperturbed Hamiltonian systems satisfying HP1 are given by

2

fm%w=%+vw) : (1.3.1)
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where V/(z) is a polynomial such that has the form
V(z) = —z" + X1,

Indeed, the Hamiltonian system has a homoclinic orbit contained in H(z,y) = 0. Let
v(t) be the parameterization of the homoclinic orbit such that v(0) = (1,0). To look
for the singularities we look for the values of ¢ = t* such that  becomes infinite.

We can compute exactly the homoclinic orbit which is given by

9 1/(n-2) —9(n=1)/(n=2)(pp, — Q)¢
T = ((z TIE)  a e 2))2)@—1"(“*2)) |

Therefore, the homoclinic orbit has singularities at points +ia with a = v/2/(n — 2)
which are branching points. It is not difficult to see that, near the singularities +ia,
the first component of -y reads as

G
{t £ ia) /(D

(14 O(t £ ia)/ ™)

with C_ = (2&)_1/(n—2)e—i1f2(n—2) and C+ - E
We consider a family of perturbations given by
hy (:C, Y, t/E) = z* COS(t/e),

In this case, £ = k/(n —2). Of course we suppose that k satisfies the hypothesis HP4,
that is 2k — 2 > n. We observe that in this case £ > (n + 2)/(2n — 4).

Then, by Corollary 1.2.3 the area of the lobe generated between two consecutive ho-
moclinic points satisfies the asymptotic expression

—afe

1
e iy
L (%)

R v+1
A pe 8772(?1-—2)

where v =p—k/(n—2) and p > k(n — 2).



Chapter 2

Analytic properties of the
homoclinic orbit of the
unperturbed system

2.1 Introduction and main result
The purpose of this chapter is to obtain the asymptotic behaviour of the homoclinic
orbits of Hamiltonians systems of the form
H(z,y) =y*/2+ V()
with V(z) being an analytic function, for complex values of time in a certain domain.

We suppose that the origin is a fixed point of the corresponding Hamiltonian equation
T =y
y = -V(z).
It is not restrictive to assume that V(0) = 0. We suppose that V' is of the form
V(:z:) =az" + ...
with a, # 0.

If n > 3 the origin is a parabolic point, that is, the linear part of the equation at (0, 0)
has a double zero eigenvalue. Assuming that it has an invariant curve passing through
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the origin the solution on this curve has to live on the energy level H(z,y) = 0. Then

& sy 1 TR

Hence we will have that ¢ = az* 4 ... or & = az**'/2 + ... according to the cases
n=2korn=2k+1,keN.

For the sake of generality we consider the case k € R. We define the set
U=D0,r)—{z€C:Imz=0,Rez <0} CcC.

The principal result of this Chapter is the following proposition from which we derive
the asymptotic representation of z(¢) and then y(t) follows from y(t) = %(t).

Proposition 2.1.1 Let f be an analytic function on U. Suppose that
f(z) =az* + bzt + ...,
withk,l € R, 1 <k <{ and a < 0. Consider the equation
&=flz).
Then, there is a solution ¢(t) defined on
QT,7)={t€C:Ret>T,|Imt| <7}
such that
p(t) =ct™+O0(t™)
withp=1/(k—1), p<v < min{p(1 +£—k),p+1/2} and c = (—p/a)?.
The proof of this proposition has two parts: a formal and an analytic part. Obviously

the formal part is only an heuristic study of the equation # = f(z) and only gives a
intuitive approach of the behavior of the solution which we want to find.

Remark 2.1.2 From the way that T' and T enter in the estimations, see in particular
conditions (2.3.4), we deduce that we can take T big if we take T big enough.
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2.2 Formal part

We assume that ¢ has an asymptotic expansion of the form

4 1
tp(t)—ct—p+d—+et—r+..., pLyg<r.

Imposing that it is a formal solution we obtain the following equation

1 1 1 (L gl 1 k
_pcti"” =g e, —ertﬂ_l +. a(ct—p+ _+et_" )
+b( 1+az +e1+ )£+
Ct” ref
1 1 k 1 1 1
— a'cktpk (1 +dctq‘¥’ +ect‘"‘P +) +bcf%;5(1+dctq_p +ect’”-1’ +. ) +.
1 1 k(k—1)
_ = -i k-1 2 k-2
= a(c = + kdc* tkp+q = + kec T d'c t'“P+2(‘?‘3’ +. )
1 -1
1 £—1 2 -2
+b(cf—+fdcf o — s + tww )

The lower order terms must agree so that we have

p+1=kp, —;c«::ac’c

1 —p\? 1\ V6D
p= ==, e={\—] =|la—T -
= (&) - ()

We observe that, if p = 1/(k — 1) then kp+ g — p = g+ 1, therefore, for the next order
we impose the condition #p = 1 + g to have three terms of the same order. This gives
1+4—-k

k—1

that is,

q=

Comparing the coefficients of order g+ 1 we get —qd = kadc*—* +bcf which is equivalent
to

dT—-bC

which has a solution if and only if £ # 2k — 1. Note that { = 2k — 1 is a kind of
resonance condition.
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One may think in just imposing that two terms have the same order ¢ + 1 and hence
lp>q+1.

Comparing the corresponding coefficients we get
—qd = kadc** = ka(—p/a)d = —kpd

so that ¢ = kp = k/(k — 1) and d, for the moment, is free. Therefore, the condition
¢p > q -+ 1 is equivalent to £/(k—1) > k/(k—1)+1 > (2k — 1)/(k — 1). Note that
this only could happen when ¢ > 2k — 1.

We finish here this heuristic study and now we give a proof of the analytic part of the
Proposition 2.1.1.

2.3 Analytic part

Let U =D(0,7r) —{z€C:Imz=0,Rez2<0}CcCand k,feR, 1<k<?l We
consider

f(z) = fo(z) + g(=)
with fo(z) = az®, a <0, and g : U — C analytic such that |g(z)| < B|z|".
The general solution of
&=z

is z(t) = ¢/(t + a)? with ¢ = (—p/a)? and p = 1/(k — 1). The constant « takes care of
the initial condition. Motivated by the discussion in the previous section we look for
solutions of the form

o(t) = @o(t) + ¥(t), with po(t) = c/(t + a)P.
We write the equation ¢ = f(z) in the form

@o(t) +9(t) = folo(t)) + Dfolpo(t))(2) (2:3.1)
+[f(po(t) +9(t)) — folwo(t)) — D folwo(t))i(t)].

First we consider the auxiliary linear equation

k-1
() = Do) = ka (5 ) X0 = g
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which has a solution

x(t) = m-

From (2.3.1), using the variation of constants formula we get the following integral
equation for 9

b(t) = To) (2.3.2)
= e L (s + 0P T o)+ 50) — folon(®) — Dhoipo)ee)] d

Here, we are implicitly assuming that (7T") = 0. We take a = p + ¢ such that
p=Rea>0, |A<T (2.3.3)

are fixed and v such that

-k
p < v < min {p+ iTl,IH— 1/2} = min{q, p + 1/2}

fixed. We introduce the space
X ={y: QT,7) — C: analytic, |t + a|’|1)(t)| < oo}.
We endow X with the norm

Il = sup [t +af"[(E)]-

teQ(T,7)

We call X, the closed ball of radius p in X centered at zero. We consider I' : X, — X,
as defined by (2.3.2).

The rest of this subsection is devoted to prove that, taking suitable values for p and
T, we have that I' : X, — X, is a contraction.

We take
T>1, p<c/2, (T+ p? >2/r,
(T + p)?>1/2, (2.3.4)
T+ |A| , .
TH+pu> ——m, ifp>1, TH+u>7+]), ifp<l1
H2 e ap) p 7 AL ifp
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and T satisfying the conditions

1 k-2 1 £
I} <8 [ fa—s) £ 5
(o) = (areas) <

first we check that I' is well defined. If s = s; +isy € Q(T,7), it is clear that
|s+a| > |Re(s+a)| =|s1 +p| 2T+ p.

Then

: = 1 1 3r
e 0| < et T S < T

Remark 2.3.1 Let z € C. If |arg(z)| < n/4 and |w| < |2| then | arg(z + w)| < 37 /4.

Proof. Since |w/z| < 1, w/z = a + b with |a| < 1. Then, Re(1 + w/z) > 0 and
|arg(1+w/z)| < /2. Therefore | arg(z +w)| < |arg(z)|+|arg(14+w/z)| < w/4+m/2.
|

For s € Q(T, 1),

T+|A _w
- Pl < gL
| arg ¢o(s)| = | arg(s + @)?| < parctan Trp =1
and
P(s) [#l/ls +o” _ Jlell 1
ol <
c/(s+a)P| = cfls+alf ~ c |s+a|"‘?’<l'

By Remark 2.3.1, this means that |arg(wo(s) + %(s))| < 37/4 and hence, if ¥ € X,
then for all s € Q(T,7), o(s) + 1(s) belongs to the domain of f.

For k € R, k > 0 it is clear that

(1 +w/2)*—1] = fl k(1 +sw/z)k“1% ds| < k(1 + |w/z])*w/z|. (2.3.5)

Therefore, for z,w € C, Rez > 0 and |w/z| < 1 we have that

k(k — 1)
2

|(z + w)k — 2% — k2" w| < |2/* 2w (1 + |w/z))*2.
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To evaluate the integral in the definition of I' we will take the path of integration
y(u) =T+ (t — T)u, u € [0,1]. We write £ = Ret and n = Im¢.

We begin by bounding

f (s + a)P"a[(o(5) + $(5))* — (wo(s))* — klo(s)) " (s)]ds

T
k(k—1) - Il \*=2| [* 1
< |0|Tck 2”‘!)“2(1 +c(T+T) /T m ds‘
k(k — 1) k-1 1 k 3

< la (2.3.6)

(14 ) / |s+a|2t~ _d

)
(if k — 2 < 0 we have to substitute (1 + W) by 1) where we have used that
p(k—2)— (1+p)+2v=2(v—p).
Now we bound the term [;.(s + a)P*'g(c/(s + a)? + 1(s))ds

f (5 + )P g(c/ (s + )P + P(s) ds

T
: 1 g |f
/T |s + afPtct o T aray

=B (1+ m___p)e /T m ds‘ (2.3.7)

where we have used that p/ —p—1=¢q —p.

<B ds

We call I5 the integral

T
‘*:fT s + o] ds:fo (T + p+ (& — T)u) + (nu+ A)?° i

We note that (T'+ p+ (€ — T)u)? + (qu+ A)? > (T + p)? > 1. We consider two cases:
§<1/2and 6> 1/2. If§ < 1/2

|t—TI
L / (Tr T E-Thp+ mus NP
- |t—T| /lid«u
[(T+p)+(E=T)2+ 1+ N2 J, u?

1 |t—T]

1—-26[t+af? (258)
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If § > 1/2, or even more generally if § > 0, let v < § be such that 0 < v < 1/2. We
have

< [ Ty

= Jo [(T+p+(E—Tu)?+ (mu+A)?
- -1 ]

"~ Jo [@+p+E =Ty + G+ AP &

[t —T| 1 1 P
= (T4 p)Ae /0 (T +n+ €D + (ru+ N7
< 1 1 |t — T
= 1 =2y (T + p)26-7 |t + o’

| 75| 5 du

(2.3.9)

We observe that, by (2.3.3), |t — T| < |t + . We recall that 2(v — p) < 1. We write
q—p=q—v+v—p, and we take ¢ — p =26 and v — p = 27 in (2.3.9). Then using
(2.3.8) in (2.3.6), (2.3.9) in (2.3.7) as well as assumptions (2.3.4), we have that

ITy(t)]

— k— —
< m ['alck_ly““’“ (1+ 2T +1,u)'*—f’) 21 = 2(1v —pt f alil"”
. _
e (1 T —I—lp)"_f’) (T +1u)q—" 1- (i —p) 1tli oxlz"ﬂ]"”:1
< [|a[ck_1 k(k2_ b 1%l 1— 2(];, —p)t+ ;IH—P
+2B¢f 1—(wv-p)(T +1u)q—9] |t +1a]”'

Clearly, if T' is big enough, [T (t)| < p/|t + a|” and then 'y € X,,.

Next we see that I' is a contraction. Indeed, let ¢ and 9 be two functions which belong
to X,,

6 =THO < rapm [ (54 @ (alin(s) + (5)) — Dalia(e)(s)
—[fo(po(s) + 1[3(3)) = ng((,Og(S))'l;(S)])dS (2.3.10)
¥ / (s + 0" [g(en(s) + (s)) — g(0(s) +(s))] ds|.

To evaluate the first difference we consider the function

x(2) = alpo(s) + 2)* — k(po(s))*~2].



2.3 Analytic part 21

By the mean value theorem, we have that
1
X(2) ~ X(2) = fa Xz +C(E— )~ 2] d¢

and, since x'(w) = ak[(po(s) +w)** — (po(s))*~?] then, using (2.3.5),

X)) ~ XN < btk =D (ap + aT) | a9 ~ Yol

(If k — 2 < 0 we have to substitute (Iﬂ_alp + ls+al") by (ls_i_alp))
We bound the first integral in (2.3.10),

¢ k—2 ~1 k-2
_ B ¢ cp £ il P
‘/T s +afP*|alk(k — 1) Is + ap®-2) (1 + (T + #)U—P) ad |s + o ds

t
= - 1
 lalk(k = 0)e-=22016 ~ 01| || et s

14
- 1
- — 1)ck—2 = —_—
= |alk(k — 1)c*22p||9) — 9| ‘ fT PR ds

(2.3.11)

Here we have used that pk = p+1. To deal with the second integral we use that, since
g is analytic, |¢'(2)| < Bs|z|*"! in a domain

{zeC:|z] <r, |argz| <6} 0<6b<m.

Then it is bounded by

1|7 P -1t 1
BgC |I¢_wl| (1 + C(T'l‘ ) y— ) f |S+a|p (£-=1)+v—1-p ds

g — vl (1+

i) Lt 0

here we use that p/ = g+ 1. We recall that 2(v —p) < 1. Then, using (2.3.8) in (2.3.11)
with 26 = 2(v — p) and using (2.3.9) in (2.3.12) with2y=v—pand 26 =qg—p+v—p
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we obtain
~ 1 N 1 [t —T| ~
Oy =T < o [lalk(k = 22— =t 19 - v

i e 1 1 [t — T

+B2C 12||¢ - d}” IT_{_#l(q_._p) - (b’—p) |t+ ai(y_p)]

e 1 ()
< [l = 0oy

—1 1 1 e 1

B e |~ e

Here we have used that [t — T'| < |t + a|. Hence, if T is big enough I' is a contraction
in X, and, by the fixed point theorem, there exists a unique solution of (2.3.2) which
belongs to X,. This ends the proof of Proposition 2.1.1.



Chapter 3

Parameterization of local invariant
manifolds

3.1 Introduction

In this Chapter we prove the existence of a special parameterization of the local stable
and the local unstable manifolds which will be useful later. We only prove the existence
of such parameterization for the local stable manifold, but it is clear that the result is
also true for the unstable one, working with the inverse map.

In order to prove this result we need a good initial approximation of the stable (and
unstable) manifold and suitable coordinates to work with.

In Section 3.3, we obtain these coordinates by canonical changes of variables using the
averaging method. This method allows us to obtain two important things: remove the
terms of order pe? and remove the smallest degree terms (with respect to (z,y)) of h;.
We must average several times in order to obtain a high enough degree.

The initial approximation of the stable manifold is achieved as the invariant manifold
of an appropriate intermediate system which is constructed in Section 3.5. It is a
truncated polynomial system with coefficients chosen in a very specific way. We remark
that this initial approximation is only necessary when k < n and hence can be avoided
if we are interested in the case k > n.

Finally we obtain a functional equation for the parameterization of the stable manifold
and we prove it has a solution applying the fixed point theorem in a suitable Banach
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space.

It is important to say that although the system is C° in ¢/e, we obtain a parameteri-
zation with two parameters say (¢, s), which is analytic in s, considered as a complex
variable, and we provide a dynamic sense for it.

3.2 Definitions and main result

We begin by introducing some notation. Given 7' > 0 and 7 > a > 0 we define the
following sets:

D*=D*T,7)={(t,s) ERxC: t+Res>T, |Ims| < 7}

and
D*=D*(T,7) ={(t,s) e RxC: t+Res < -T, |Ims| < 7}.

Note that if (¢,s) € D;, (t + 2me, s) and (t,s + 27we) also belong to D*. For k € R,
k > 0, we define the space &, = &} of functions h : D¥* — C such that

(a) h is continuous,

(b) for t fixed, s — h(t, s) is analytic,

(c) h(t + 2me, s) = h(t, s + 2me) for all (t,s) € D®,

(

d) ||hllx = sup{(t + Re s)*|A(t, s)], (¢, s) € D*} < oo.

It is clear, from the definition, that &) is a Banach space with the norm ||.||; and that
X1 C .

Indeed, from the definition of ||.||x we have

1
oalt, 5) — Pn(t,)] < £l = Bl < =l o

(t+Res)
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Then if (h,) is a Cauchy sequence in X, (h,) is uniformly convergent to some function
hoo : D* — C and therefore h, satisfies the conditions (a), (b) and (c) of the definition
of Xy. If ||hn — hml|x < € for n,m > ny, taking limit as m goes to oo in

Ihn(t, 8) = hu(t, )] < ms
we have
it 8) = hoslt )] < o eeye® (3:2.1)
and
(t+Res) lhoo(t, )] < (t+Res) |ha(t,s) — hoolt, s)| + (£ + Re s)*|hn(t, 5)|
< e+ [|hallk (3.2.2)

From (3.2.2) it follows that hy, belongs to &} and from (3.2.1) that h, — ho in &;.
The main theorem of this Chapter is the following:

Theorem 3.2.1 Let 7 > 0. Assuming hypotheses HP1-HPJ and that, in case p < 1
dph18yhy = 0, there exist T > 0 big enough and parameterizations 7v;, .(t, ), Vji.(t,s)

of the local stable and unstable invariant manifolds, defined in D*(T,T), D*(T, ),
respectively, such that (* stands for s and u):

1)t 5 (t, ) is a solution of system (1.1.1) and s — v} (t,s) is real analytic.
Moreover the map (t, s, u,€) — 7} .(t,8) is continuous, C* with respect to t and
analytic with respect to (s, p).

2) V. e(t +2me, 8) = v, (t, s + 2me) for all (t,5) € D*(T, 7).

3) For p = 0, v,.(t,s) coincides with the restriction of the homoclinic solution
Yo(t + s) to D*(T,7), and for u # 0 the following estimate holds:

Ve (t:8) = Yo(t + 8) + pe” G0 (t + 5), t/€) + O(ue”*?)
where G = (G1,Ga) is such that
380(3': Y, 9) = (ayhl (:U, Y, 9)! _6-'8}"1(3! Y, 9)):

and has zero mean.
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4) 7 <(t, ) = Yo(t+s)+uePtto*(t, s, p,€) where a*(t, s, p,€) € X x XY with X\ = 22,

From now on, to simplify the notation, we omit the dependence on £ and p at several
places where do not play an essential role. The proof of this theorem is done in several
steps.

Remark 3.2.2 In this theorem we have introduced a new condition: if p < 1 then
0:h10,hy = 0. By Remark 1.1.4 hypothesis HP5 implies this condition, and therefore,
under hypotheses HP1-HPS5, Theorem 3.2.1 applies.

In the following sections we assume the hypotheses of Theorem 3.2.1.

3.3 Averaging of the equation

Some steps of averaging are necessary to transform the equation (1.1.1) into a suitable

form. First we scale time by # = £. The transformed system reads

ey + pe? 1 0,hy (z,y,0, 1, ) (3.3.1)
y = —eV'(z)— ue’ 1 0h(z,y, 0, 1)

where & and 9 now mean derivatives with respect to the new time #. The Hamiltonian
becomes eH(z,y, 0, u,e). Next we average n + 1 times with respect to 6 in order to
move the contribution of the perturbation to terms of order ueP*?"*! and p?¢P*3 in the
parameters, taking care of the orders with respect to z, y.

Definition 3.3.1 We denote by ™ with l,m € N, | < m the set of functions which
are sums of homogeneous polynomials with respect to (z,y) of orders between | and m.
That is, we say that p: C2 x R — C belongs to P™ if and only if p is C° and analytic
in (z,y) variables and

p(z,y,0) = Z aij(ﬁ)x"yj

with the coefficients a;;(6) 2m-periodic.
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We will also consider families of functions in F™. In such case we will have

m

pp,s(g:: Y, 6) == p(ms Y, 9: Hy 6) = Z aij(ga My E)xeyj

i+j=l
with p and € belonging to some set.

Moreover we will consider functions, analytic with respect to z, y in some neighborhood
of the origin, whose lower order terms will be of order . We will represent their set by
P =P

We will write p = (pi,,p1,) € Py X P, if i, € B, and p, € P,. Moreover, if l; = I,
we write that p € B, .

For notational convenience we define

B" = Fg for 1<0, 0<m< +o0.
Let F,(z,y,0, u,€) be such that it has zero mean with respect to § and
Fy(z,y,0,1e) =Y v*pi(z,y,0,1¢€) (3.3.2)
1=0

with v € Z*, j; = max{0,n(v — )+ k — 2v} and p;, € P;,. We assume that F, depends
on parameters p and g, that it is continuous (with respect to all variables) and that it
is analytic with respect to (z,y, ). We consider the Hamiltonian

eHy(z,y,0,m,6) = %yzﬂV(ﬂ:)+u5”+2"“Fu($,y,9.m€)
+u?e*? Ry, 5(,y,0, u,€)

with V' of order n and Rj;,_, € Pyr_. We observe that e H has this form for v = 0 and

R _,=0.

Lemma 3.3.2 Under the previous conditions and assuming that n > 3 and k > 2,
there exists a canonical change of variables (z,y,0) = C,41(%,7,0, p,€) which is C°
in (Z,7,0, u,€), Ctand 2r-periodic in 6 and analytic in (Z,7, 1) and it transforms the
Hamiltonian eH, to

eHy41(Z,9,0,1,8) = §§2+6V(5:)+ua”*“"*”*lFuH(a:ny,e,n,e) (3.3.3)

+”282p+2R;:_12 (f: g'} 91 P'; E)
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in a neighborhood of the origin, where
Fy11(2,7,0) = 50,5 — V'(2)0;57,

S? = 5%(z,7,0) depends on S* = S*(Z,7,0) and they satisfy

8951($:§:9) = —Fu(l',g,g) (334)
8S*(z,9,0) = V'(2)8;S"(z,5,0) — §0:5"(x,7,0). (3.3.5)
Moreover
v+1

Fo= Z ympix (:B, Y, 9)

=0

with 4 = max{0,n(v+1-1)+k—2(v+1)}, p;, € Pj,, Fu+1 has zero mean with respect
to 0 and Ry, = Ry, (2,9,0, u,€) € Pz and

with Tog_g € Pog_a. Also H,y1 is continuous in (Z,7,0, u, &) and analytic in (Z,7, ).

Remark 3.3.3 Although in the parabolic case k has to be greater than 3, we allow
k > 2 in order to use this Lemma in the weak hyperbolic case.

Proof. We consider a generating function S(z,7,6) which will provide a canonical
change of variables (z, ) — (z,y) implicitly through

z = 0;5(z,9,0)
y = 0:.5(z,7,0) (3.3.6)

and then the new Hamiltonian will be
eHy41(Z, 7,0, u,€) =eH(z,y,0,p,e) + 0pS(x,7,6).
We take
S(2,9,0) = 27 + pe" 18z, §,0) + pe”***25%(z, 3,0)

with S and S? satisfying (3.3.4) and (3.3.5). This choice is motivated by the next
calculations. We observe that S is C?, 27-periodic in 6 and analytic in (z,y). With it
we will cancel the terms of orders ueP*t?*! and pueP*?"+2 in the averaged Hamiltonian.
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Since F,, has zero mean with respect to # we can choose S* with the additional condition
that

2m
SY(z,7,0)dd = 0.
0

Moreover, with this choice of S* we have that 9,5 has zero mean and therefore we
can also choose S? such that

2w
S%(z,7,6) dd = 0.

0

From (3.3.2), it is clear that F, € Pi. Indeed, all terms are of order
Ad+nlv-D+k—-2v=n-2)v-1)+k>k.

Hence S is of order k and S? is of order greater or equal that k. From (3.3.6) we have
that

= 2v+1 1 2v+2 2 2 _2p+dv+42
T = & —pePtHgSt — uePt? 25,52 + PPty 5
y = g+ #Ep+2u+16m81 N Nsp+2v+28xs2 + p‘,252p+4y+27'2k_3

where the derivatives of S* and S?, and rq;_3 are evaluated at (Z,7,6). Here and until
the end of the proof r; will mean a term of P;. The averaged Hamiltonian is therefore

EHV'H (i" g? 9’ -\u" E) = EHU(:E: y: 9: .\u"l E) - ﬂ€p+2v+1Fu($) g's 9)
+#€p+2v+2[vf(m)aﬁsl (Ia Y, 9) - ﬁa’zs’l (:B: g: 9)]
_ % [ + pePt? 19,8 4 pePt 29,5 4 ettt ip,, 12

+€v(§: _ NEHZV+13§SI _ ”Ep-f—‘Zy-i—ZSgSz +}.L252p+4u+27'2k_3)
+ue?* ¥ H(F,(z,y,6) — F,(,7,0)]
_'uap+2u+2[vf(j)agsl _ gazsl]
+#262p+2R;k_2 o H2€2p+4u+37-2k—2
= P+ V(@) + R0, S - V' (2)5,5]

2 _2p+dv+42
+pe p+dv+ ayFUazSI =4 ﬂ282p+2R;k_2 4 p2€2p+4v+3,r2k_2_

Therefore we can take

Ry}l = "9, F,0,S' + Ry + " Mrgr s (3.3.7)
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We will need information on the orders of the terms in the Hamiltonian and the factors
y they have. From (3.3.2) and (3.3.4) we write

Sl - Z: szPj;—
1=0
Then we have that

85" = ¥"pi1
=0

35,81 — Z yza—lpj! e Z yij,q = pjo1 + Z ym_lpj‘
=1 1=0 1=1
according to Definition 3.3.1. Moreover, since 8,52 = V'(z)8;S* — 30,5*,
S* = pjp4n—a + Z Y Pien + Z v pji
1=1 1=0

and then

3x82 = DPjo+n-3 + Z ym_lpjt-l—n—il =+ Z y21+1pj.|—2:
=1 =0

63;82 = Pjot+n-3 t Zyzi_zpjwn—l t+ Z yzle;—b
1=1 =0

Therefore, the function
F,1(2,9,0) = §6,5* — V'(%)0,5°
is of the form

Fo.y1 = Djgton—a + Pj142n-2 + Djgtn—-2 + YDjo4+n—3
v—1

ks Z y21 (pj:+n-—2 ar Pji_1-2 3 pj¢+1+2n—2)

=1 ;
+y2v (pju+n—2 + pjv—l_z) + y2v+2pjv"‘2'
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But we observe that, if ¢; are the analogous integers to j; with v + 1 instead of v,
Jici—2 = ji+n—-2=n(v+1-0D+k-2v+1)=1%, for 1<I<y,
Jis1 +2n — 2 i, for 0<I<v-1,
Jv=2 = k=2(v+1) =ty

thus
v+1 v+1
Fv+1 — Z y2lpn(u+1—£}+k—2(v+1} = E yﬂpz}-
=0 =0

Since S! and S? have zero mean, we also have

2w
/ F,i(z,y,0, 1) dd =0.
0

Finally we discuss the regularity of C,1 and H, 1. By hypothesis we have that F, is
continuous and analytic with respect to (z,y, ). Then S* and S? will be continuous,
C! with respect to (z,y, u, 8) and analytic with respect to (z,y, p). To get the change
of variables we have to apply the implicit function theorem (L.F.T.) to

(a:,y,:z':,ﬁ, 9: 1y E) = (j - 6?‘5'(33:?: 91 1y E)ly - a:cs(x:g'l 9:.”)5))'

This map is C* with respect to (z,,Z,7,6, 1) and continuous. A generalized version
of the L.LF.T. gives that we can obtain

(z,9) = g9(z,y,0, 1, )
with g C' with respect to z, ¥, 6, 1 and continuous.

A new application of the L.F.T. for analytic functions, with # and ¢ fixed, gives, by
uniqueness, that g also is analytic with respect to z, y, u.

Then the result holds. =

Now we use the previous lemma in order to perform n + 1 steps of averaging.

Lemma 3.3.4 There ezists a canonical change of variables (z,y,0) = C(Z, 7,0, u,€)
which is C° in (%,9,0,p,€), C* and 2r-periodic in 0 and analytic in (Z,7, u) and it
transforms the Hamiltonian eH to
eH(z,9,0,m,€) = eho(Z,7) + pePt*°F(z,7,6, u,¢) (3.3.8)
+ﬂ262p+2R2k_2 (i'l g': 9) ;u': e)
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in a neighborhood of the origin, where F' € Pa,_5 and has zero mean with respect to 6,
Ray_3 € Pyr—3 and

Rok—2 = 3yh13z31 + ETok—2

with S* such that 8,5 (x,7,0) = —hi(x,7,0) and has zero mean with respect to 6, and
Tok—a2 € Pa_y. Moreover H is continuous in (Z,9,0, u,€) and analytic in (Z, g, 1).

Proof. Since h; € P, we note that H has the form (3.3.2) for v = 0 and Ry, _, = 0.
Then we begin with F = h; and R), , = 0 and we apply iteratively n + 1 times the
Lemma 3.3.2. In this way we obtain that F' = F,,,; has the form

n+1
Fo1(2,9,0 Zyz‘pﬂ z,7,0 (3.3.9)

with 7 = max{(],n(n +1—1)+k—2(n+1)} and p;, € P;. And from (3.3.7), we can
write Ry, as

n+1 _8h168 -+ ETgp_2

where S* is the one which corresponds to the first change C;. Moreover the function
F, 11 has zero mean with respect to §. We observe that the Hamiltonians H;, ... , H,—1
are C° 2m periodic in # and analytic with respect to z,7 and u. The changes
Ci,...,Cny1 are C* with respect to 6.

We prove now that, if a function has the form given in (3.3.9), then it belongs to Pa,_2.
We have that j; = max{0,n(n—1—1)+k —2},if l <n—1, then 5; > 0 and

A+5=nn—-1)—(n—-2)l+k—-22>2(n-1).
Andifn<Ii<n+1,
20+ 51 2 2n > 2n — 2.

Hence F = F11 € Pos. W

Remark 3.3.5 We observe that p2e***?Ryr_o can be written as p2eP 3 Rgr_y. Indeed,
if p > 1 it follows from the comparison of powers of €. And, if p < 1, by hypothesis
O,h10:h1 = 0 which implies that 8yh19,S* = 0.
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Remark 3.3.6 We observe that the change C s of the form

C(z,9,0) = (z,9,6) + pe"*'(G(2,9,6),0) + O(ue”*?)
where G is-such that 3G = (Oyhy, —0zhs). We use this in order to prove the third
property of Theorem 3.2.1.

We rename the variables (Z, §) by (z,y) then, as a consequence of the previous remark,
the system in the new variables is

T = ey + pEp+2n+33yF + u26p+33yR2k_2 (33 10)
y = —eV'(z) — peP 30, F — 126?30, Roy_o.

Here ' means derivative with respect to 6.

3.4 Estimates for the Poincaré map

3.4.1 Notation

In this section we calculate the Poincaré map of the equation (3.3.10) defined as follows:
Pﬁi(x’ y) = SOF:E(BU + 2‘”1 90! z, y) (341)

where ¢, (6,60, z,y) is the solution of the system (3.3.10) such that ¢, (6o, 6o, z,y) =
(z,y). If there is not danger of confusion, we denote ¢, (6, 6o, ,y) by w.(0).

Let U C R? be a neighborhood of the origin and let
V(bo) = UsE[O,l]‘P;_;(HO + 827, 6p,U)

and

Then, since the flow depends 27-periodically on 6y, the set V is bounded.

We denote by peP*?"+3F, (z,y,0) the terms of order ueP™*+3 in (3.3.10), we write
F,. = (F', F?) and we recall that F,, € P,_3. We denote

#2€p+332k—3 = ﬂ25p+3 (ayR%-?’ _BIR%"")
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the remaining part of (3.3.10). Moreover to simplify the notation we introduce z =
(z,y) and n = p?eP*?.

We denote by X the vector field corresponding to the equation (3.3.10) when y = 0,
that is,

Xo(z,y) = ( —Vg(z) )

and we denote X, = eXy + pe? ™" 3F, , + p?eP 3 Ryp_s.

It is clear that X, is bounded in V and it is 27-periodic on @, thus there exists some
constant M (independent on @) such that, || X,(z,y,0)|| < M for all (z,y) € V and
g eR.

Moreover X, is Lipschitz in V. We denote by L, the Lipschitz constant of X,,.

3.4.2 Some preliminary bounds

In order to determine the properties of the Poincaré map defined in (3.4.1) we need a
precise knowledge of the distance between a solution and its initial condition, as well as
the distance between the solutions of the unperturbed system, ¢y (#), and the solutions
of the perturbed one, ¢,(0). This is studied in this subsection.

Remark 3.4.1 As before we make the convention that if | < 0 in ||(z,y)||' we under-
stand that it represents a constant term.

We need a simple lemma:

Lemma 3.4.2 Let  C C*xR x R? be a neighborhood of {(0,0)} x R x {(0,0)} and
let f: Q — R be a function that is continuous, C* with respect to 8 and analytic with
respect to (z,y, 1) such that there exists a constant ¢ > 0 verifying

£ (2, 9,0, m€)|l < clyl']l(z,y)|!

for all (z,y,0,u,€) € Q. Then there exists a function f; continuous, C* with respect to
6, analytic with respect to (z,y, ), f(.,-,0,p,€) € P, such that

f(z,y,0, p,€) = ¥ fi(z,y,0, p, ).
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Proof. We take f(z,v,0, u,€) = f(z,y,0, u,€)/y". Obviously we have to prove that f;
is analytic at points of the form (z,0,6, u,€) € Q. We consider (z,0,0, u,e) € Q and y
small enough so that the Taylor series of f with respect to y at (z,0, 8, u, €) converges
at y. Then by Taylor’s theorem

1

1 . ,
f(xa Y, 91 H, E) = f(xa 01 6: H, E) F e ma;_l (3;1 0: 9: My E)y‘_

1 ! i—1ai i
+(?’ - 1)| A (]‘ - S) ayf(x! Syi 9! P"a E)y ds
It is clear that & f(x,0) = 0 if j < 4, and then
ol E -
f(z,9,6,u,€) = y‘mfo (1—s)"'0, f(z, sy, 0, p,e)ds. (3.4.2)

Since f is analytic with respect to y, the derivatives 8 f also are continuous, C* with
respect to 8 and analytic with respect to (z,y, u). Therefore

1
f;(IE, Y, g: H,y 6) = ﬁ /; (1 2 3)£_16;f($1 5Y, 9: 1, E)ds

also has the same kind of regularity. Moreover the hypotheses of the present lemma
imply that || fi(z,y,6, 1,€)|| < cll(z,y)|'. Henceif j <, D, »fi(0,0,6,p,€) =0 and
therefore

+oo

1
il 9,0, 1,€) = > 11D (0,0,0, ,6)(z,9)" € P

k=l

Lemma 3.4.3 Let ,(0) = ¢(0,60,z,y, p, €) be the solution of

2 = eJ(Dho(2) + pe?*"3DF (2,0, i, €) + u*e?**DR(z,0, u,€)).
If 6 € [6y,00 + 27| and z = (z,y) € U then there exists some constants C, Cr, po and
o such that for all |p| < po and |e| < &g the following bounds hold:

1) lleu @)l < Cll2]l,
2) llou(8) = (z,y)ll < eClyl + |2l + u?eP*2|2]|*2),
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3) The perturbed solution ¢, can be expressed as
0u(0) = po(6) + ue"**" 20, (6, 60, z,y) + p*e" (6, 60, 7, y)

with

12,8, 60,2,9) < Crllz|™*

12.(8, 60,2, 9)I < Cll=[*?
where, if F,. = 0, ¥, = 0. Moreover, ¥, and ®, are C° with respect to €,
C* with respect to 6 and 0y and analytic with respect to p and initial conditions
(z,y)-

4) The functions
VYue(,9,600) = V(0 + 2m,6p,2,y)

Rok-3(z,y,60) = D,(00+ 2m,0p,2,y)
are such that, ¥, ¢ € Po_3 and Rog_3 € Por_3. Moreover if F),. =0, ¥, = 0.

Proof. The proof is straightforward. We recall that the origin is a fixed point. In
order to prove the first bound, we write the equations in the integral form. We have

that
g

lea@) < llzll +€ ! 1 X (u(s), 5) = X,(0,0, 5)||ds

g
< |lell +¢L, ]9 lou(s)llds
0

thus, by Gronwall’s lemma
lou(@)]l < [|2llesmE=%) < |jz]|ew?,

as we want. Moreover for the second one, we note that

1Xu(2, 9, 8)ll < C(lyl + 121" +nll2]|*2)

0 € (6o, 60 + 2]

sup
s€[fp,00+27)

where the bound of peP™?"*3F), . is included in C(|y| + ||2||*"?), then
6
lou® =2l < < [ 1Xlpue) s
0

e f 1X,(2u(5), ) — Xo(2,8)|lds + € f 1X,u(z, 5)ds
fo fo

0
eLy [ llou(s) — zllds +2meC(ly| + 12" +nllz]*2)

o

I\

IA
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therefore, by Gronwall’s lemma we have that
lpu(6) — 2l < 2meC(lyl + 12" + nll2]|* )b,
This proves what we want.
To deal with the last properties, we look for solutions of (3.3.10) of the form
0u(0) = @o(8) + peP™* 3 (0, 0o, z,y) + p’e?3®,(0, 6, , 7).
We denote ¥, (8, 6o, z,y) by ¥,(0) and ®,(0,6p,z,y) by ®,(0). We observe that

Xo(pu(0)) = Xolpo(0)) + Xo(o(8) + peP>+3¥,()) — Xo(o(6))
+Xo(pu(0)) — Xo(o(B) + ueP***+20,,(9)).

Hence ¢, satisfies, ¢, = £X,(pu,0) with initial condition ¢,(6) = (z,y) and if we
look for ¢, of the form ¢, = @g + peP*" 3, + ;%eP+3®, we have that

o = €Xo(vo)
5 1 s

‘I’H = —————pap+2n+2 [Xg((po + ,U-Ep+2 +3‘I’.U) o XU((}OU)] + FFrE (‘pﬂl 6) (343)
5 1 "

(I}‘U' = p'2€;p+2 [XO((IOP) - XU(‘IDU 05 :U‘EP+2 +3‘I’H)] + R2k—3((10p; 9) (344)

with initial conditions as follows:

¢o(fo) = (2, ), ¥(60) = u(bo) = (0,0).

We observe that the functions ¥, and ®, are C' with respect to 8 and 6, C° with
respect to € and analytic with respect to . We deal first with the differential equation
for ¥,:

G = = fem (5) + peP* 3430, (s)) — Xo(po(s))]ds
1 T erremiz |, ol¥o H n ol¥o

a

“+ f ’ FLe(pu(s),s)ds

o

and, since Xy is Lipschitz and ||¢,(s)| < C||2|| we have that

6 g
e < Loefg H‘I’p(S)IIdH/B 1 Fue(@u(s), 5)llds

]
< L ] 10,(s) || ds + O 22>,
o
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An application of the Gronwall’s lemma gives the bound
[W,(0)]| < Crebos?™||z||>*~3, 0 € [0y, 8o + 27] (3.4.5)
with Cp = 0 if F,. = 0. It is clear that

w,u,s(SOs z, y) = II;.H(GO + 27{1 90: z, y)

is 2m-periodic in 6y and analytic with respect to initial conditions. Therefore, by Lemma
3.4.2, w.u,s € Pop-3.

Analogously, for the equation (3.4.4) we obtain the estimate

12,0 < Lo [ [®u(6)]ds + / | Rak—s(u(s), ) ds

)

a8
< o [ 19,,(6) |ds + Cllz[[*~2.
6o

As before, Gronwall’s lemma gives the bound
2.0 < Cll=l*, 0 € [6o, 00 + 2n]. (3.4.6)
It is clear that the function
Rok—3(z,y,00) = ©,(00 + 27,60, z,y)

is 2m-periodic in ¢y and analytic with respect to (z,y). Moreover by estimate (3.4.6)
and Lemma 3.4.2, Ror_3 € Por_3. &

Now we look for the form of the Poincaré map Pg", given in (3.4.1), of the system
(3.3.10).

Lemma 3.4.4 The Poincaré map P of the system (8.3.10) is
+ 2mey 2meqi(z,y,€)
P&g - z 9 1 9
w (@) ( y ) " m( —V'(z) + 2meqa(z, y, €)
+peP 4y e (2,9, 00) + 17" Rox-3(x, y, 60).- (34.7)

where q1, g2 € P,_1(independent of p), Yue € Pan—3 and Rox_3 € Po_3.
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Proof. By properties 3) and 4) of Lemma 3.4.3 we only have to compute the Poincaré
map of the unperturbed system, which is independent of 6, since the unperturbed
system is autonomous:

PP (z,y) = wo(bo+ 2r)
1
— (2,9) + 27h(60) + (2m)? / (1 = 8)gli(60 + s2r)ds
0

(3) ()

AEH f (1 = 8)V'(pg(0o + s2m))ds
Hemre ( — [0 = )V (@ (B + 52m))gR (8o + s2)ds ) |

Il

It is clear that
[V'(i05(00 + s2m))| < Cle|™
V" (05(00 + 52m))03(00 + s2m)| < Cllz|™
Hence, by Lemma 3.4.2,
V'(p5(0o + s2m)) € Poy
V" (po(6o + s2m)) @5 (6o + s2m) € P
Therefore, since the unperturbed system is autonomous,

'Pg"(i,y) = o(bo + 2m)

. T Yy 2 q1 (zi Y, E)
- ( y ) ”“( —V'(a) ) + (2re) ( 0z, 3.¢) )
and the results holds. m

Remark 3.4.5 We recall that until now we have not used the hypothesis 2k — 2 > n
and that all the results given in this section and in the previous sections are true for
k > 2. Thus, they will be applicable in the next chapter where we will deal with what
we call the weak hyperbolic case.

3.5 A useful intermediate system

In this section we will find a system such that its stable manifold is closer to the
homoclinic orbit of the unperturbed system than the stable manifold of the perturbed
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one. We will find it by imposing that its Poincaré map contains some of the smallest
degree terms of the remainder Rpx—3 in (3.4.7). This is necessary if £ < n. We recall
that

2k—22n.

We discompose Roy—3 = (R}_3, Ra;_3) in the following form

2n—4 2n—4 2n—-4
Ry s(zy) = > fi+y > pa'+y* > piod
7j=2k-3 J=2k—-4 j=2k-5
+y T2k—6( :y) +p2n—-3( sy) (351)
2n—4 2n—4 2n—4
Ro_3(z,y) = Z G +y Z gz’ +y? Z gz’
j=2k—3 j=2k-4 j=2k-5
2n—4
+0° Y ¢ +y'rhq(z,9) + @ns(e,y)
j=2k—6

where 73, s € Pax—g, To_7 € Pok—1, Pan—3 € Pon—3 and gon—3 € Pap_3. Also p; and q;-
are constants with respect to (z,y) but depend on (6o, ¢, 1). Since Rax_3 is analytic
with respect to (z,y) and depends C* with respect to 6, analytically with respect to
p and continuously with respect to €, the constants {p}} and {q}} also have the same
kind of dependence.

We will look for an auxiliary system of the form
2 =Y,(2) = eXo + "y, (3.5.2)

with z = (z,y), Y1 = (Y, Y?) and

2n—4 2n—4 2n—4
Yi(z,y) = Z a?:c’-i—y Z a}:r’ + 9 Z a’z?
j=2k-3 j=2k-4 j=2k-5
In—4 2n—4 2n—4 2n—4
Yia,y) = D Wal4y Y blai4y? Y bl 4y® Y bl
j=2k—3 j=2k—4 j=2k—5 j=2k—6

where aj and b} are constants to be determined later. They will depend on 6, € and
. We note that Y7 € Py_3.

From now on we omit the dependence on 6. We recall the notation n = u2eP*2.
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Now we may consider the Poincaré map of the system (3.5.2). Since it is autonomous
its flow is of the form

¢’(ga xz, y) = (¢I(Ha z, y)'s ¢2(91 T, y))

and then its Poincaré map is defined by

P(z,y) = ¢(2m,x,7).

Next lemma assures that there exist coefficients ag-, b;- such that the Poincaré map of
(3.5.2) and the Poincaré map (3.4.7) we are interested in coincide up to terms of order
2n — 4 in the variables (z,y) and in all terms which do not depend on .

Lemma 3.5.1 There ezists {al(0o, u,€)} and {b}(6o, i1, €)} such that Poincaré map of
the system (3.5.2) is of the form

” B x + 2mey 2meqy (2, y,€)
Pﬁ (mry) - ( Y ) +2me ( —V’(m) + 271'5'-?2(3:1 Y, 5)

2 on—4
> D, B
Rl R (3.5.3)
> 3 g
=0 j=2k—3-1
+pzs”+4y3H($,y) + p2€p+4é2n_3
where the functions ¢, and g» are the same that appear in Lemma 3.4.4, pj and qj are
the same that appear in (3.5.1), Ron—3 € Pon_3, H = (Hy, Hy) with H, € Py._¢ and
H, = yH, with Hy € Py_7. Moreover all these functions are C* and 2m-periodic with
respect to 6y, continuous in € and analytic in p.

Proof. We denote by ¢(0) = ¢(8, z,y) the flow of the system (3.5.2). Applying Lemma
3.4.3 to the auxiliary system (3.5.2), taking F' = 0, we have that

$(00 + 27) = po(fo) + 2P dok_s(z, y, 6o)

where (g is the solution of the unperturbed system 2’ = eXy(2), 2(0) = (z,y) and
¢ok—3 € Pay—3. Moreover, by Taylot’s theorem, the Poincaré map of (3.5.2), P(z,y) =

¢(2r), is
P(z,y) = ¢(2m) = po(27) + (¢(21) — po(2m))
= Py(z,y) + 2m(¢'(0) — ¢5(0)) + (27)? /D (1— s)[¢"(s2m) — gp(s2m)]ds,
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where F, is the Poipcaré map of the equation 2z’ = £ Xy(z) which therefore is indepen-
dent on #y. Then, P(z,y) can be written as

1

P(z,y) = Py(z,y) + 2renYi(z,y) + (2?T)2£ (1—s)[¢"(s27) — y(s2m)]ds. (3.5.4)

From ¢’ = eXo(¢) + u*e?*3Y1(¢) we obtain

¢" = eDXo(¢)Yu(9) + p’e”*DY1(4)Yu(9)
= &2DXo(p0) Xo(o) + €*[DXo(¢) Xo(¢) — DXo(0) Xo(w0)]
+u*e" T D Xo(9)Y1(9) + u’e°DYi1(¢)Y,(9)
= ¢ +€°[DXo(¢)Xo(4) — DXo(0) Xo(¢0)]
+ue" D Xo(9)Vi(¢) + p*e™* DY: ()Y, (9)
hence, by the mean value theorem applied to DXj(z)Xo(z) and Lemma 3.4.3

16"(6) — ea(O)ll < Ce®ll6 — woll + 1™ | DXo(¢) Ya ()
+u%e" || DY; () Yu(9)
< Cp’e||2|*7% + p?eP | DXo(@)Yr ()
+p’e"*?| DY;(¢)Y, (4)

and since Y; € Py;_3, Y, € P; and Y, = O(e) we have that
16"(8) — 5 (O)Il < Cp®eP 4|22
Putting this estimate in (3.5.4) and using Lemma 3.4.2, we obtain that
P(z,y) = Py(z,y) + 2menYi(z, y) + €2 fox—3

with for_3 € Py;_3 depending on constants {a;-} and {b;} As usual, we write for_3 =

(f', f?) and

In—4 n—4 2n—4
fliz,y) = Z c?z'j+y Z c}:cj+y2 Z C?-:LJ

j=2k—3 j=2k—4 j=2k~5

+y°Hy(2,y) + R, _3(z,y)

2n—4 2n—4 2n—4
Play) = Y, dd+y Y dia/+y* Y dio

j=2k—3 j=2k—4 j=2k—5

2n—4

Y By Ha(e,y) + B2, _s(e,y)
j=2k—6
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where H; € Pyy_g, fIg € Pr_7 and R2n g = (ﬁ.’% 35 ﬁ%n_3) € P,,_3. We consider now
the following system with unknowns {a} and {b}}

a;+mec; = p, 1=0,1,2, j=2k-3-1,...,2n—4 (3.5.5)

b, +med, = ¢, 1=0,1,2,3, j=2k-3-1,...,2n—4

where p and q" are defined in (3.5.1). We recall that ;oJ and q’ depend on ,u, € and
. Obvmusiy for € =0 the system (3.5.5) has the solution aJ =p} and b} = ¢} which
depends on y and 6. Moreover ¢ and d} depend analytically on a} and bz Thus for
€ small enough it has a solution dependmg on €, 4 and 6.

Then the Poincaré map P of the auxiliary system (3.5.2) where the coefficients a and
b, are chosen to be the solutions of the system (3.5.5) is:

Y0¥ Eznzﬁ 31 P4
P(z,y) = Pylz,y)+ 2men ]
2] =8 (EI—O IZJ Cok-3-1 4%

+e*ny’ H(z,y) + enfon—3 (3.5.6)

where the functions H and Ry, 3 are such that Ry, 5 = (RL,_3 R%,_3) € Pan_s,
H = (H,, Hy) with H, € Py and H; = yHg with Hy € Pa_1. Finally we observe
that, since the coefficients p’ and q depend 2m-periodically on 6y, the coefficients a
and b} are also 2m-periodic on 6. Since the coefficients a.; and b;- depend on 6y, and
€ we write

b0 _
B P

3.6 The operators B and B

The Banach spaces which we use in this section were introduced at the beginning of
Section 3.2.

We will need the operator By : Ay — A} defined by

(Bro)(t, s) = o(t + 2me, s) — o(t, s) (3.6.1)
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with € > 0. It is a well defined linear operator with ||Bi|| < 2. Indeed, it is readily
seen that if o € X} then Bio € &} and that

(t + Res)*|(Byo)(t,s)| < (t+Res)k|o(t+ 2me,s)| + (t + Res)*|o(t, s)|
~ t+Res )k

< (t+2 “lo(t+2
(t + 2me + Res)"|o(t + Ws’s)l(t+27re+Res

+(t + Res)F|o(t, s)|
2|jorllx-

IA

Remark 3.6.1 In fact || Bx|| = 2. For the function o € X}, defined by

1 1 . t+s
ot ) = cosh(a/(2¢)) (t + s)* S e

we have ||o||x =1 and || Bro||x = 2.

We will need to find a right side inverse of the operator By. For that we write Byo = v
from which we can obtain

o(t,s) = —Y(t,s) + o(t + 27e, s). (3.6.2)
Applying (3.6.2) iteratively
N
o(t,s) =— Z Y(t + 2mej, s) + o(t + 2me(N + 1), ). (3.6.3)
=0

If 0 € X, limy_.o 0(t, 8) = 0 so that we are allowed to take limit as N — oo in (3.6.3)
and we obtain the formal expression

oo

(Bi')(t,s) = — D v(t+ 2mej, s) (3.6.4)

j=0

Lemma 3.6.2 The operator By : X, — X has right inverses B, L. X, — X with
{>k+1 and

o<t (L1
“Bk 71b”k % Té—k~1 (2T + 27?'8(3-— 1)) ||1//'”e

In particular, if T > (£ — 1)1 /4,
1+ 4me

Il

1B 4l <
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Proof. We define ¥y(t, s) = Z;V:[) Y(t + 2meyj, s) and
(Be ")t 5) = — Jim ().
—+0Q
Let £ > k + 1. First we check that if ¢ € A}, ¢n converges uniformly. Indeed, from

2 1 1
[W(t + 2mej, s)| < (t+27TEj+RBS)g”¢”£ < (m) ll%1les

the claim follows form the M-test of Weierstrass.

One immediately shows that Bj, '1) satisfies the first three conditions which define Xj.

Moreover given 1 € A

1B *%|lx = sup ZH—Res) [ (t + 2mej, s)|

(t,s)eD*

(t + Res)*
< ’
- SUP Z (t + 2mej + Res)? Ille

To bound the sum we introduce © = t + Re s and we bound

o0

T (t+Res)* 1 2me 1
< (t + 2mej + Res)! " 2meul- " (1_|_219.1)£

Then the sum can be bounded by

11 2m+/°° 1 .1 1 1 feme 1
2me ut—*-1 | 2u o (l+z)¢ T 2meutk-1|2u  £—1
1 1
+ S
2ut-k  2me(€ — 1)ub-*k-1

From the definitions of both operators we easily see that
By o B' = Iy, .

|
We define B : &) X Xpy1 — Ak X Xkqq by
B(o1,02) = (Bko1, B4102)
where By is defined in (3.6.1) and B~ : Xpy1 X Xips — Xi X Xeg1 by
“Hp1, ¥2) = (B %1, Bepath2)
where B;! is defined in (3.6.4). Clearly
BB = Idjx, ) x Xy -
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3.7 Proof of the Theorem 3.2.1

We scale the time ¢t = fe in the system (3.3.10) and we obtain

g = y+ pePt 29, F + P20, Roy o (3.7.1)
y’ = —V’(.’E) — #€p+2n+28$F s M28p+2ayR2k..2
where ' stands for the derivative with respect to t.
It is clear that if ¢ and ¢ are the general solutions of the systems (3.3.10) and (3.7.1)
then for all ¢, ty for which the solutions are defined we have that
(Z](tu t(]: x, y) = Lp(t/E, t0/51 T, y)
Thus the integral curves of the two systems are the same. We note that, by Definition

3.4.1 of P, we have that

PYe(g(t,t0,2,y)) = o(t/e+2m,t/e, §(t to, ,y))
(t + 2me, t, ¢(t, to, z,y))
(t ¥ 27(6: to, T, y)

@
@

This suggests us to look for a parameterization ~;(t,s) of the stable manifold of the
system (3.7.1) such that ¢t € R, is the time, s € C is a complex parameter and the

following invariance condition of the image of v by Pﬁ’! ® is satisfied,
P (o (t, ) = 73 (¢ + 2me, ). (37.2)
Let
2 = eXo(z) + p2eP2Yi(z, 6o, w1, €) (3.7.3)

be the auxiliary system (3.5.2) with the constants aj- and b; given by Lemma 3.5.1 and
let

z = Xo(2) + p*eP**Y;(z, 6o, 1, €) (3.7.4)

be the scaled system. Let ¢(0, z; 6o, p,€) and q@(t, 2; 09, p,€) be their respective flows.
(We emphasize that (3.7.3) and (3.7.4) are autonomous and that here 6, is a parameter
of these auxiliary systems, it is not the initial condition of the time).
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We observe that, for any 6y € R, we have that
Plo(z,y) = ¢(2m,x,y; 00, 1, €) = (2me, z, y; B0, 1, €).

Hence, since the map }5;’0 satisfies the hypotheses of Proposition 5.1.1 (see the last
conclusion of that proposition, it is given in Chapter 5), the stable manifold of the
system (3.7.4) can be expressed as a graph of a function

Y =y —2V($) o5 J("“2Ep+2g($: 601 Hy E) (375)

where the function ¢ is continuous, analytic with respect to z, u, 2m-periodic with
respect to 6y and g = O(z™/?). Therefore,

= - V _2V($) + ﬂ2gp+2f1($! 6o, H, 6)
= —fo(z) +.U-25p+2f1($190:ﬁ= €) (3.7.6)
where fy and f; are O(z™?). Thus we can apply the Proposition 2.1.1 given in Chapter

2 and hence, there exists some 7" > 0 big enough such that if Reu > T and |Imu| < a,
the first component of the stable manifold of the system (3.7.4), denoted by

= (a!ﬁ):
is
0 : o=
‘with ¢ depending on 6y, 4, € and satisfying
2
n—2 _ 2_p+2 e
c =P + O(pu’eP*?) (3.7.8)

where a, is the coefficient of order n of the potential V(z), p < m < min{4/(n —
2),2/(n — 2) + 1/2}. Moreover, by (3.7.5) and uniqueness of the stable manifold:

B(u,60) = O (ﬁ) . (3.7.9)

By uniqueness of solutions, the dependence of v on 6 is 27-periodic.

Remark 3.7.1 The constant a is the position of the singularity of the unperturbed
homoclinic orbit. Having fized a value of a, the value of T given by Proposition 2.1.1
depends on a. In fact to get the local parameterizations we can work with |Imu| < 7
with T big, but for the results of the next Chapters we are interested in values of T being
at least a.

'\“wr_

Joo™

L

v
f.
s

€0A Do

0“ .-

Eatl
’,
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Remark 3.7.2 The dependence of v on 6y comes from the dependence of a.; and bg on
0o and thus vy is 2w-periodic with respect to 6.

Remark 3.7.3 We observe that y(u, ) is O(ueP™?) close of the stable manifold of
the unperturbed system (system (3.7.1) when p = 0) for all 6y € R. This will be useful
in order to prove the third condition of Theorem 3.2.1.

Proof of Remark 3.7.3. We define £(u,6y) = a(u,8y) — ap(u), (we recall that the
homoclinic orbit was denoted by vo(u) = (ao(u), Bo(u))). By (3.7.6) it is clear that

€ = fi(ao)€ + [fol@) — folan) — fo(ao)€] + peP fi(€ + ). (3.7.10)
Therefore, since the equation
€ = folao)é

has the solution £ = fyp(ayp), the stable manifold of the system (3.7.10) satisfies
6w = foloo(w) [e(T) + [ s lila(s) — floa(s) — Foa(s)e(s)ds
2pr2 [F__L__ s) + (s s
et [l ) + aolo), u ) 711)

with £(T) = a(T, 6y) — ao(T) = cou®eP*? (see Section 2.3). We denote by B(r) the
closed ball of radius 7 of A5/(»—2) with the norm in &j/(»_) defined at the beginning of
Section 3.2. We define the operator I' : B(r) — B(r) so that I'¢ is given by the right
side of (3.7.11). Then we are led to solve

£ =T(¢).

We choose r = Cu?eP*? with ¢ to be determined later. Let ¢ € B(r) and u such
that Reuw > T and |Imu| < a with T big enough. Then using (3.7.7) and that
fo, f1i = O(z™?), we obtain that there exists a constant K, independent of 6, 1 and
g,such that

1 !
m[fo(a(s)) — folao(s)) — folan(s))é(s)]
1

mfl(‘g(s) e ag(S), 90, 14, E)
[Reu|" | fo(ap(w)| ‘< K

< K[l ., < K7
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Therefore we have that

TE)(w)] < M%(gm + K|Reu — T[r? + u2**?))

1 Cp 1
< 2_p+2 2 _p+2
< pe CK—[ Reuff/D [—C + K (Cp: P4 —C)]

1
|Re u[2/(n-2)

if C is big enough. Hence the operator I is well defined. Analogously we check that it
is a contraction. In particular we have proved that £ = O(p?c?*?). =

“2 Ep+20

Another interesting property of «y is the following: for any 6y € R and (¢, s) € D*(T, a),

}E’;fu (7(t + s, 90)) = ¢(2ﬂ-1 '}{(t + s, 90); 90: M, 6) = @(27['6, ’Y(t + s, 90);601 H, E)
= (t+ 2me + s,6)).

In particular, for 6y = t/¢ we have that
Pe(y(t + s,t/e)) = v(t + 2 + 5,1 /). (3.7.12)
Moreover it is clear that if we define the function
Y(t,s) = y(t + s,t/€)
then, since + is 2m-periodic with respect to its second variable, we have that

A(t + 27me,s) = 7(t+ 2me+ s, (t + 2me)/e)
= 7(t+2me + s,t/e)
= 4(t, s + 2me).

We consider the function 4(Z, s) as a first approximation of v;;. We look for the stable
manifold of the system (3.7.1) of the form

Valt,s) = A(t, s) + pe"**a(t, s)

with o = (01, 02) in a suitable space of functions decreasing to zero at some given rate.
(See below the precise definition of the spaces.) ¢ is the time and s € C.

In order to clarify the notation, we rename 4 by v and we denote

V(¢ 8) = (alt, s), B(t, 5)).

We look for the fixed point equation for the functions o; and o,. First we summarize
the properties of y(¢, s):
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« is continuous and analytic with respect to s,

~y(t + 27e, s) = (t, s + 27e),

P ((t, 5)) = y(t + 2me, s) and

By (3.7.7) and (3.7.9),

Y € Xojtn-2) X Xnj(n-2)-

We introduce some notation

ysrék—ﬁ (.’L', Y, 9) + P2n-3 (.‘II, Y, 6) )

R = pe e\4 19
(1‘: y) € wﬂ! (‘,B Y ) TH ( y‘l?‘%k_7($, Y, g) + 9'211—3(-’171 Y, 9)

and
_ 2 [ iz, y,¢) 2_p+l Zf:g Y Ez-:;:_:;_; 10;-33"
Qz,y) = (2m) ( (2,9, ) ) + u'e ( E?:D Y 2%1;:—3—1 q;:cf
+u2e? PP H (z, y) + p?eP 2 Ron_s(z, v)
so that
P/*(z,y) = P/*(z,y) + ue"**R(z,y, u)
and

Pie(z,y) = ( ; ) + 27 ( —Vg’:(a:) ) +€°Q(z,y)

(we do not write explicitly the dependence of P, Q and R on £).

(3.7.13)

(3.7.14)

)

(3.7.15)

Now we look for an equation for o. For that we impose that v} = v + ue?*?o verifies

(3.7.2). By Taylor’s theorem:

P(yi(t,8)) = PI/e(1(t,s)) + ueP > DPY(v(t, 5))o(t, 5) + p2e®HO0(lo (t, 5)|?)
= Pe(y(t,5)) + ue” P R(y(t, 5)) + ue”2DPYe(y(t, 5))o (¢, 5)

2P DR(v(t, 5))o(t, 8) + p2e®HO(|o(t, 5)[?)
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Thus, using (3.7.12) we have that Pﬁfs('y;(t, s)) = 7;,(t + 2me, s) if and only if

o(t+2me,s) = DPY*(v(t,s))o(t,s) +eR(v(t,s)) + pe**O(la(t, s)[*)
+ueP**DR(~(t, 5))o(t, s)

B O'Q(t: )
- a(t,s)-t-?ﬂ'&'( _V”Fa(t,s))gl(tss) )

+e2DQ(7(t,5))o(t, s)
+eR(y(t, 5)) + ueP*?0(|o(t, 5)I*) + ue? *DR(~(t, s))o(t, s).
To simplify the notation, we define
H(o)(t,s) = eDQ(v(t, s))o(t,s)
+R(1(t,8)) + ueHO(o(t, 5)) (3.7.16)
+ueP P2 DR(v(t, 5))o(t, 5),

Alalt, s)) = ( _V”(g(t, s)) é )

and
F(o)(t,s) = 2meA(a(t, s))o(t,s) +eH(o)(t, s). (3.7.17)
Then the problem is reduced to find o = (01, 02) such that
o =B1F(o). (3.7.18)

We look for 0 € A} x A1 for a suitable k. We define the following norm in the
product space Ay X Xjyq:

(B, Pis) Ik = Ll|Piclle + N hestllisr

with
n—1 n?

=n—2 ' Gn-Dn-2)
and we denote B(r, k,k + 1) C A) X X1 the closed ball of radius r with this norm.

L

We will prove that there exists ro > 0 independent of € and p such that the equation
(3.7.18) has a solution

2n—2 3n—4)
n—2"'n—2

for all 7 < ry. For that we will apply the fixed point theorem to the operator B—1F.

o€ B('r,
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Lemma 3.7.4 Let { = %:‘4}22- The operator
BloF:B(r,{,{+1) — B(r,£,£+1)
is well defined and it is a conlraction.
Proof. We recall that, by (3.7.13), the function (%, s) € Xp/(n-2) X Xpn/(n-2yand hence
we observe that, if f; € P,
fily(t, ) € Xayyn-2)-

Let o € B(r,4,£+1). Since V"(a(t, s)) € Aa, it is clear that

Ao € Xpy1 X Xiga. (3.7.19)
We check that

R(v(t,s)) € ez X Xego
(DQ o] ’T) g € Xg+1 X Xg+2 (3720)
(DRov)o € Xy X Xega.

Indeed, we recall that ¢, . € Ps,—3, then 9, .(7(t,5)) € Xopyo X Xpya. We write R =
(R, R2). By definition (3.7.14) we have that

Ri(7(t,s)) € Xeya N X(zni202k—6))/(n—2) C Xeg2 N X(sn-8)/(n-2) = Xes2
and, analogously,
Rz(’]/(f, S)) € X£+2.
Now we deal with (DQ o v) . We denote
Qun Q2 )
DQo~vy=
Qe ( Q2 Q2

and we define

S(z,y) = -(-2—;3;@;3H<m,y) 3 “("Q‘i-)—gézn—a(x, y).

Using that H = (HI, sz) with H; € Py_g and Hy € Hyr—7 and that Rgn_g, € Py,_3
we note that

S('Y(t: S)) € A'}E-I-?. X X€+2:
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hence 8,51(7(t, s)), 0z S2(7(t, s)) € Xy and 9,51(v(t,s)), 0, S2(v(t, 5)) € X3. Moreover,
by (3.7.15), using that ¢;, g2 € P,—1, we have that,

2n

Z: Z_: ~1(t, 8)B(t, s)

Qu(t,s) = Ga(v(t,s)) + 42 2p+2
+u2P*29, 8, (~(t, 5))
2

€ Xon-2)/(n-2) N (ﬂ X(In+(2k—4—£}2}/(n—2)) N Xy
1=0
- X (3.7.21)

where we have used that, since the condition 2k — 2 > n (hypothesis HP4) as well as
n > 3, we have that

I(n—2)+ (2k —4)2 > (2k — 4)2 > (n — 2)2. (3.7.22)

For @12, we have that

2n—4

Qult;s) = Bau(x(t,s)) +2mx ewz > ihed(t,5)87(t,9)

=1 j=2k—3—1

+u?eP 28,51 (7(t, 5))

2

€ Ayn-2)/(n-2) N (ﬂ -’C'((z—l)n+(2k—3—z)2),f(n-2)) N A3
=1

- A (3.7.23)

Using again (3.7.22) we have that

2n—4

Qaul(t,s) = 8:q2(v(t,8)) + 2mu 52"*22 D/ (Ve ()

I=0 j=2k-3—1

+12eP*20, 55 (7(t, 5))
3

€ Aon-2)/(n=2) N (ﬂ X(ln+(2k—4—!)2);"(n-2)) N Xy
= A, (3.7.24)

And finally, since
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we have that
2n—4

Q2(t,s) = B,q(7(t,8)) + 2mu 52"*22 Y idhdd(t,s)B (¢, )

=1 j=2k-3-I

+1°eP29,5(1(t, 5))

3
€ Ayn-2)/(n-2)N (ﬂ X{n(l—1)+{2k—3——£)2)/’{n-2)) N A3

=1
= X (3.7.25)

Therefore, by (3.7.21), (3.7.23), (3.7.24) and (3.7.25) we obtain that the first component
of (DQo~)o

(DQo7v)o)1 = Quuor + Q202 € Xpyo N Xpy3 = Xppo
and the second one
((DQ 0 7)0)2 = Quoy + Q2202 € Xpya N Xpy3 = Xpya.
To deal with (DR o ), we observe that,
(0cR107),(0:R20) € Xy and (GyR107),(0yRz07) € Xy

therefore

B (0zRy1 0 )oy + (O Ry 0 y)o2
(DRov)o = ( (8. Bs o)y + 18, Ryoy)as
€ Apya X Xpga.

Thus, by (3.7.20) and since O(|o|?) € Xeyo, we have that
H(0) € Xopr X Xesa. (3.7.26)
Therefore, by (3.7.19), (3.7.26) and by definition (3.7.17) of F we have that
F(o) = 2neAc + e?H(0) € Xpp1 X Xppo.
Finally, by Lemma 3.6.2,
B (F(0)) € Xe X X1
In order to prove that the operator B~! o F is well defined we have to check that
1B (F (@)l <
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if ||lo|le < r . We begin by bounding the norms ||Fi|l¢+1 and [|F3|[¢+2. From the
definitions of R, and H, (3.7.14) and (3.7.16) respectively, it is clear that there exists
constants M, and M, such that

|Hi(o)lles1s < Mi(e+p)
|Ha(0)lles2 < Ma(e+ p).

From (3.7.7) and (3.7.8) we recall that

2
+ hot. with ("2 = ——0 + O(p?ePt?).

aft.s) = a(n =27

c
(t+ )7t
Then

[Fi(0)lless < 2me sup |oa(t, s)(t + Res)™|
(t,s)eD

+€& sup |Hy(o)(t,s))(t + Res)*™|
(t,s)eD

< 27e||oa||ev1 + eMi(e + p)

and

|F2(o)|lese < 2me sup |V"(aft,s))oi(t, s)(t + Res)*?
(t,s)eD

+& sup |Hy(o)(t,s))(t + Res)*?|
(t,s)eD

2n(n—1) 1
< 2me [ ——5- = M. -
< 2 ( -t o(T)) lowlle + eMa(e + )
Therefore, using Lemma 3.6.2 we obtain

1B~ o F(o)lle = [I(By'Fi(a), By  Fa(o))lle
LB Fi(o1,02)|le + 1By Fo(01, 02)) e

1+ 4me 1+ 4me
L||FA HEHW + || F2 |le+2m

n—2
=% + O(e) + O(p)

N ((Swazf(:)(_nl3 2) *"(alﬁ)) ol
+0(e) + O(n)

n—2 n2
om — 2 l|0'2|!f+1 g (31’!. = 4) (n — 2) ”0'1 ”g (3727)

+0(g) + O(n)

IA

I

L|oa|e+2

L

IN
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if we take o(£) < fr—fﬁnTm‘ We introduce
2(n—1)
¢ = n—2
b — 2n?
T Bn-4)(n-2)

We observe that since a > b and L = (a+b)/2 we have b < L < a. Thus, 1 — La'and
L — b are positive numbers. Moreover if we introduce the constant K = % > 2 we
have that

L-b = >

1-La™! = =

Therefore, we can bound (3.7.27) as follows
La7'||o2llesr + bllowlle + O + 1) = llozlless + Liloalle — (L = b)l|onlle
—(1 = La™)|lo2lle+1 + O(e + p)

< (loalles + Lllorl)(1 — ) +Ole + 1)

% (1—%)?‘*{*0(6‘?—#)
< r
if € and || are small enough.

Now, we prove that B~' o F is a contraction. Let ¢ = (01,032) € B(r,£,£+ 1) and
g = (01,02) € B(r,£,£+1). It is easy to see that

1#(0) — H(3)lle < Clio - &l

with C' > 0 some constant. Thus, by definition (3.7.17) of F, we obtain

. L )
B 0 Flor,00) = B o Fononlle < Le=2llon = ool
P P
Bn—4)(n—2)1%t ~ %ule

+EC||(0'1 = 5’1,0’2 = 5’2)”g

1
< (1 -2 +sC) (o1 — 71,00 — G2) ||

< (1=55)Ier - 1,0 - )l
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if € is small enough.

Then, applying the fixed point theorem we obtain the existence and uniqueness of a
fixed point (o1,02) € B(r,£,£+ 1). This ends the proof of the lemma. m

Next we can finish the proof of Theorem 3.2.1.

End of the proof of Theorem 3.2.1.. Going back to the original variables we
obtain the result we had stated in Theorem 3.2.1. Indeed, as we have said in Remark
3.3.6 the change C has the form

(-7:1 Y, 9) = C(fu v, 6) = (:E: Y, 6) % ”EP+I(G(§:= Y, 9)1 0) * O(#EP'J'?)

where (z,y, 0) are the original variables and (Z, 7, 8) are the variables for which we have
proved the suitable parameterization of the invariant local stable curve. Therefore, the
local stable manifold, v} ., of the Poincaré map of the original system (1.1.1) has the
form

Fne(tis) = a(t,s) + ueP 'G(1i(2, ), t/€) + O(ueP*?)
= ot + ) + pe?'G(o(t + ), t/e) + O(ue”t?).

and it satisfies all the conditions of Theorem 3.2.1 except that it is not a solution of
the system (1.1.1) with respect to t. Condition 2) follows because the change C is
2m-periodic in 6.

In order to find a parameterization of the local stable manifold which is a solution with
respect to ¢ for any s € C such that |Im s| < 7 we define ¢ = T'— Re s and

7;,£(t1 S) = @(t: tUr ;?;,E(tol S))

where ¢(t,tp, z,y) is the general solution of system (1.1.1). We observe that, for all
(t,s) € D*, ¥; .(t, s) belongs to the local stable manifold of the system (1.1.1), hence
Y;.e(t; 8) is a parameterization of the stable manifold. It is clear that the properties 1),
3) and 4) of Theorem 3.2.1 are satisfied by ;.. Moreover

Yaelt,s +2me) = o(t, to, 7, (o, 8 + 2m€)) = p(t, to, 7}, (to + 27e, 5))
= (t+ 2me, to + 2me, p(to + 2me, to, 4, . (to, 5)))
= (t + 2me, to, 7, ¢ (to, 5))
= Y,(t+2me,s).

Therefore, 1, . is the parameterization that we look for. We observe that v}, . is defined
for all (t,s) € D°. =®



58 3. Parameterization of local invariant manifolds

Remark 3.7.5 Assuming hypotheses HP1-HPS5, we have the same conclusions as in
Theorem 8.2.1. This is a immediate consequence of Remark 1.1.4.



Chapter 4

The case of weak hyperbolic points

4.1 Introduction

In this Chapter we consider systems such that the unperturbed system has a parabolic
fixed point but for the perturbed system the fixed point becomes hyperbolic (of course
the corresponding eigenvalues tend to zero). In this case we assume that the unper-
turbed system is a concrete explicit Hamiltonian. This is a bifurcation case.

We prove the existence of a special parameterization of the stable and unstable manifold
in a domain independent of the parameters £ and u. In fact, we prove the existence
of such parameterization for the stable manifold but it is easy to see that, with slight
changes, the proof works for the unstable one. As in the previous Chapter, we need a
good initial approximation for the stable manifold as well as a good coordinates.

Since the time parameterization of the homoclinic orbit near the fixed point (that is,
when t — +00) has a potential behaviour, and we know that the parameterization of
the stable manifold near a hyperbolic fixed point (which will be the case for the per-
turbed system) is exponential in time, it seems natural to suspect that the homoclinic
orbit of the unperturbed system is not a good approximation of the stable curve of the
perturbed one. Actually, for u small, there is a competition between the potential and
the exponential character.

The structure of the proof is similar to the one of the previous Chapter.

More precisely, in this Chapter we consider the Hamiltonian
H(z,y,t/e) = ho(z,y) + pePha(z, y,t/e, p,€)
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where
ho(z,y) = v + V(z), V(z) = —(z® — )
and
hi(z,y,t/e, u,€) = hia(z,y,t/e, p,€) + has(z, y, t/e, pu, €)
with

2 2

€T
hiz(z,y,t/€) = 5 (t/e, w,€) + zyga(t/e, m,€) + %ga(t/e, Ly E)

and hy3(z,y,t/e) is of order 3 in the (z,y) variables. Below we will not write the
dependence of g; on p and €. The associated equations are

& = y+ peP(zga(t/e) +ygs(t/e) + Oyhia(z, y, t/e, p,€)) (4.1.1)
?;f = _Vl(a:) - ,U.EP(LCQI (t/E’) + ygz(t/fi') + a:zhlfi(x! Y, t/E, Hy 5))

We observe that the unperturbed system has a homoclinic orbit given by v = (g, fo)
where

2 4t

=3 Bo(t) = NeFSaE (41.2)

ap(t)

4.2 Definitions and main result
As in Chapter 3, we introduce some notation. We define G; by the conditions 9;G; = ¢;
and foz" Gi(6) =0fori=1,2,3.
Given T > 0 and 7 = v/2 we define the sets
D*=DT,7)={(t,s) eRxC: t+Res>T, |Ims| < 7}
and
D*=D"(T,7)={(t,s) e RxC:t+Res < -T,|Ims| < 7}

and for p(t), a 2me-periodic positive function, k,l € Q, (k > 1,I > 1) we define the
space Vi = Vi(p) of the functions h : D* — C such that o
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(a) h is continuous,

(b) for ¢ fixed, s — h(t, s) is analytic,

(c) h(t,s + 2me) = h(t + 2me, s) for all (¢,s) € D?,

(d) ||R|lk = sup{(t + Re s)ker®t+Res)|p(t s)|, (¢, s) € D*} < o0.
In a similar way as in Chapter 3 we can prove that )} is a Banach space with the norm
l|.|I% and that

ylf:-{-l C Vi

The next result gives the existence and properties of a special parameterization of the

stable and the unstable invariant manifolds.

Theorem 4.2.1 Assuming hypotheses HP1-HPG6, there exist T > 0 big enough and
parameterizations v, .(t,5), s .(t,s) of the local stable and unstable invariant mani-
folds, defined in D*(T, 1), D*(T, 1), respectively, such that (% stands for s and u):

1) t = (¢ 8) is a solution of system (4.1.1) and s — 7}, (L, s) is real analytic.
Moreover the map (t, s, p,€) — 7, .(t,s) is continuous, C* with respect to t and
analytic with respect to (s, p).

2) Y e(t +2me, 8) = v, (L, s + 2me) for all (,5) € D*(T,7)

3) For =0, 7, .(, s) coincides with the restriction of the homoclinic solution yo(t+s)
to D*(T, ), and for u # 0 the following estimate holds:

Vne(ts8) = Yo(t + 5) + pe? ' G(vo(t + 5), t/€) + O(ue?*+)
where 0 < A < 1/2 and
85 G(z,y,0) = (8yhi(z,y,0), =01 (z,y,0))
and has zero mean.

4) Vet 8) = Yot + 8) + pePtlo*(t, s) where a*(t,s) € Y3 x V3.
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The proof of this theorem is similar to that of Theorem 3.2.1, but we have to be
more explicit in some computations and we must perform another kind of change of
coordinates in order to look for the suitable approximation of the homoclinic orbit.
Concretely, since the fix point is hyperbolic, we must look for an approximation of the
homoclinic orbit with an exponential behavior in ¢ + s near the fix point.

Remark 4.2.2 We note that the second component, [y, of the homoclinic orbit has
two poles of order 2 at +iv/2, thus in this case r = 2 and a = V/2 (see (4.1.2)). We
observe that, in the weak hyperbolic case the hypotheses imply that p > 1.

Proof. The hypotheses HP6 and HP5 as well as 7 = 2 imply that £ > 2r — 1. Indeed,
by hypothesis HP6, we have that g, # 0 for some 6 € R, therefore, by definition of 2,
the order of the pole of the term zy evaluated at the homoclinic orbit is smaller than

¢, hence

E>r+r—-1=2r—-12>3.

4.3 Averaging of the equation

First we scale the time by § = t/e. The transformed systems reads

& = ey+ pe" T (2g2(6) + ygs(8) + Oyhus(z,y,0))
) = —eV'(z) — peP ™ (291(0) + yg2(6) + 8:haa(z, v, 0))

where now & and § mean derivatives with respect to the new time §. The new Hamil-
tonian is e H(z,y, 0, 1, ). We apply Theorem 3.3.4 in order to remove the contribution
of the perturbation until orders pe?*® and p2¢?*? in the parameters.

Lemma 4.3.1 There ezists a canonical change of variables (z,y,0) = C(z,7,0, 1, €)
which is C° in (Z,7,0,u,€), C*and 2n-periodic in 6 and analytic in (Z,7,u) and it
transforms the Hamiltonian eH to

eH(Z, 7,0, ,€) = €ho(Z,9) + e’ *F(z, 9,0, u, €) + p*e***Ry(2, 7,6, p, €)
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with

Ry(2,7,0) = —[2%92(0)G1(0) + zy[g3(0)G1(6) + 92(0)G2(8)] + 7293(6)G=(0)]
+R3(Z,7,0) +era(Z,7,0) (4.3.1)

in a neighborhood of the origin, where r; € P, R3 € P3, F' € Py and has zero mean
with respect to 6. Moreover H is continuous in (Z,7, 0, 1, €) and analytic in (T, ¥, ).

Proof. We apply Lemma 3.3.4 and we obtain a new Hamiltonian

eH(Z,7,0,me) = eho(Z,7) + ueP°Fy(z,7,0)
+1*e* 2 Ry (2,7, 0, p, €)

where F; € P; and has zero mean with respect to 8, Ry, € P, and
Rz = 3§h13581 + €Ty

with S* such that 69.?'1 (z,7,60) = —hi(z,7,0) and has zero mean with respect to 6 and
ry € P,. Moreover H is continuous in € and analytic in p. Next we look for a more
detailed expression of Ry. Since

hy = hia + hi3
with hi3 € Ps, O5h130:S 1 € P, therefore it is clear that we can write R as

Rz = aghlgaisl +Erg+ T3

with rp € P, r3 € P;. Finally we compute

85h12(Z,7,0)0:5"(2,7,0) = —[z°92(0)G1(0) + T7(g3(6)G1(6) + 92(6)G=(6))
+§293(9)G2 (9)] + 173 (ji ?,—h 6)

with 73 € P; and we define F' = F;. Then the statement holds. m
We write R3 from definition (4.3.1) of the form

R3(3_31 p: 91 M, E) = R3(537 g: H,y E) + R3(£: g: 61 2 5) (432)

where Rj has zero mean with respect to 6. We rename the variables (z,7) by (z,y).
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Lemma 4.3.2 There ezists a canonical change of variables (z,y,0) = C(%,7,0, u,€)
which is C° in (%,7,0,u,€), C'and 2m-periodic in 0 and analytic in (Z,7,u) and it
transforms the Hamiltonian eH to

eH(Z,7,0,m€) = eho(Z,9) + pe"*°F(2,7,6, p,€) + u’e**+* Ry(%, §, 1, €)
+12e Y2 Ry(Z, 7,6, u, €)

Ry(z,5,0) = —[292(0)G1(9) + Z7[g3(0)G1(0) + 92(0)G2(0)] + 7°93(0)G2(0)]
+ery(Z, 7, 6) (4.3.3)

in a neighborhood of the origin, where vy € P, R3 € Py (defined in (4.3.2)), F € P4
and has zero mean with respect to 0. Moreover H is continuous in (Z,7y,0, p,e) and
analytic in (Z,7, u).

Proof. As in Lemma 3.3.2, we consider a generating function S(z,7,6) which will
provide a canonical change of variables (Z,7) — (z,y) implicitly through

T = 0;5(z,7,6)
y = 0.5(z,7,0) (4.3.4)

and then the new Hamiltonian will be
eH(z,7,0,p,€) = e??(z,y, 6, p,€) + 0pS(z, G, 6).
We take
S(z,7,0) = zy + u*e*2S (x, 7, 0)
with S? satisfying
8pS" = — Ry,

We observe that S is C*, 2r-periodic in @ and analytic in (z,y). Since Rj has zero
mean with respect to @ we can choose S! such that it has also zero mean

From (4.3.4) we have that

= T — p2e?t29;S" + et tin,

y = §+ u’e?*29,8" + pletrtip,



4.3 Averaging of the equation 65

where the derivatives of S* and S?, and r, € P, are evaluated at (%,7,6). Since the
terms of order p?c**? are not modify, the averaged Hamiltonian is therefore:

EH(:E: g: 91 s E) = gﬂ(fzm Y, 9: H, E) - #252?+2R3($1 g: 9)
= eho(Z,7) + pe"°F (2, 7,0, u, ) + p’e**Ry(z, G, p, €)
+1’ Y2 Ry (%, 7,0, i €)
where R; € P, has the form (4.3.3).

Finally an analogous argument as in Lemma 3.3.2 gives the regularity of C and H. m

We rename the variables (Z,y) by (z,y) and then, in the new variables the equations
are

& = ey+ pe"9F + p*e**?(0,Rs + 6, R,) (4.3.5)
y = —eV'(z)— peP 0, F — p2e*+%(0, Ry + O, Ry).

Now we perform the last change of variables in order to put the system (4.3.5) in the
definitive suitable form. For this we write

R3($: Y, Ky ‘5) = Q(,Ua, E)Q:Zy -+ ?—-3(1:’ Y, K, 6)

Lemma 4.3.3 The canonical change of variables given by

#*19(u, €)z?)

which is C° in (%, 7, p,€) and analytic in (Z,y, ), transforms the system (4.3.5) into

w = ev+ peP0,F + u’e®®*%(8,f; + 0, Ry)
0 = —eV'(u) — PO, F — 12O, fs + OuRa)

where f3 € P; and it has the form

(u,v) = ®(z,y) = (z,y + p’e

fs=fi+efs
with f3 has not terms in u?v and it does not depend on 0. Moreover R, is of the form

(4.3.3).

Proof. The proof is straightforward. We perform the change ®, and then in the new
variables (u,v) the first equation of (4.3.5) reads as

W = ey+pe’t°0,F(z,y,0,p,€) + e g(n, )’
#262p+2(6yf3($1 Y, 9: H, E) + Bsz(J?, Y, 9: H, E))
= ev+ pePtO8,F + 228, 5 + 8, Ry)
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and

v = y+2ue®g(u, )z

= —eV'(z) — pe”*8,F — p’e*"**(29(n, €)zy + Our3 + 8- Ry))
+2ue®2g(u, €)z(y + ne?*t9,F + p2e**2(8,R3 + 9, R,))
= —eV'(u) — ue?*°9,F — u*c**2(8, f3 + 04 Ra)

where all the functions are evaluated in (u,v) and f3 has the desired form. m

Remark 4.3.4 We observe that the change C = ® o C o C is of the form

C(z,5,0) = (,7,6) + pe"*(G(z,7,6),0) + O(pe”*?)
where G is such that 9yG = (Oyh1, —0zh1). We will use this form in order to prove the
third property of Theorem 4.2.1.

We rename the variables (u,v) by (z,y) and then in the new variables the equations
are

= ey+ uet20,F + p*e***(8, f3 + O, R,) (4.3.6)
—eV'(z) — pe? %0, F — p2e**2(0, f3 + 0. Ry)

4.4 Estimates for the Poincaré map
In this section we provide with an expression of the Poincaré map of system (4.3.6).
For any fixed 6y € R, we consider the Poincaré map defined by
Pﬁ“ (z,y) = ¢(6o + 27,60, x,y, p, €) (4.4.1)
where (0, 6y, z,y, i1, €) is the solution of the system (4.3.6) such that
(00, 60, z,y, p, €) = (z,).
We denote it by ¢, (6) if the initial conditions do not play an essential role.

We observe that, in the proof of Lemma 3.4.3, we have not used hypothesis HP4
(which it is satisfied in the weak hyperbolic case). Moreover neither we have used that
the order k in (z,y) variables of the perturbation h; be bigger than 3. Hence we can
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use Lemma 3.4.3 in this Section. We only have to change p*eP*? by u??*2. We denote
by

Xu(2,y,0) = Xo(z,y) + ue"**F(z,y,0) + p’e**R(z,y, 6)
the vector field of equations (4.3.6) where F' = (8, F, —0,F) and
R = (0yfs + Oy R, —(0uf3 + 0, R2)).

The next lemma gives a formula for the Poincaré map Pﬁ“.

Lemma 4.4.1 The Poincaré map Pj" of the system (4.3.6) is

Pz, y) = 1+ %2 (cy3 +ecy) 2me + cqple?t? x
w\BY) = cople?Pt? 1 + p2e®t2(—ci3 + ec3) y

2meqi(z,y, €) p+9
+2me ( _Vf(m) + 27I'E'QQ(.T, Y, &.) + pe ¢#‘£($: Y, 60: H, E)(442)

+u2e* 2 Ry(z,y, b0, 1y €)

where c13 does not depend on € and p, ¢; = ¢i(bo, ,€), © = 1,2,3,4, are 2w-periodic
functions with respect to 6y and

>0 and c¢;+c3>0
for all 6, € R and g1 € Py, g2 € Py, Y. € Ps and Ry = (R}, R%) € P; is of the form

Ry(z,y,00,,6) = efa(o, 1,€)x* + f11(00, 1, €)zy + fo2(Oo, 1 €)Y + 73
R}(z,y,00,11,6) = 92000, 11, €)7* + €g11(60, 1, €)2Y + go2(00, 11, €)y* + 13

where T3, T3 € P3. Moreover all functions are C°, C* and 2m-periodic with respect to
0o and analytic with respect to (z,y, ).
Proof. We note that, since h; is continuous with respect to #, the Poincaré map
Pﬁa (3:: y) = (p(go + 2“-: 901 I, Y, 1, 6)
is C'and 2m-periodic with respect to fy. We omit the dependence in this variable.

With a small modification in Lemma 3.4.3 (u%?*? instead of u?eP*3) we can prove
that the solutions of system (4.3.6) can be expressed of the form

99(9: 90: I, K, E) = 900(9! 90; T, y) + ,u's‘p+9w(9, 90: T, Y, 1, E)
+u*e*2 (0,60, 7, y, 1, €)
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where ¢y is the flow of the unperturbed system (u = 0) the functions ¥ and ¢ satisfy

Il < Cliz, 9P
el < Cli(z, )l
and ¢ satisfies the equation
. 1
¢ = W[Xo(so) — Xo(po + pe?**y)] + R.

Therefore, it is clear that, for all 8 € [0y, 6, + 27]

]
6(6, 00,3, y, 1,€) = f R(o(s, 80, @, ¥, 1, €), 8)ds + O(e).

fo

We observe that, by property 2) of Lemma 3.4.3,
l(8, 60, 2, y, 1, €) — (2, y)l| < Cell(z, Y),

therefore,
0
(0,60, z,y, pu,€) = / R(z,y,s)ds + O(e).
Bg

We define

w,u,s (I: Y, 90) = ";b(gﬂ + 277: 90: T,y K E)
Qb,u,z(m: Y, '90) = (:6(90 + 271-: 90; T, Y, L, E)

and then the Poincaré map of system (4.3.6) has the form
P%(z,y) = Py (z,y) + pne? e (z, v, 60) + 4’29, . (z,y, 60)

with ¥, . € P; and ¢, € P,. Moreover(9, fs + 0, Ry, — (0, f3 + 0: Rz))

Bo+2m
Gue(z,y,00) = 2m f R(z,y,s)ds + O(e) (4.4.3)
o

_ 0y f3(z,y) 3?"_2“ Oy Ry (,y, s)ds
- 27"( _B:cf:i(xsy) ) " ( _fein+2ﬂ 6$R2(a:,y, S)ds +O(E).
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Therefore, in order to prove that P”“ has the desired formula (4.4.2), we have to
compute the linear terms of the Pomcare map of order u?c**? given by the linear
terms of order p2c?P*? of the expression

" 8, Ry(z,y, s)ds 4
fs'ﬁ%@ Ry(z,y, s)ds o

Because f9°+ 92(0)G2(6) = 0, it is clear that the linear terms of the first component
of (4.4.4) are

fp+2m

Bo+2m
- fa 2(g3(5)G1(s) + 92(s)Ga(s)) — f 20a(s)Ga(s)ds + O(e)

o o

fo+2m fo+2m
g f g3(s)Gi(s)ds — 2y f 93(5)Ga(s)ds + O(e)
B,

o 6o

and the linear terms of the second one are

fo+2m fo-+2m
[ mneGis)ds + fs 4(93(5)G1(s) + 9a(5)Ga(s))ds + O(e)

8o 0

Bo+2m Bo+2m
gy fa g2(s)Ga(s)ds +y / 43(5)Ga(s)ds + O(e)

o 6o
We denote

s = — fa T s(0)Ca(8)d8 = — /ﬂ " 05(0)Ga(6)d0

0

& = 2 fe 02(6)G1(6)d6 = 2 /0 02(6)G1(6)d6

0

Then the linear terms of the Poincaré map Pﬁ“ are of the form

T + 2mey + p2eP+2x(cy3 + ec;) + caplePy
Y+ cope?x + P y(—cp3 + ecy)

with
¢ =l me) =&+0()+0()  for i=1,23

Moreover, by HP6 we have that ¢; > 0 therefore, if € and |u| are small enough, the
function ¢, is positive for all fy € R.
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Finally, the Poincaré map is area preserving, hence
det DP%(0,0) = 1+ p?e®*3(c; + ¢ — 22 + O(p’e**?)) = 1.
This implies that
¢ + ¢z — (21 + O(p?e”®?)) =0

hence, since ¢, is a positive function of 6y, ¢; + c3 is also a positive function. m

4.5 A useful intermediate system

We observe that the origin is a fixed point of the Poincaré map Pgﬂ, and, by hypothesis
HP6, the origin is a saddle point of Pﬁ". Therefore, there exist local unstable and
stable local invariant manifolds for the system (4.3.6) to the origin.

We note that if & > 0, then for y and € small enough, DPJfU(O, 0) has two conjugate
eigenvalues A, A, which implies that, since the Poincaré map is area preserving, do not
exist invariant manifolds in this case. In case that ¢; = 0, to decide if the origin has
local invariant stable and unstable manifolds, the terms of order p2e?*3 of the linear
part of the Poincaré map must be studied . We have not studied this case.

We recall that the homoclinic curve of the origin in the unperturbed system is

2 4t
oW =37p PO=-Grap
Thus, the convergence to the origin of the homoclinic orbit when ¢ goes to oo is of
the order of a power of t~!. We know that if the fixed point is a saddle point, the
convergence of the orbits on the invariant manifolds to the origin is exponential. This
suggests us that we will need a more accurate approximation of the stable manifold of
the perturbed system so that the orbits on it have an exponential behaviour when ¢
goes to +o0o. This section is devoted to find this suitable approximation of the local
stable invariant curve of the perturbed system.

For this we perform a linear change of coordinates in order to put the linear part of
Pﬁ" in a more suitable form. We denote by Gﬂ" the transformed map. Then we find a
system (what we will call auxiliary system) by imposing that its Poincaré map contains
the terms in z2 of the remainder of Gﬁ“, its linear part and all the terms which do not
depend on p of G%.
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4.5.1 A suitable linear change of variables

We perform a linear change of variables in order to the linear part of the transformed
Poincaré map be of the form

cosh(2mep) sinh(2mep)/p
psinh(2mep)  cosh(2mep)

with p defined implicitly by
2 cosh(2mep(fo)) = 2 + p*e**3(c1(6p) + c3(6o)) (4.5.1)

(the trace is an invariant magnitude). We observe that, since ¢; + ¢3 > 0, p is well
defined and it is a 2m-periodic function with respect to 6.

Remark 4.5.1 If p satisfies (4.5.1) then

_ \/012;- 63;..;5""'1/2(1 i O(,u.282p+3)) (4.5.2)
Proof. We denote
_a+c
K = 5

then, cosh(2mep) = 1 + pe®*3K and we have that
2mep = arccosh(l + p2e3K)
= log (1 i ”252P+3K + ((1 + I'u’252;)-|-31{)2 _ 1)1/2)
= log (1 i “262;:-1-3}{ + 1 /2Kps”+3f2(1 + p2€2p+3K—/2)1/2)
= ].Og (1 + #2€2P+3K + 1 fQK#é-P'I'3f2 e O(u353p+9/2))
= 1/2}’{”5‘”*3"2 4 #2E2p+3K — PP K 4 O(Hsequ-g/z)
= \/2K#8P+3f2(1 i O(H2€2p+3))-
Thus the statement holds. =

In order to simplify the notation we introduce

e c = cosh(2mep) and s = sinh(2mep) then ¢® — s = 1.
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e The transformed linear part,

_ [ cosh(2mep) sinh(2mep)/
Alp) = ( p;?]h(z-;éop) Scosh(2;§p)p )

e The change matrix Cﬁ“ will be of the form

Git (Bo) = ( (6 d(te) ) (45.3)

e We denote
d, d
8o _ 1 d4
prea= (% &)
and we note that dids — dyds = 1 and that
2 cosh(2mep) = dy + d3 (4.5.4)

From now on, if there is not danger of confusion, we omit the dependence on 6.

Lemma 4.5.2 If the function p satisfies (4.5.1), there exists a linear change of vari-
ables continuous in €, Ctand 2w-periodic in 0y and analytic in pu of the form
(z,y) = Cg" (u,v)
with Cgﬂ = Id+0(u%e**1), such that the Poincaré map in the new variables (u,v),
given by
Gy =CpRoBlo(Cr)™
is of the form:

Ghun) = A (4 )+ome( L lmnne) ) s

+p"5p+gwp,5 (ua U! 60) + #252P+2R2 (T.E, UJ 90)
with p satisfying (4.5.1), q1, Gz, Yue are the same that in (4.4.2) and, R, € P, and has
the form
1—?% (."L', Y, 90: Hy E) = Ef20(90: Hey E)m2
+f11(00, 11, €)zy + fo2 (0o, p, €)y* + 13
Rg(iﬁ: y,g[), H,y 5) = 5911(9{],#,5)373\' (456)
920(0o, 11, €)z” + goa (6o, 1, €)y” + 13

where v} and r2 belong to P;.
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Proof. We impose that the linear part of the new system have the form

c s/p
ps ¢
and we obtain the matrix equation:

(e )(ca)=-(ta)(aa) (45.7)

This system is overdetermined, for this, first we check that, if d and e satisfy the
equations

ctes = d; (4.5.8)
P
d> = d
p

then the equation (4.5.7) is satisfied. Indeed, only we have to see that, if equations
(4.5.8) are satisfied, then

ps+ce = ed) + ddy
cd = edy+ dds.

We deal with the first equation. Using (4.5.4) and that dids — dads = 1, we have that
ps+e(c—dy) —ddy = ps—(c—dy)? ——d4d2—

(s — ® — d? + 2d1c — dad>)

(=1 —df +di + dyds — dady)

Cwlon o

And the second one
od — edy — ddy = ;pd,;(c — (dy — ) — d3)
= §d4(2c —~ (dy+ds)) = 0.

Consequently, it is enough to find d and e satisfying the equations (4.5.8). First we
note that

0 21‘1’6 2k+1
(211'8 + Z @k + 1] ) = 2me(1 + O(u2e*3))

=1
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and then
é _ (c—dy) . dy —ds 1
Ire(L+ 0(@e™)) 2 2ne(1+ O ™))

_ O -

— 211'&‘(1 + O(H‘ Ezp+3)) O(,U- E )
and

d = d4 _ 2me + C4,u2€2p+2
2me(1+ O(u2e?+8)) ~ 2me(1 + O(ue+3))

- 14 O(u?e+?) = 2 _2p+1
= T3 0(2e) = 1+ O(u"e™").

Thus the linear part of G% has the form we have prescribed. Now we perform the

change of variables
u _ 60\ —1 A
(v)=@(7)

with Cf° given by (4.5.3) with d and e determined by (4.5.8). Then
Gr(u,v) = ((CR) o Bl oCP)(u,v) = ((C)™" o DF(0,0) o Cf°)(u,v)
30 21rsq1 U, U E) p+9/ o\ —1
+u?e®Pt2(C%)~ 1R2 (u, v, 90)

I
B c s/,o u 2meqy (u, v, €)
- ( ( v ) +2W€( —V'(u) + 2meqa(u, v, €) )
+ue +91,!Jp_ (u,v,6p) + p2e* 2 Ry (u, v, 6y)

with Ry € P, having the form (4.5.6). m

4.5.2 The auxiliary system

We decompose R, = (R}, R}) (the remainder term of G% given in (4.5.5)) and we
decompose R? in the form

R2(u,v,00) = a1(6o)u® + r2(u, v, 6o) ' (4.5.9)
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where 1, € P, and has not terms in u?. Since R; is analytic with respect to (u,v) and
depends C* with respect to 6y, continuously with respect to € and analytically with
respect to p, a1(6p) has the same kind of dependence.

We will look for an auxiliary autonormous system of the form
w = Y, (w) = eXo(w) + p*e*2Y; (w, b0, p, €) (4.5.10)

with w = (u,v), eXy the vector field corresponding to the unperturbed case, that is

o) = _yr )

and

Yiw) = ( bt b )

with by, by, depending on 6y, 1 and €, to be determined by imposing the condition that
the Poincaré map of w = Y, (w, 0o, 4, €) is close, in a certain sense to be made precise
later, to the Poincaré map Pﬁ“.

Note that the linearized equation of equation (4.5.10) is w = Bw with

0 1
B=c¢ ( “2€2p+1b1 0 ) .

Since the system (4.5.10) is autonomous, its flow has the form
(0, u,v, u,€) = (¢1(8,u,v, i, €), $2(0, u, v, u, €)).
We denote by F), the Poincaré map of (4.5.10), that is
F,(u,v) = ¢(2m,u,v, p,€).

The next lemma proves that there exist constants b; and by such that the coefficient
of u?, the linear part and the terms which do not depend on u of the Poincaré map of
(4.5.10), F),, are the same as the corresponding ones of the map G'ff.

Lemma 4.5.3 There exist by (6o, 1, €) and ba(6o, p,€), such that the Poincaré map of
the system (4.5.10) is of the form

Fh(u,v) = Ap) ( ’f: ) +2frg( s (i?;fxé:;;f;av’s) ) (4.5.11)
262+ (

0 i
aluz ) o “262?+2R2(u} v, 90)
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where a; is defined in (4.5.9), ¢1 and ¢ are the same as the ones in Lemma 4.4.2, p
satisfies (4.5.1) and the remaining term Ry € P, is of the form given in (4.5.6) and its
second component has not terms in u?. Moreover all these functions are C°, C* and
2m-periodic with respect to 6y and analytic with respect to (u,v, p).

Proof. The proof is similar to that of Lemma 4.4.1. We sketch it. Using Lemma 3.4.3
(putting p2e%*? instead of u?cP*3) we can prove that

Fﬂ(w: Y, 90) = P[?a (13, y) + ”252p+2¢’#.£(m: Y, 90)
with ¢, € P, and such that
¢,u,£($: Y, 90) — 27r},1($? Y, 90: My E) . Efl (:E, u, eﬂa Hy 5)'

with fi € P, (see proof of Lemma 4.4.1, concretely (4.4.3)). We write fi = (f1, f3)
and

flz(u: 'U) = elu’2 + gl(u: U)

with g; € P;. Obviously since the auxiliary system is analytic, ¢; is an analytic function
of by, by and €1, We consider the equation obtained equating the coefficients of u?
in both sides of the second components of F,, and Pﬁ":

bg +ee; = ay. (4.5.12)

(ay is defined in (4.5.9)). The implicit function theorem applied to (4.5.12) when € =0
shows that we can isolate b, as a continuous function of (6, u, &), which is C* in 6 and
analytic in u. Finally we observe that, since the coefficient a; depends 2n-periodically
with respect to 6, b is also 2m-periodic on 6.

Now we deal with the linear terms, We consider the linear system
w = Buw.
It is clear that the linear term of F), is

o27By, — cosh(2mbe) sinh(27be)/b
~ \ bsinh(27be)  cosh(2mbe)

with b = peP*1/2y/b;. Hence in order to check that the linear part of F, is A(p) it is
sufficient to choose b = p and

bz _ ¢ +c3
p2e?Ptl — (27r)2

by = b1(6o) = (1+ O(u*e?))
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where p satisfies (4.5.1) and c¢; and c3 are defined in (4.4.2).

Since the coefficients b; and by depend on 6, we write

E,=F5.

4.6 The operators B and C

The Banach spaces which we use in this Section were fixed at the beginning of Section
4.2. For any € > 0 and p = p(t/e) > 0 a 2me-periodic function of ¢, we define the
operators

B:y,ixy,i—»y,ixy,i
and, for p > 0 and [ > 1,
C: y:f: X y:z:+1 = y.fc: X yflc+1
by the expressions

(Bo)(t,s) = o(t+2me,s)— A(p(t/e))a(t,s)
(Co)(t,s) = oft+2me,s)— A(p(t/e))o(t,s)

where

B cosh(2mep(t/e)) sinh(2mep(t/e))/p(t/€)
Alp(t/e)) = ( p(t/e) sinh(2mep(t/c)) cosh(2mep(t/e)) ) '

These operators are well defined. The operators B and C are formally equal. The
difference is their domain of definition.

Let ki, ks, I, and I be positive real numbers. We endow the product space
I !
y = y kll X y k22
with the norm

1¥lly = aallvall + aellll2 (4.6.1)
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with ay, as > 0 will be chosen later on. We note that the product space becomes a
Banach spaces and that the operators B and C are well defined linear operators.

We will need a right inverses of B and C. First we look for a formal right inverse of B.
Since C is formally equal to B, the formal expression obtained also will work for C~.
For that we write Bo = 1 and we obtain

o(t,s) = —A" (p(t/e))(t, s) + A~ (p(t/€))o(t + 27, s). (4.6.2)
Since p(t/¢) is a 2we-periodic function, applying (4.6.2) iteratively we have that

N
olt,s) = — Z A=) (p(t/e))(t + 2meg, s) (4.6.3)

+A~ WD (p(t/e))o(t + 2me(N + 1), 5).

It is not difficult to see that

—(G+1 _ [ cosh(2mep(t/e)(j +1))  —sinh(2mep(t/e)(j +1))/p(t/e)
ATTH(p(t/e€)) = ( —psinh(2mep(t/e)(j + 1)) cosh(ersp(t/g)(j + IS ) ’

If 0 € YL x Vi, o goes to zero when t goes to oo fast enough (I > 1), so that when we
take limit as N — oo in (4.6.3), A=V (p(t/e))o(t + 2me(N + 1),5) — 0 we obtain
the formal expression for B! (and C™):

o(t,s) ZA U+ (p(t/e))(t + 2ej, 5).

=0

The following two lemmas give useful bounds for the right inverse of the operators B
and C. The formal expression in both of them is the same, but the spaces where they
are defined are different. This fact gives essential different bounds of the norm of B!

and C™1.
We omit the dependence of p and A on t/e.

Lemma 4.6.1 Let k > 2 and | > 1. The operator B has a right inverse B~ : Y x
VE— Vi, x Vi, with

1G9l < oz el + O () Wl

and

1G9l < g [yl + O () 1ol
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Proof. Along the proof we will use that, 7' > 0 is big enough. Also we will assume
that ¢ is small enough so that

1
< —,
ExT
We define ¥ (t, s) = E;-V:O A~U+)(t 4 2mej, s) and
(B7)(t,s) = lim vn(t,s).

First we prove that if 9 € Y} x Vi, ¥y converges uniformly. Indeed from

1 11 )
T+ g,rej)k'”lbl”i + ;mll%”i) A |y

|(A=G+V(t + 2, ))1] < (
and

—(5 ; p 1 2
[(A=UHDe(t + 27e], 5))a| < (m“%”i + m”%”i) [

the claim follows from the M-test of Weierstrass. Therefore B~!4 satisfies the first
three conditions which define Y} _, x Y} ;. For u > 0, we define

= k-1 1 2 927¢ 1
Srw) = Y = :
1 =0 (u+2mej)*  2me g u (14 2_':5.1)"

k-2 1 +00

+00 -
U , 2me 1 2meyg
S¥ = —_— O] =
2(4) ; (u + 2mej)k T = ome Z u (14 mj_)" u

3=0
and we observe that, for v > 0 and k > 1, we have that

1 [2ne o 1 1 [27e 1
k ey il — =
st < g B0+ [ et = e

ﬁ lk_il + O(gln)] (4.6.4)
and, for k > 2
SHw) < 5 :225 (k e it /0 - ﬁdx]
B 27le :2:5 (k - De (k- l)l(k - 2)]
21175 :(k _ 1)1(k —5 9 (%)] : (4.6.5)
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Let 1 € Vi x Vi. We denote u =t + Res. Then we obtain the following bound:

1B ke < Sgpzuk 2e/! cosh(2mep(j + 1)) |91 (t + 2mey, )|
i

h(2 1
+Sup2uk 2 puESID ( WE;(.?_i- ))|¢2(t+21ﬂ'€3, )l
Ds

e~ 2Pl cosh(2mep(j + 1))||¢1||§c

IA
o2
s o

L
i
=
e
bo

o
=
ol

U —2meplj . : l
boup D e T ames cos(anep(y + 1)l

Using that for z > 0, e ®coshz < 1, sinhz < zcoshz and the bounds (4.6.4) and
(4.6.5) we bound the first component of B~9 by

G 0ulhs < @ sup LStlwall + SElvall|

Z:rs [(k — 1)1(k —9) 425 + O(‘%)“"ﬁ”] -

Here we have used that ¢ < 3. Analogously the second component can be bounded by

1B 9)allk—y < sup > u*'e™psinh(2rep(j + 1))[¢h(t + 2mej, )|
+ sup Z u*1eP™ cosh(2mep( + 1)) |iba(t + 2me], s)|

6-—27r£pljp Sinh(zﬂ-gp(j + 1))”1!)1”;:

IA
on
=
T
1]e
=
+le
b2
3
&2
=

-1
U —2meplj ; l
reup Z (u+ 2mej)F - *P'7 cosh(2mep(j + 1)) |92l

and using that € < &, sinhz < coshz and that e™® coshz < 1 it can be bounded by

I(B=)allir < eg”epsgpsl(u)(pllwllli*-szlli)

R
2me | k

bl + ORI
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The following lemma gives a useful bound of a right inverse of C.

Lemma 4.6.2 Letn >0, k > 1 andl > 1. Then, the operator C has a right inverse
C: y,i X J}f‘ yy =¥ ;v,‘;" X J),i:_’{ Moreover there exists a constant K independent of €
and p such that

Il < ey

and

€9l < grcliall.

Proof. Formally, the operator C is the same than B, but the definition domain is
different. For this the proof of that the three first conditions of the definition of
V" x V1 are satisfied by 14 if ¢ € Y} x Y}, is similar to that of the previous
lemma. Analogously that in Lemma 4.6.1 for u > 0, we define

o0
u) = Z e~P2meil cosh(2mep(j + 1))
§=0
and, since [ > 1, we observe that:

S(u) 2 Z —92“(3!—: 1) 4 g—p2me(il+i- l)]
7=0

e21rs,a(1+£)f2 K
< ;
sinh(2mep(1 —1)/2) — 2mep

(4.6.6)

Let 9 € Vi x VL. Now we bound [|(C-9)1 1™ and [|(C~9)al553:

el < S;;PZM"““ » cosh(2mep(j + 1))y (¢ + 25, 5)]

3=0
= inh(2rep(j + 1
+Supz:ukepﬂ(f—ﬂ)81 ( 71'6,0(] + ))|¢2(t+277€j, S)I
D+ p
< sup e Pne=P2meil cosh(2mep(5 + 1)) (|91 |}
Ds j; (u + 2mej)* il

o0 k .
2‘”6(.? + 1 —pun ,—p2mrejl : l
+éup JZ me e cosh(2mep(j + 1)) |92k

= ngPS( uw)||Yly < 27r€,0"¢||y
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and the second one

IC™ " )allis < SU?Zu’““e"““"”psinh(zwsp(j+1))1w1(t+2wsj,s)|
J=0

+ sup Z uFH1eP =" cosh(2mep(j + 1)) |wa(t + 27es, s)|

s
< suppu e~ 2mePl cosh(2mep(5 + 1))k
W ey (2mep(i + 1)l
3 yftl 2meply !
su ¢ PP cosh(2mep(j + 1
i M (2rep(j + 1) ballss

= sup(pue™™ + DSW)[Ylly < 50— I¥ly-

Ds 2mep

Here we have used that the function e**"up is bounded by a constant independent of
¢ and p (but depending on 7). This finishes the proof. m

4.7 Proof of the Theorem 4.2.1

As in Section 3.7 of Chapter 3, we scale the time ¢ = 6 in the system (4.3.6) and we
obtain

' = y+ ueP*Bo,F + p*e®*®*(8,fs + O,R,) (4.7.1)
v = =V'(z)— peP*®0,F — p2e*+(0, f3 + 0. Ry).

Here ’ stands for the derivative with respect to . We denote by ¢ and ¢ the flows of
system (4.3.6) and its scaled system (4.7.1). For any t,t, for which the solutions are
defined we have that

(t,to, 2,y, ) = p(t/e, to/€, 2, Y, 1, €)-
We recall that the definition (4.4.1) of P: P!(z,y) = ¢(6 + 2,0,z,y, u,€). Then
P"E( (t,t0,z,y)) = (t/e+2m,t/e,@(t to, 2,y), by €)

ﬂa(t + 2776’ ta @(t: tﬂ: T, y): }U’me)
(,t_?(t + 271-8? o, T, Y, My E)‘
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As in Chapter 3, we look for a parameterization 7;(t, s) of the stable manifold of the
system (4.7.1) such that ¢ € R is the time, s € C a complex parameter. For this we
look for ;; satisfying the invariance condition:

PYE(y5(t,5)) = 75(t + 2me, 5). (4.7.2)

In fact, we will find the local stable manifold of fo ® instead of the local stable manifold
of Pﬁ“, 7y For this we observe that, if 7, satisfies (4.7.2), then the function ¢ , defined

by
5 -1
Toultss) = (CL“(0) " 92tt,5), (47.3)
where Cﬁf “(t/e) is the change of Lemma 4.5.2, satisfies that

V& ,(t +2me,8) = (Cﬁf"‘(t))_l (t + 2me)y;(t + 2me, 5)
= (CY(1)) ™ Pu(ri(t,s))
= GY(1,(t 9)). (4.7.4)

Here we have used that C}/(t) is 2we-periodic in t. Therefore, if we find Y&, satisfying

the invariance condition given in (4.7.4), then 75 = g “(t/e)V¢, satisfies (4.7.2) what
is that we want to prove.

We note that, since p > 1 (Remark 4.2.2), C/ “(t/e) satisfies
C'f{' £(t/e) = Id +O(u%e**) = Id +O(p%eP*?). (4.7.5)

Let
w' = eXo(w) + p2e*?Y; (w, bo, 1, €)

the autonomous auxiliary system (4.5.10) with the constants b; and by given in Lemma
4.5.3 and

W = Xo(w) + p2ePH1Y, (w, 0, ) (4.7.6)

its scaled system. Let ¢(6,w;6p, u, &) and é(@,w;ﬂg, i,€) be the flows of the auxiliary
system (4.5.10) and its scaled system (t = €6). (We recall that for such systems 6, is
not an initial condition, it is a parameter of the system).

In order to achieve the third property of Theorem 4.2.1 we must prove that the homo-
clinic orbit of the scaled auxiliary system (4.7.6) is O(ueP*?) close to the homoclinic
connexion of the unperturbed system. The following elementary lemma check this.
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Lemma 4.7.1 There exists a paramelerization of the stable invariant manifold y(u, 6p)
of the system (4.7.6), where by and by are given in Lemma 4.5.3, and it satisfies that

(u, 80) — Yo(u) = O(ue”*?)
for all 6y € R and for all u such that Reu > T and |Imu| < V2.
We recall that vy is the homoclinic orbit for the unperturbed system (system (4.3.6)
with p = 0).
Proof. A direct substitution in system (4.7.6) checks that the curve defined by
Y(u, o) = (a(u, b), B(u,bp)) with

k1p2
(k2 cosh(pu) — 1)

kykop® sinh(pu)
(ko cosh(pu) — 1)2

)@(ua 90) == = (477)

a(u, ) =

where

3
— +1/2 — — 27.2
p = ueP 4%\ /b, k= 37 bypPe?e ] and ky = /14 2p%k]

is a homoclinic solution of system (4.7.6). The dependence on 6, proceed of the
dependence in this variable of b; and by. We recall here that the homoclinic orbit of
the unperturbed system is given by

2 4y
=ore Polw)= “Erar

We deal with the first component of the homoclinic orbit 4. By the maximum principle,
it is clear that the function |a(u) — ap(u)| takes the maximum value in points of the
form u = t +iv/2 with t € R. We denote ¢; = cos pV2 and s; = sin pV2, then we have
that

(87} ('U.)

o)~ o] = e (2 + ) — 2bacoshlp) — 1)

lk;pztz = 2(’6261 COSh(pt) — l)l

- |kacy cosh(pt) — 1|t2
|k10%2v/2t — 2kys, sinh(pt)|

kZSl smh(,ot)2\/§t

We observe that, if ¢ > T' with T big enough (but independent of € and ) then the
functions

kyp*t? — 2(kgcy cosh(pt) — 1) and  kyp?2v/2t — 2kys, sinh(pt)

(4.7.8)
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are negatives. Indeed, we observe that
keer = (1+kfp? + O(p"))(1 - p*) = 1+ O(p")

therefore,

1
klpztz - 2(k2€1 COSh(pt) — 1) S (k‘l - k2C1)92t2 — 2(k2C1 - 1) = k261,04t4—

12
b 1
= 21+ () +0(p*) - (1 +0(F)
_ o b 1 2
= pt( 3+t12+0(p))§0

if t > T big enough. Analogously, since
k1p2V/2 — 2kys1 = p*2V2(1 + O(p%)) — 2V2p" + O(p") = O(p*)
then
1
k1p°2v/2t — 2kysy sinh(pt) < (k1p?2V2 — 2kys1p)t — 2hrs1°t
1
<t (1 - Etz) O(p")

which is negative if £ > T big enough.

Bounding the terms in (4.7.8), we obtain

|k1p?t? — 2(ksci cosh(pt) — 1)]  kaey(2(cosh(pt) — 1) — p?t?)
|kacy cosh(pt) — 1|t2 - |kacy cosh(pt) — 1|t2
_L2(k2C1 -1)+ p2t2(k1 — kacy)
' |kacy cosh(pt) — 1|t?

IA

O(p*)
and, in the same way

|k1p?*2V/2t — 2kys; sinh(pt)] 9
_ < O(p).
ks, sinh(pt)2+/2t

In order to bound |3(u) — Bo(u)| we write

B(u) - Bolw) = %sinh(pu)az(u)—uaﬁ(u)

o i) —odtu)) b o3u) (% sl (k) u)
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and it is straightforward that
1B(u) = Bo(u)| = O(p?).
Moreover, by Remark 4.2.2, v satisfies that
Y(u,80) = 70(u) = O(p?) = O(u2e*) = O(u?e?*?). (4.7.9)
[ ]

The following remark is elementary but provides a useful property of y(u,6,). Since
the auxiliary system (4.5.10) and its scaled system are autonomous, for all §; € R, we
have that

F©8(y(t +5,60)) = ¢(2m,(t+ 5,00); 60, ,€)

= ¢(2ne,y(t + s,00); 00, ) = y(t + 2me, bp).
In particular, for 6y = t/e we have that
Fte(y(t + 5,t/€)) = y(t + 27e + s, t/€). (4.7.10)
We define the function
4(t,8) =v(t + s,t/e)

and we observe that, since v is 2m-periodic with respect to its second variable, we have
that

4(t + 2me, s) = 4(t, s + 2me).

We consider 4 as a first approximation of 74 , defined in (4.7.3). We look for ¢, of
the form

P(t,5) = At 5) + ueP o (t, 5)

where 0 < A < 1/2 and 0 = (01,02) € V; x V2.

In order to simplify the notation we rename 4 by v, we write
(¢, s) = (alt, ), B(, s))

and v* = 7 ,- We will impose the invariance condition given by

GY(v*(t, 8)) = ¥*(t + 2ne, 5)
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with
Yi(t,8) = ¥(t, s) + ueP T o(t, s)
and we will look for a suitable fixed point equation for o.

First we summarize the main properties of 7:

e 7 is continuous and analytic with respect to s,
o (t+ 2me, s) = v(t, s + 2me)
e For (t,s) € D*,
Fle(v(t,s)) = y(t + 2me, s). (4.7.11)

e Making some elementary operations in the definition (4.7.7) we can check that

1(t,s) € V3'* x Vi (4.7.12)

In order to simplify the notation we introduce

R(u,v), R(u,v) and Rs(u,v)
where R = (R}, R2) is of the form

(I? Y, 90: H,y E) = EfEﬂ (90: Hy E)$2

R;
Rg(m,y,ﬂg,p,s) = 6911(90,p,5)$y
and R3 has the form

f11(6o, 1, €)zy + foo (6o, p, €)y*

go2(6o, 1, €)y? ) +73(z, 9, 0o, 1, €)

R3($:y:90: Hy E) = (

with r3 € P;. Moreover we introduce

Q(u,v) = (2)? ( 2(u,v,€) ) + e ( al[']u,"’ ) + 12 R(u,v)

qs (u: v, E)
so that

GY¢(u,v) = F'¢(u,v) + pe?*%,  (u,v) + p2e*3R(u, v) + u2e*+?Ry(u, v)
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and
FU/e(u,v) = A(p) ( v ) +2ﬂ's( _Vfim ) + £2Q(u,v)

(we do not write explicitly the dependence of @, R and R on 0o, € and p). We recall
that

V(z) = —(2® — z%).

Then, by Taylor’s theorem

GHe(v(t,s)) = GY(y(t,s)) + uePDGYe(y(t, 5))a(t, s) + u*e***+220(|o(t, 5)|?)
= FY5(y(t,s)) + pe? Y, (V(t, 5)) + 23 R(v(t, s))
+17e"*? Ry(7(t, 5)) + peP A DFYE(y(t, 5))a (¢, 5)
+1’ePHADR((t, 5))o (¢, 5) + p2ePH 1 ADY, (v(t, 5))o (2, 5)
+uPe P DRy (1(t, ))a (8, 5) + u2ePH*220(|o (¢, 5)I%)

Thus using (4.7.11), G¥¢(v%(t, s)) = ¥*(t + 27, s) if and only if

o(t+2me,s) = DF(y(t,s)a(t,s) + ¥ P (V(t, s)) + ueP**R(v(t, s))
+ueP ARy (Y(2, 5)) + pet D e ((t, 8))o (¢, )
+12ePBDR(v(t, 5))o(t, s) + 2P DRs(y(t, 5))o(t, s)
+ue” 1 20(Jo(t, 5))

= diglalf,s)ne ( (ot 2)— {1)2a2(t, Ao )
+e2DQ((t,5))a(t, s) + € ue(V(t, 5)) + ue?** A R((t, s))
+pe" ARy (y(t, ) + pe” DY (v(t5))o(t, 5)
+12 e 2[DRy(v(t, 5)) + DR(7(t, s)) + eDR(v(t, s))]o(t, s)
+peP 2 0(|o(t, 5)[%).

We define

H'(0)(t,s) = DQ(v(t.9))a(t,s) + " hue(v(t,5)) + ue™™ Difye(v(t, 8))o (8, 5)
+u2e[DRy((t, s)) + DR(y(t, s)) + eDR(x(t, s))o(t, s)
+pe” 1 20(|a (¢, 5)P),

H*(o)(t:s) = R(y(t:9)),
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the vector

B(w) = ( - _”12w2) ) (4.7.13)
and
F(o) = 2neB(a)o; + 2 H' (o). (4.7.14)
We can reduce the problem to to find o = (3, 02) such that
o =B 1F(0) + uePt>C ' H?*(0). (4.7.15)

(here we distinguish between B~! and C~* because as we will see below the functions
F(o) and H?(o) belong to different spaces).

We look for o € Y} x Y}. For this we endow the product space Y} x Y} with the norm

1
1%lly = llvllz + ?||1P2||é

for 9 = (¥1,%2) € Vi x Y} and it becomes a Banach space. We denote by B(r) C
YV} x Y} the closed ball of radius r with this norm.
Lemma 4.7.2 The operator G : B(r) — B(r) given by

G(o) = B F(0) + peP ¢ H?(0) (4.7.16)

s well defined and it is a contraction.

Proof. We recall that
v ey x Y.
(see (4.7.12)). Let o0 = (01,02) € Y} x Yi. First, we check that

Flo) € VexYs
H0) € Vi® x M5~

First we deal with the terms involving F (o). It is clear that

Bla)o € {0} x Y3

g 5/3
( 2a,0(t, 5)o1(t, s) ) € {0} x 3)5’{ :
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Since @ € P,, we have that
DQ(Y(t,9))o(t,s) € V3’ x Y3/°
and since ¢, € P3

Yue(v(t,8) € V2 x Vi
Dt e(v(t,8))o(t,s) € 7:’3 y’rfs-

Finally, using that the second component of R and R have not terms in u? and belong
to P, we have that

DR(y(t,s))o(t,s) € Yg'° x V3"
DR(v(t,s))o(t,s) € YI*x Y3

Hence, from definition (4.7.14) of F we have that
( )Ey5,"3 5,’3Cyﬁxy6
We recall that R has not terms in u2, thus,
H(0) € i x V§°.

We deal with the terms involving G. By Lemma 4.6.1,

B F(o) € Yy x V5
and by Lemma 4.6.2

C'H*(o) € Vi x V.

Therefore G(o) € y; X yg. In order to prove that the operator G is well defined, we
must see that ||G(o)|ly < rif [[o]ly <.

Let 0 € YV} x Vi be with norm ||o|| < r with r small enough, but independent of £ and
p. We observe that from Lemma 4.7.1, if (¢, s) € D° we have that

' kyp? 2 1 ,
s cosh(p(tp-l- V=D| S TrRes? (”O(?) +0(p ))

- @ (+0(7))
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Moreover from the definition of H* = (Hj, H;), there exist two constants M; and M,
independent of £ and u such that

|Hi(o)lls <My and  ||Hy(o)|s < Mo.

We denote u = t + Res, then by definition (4.7.13) of B and definition (4.7.14) of
F = (F,F,), and H* = (H}, H}) we have that

17l < Mie?
12 48
I7:ld < 2nesupu® |2+ 2] ou(e 9l + o2 )t 5)

IA

1
< 27el2||oy ||} + €2 [O(T) + O(E)] llo|ly-
Therefore by Lemma 4.6.1

1B F@)lly = NEF@)l+ 1B F o)l

sz [;—Onfg(o)u; + o(%) ||f(cr)||y]

IA

11

= [1 | Fa(0)]|2 + o(%) |7 (a)lly]

< [}j 35 louli+ [0(7:) + 0@ ey

— == 1 =,
= Zloulli+ [0(5) + 0]l
Finally, we deal with the last term. Since

= __m P+1/2(1 4 O( 2 2p+3))

2
we have
-M|o- _y K
,uep"'z ’\“C 1H2(0)|[y < pgp+2 A%(”Hl( )|I4f3+”H2( )||4f3)
— O(EI/R—A)
Therefore,
6@y < ol + [ (7) +0@)]lloly + 02
y = 35 1(l4 T v
33
L 1;2 A
< 2r+[0(3) +0@)]llly + 02
< r
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if 7' is big enough, ¢ is small enough and 0 < A < 1/2. Then the application
G: B, — B,

is well defined. Since the linear terms in ¢ are the dominant terms, G is a contraction.
Then, by the fixed point theorem, there exists o € J{} X JJS’ such that

GU¢(y(t, s) + peP M a(t, 5)) = v(t + 27e, 8) + pePAo(t + 2me, 5).

This proves the lemma. m

End of the proof of Theorem 4.2.1.. We go back to the original variables.
We observe that, since the matrix Cﬁ/ “(t/€) given in Lemma 4.5.2 is 2we-periodic and
satisfies (4.7.5) we have that

1(t,s) = Cle(t/e)y’(t,5) = 7°(t,8) + O(u’e”*?)
= (t,s) + peP o (2, s) + O(ueP+?)
= 7(t,s) + O(ue?*'*?)
and by Lemma 4.7.1
7 (t:8) = Yo(t + 5) + O(ueP ).
Moreover, as we have said in Remark 4.3.4 the change C has the form

(z,y,0) = C(,3,0) = (&,7,0) + pe*™(G(2, 7, 0),0) + O(ue’*?)

where (z,y, 6) are the original variables and (z, 7, 8) are the variables for which we have
proved the existence of the suitable parameterization of local invariant stable manifold.
Therefore, the local stable manifold, v, ., of the original system (4.1.1) has the form

’}’ﬁ,s(t, s) = 7;(t, s) + #EPHG('?;(;, s),t/e) + O(pgpﬂﬂ)
= ot + s) + peP 1 G(yo(t + 5),t/€) + O(ueP™1+2).

In order to find a parameterization of the local stable manifold which be a solution
with respect to ¢ we define tp =T — Re s and for all ¢ > ¢,

i’;,s(ta S) = gO(t, to, 7:;,5@0: S))

where @(t,tp, z,y) is the general solution of system (4.1.1). We observe that, for all
(t,s) € D*, v, (t,s) belongs to the local stable manifold of the system (4.1.1), hence
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;< (t, s) is a parameterization of the stable manifold. It is clear that the properties 1),
3) and 4) of Theorem 4.2.1 are satisfied by v, .. Moreover

Ype(tss +2me) = @(t, 10,7, (to, s + 2me)) = @(t, to, 1, (to + 27€, 5))
= p(t +2me, to + 2me, p(to + 2me, to, 7, ¢ (t0, 5)))
= @(t+ 2me, to, 7, . (to, 5))
= ue(t + 2me,s).

Therefore, 7;, ; is the parameterization that we look for. We observe that %}, , is defined
for all (¢,s) € D°. m



Chapter 5

Invariant manifolds as graphs

5.1 Introduction and main results

The goal of this Chapter is to prove that the local stable invariant curve of the averaged
system (3.3.10) (written after scaling by ¢):

= Y+ pEP+2ﬂ+23yF(x, Y, S) + “2EP+2ByR2k-—2 (:51 Y, 9)

X
y = —V'(z)— peP*" 29, F(z,y,0) — p*e"*20, Rar—2(z, y, ) (5.1.1)
§ = 1/,

in the parabolic case, the one of its auxiliary system (3.7.4) and the one of the system
(4.3.6) (written after scaling by €):

T = y+ P’Ep-'-sayF(x: y,0) + f-*'*2€2p+1(5yf3 + 0, R2)(z,y,0)
y = —V'(z) — peP0,F(z,y,0) — e (0:fs + 0 Ry)(z,y,0)  (5.1.2)
6 = 1/e

in the weak hyperbolic case, given in Chapters 3 and 4 respectively, can be writen as

the graph of a function ¢ which will depend analytically on z, u, C* with respect to
and continuously with respect to . Concretely we prove the following results:

For the parabolic fixed point case:

Proposition 5.1.1 The local stable manifold of the system (5.1.1) is the graph of a
function y = f(z) + peP2g(z, 0, p, €) where
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1) f(z) = =/ =2V(2)

2) f(z) and g(z,8, u,€) are analytic with respect to (z,p) in

26, 0) = { € €2 0< 1ol <0, |arg(o)] < 55 |  {w € Rl < o)

where = % and po small enough.

3) g(z,€,0, 1) is C° and C* in 6. Moreover it is 2mw-periodic on 6.

4) f(), 9(z,€,6, 1) = O(zF).

Analogously, the local stable curve of the auziliary system (3.7.4), can be expressed as
the graph of a function y = f(z) + u?eP*?h(z,0, u, ) where h has the same properties
as g.

And for the weak hyperbolic fixed point case:

Proposition 5.1.2 There exist the local stable manifold of the system (5.1.2) and it
is the graph of a function y = f(zx) + peP*%g(z,0, u,€) such that

1) f(z) = —/-2V(z)

2) f is analytic in Q(6) ={z € C:0< |z| < 6, |arg(z)| < £}.

3) g(z,9,u,€) is C° ine € (0,e0) with g9 small enough, C*and 2m-periodic in 6.

4) 9(z,0, pu,€) is analytic in Q(6) x {p € R: |pu| < wo} with py small enough.

5) f(z) = O(z*?) and g(z,0, u,€) = O(a).
Proposition 5.1.1 follows from results in [30] concerning stable curves for maps associ-
ated to parabolic points which can be realized as Poincaré maps of equation (5.1.1).

Proposition 5.1.2, follows from the results in Section 5.2, where we develop an analogous
theory to the one in [30] for what we call the weak hyperbolic case.
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5.2 The case of weak hyperbolic fixed point

5.2.1 Introduction

We study the existence and analyticity of invariant curves asymptotic to a fixed point
of a family of two dimensional maps F),. : U C R? — R? having a fixed point, which
we may assume that it is the origin, with linear part

( L’_ ‘2 ) (5.2.1)

where b = b(u,€) # 0 and ¢ has the form
c=c(u,e) =1+ eu+0(u?), e = e(e) (5.2.2)

and p, € are small parameters. Moreover we suppose that the nonlinear part of Fie(x, )
(the second component of F),.) is of the form asz? + h.o.t. with ay # 0.

To simplify a little bit the notation we note that the linear change of variables C (z,y) =
(bz,y) transforms the linear part (5.2.1) into

( :b ; ) . (5.2.3)

We shall rename the small parameter pub by p. Of course, the value of e will change.
The eigenvalues of the matrix (5.2.3) are

A=ct /p.

Therefore for 1 > 0 the fixed point is a saddle point and has stable and unstable one
dimensional invariant curves through it, tangent to the vectors (1, %,/z) respectively.
We perform the linear change of variables Cy(z,y) = (r,y — /uz), which transform
the linear part (5.2.3) into

(67 o)

For 1 = 0 the origin is a parabolic point and the only eigendireccion of its linear part
is generated by the vector (1,0).

When p > 0 the origin is a saddle point. Therefore the classical stable and unsta-
ble manifold theorems, guarantee the existence and properties of the local invariant
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manifolds in a neighborhood of the origin, V,,, which depends on . In general, V,
may shrink to {0} when pu goes to zero. We can represent the manifolds as graphs
of functions with suitable regularity conditions in this domain. We could extend the
invariant manifold to a larger domain by iteration of the map but we would not be
able to guarantee that the invariant manifolds can be expressed as graphs of functions
in domains independent of .

Our purpose is to find a neighborhood of the origin, independent of the parameter u,
such that a branch of the local stable and unstable curves can be expressed as the
graph of a function (depending on u) and to give regularity conditions of this function.

We follow the same scheme of proof of [30]. In this work, E.Fontich deals with the case
1 = 0, where the origin is a parabolic point. First we look for a normal form which
must have a suitable dependence on p. This suggests us to look for a normal form for
the weak hyperbolic case, which when 2 = 0 must be the normal form of the parabolic
case given in [30].

First we deal with the Lipschitz case. In the following section we prove the existence
and uniqueness of a branch of the stable manifold in the half right plane (z > 0).
First, we prove the existence of a suitable set such that the stable curve that we look
for belongs to it. Then, we prove the existence of a stable manifold which can be
expressed as a graph of a Lipschitz function ¢, defined in a open set which does not
depend on p and €. Since the origin is a saddle point, the uniqueness can be proved
easily. Finally, we prove the continuity of the stable curve with respect to the parameter
¢ using the asymptotic behaviour when = — 0 of the function ¢.

The analytic case is more technical. In fact we already know that, for fixed values of
the parameters, the stable curves are analytic, but here they are found to be analytic,
as graphs in some complex domain independent on the parameters.

We also would like to mention that from the results of Chapter 4 we can obtain that,
locally, the curves are graphs, but here the (complex) domain we obtain for the graph
is much bigger.

First we perform a change of variables in order to move the stable curve closer to the
z-axis. Then we prove some suitable bounds in order to describe the behaviour of
the stable manifold in a complex domain. Finally, an standard argument using the
Rouche’s Theorem, gives the analyticity of the function ¢.
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5.2.2 Normal form

We look for a normal form with a good behavior near p = 0. For this reason we will
not change the linear part. We shall give the normal form until order two.

By Taylor’s theorem,

_{ (c+ym)z+y f202? + fuzy + forr/® r3(z,y)
F“’E(x’y) B ( (C— \/ﬁ)y ) ¥ ( 9203«‘2 +911$y+902y2 ) * ( r%(a:,y) 2 ’ )
5.2.4

We look for a change

S d&,n) \ _ [ &+ $20E + p11én + doan® )
Ccl&m = ( " ) % ( B(Em) ) = ( £ + thaok? + Ynafn + Yoa?

such that C o N, = F,, . o C with

(c+ R+ ) ( h*(&,m) ) ( r3(z,y) )

N, = i >R

we(&r) ( (c— /m)n h*(&,m) r3(z,y)

with (h!, h?) as simple as possible, compatible with the condition of being continuous

with respect to p. At it is usual we compare the terms of order two in the equation
CoN,e = F,.oC. We find the equations

fao—hy = ((c+ /1) —c—/E)$a — P20
g0 —h3 = ((c+vE)? —c+ Vi)
fu—hiy = 2+ vVE)da+ (S —p—c— VE)du —Yu
gu—h3 = 2(c+ VEvn+ (- p—c+/E)Yu
foo—hge = ¢a0+ (c— Vi) + ((c— VE) — ¢ — Vit)boz — Yoz
g2 —hgy = Yao+ (c— vE)¥n + ((c — vVE) — c+ Vi) Yoa.
There are several choices for a normal form. We choose hyy = hi, = hj, = h3, = 0

and @oa(p) = %o2(p) = 0. Then the other coefficients are determined uniquely as the
solutions of the following linear system:

ax(p) 0 =1 0 00 $20 fao

0 0 az (i) 0 10 é11 920
2(c+p) as(p) 0 ~1 00 Yoo | | fu
0 20c+ @) ag(p) 01 Yu || 9u

1 C— \/ﬁ 0 0 00 h’%O foz

0 0 1 (C = ﬂ) 00 h’%l Go2
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where

a(p) = (c+vE)?—(c+VH)

a(p) = (c+vE)?—(c— V)
s(w) = E—p—(c+vn)
(B) = E=p—(c— VR

It is not difficult to check that the determinant of the matrix of the linear system is
2+ O(y/;). Then, if p is small enough, the linear system has a unique solution and

therefore we find ¢ag, ¢11, %20, %11, h3; and h%, as functions of .

If we assume that F is jointly C™ with respect to (z,y, ) then ¢ = c(u), fix = fir(\/12)
and gjx = gjx(y/R), for j,k =0,1,2, are C*~!, C"% and C™? respectively, then ¢ay,
P11, Y20, Y11, h3y and h}; depend C™ % on /. In the analytic case, obviously, the
dependence on / is analytic.

Moreover, if F,,, is a family of analytic maps with respect to (z,y), C™ with respect

to another parameter, 7, and analytic with respect to /i, then all the coefficients of
the normal form are C™ with respect to n and analytic with respect to /L.

8 2

4

Other kinds of regularity may be assumed. For instance that p +— F), is C™ from R to
C™(U). In this case the coefficients @qp, ¢11, %20, %11, h3, and h?; will be C™.

We summarize this result in the following theorem.

Theorem 5.2.1 Let F,. : U C R? — R? be a family of diffeomorphisms of class C",
n > 2, depending continuously on u and €, having the form

_ [ (e+ymz+y ) ( for® + fuzy + foor? ) ( r3(z,y) )
Fue(zy) = ( (c— /)y 5 920%* + gzy + goay? ® T%(E, y)

where fix = fix(\/I€), gix = gik(\/H,€) with j,k = 0,1,2, ¢ = 1 + ep + O(p?) and
g20(0,€) # 0. Then, if p > 0 is small enough there exists a polynomial change of

variables, continuous in p and €, such that in the new variables the map has the form

| (c+/m)z+y 0 ra(z,y)
F#,E(xvy) = ( (C— ﬁ)y ) + ( 0203—'2 +anzy ) + ( TE(.’E,y) ) (525)
with ajx = ajx(\/I,€) for j,k = 0,1,2, ax(0,e) = 920(0 g) # 0 and ay(0,e) =
911(0,€) — 2f20(0, ).
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Remark 5.2.2 Later on we will deal with families F, . depending analytically on p.
In such case, following the previous argument we easily check that the normal form,
and in particular ayy and ayy, depends analytically on \/j.

Remark 5.2.3 We do not assume any condition on the sign of e defined in (5.2.2).

5.2.3 Existence and uniqueness of stable curves

In this section we consider families of maps in the normal form described in the previous
section and we look for sufficient conditions for the existence of a local stable invariant
manifolds in the right-hand plane. Considering the inverse map F; ' we can deal with
the local unstable invariant curve. We will denote this local stable curve by Wi+, A
more precise definition of WS+ is

Wit ={zeU: F;(z) € Bs(0) N {x > 0} for n > 0, F}(z) — 0 when n — +oo}.

If u > 0 the first condition in the definition of W;* characterizes the set, but if u =0
the whole space is a central manifold and it is convenient to add the second condition.
In general we will not explicitly write the dependence on p of the objects we will deal
with. We look for the invariant manifold as a graph of a function ¢ of the form

y=p(r)=—-az—cz*+..., a=23/2

We put the minus sign for notational convenience. If we impose the invariance condition
of graph ¢,

Fy o (z,0(2)) = o(F, . (z,9(2))) (5.2.6)

for 4 > 0 we will obtain the Taylor expansion of ¢. Since we want an expression of
¢ uniformly valid for ¢ > 0, we add the term —cyz* with a = 3/2 which comes from
the asymptotic expression of ¢ when p = 0. The following values for ¢; and ¢, are
obtained comparing terms of order 1 and 2 in (5.2.6) respectively:

if p is small enough.
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To have real values for ¢, (at least for p small) we have to assume that as(0,g) > 0.
Looking at the dynamics of F),. on graph(p) we see that to get the stable curve we
have to choose ¢, positive. Of course, this is a formal calculation but serves to foresee
a domain in R? where the local stable curve belongs to. Therefore we introduce the set

A(6)
={(z,y) €ER*: 0<z <6, —2/ur—202% <y<—/piz —duzx — %m‘*} (5.2.7)
with d = 5;—1 if # > 0and d = eif p = 0, and we concentrate on the study of

the dynamics of F' in it. We denote by O, and o; terms of the form O(z') and o(z)
respectively.

The main result of this section is:

Theorem 5.2.4 Let F, : U C R* - R?, n = (p,e) € V;, = V, x V. C [0, +00)xR™,
V, open, 0 € V;, be a family of C™ maps, n > 2, depending continuously with respect
to u and €, of the form (5.2.5), satisfying that ax(0,e) > 0. Then, there exists § > 0

(independent on p and €) such that W;* N A(8) is the graph of a function ,, Lipschitz
with respect to z and continuous with respect to p and €.

Remark 5.2.5 Considering F,,I‘1 and its normal form, we obtain results for the unsta-
ble manifold.

We introduce some notation. From now on we denote
(T, yr) = F,;‘(:r,y), kelZ.
We define the sets
a:(6) ={(z,y) €ER*: 0< <6, y=—/fiz— duz — Ez%xﬂ}
and
a-(8) = {(z,y) e R*: 0 <z <6, y=—2\/z — 2c,2°}.

Of course, these sets depend continuously with respect to x and . From now on we
omit the dependence on e.

Lemma 5.2.6 If § > 0 is small enough we have



5.2 The case of weak hyperbolic fixed point 103

1) if (3": y) € A(é), 0< <3,
2) if (2,y) € a4 (8), 11 > —/hz1 — dpzy — Faf,

3) if (z,y) € a—(6), 11 < —2/pz1 — 2c2%.

Proof. We recall that du = ¢ — 1. Given p > 0, if § is small enough and (z,y) € A(6)
it is clear that |rj(z,y)| < p|z|®. In the following we will use p as small as necessary.
Hence if (z,y) € A(6), the following holds:

21 = (c+vBz+y+ri(z,y) > (c+ VE)T — 24/pT — 202 + 13(2, y)
> z(c— /B —2c2%' — pz) > 0.

Also,

z—21 = z(l-c—h)—y-r3(z,y)
> :1:(1—c—ﬂ)+(\/ﬁ+dp):r+%x“—r;(x,y)

= (1—c+dp)z+ %x“ —r3(z,y) > 2° (% - p|.1:|2'“) >0

and the first property is proved. Now we demonstrate the second one. We recall that

a(c— /)t
and that forall A e R

(1+ Az)* = 1+ aAz® + O(2*).
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Then, if (z,y) € a,(6) we have

e
Y1 + (Vi +dp)z + '23”? = (c — /R)Y + az02® + anzy + r3(2, )

* (V/E+ d,u,)[(c—l— \/ﬁ)x +i+ ‘»"é(:c,y)] + %!—[(C + \/ﬁ)m +y+ 7';%(.‘13, y)]a
= —(c= V) ((\/E*I‘ dp)z + 2:1:"‘) + ana’ — aux((\/ﬁ +dp)x + %21;“)

2
+ (v +dp) ((c —du)z — %2—:1:"‘) + %((c —dp)z — %"-x“)a + 02

= o+ dp)(VE — dp) = 2 (2(c+ du) — (e — dp)z - Fa°))
+ 2%(az0 — an (Vi + dp)) + 0

= zp(l —d’p) - C—;(ma[(c + du) — (¢ — dp)®] + az®* (e — dp,)“*lz_?)
+ z%(ag — an (VR + dp)) + 0

2
= op(1 — P+ Oat) + 5* (20 — an(VE +dp) — ale — )" )

4

3
=zu(l - d2,u. + Og-1) + z? (Zagg + O(/1) + 01) >0

if 4 and ¢ are small enough.
Finally we check the third property. Let (z,y) € a_(§). Then,

v+ 2v/pxr + 2c02f = (c— /)y + az? + anzy + rg(:r:, Y)

+2y/p[(c + Vi)z + y +r3(2,y)]
+2¢5[(c+ Bz +y +73(2, )]

= —(c— /B)(2v/Bz + 2¢22%) + agz® — anz(2y/px + 2c22°%)
+2/p{(c — /)T — 2¢22%]
+2¢;[(c — /I)x — 2¢32*%]% + 02

— 20+ Vi (e~ VB
+2%[ag — 2a11/8 — 4c5(c — /im)* a) + 0s

= —202" /il + o+ O(v/A)] - 32°[az + O(VE)] + 02

which is strictly negative if 4 and § are small enough. m

We define the sectors

Si={(&mn) eR*:0<n<E}
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32={(5:T?)ER235<?}'<0}:

S=851U5

and

5
8 ={(5=7}')ER2?0<7}'<E§},

, b}
Sy ={(&n) eR?*: 6€<??<0},
S'= 8 U8,
Lemma 5.2.7 If § and p are small enough, (z,y) € A(6) and ¢ € S; — {(0,0)}, then
DFy(z,y)( €S, i=1.2 (5.2.8)
Moreover, if ( € S] — {(0,0)}, then

DF,(z,y)( €S, i=1,2. (5.2.9)

Proof. By linearity of DF,(z,y), it is sufficient to prove the first part of the lemma
for ( = (&,m) € S — {(0,0)}. We write

DFy(z,y) = ( c+ VA ! )+02

2a30 +any c— . /Bh+ane

( All A12 )
A21 A22

é‘ - A11§ + A127?
DF_',,(m,y) ( n ) - ( A21£+ Azz”? ) .

First we note that if (z,y) € A(6), |y| < 2\/fx + 2c22*. Then

which means that

Ay = 2a30x + apy + Os
3 113[2(120 = a.]_]_(?\/,t—.& -+ 262.730_1) + 01] >0
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since ag is a positive number. Clearly Ay > 0. Then if, (&;,m)T = DF(z,y)(&,7)7,
m = Ané + Agn > (A + Axn)n > 0.

Moreover

&L—m = (An— A€+ (A1 — Ay
> (A — Az + Az — Ax)n
= (1+O0(y/r)+01)n>0.
Notice that A;; > Ay and £ 20
Let ¢ = (£,1) € S — {0}, then it is clear that 7; > 0 and

'_2.,51 -1 = (%Au - Agl)E % (gAm = Azz)ﬂ

6 9
> (Au — gAzl I 61412 = Azz)??

= (§+O(\/ﬁ)+01)nz 0.

Lemma 5.2.8 Let 0 < r < 2. If § is small enough, (z,y) € A(6) and 0 <z < 1/5"
then 0 <z < 1/(j +1).

Proof. If z < 1/(j +1)", by Lemma 5.2.6, we have that 0 < z; < = and the result
holds. Thus we can suppose that 1/(7 +1)" < z < 1/5". Then,

1 1
T — GO = (c+ Rz +y+r3(z,y) — GTIr
< (c~dy)a:~%m“+r§(m,y)—* (j“lj‘.l)r
- _“52- o 1 _ 1
= - Za o) -
]_ 1 C‘z o 1
< ——F———=2%+13(2,y)

< s+ o) Sy el
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and, since r + 1 > ar,

j’il - %(3‘ +11)m +°(}i?) =5 :)m (93 - M) + o(i) 20,

if 5 is big enough. m

From now on we fix
r =3/2.

For the next lemma we need an expression of F,!. It is not difficult to see that

-1, B 1 (c— Bz —y
o At = cz—,u( (c+ Ry )

1 (e~ )z — y?
MGEE ( —(e+vA)(c— yR)z - yJ? )

ct+vE ((c= vz —1y)y
T@- g ( —(c+ vB)l(c— va)z —yly ) i

Lemma 5.2.9 If § is small enough, (z,y) € A(6) and ( = (€,7n) € S, then there exists
a constant M > 0 (independent of p and €) such that

1

c+ /1

|mDF;(z,y)¢| < ( + Mx) €] (5.2.10)

Moreover, if (€,n) € &,

|mDE; (,y)¢| < (1+Mz) ¢ (5.2.11)

Proof. We write

wf _ [ Bu B
DF(z,y) = ( = Bzz)

so that

WIDFJI(;I;, ) ( f} ) = B + Buan.
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We have that

1 1
By =

c+ /B * (c—p
c+

L ErVE
(e — p)?

1
M.

c+ /i L

where M can be taken independent of u and €, and
1 1

+(—Z:’_—\{§3au[(c — Vi) —2y] + O,

)320120[('3 - Vi)z = yl(c+ Vi)
any + O,

<

»812:_

which is negative. Thus if (§,7) € S
B11§ + Bian < Bii€

mDF, " (z,y) ( f? ) < (

and then

1
T —I—M:r){f. (5.2.12)

Moreover,

TrIDF,,_l(m,y) ( 5 ) = Bué+ Bion > (B + Biz)é

1 1
= (c+\/ﬁ_cz—,u+01)€ (5.2.13)

= _(c+1ﬁ+M$)£'

Therefore by (5.2.12) and (5.2.13) the bound (5.2.10) holds.

Now we prove (5.2.11). Let ¢ = (&,7) € &', it is clear that

n+ 0:€

ImeDF~(z,y)¢| = 1321£+Bzz??|=}
1

N

1 5
(C_ \/ﬁg +Mﬂ:) €]
< (14 Mz)|€|

1
=R
| + Malg
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if p is small enough. m

Lemma 5.2.10 If § is small enough and z; = (z;,y;), 1 = 1,2, are two different points
such that z, Fy(z) € A(6), z; < 1/j7, 1= 1,2, and 21 — 2, € S, then, there ezists a
constant M > 0 (independent of u and €) such that

> c+ /1
“1+M@G+1

|771(Fn(z2) — Fy(z1))

)_3!2 |‘Il'1(22 — z1)|.

Proof. We recall that, since z; — 22 € S and z;, 22 € A(d), the segment between z
and z, belongs to A(8). Therefore, by the mean value theorem in integral form, we can
write the difference F; (23) — F;,(21) in the following way,

Fn(z‘g) — F,T(zl) = ‘/0’ DF,?(Zl + t(zg . Zl))(ZQ — Zl) dt.

It is clear that F(z;) — Fy)(z1) € S and therefore the segment F,(2;)F,(2;) is contained
in A(é). Now applying the mean value theorem and Lemma 5.2.9, concretely, using
estimate (5.2.10) we have

Im[F (Fy(22)) — B (En(2)))l
= sup _ |mDF; () (Fy(z2) — Fy(z1))]

CEFy(21)Fy(22)

|m1(22 — 21)|

IA

. 2 (= "k Mmy()) Ima (Fy(z2) — Fi()[(5.2.14)

Let ¢ € Fyy(21)Fy(22). By Lemma 5.2.8, we have that
m(Fy(21)), m(Fy(z2)) <1/(G+1)"
Thus ¢; < 1/(j + 1)". Then, using (5.2.14) we obtain

1 i M
VR GHIY

Imi(z2 — 21)| < ( )|W1(Fn(32) — Fy(21))|-

The inequality of the statement holds if we denote again by M a bound of the expression
M(c+ /i) for all values of . =
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Lemma 5.2.11 Ifé is small enough and z; = (z;,y:), t = 1,2, are two different points
such that z, Fy(z) € A(S), ©; < 1/57, i = 1,2, and 2y — 2z, € §', then, there exists a

constant M > 0 (independent of ) such that
M
(14 G ) M) = Fya)

M
(1 & W) |Fy(22) = Fy(z)ll-

ma(z2 — 21)| <

Proof. As in the previous lemma, we know that F(z;) — F;,(21) € S and therefore
the segment F,(21)F,(2,) is contained in A(6). Applying the mean value theorem and

estimate (5.2.11) we have that

Ima(z2 — )| = |malF;  (Fy(22)) = B (Fy(20))]l
< sup |7r2DFn_1(C)(Fﬂ(32) = Fn(zl))l

CEFy(21) Fy(z2)

1+ Mmy(Q))Im(Fo(z) = Fy(a1))l.  (5.2.15)

IA

sup
(EF(21)Fy(22)

Clearly, if ¢ € Fy,(21)F,(z2), by Lemma 5.2.8, we have that {; < 1/(j + 1)". Then,
using (5.2.15) we obtain

M
Ima(e2 = 2)| < (1+ Gy ) Im(Fa(a) = Fy(a)

and the inequality of the statement holds. m

5.2.4 Proof of the existence of local stable manifold

Once we have established the previous lemmas the proof is the same as the one in [30]

We sketch it. We define the set
H(A) = {T, differentiable arcs connecting a_ with a, such that T,I' C S, Vp € T'}.

We fix any I'y € H(A) and we define
Ty = F *(F¥(To) N A(6)).
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The intersection
o= | T
k>0

is non empty because it is the intersection of a nested sequence of compact non-empty
sets. We want to prove that I'y, is a single point. Assume that I's, has two different
points z; # z;. Note that this means that m(2; — 22) # 0. Then there exists jo such
that 0 < z; < 1/j55 ¢ = 1,2. If we apply the Lemma 5.2.8 inductively we have that

1
(G +jo)
Moreover, by definition of H(A), z; —2; € S, and by Lemma 5.2.7, F¥(z)— F(z) € S.
Applying Lemma 5.2.10 inductively we obtain

0 <mFl(z) < (5.2.16)

, X + i b
|71 (Fl(22) — F)(z1))| = T ﬂ:’(j _\I_/':,"T.;)_31,2|:fr1(}7‘;'?r Y(zy) — F Yz1))|
! c+ /1

> — 2zl
> g e =)l

i=1

When p > 0 the product diverges when 5 — +o00. When p = 0 the product converges
to some value different from zero. Thus {F}(z1)}; and {FJ(z,)}, cannot converge both
to zero. But this is a contradiction with (5.2.16) . Therefore I'y, is a single point.

This argument is valid for any 'y € H(A), therefore,as in [30], we conclude that
Wi+ N A(6) is the graph of a function ,.

To see that ¢, is Lipschitz we suppose that there are points z; = (2, pu(x)), 1 = 1,2,
T, # s, such that

jouler) = gua)l (et VB
|z1 — 23] - 26—(C—ﬁ)2'

We claim that F}(z;) — F2(21) € S and hence they should coincide. Indeed

F2(23) — F(z1) = /0 DE,(Fy(z1 + t(z1 — %)) DFy (21 + t(z1 — 22)) (21 — 22) dt

= ( ((c+ /B)? + O1)(z1 — 22) + (2¢ + O1)(p(21) — p(x2)) )
((c = Vi) + 01)(p(z1) ~ p(22)) '

It is not difficult to check that, if p(z1) — ¢(x2) > 0 then F?(2) — F2(z) € Sy and if
@(21) — p(x2) < 0 we have that F?(2) — FZ(21) € Sa.

(5.2.17)
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5.2.5 Uniqueness of the local stable invariant manifold

We know that, if u is different from zero, the origin is a saddle point. Hence there
exists a neighborhood of the origin which we denote by U, . C R?, depending on x and
g, such that, the local stable invariant manifold Wé:'s, is unique and can be represented
as the graph of a function which we denote by ¢'. Let B, . C R the domain of ¢'. We
denote B}, = B, N{z > 0}.

Proposition 5.2.12 Let F, be a C", n > 2, map of the form (5.2.5). Then there
ezists § > 0 (independent of pu and ) such that Wi+ = graph ¢'.

Proof. We consider first the case u > 0. We suppbse that there exists a Lipschitz
function ¢ defined on the open set

D={zeR:0<z<6}

such that if (z,y) € graph @, FF(z,y) goes to (0,0) when k goes to infinity. For k
big enough, we have that WIF,;‘ (z,¢'(z)) € Bf,. Therefore, by uniqueness of the local
stable manifold

graph¢' = Wi" = graph @y ,

and since the sets graph ¢ and graph @+ are invariant, ¢ = ¢’ for 0 <z < §. This
implies that W; ™ = graph ¢/

For 1 = 0 this result is consequence of a result given in [30]. m

5.2.6 Proof of the continuity with respect to the parameter ¢

Let y = ¢(z,p,€) be the stable curve of the map F,. For convenience we write

F,(z,y) = F(z,y,n,€). Wefixeg € V., u€V, and z € (0,9).

We will see that, for any v > 0 there exists o > 0 such that, if ||e — &g]| < &y, then
(3, 1€) — o,y €0)| < v. (5.218)

From now on we omit the dependence on y in the notation.

Given z, let j, be such that 0 < z < 1/5Z, with » = 3/2. There exist ¢;(g) and ¢,(¢)
depending continuously with respect to € and u such that

I"T'A’Fj(:ca (p(ms E)a ‘S)[ <a (E)I?Tle(SL‘, (P('T: 5)1 E)l + 62(5)[77le($1 (,O(fB, E), e)la'
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By Lemma 5.2.8, we have that
1

R (5.2.19)

0 < mFi(z,p(z,€),€) <
1

I N

|moF(z, p(z,€),€)| < &1 + cz(

1
(Jz +3)"
with ¢; = max.cy, ci1(e) < +00 and ¢; = max.ey, c1(€) < +00. Let eg € V7 and v > 0.
Therefore, there exists jo = jo(v, €0) which does not depend on € such that

|5, p(z,e), el < 5
Therefore for all € € V. we have that
| FP(z, p(z,€),€) — FP(z, o(z, &), €0)|| < v. (5.2.20)

In view of Lemma 5.2.6 we define

fi(z,e) = —/pz— dpz — (ca/2)z"
fa(z, ) = —2y/px — 2co2”.

We write explicitly the dependence on € of functions f; and fs, which comes from
the dependence on € of the coefficient ¢; and, eventually, of the parameter p. These
functions depend continuously on . We define

A(b,e) ={(z,y) eR?*: 0<z <4, folz,e) <y < fi(z,€)}
as in (5.2.7). From Lemma 5.2.6 we know that, for all ¢,
fa(z,€) < p(z,€) < fi(z,€).
Let f(z,e0) be a positive function such that
f2(z,€0) + f(z,80) < p(z,60) < fi(2,€0) — f(z,€0).

Since the functions f; and f, depend continuously on €, there exists 6§ > 0, which
depend on z and &g, such that, if ||e — go|| < 63, we have that

| fi(z,€) = fi(z,&0)| < f(z,20)
(we recall that z and ¢y are fixed). Hence

faz,€) < p(z,e0) < fi(z,€).
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In the same way, we can prove that (z, ¢(z, &), €) belongs to the domain of F7°. Indeed,
since F*(z, ¢(z,€0),€0) € A(6,€p) for all i and by the continuity of F' with respect to
g, there exists 88 = 62(z, €0, Jo(v, €0)) such that, if ||e — & < &2 ,

f2(W1F5($:§0($150):6)16) < 1T2Fi($,(p($,€g),6) < fl(?'l'lFi(.’.E,‘,O(.’B,Eg),E),E)

for all 0 < i < jo(v). Thus, (z,¢(z,&0),€) belongs to the domain of F°. Then, by the
continuity of F7° with respect to €, there exists §5 which depends on z, £y and v such
that, for all € satisfying ||e — &o|| < 63,

HFjO(ZII,gO(SC,Sg), 8) - Fja (3"1 (p(.’B,EQ),EQ)“ <v. (5221)

On the other hand we observe that, by Lemma 5.2.8 and since F?(z,p(z,¢&0),€) €
A(6,€) we have that,

1

(24 32)"
1

(2430

0 < mF*(z,¢(z,)e) <

0 < mF*z,p(z,€)€) <

Remark 5.2.13 We observe that the infinite product [[5 (1+M (i+35.)™") is bounded
if r > 1. Indeed

log (([T(1+ MG +52)™)) = Y log(1 + MG +352) ™)

and the series is convergent since 3 . % 1/(i + jz)™" is convergent.

Remark 5.2.14 Using the ezpression (5.2.17) for points 21, z2 of the form z; = (z, y;)
(i.e. with the same first component), it is not difficult to check that

F*(z,y,,€) — F*(z,yz,€) € §'.
We define

C = ﬁ(l + M(i+jz)™") < +o0. , (5.2.22)

i=2
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Therefore, by Remark 5.2.14 and Lemma 5.2.11 applied iteratively with

zn = F(z,0(z,0),€)
2z = F%(z,p(z,€),¢)

we obtain that

ma-=) < [[(1+5 I (e (@, 0).€) = (@, p(@,0), )]

< C||F(z,¢(z,€0),€) — F*(z, p(z,€),€)| (5.2.23)

and using Lemma 5.2.10, (in fact, using (5.2.14) in the proof of Lemma 5.2.10) we have
that

|7I'1(21 = 22)| S H (C +1ﬁ %+ (Z ﬂx)r)”Fjo(I,go(I, E(}),E) - Fjo(x, (p(l’,E),E)”

1=2
+oo-

< g (1 G _f_l’i.x),)||Fjﬂ($}90($,€n),E) — F (g, p(z,€),€)|l

= ”Fjo(m’ (p(:.g, 60)15) - F.‘fu(x, ‘IO(:B1 E): E)” (5224)

with C defined in (5.2.22).

Moreover, by the mean value theorem applied to F~2? o F2, there exists a constant K
(independent of &) such that

(2, €0) — p(2,€)| < K[| F*(z, (2, €0),€) — F2(z, p(2,€), ). (5.2.25)
By (5.2.23), (5.2.24) and (5.2.25) we obtain
lo(z, €0) — p(z,€)| < KC||F™(z,¢(z,€0),€) — F*(z, p(z,€),¢€)].
Using the triangular inequality as well as (5.2.20) and (5.2.21) we have that
|o(, €0) — p(z,€)| < 2KCv

if ||e — eo]| < 6o = min{é3, 63,63}
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5.2.7 Analyticity of the stable curve in the weak hyperbolic
case

Now we deal with the analytic case. We suppose that F, (with n = (u,e) as before) is
in the normal form, that is

Fy(z,y) = ( (C(t l/‘—:}g); y ) X ( ammzﬂaumy ) + ( ::;g i‘g ) . (5.2.26)

Then we have the following result:

Theorem 5.2.15 Let F,, : U € C* - C? 5 = (u,e) € V; =V, x V, ¢ C xR”
with ||n|| small enough, be a family of analytic map, depending analytically on p and
continuously on €, of the form (5.2.26), satisfying that ax(0,€) > 0. Then the stable
curve is the graph of a function ¢, analytic on U, depending analytically on p and
continuously on € for any (u,€) € Vi,

Preliminaries

We perform a change of variables to move the stable curve closer to the z-axis. Con-
cretely we define the change T'(z,y) = (z,y — coz® — 2/piz). If

H=T"1'o0 FyoT, (5.2.27)
it is not difficult to check that

Hi(z,y) = (c—+/p)z+ Y= qm“j— ra(z,y = coz® — 2\~/ﬁm)
H2($’ y) = (C + \/my =T Tﬁ(x) + Tl(x:y) + Tg(l’,y) + T3(.’L‘, y)

To = —cz(c+vi—(c— V),

Ty = z*(ayp— 2y/pan) + anz(y — coz®) + crox® e — \/E)“_l(y — cz%),

T, = cllc— V)T +y—cz®+r3(z,y — c2z® — 2\/1z)]* — caec — /) *z™
—cax® e — /i) My — coz® + r3(z, y — cox® — 20/fz)),

T3 = ra(z,y — cox® — 2/pz) + 2¢/pr3(z, y — c2z® — 2\/z)

+epax® e — /R)* 'y (z, y — caz® — 2¢/px). ‘ (5.2.28)
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Now we perform the change of coordinates given by C(z,y) = (z + az?,y) with a < 0,
a parameter to be determined below and

Bi=

= | ot

We observe that 3 is such that
20—-1=a.
Then the system (5.2.27) becomes
G=C"1'oHoC (5.2.29)
with

Gi(z,y) = (c—/mzr+y+ Ro(z) + Ri(z) + Ra(z,y)
Ga(z,y) = (c+Vuy+To(z) + Ti(z,y) + Ta(z,y) + Ts(z, y)
where Ty(z) = To(z + azP), Ti(z,y) = Ti(z + azP,y) for i = 1,2,3 and

Ro(e) = o(B—1)VEz® - 2%(cs + ]
Ri(s) = ~aa{(c— yBP(L+ash Y — (o= V) + (B~ 1)y} + 2B
~c2®((1 + a2 )* — 1]
Ry(z,y) = —a{[Hi(z+az*y))’ - (c— vB)’2°(1 + az’ )P} + Ospa.

We define the set

Q(6) = {:z:eC; lz| < 6, |arg(z)| < 4(;‘_ ¥ =g}

Lemma 5.2.16 If 6 is small enough there exists vy small enough such that, if x €
Q(é) - {0}:

1) if |yl < yolz|* then Gi(z,y) € Q(5),

2) if |yl = volz|* then |Ga(z,y) — y| < |yl,

3) if [yl = yolz|* then 10|Gi(z,y)|* < |Ga(z,y)].



118 5. Invariant manifolds as graphs

Proof. We begin by proving 1). First we bound R)(z) and Ry(z,y). We observe that

a—ﬁ“—*ﬁ-l:i.

Therefore there exists a positive constant C' such that
|Ri(z)] < lall2?||(c — vB)’(1 +az”")P — (e — /i) + (B — 1)y/p — az*~?p|
+coaal|z)*tP!
= lallel? |(c = By/E+O(w)(1 + Baz’~! + O(z*~?)) - (c ~ V)
+(5 = l)v/ﬁ““ a.:r:““sﬁ| + Cgl:?:]”ﬁ_l
< Clzl? {n+ lz|*P\ /i + Ix]zﬁ"z} . (5.2.30)
To deal with R, we consider the function ¢,(v) = (u + v)* — u® for u € Q(6) and
|v| < y|ul*. Then, since a = 3/2, we have that
lpu(@)] < [vlsup{aju+€[°7, [ < ylul*}
o] [uf(1+ ul*™)
aylul(1 +u|*")
if § and is small enough. This bound is true for all u, v, and v such that u € Q(é),
[v] < y]u|* . We take
u = (c—+/p)(r+az?),
v = y—cz®*(1+az? 1) +ri(z +az®,y — co(x + az®)* — 2\/i(z + azP)),
7 = 2(7+c2)-
With this choice, since a < 0, u € Q(§) and
ol < [yl + calz + az®|* + Oz < 2y0la[* + 2cal2]* < y]2]®

<
<

we have that, there exists a constant K such that
|Ra(2,y)| = lu(v)] + Os/2 < Klul*? (56.2.31)
if § is small enough. We denote 6 = arg(z) and we recall that
T
Re (e vA+ ) — o i+ yRa(B — 1 aos(0(6 - 1)l
—[e2 + Ba®] cos(8(cx — 1)) |a]*

< o VB VA8~ )R ~ e+ o) D!
Im (c — A/t + @) = pa(B—1)sin(8(8 — 1))|z|°?

—[e2 + Ba?] sin(f(a — 1))|z|*!
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Therefore, since 38 — 2 = 7/4 and by (5.2.30) and (5.2.31), we have that

Gi(z,y)| < lalle— Vi +a(B - 1)y/pz’™" = [o; + a®[]z°7

+70lz|* + Clz|® {u + |z|*P\/u} + Or4

ol[e— v+ Vel {a(8 - )2 +O(/R) +Ou)
+|33|a_1{ = [Cz -+ ﬁaz]%_z— -+ ’}‘0} + 020_2]

< || (5.2.32)

IA

if we choose a < 0 and 7y such that

—[ea + &ﬂ? + 70 < 0. (5.2.33)

Now we must see that | arg(Gy(z,y))| < Ta—gy- 1t is sufficient to consider z € 99().
We consider the case that arg(z) = 4(:—_1), the other cases are analogous. Since

sin(0(8 — 1)) = sin% >0

we have that

I (G, )/z) < /(B — 1)sin(0(8 ~ )Jef'~! ~ o + fa Lo

+70]z*7! + Clz )P~ {p + |2|*P/B} + Oz
< 0

if § and p are small enough, a < 0 and 7, satisfies (5.2.33). Hence

arg(Gi(z,y)) = arg(z) + arg(Gi(z, y)/z) < arg(z)

We note that we can choose 7y, is independent of .

For the second property we estimate the expressions of Ty, Ty, To and T given in
(5.2.28). For T, we have that

To] < elel®le~ VA~ (c— vA)|
— GlolL+ VE+O) — (1- ay/E+O0(w)]
= cplz|*(14+a+ O0(p). (5.2.34)
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We recall that & = 3/2 and that ¢; = %2—3‘&02 Then for T} we have that

Ti = (c—1+/py+2’laxn — 2y/Han — Galc — /i)*]
+y:::“'1[c2a(c - ﬁ)a—l + a11$2—u] s a11$a+1 _
= (c— 1+ /By +yz* ealc — VE)* ™ +a112*"% — anz®*. (5.2.35)

We recall that ¢ = 1 4+ O(u). Now we bound the expression for T} and we obtain:

)| < (c— 14 VE)yle* + yolel* eeale — vE)* ! + |awtz>~*] + |an||z|*H

= (c= 1+ /E)lzl* + 1|zl [c2a(1 4+ O(\/B)) + Oy /2]
= l[z|*[0(v1) + O1ya). (5.2.36)

To evaluate Ty we consider the function ¢, (v) = (u+v)* — u® — au® ‘v for u € Q(6)
and |v| < ~y|u|®. Then, since @ = 3/2, we have that

u@)] < lol? supfala— -+ €2 6] < Aul)

1 1
< Z|l? —
= 3 |‘U| Q(a 1) |’U.’1/2(1 _ ,}(lu]]f2)lf2
1 2
< = =1 5/2
< ala— 1)y (5.2.37)

if 6 and is small enough. This bound is true for all u, v, and - such that u € Q(6),
lv| < v|ul* . We take

uw = (= VA,
v = y—cr*+ri(z,y — cx®* — 2\/ix),
7 = 2(n+c).

With this choice, u € Q(6),
lv] < |yl + e2lz]* + O2 < 2%0|z|* + col2]* + Oz < 7lz[*
Using estimate (5.2.37), we obtain
T < ca(ex — 1)(c — /)22 | |>/2. (5.2.38)
Finally, it is clear that
T3 < €],
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Collecting the bounds (5.2.34), (5.2.36) and (5.2.38), and using that Tp(z) = Tp(z+az?)
and Ti(z,y) = Ti(z + azP, t) for i = 1,2, 3, we obtain

Ga(z,y) — vl To| + |Th| + |T2| + |T3]

c2/B|z + az’|*((1 + @) + O(p))

+70lz + az”|*[0(v/i) + Oyy2]

+epala — )73 (e — VE)*? |z + azP % + O,

Ylz[*[O(VR) + O1/2] < [yl

IA A

IA

if we take u, 6 small enough .

Finally we prove the third bound. Let z € Q(6) and let y be such that [y| = ~|z|®.
We must see that

YlGi(z, y)|* < |Ga(z, )|

We write Gy = (¢ + /i)y + Top + T1 + T2 + T3 as before. We observe that by bound
(5.2.38) and since |y| = 7o|z|*

coa(a — 1)(c — /B)%*y?|z + axf|5/?
Yol z|*

T,
24
y oy

AP

+ 0a-1 = 01/2.

Since

Im(c + /i + 2% eaa(1 + O(v/R)) + O172)) = Opa
Re(c+ /B + 2% el + O(\/)) + Ova]) =
c+ E+ ca(l+ O(/p) % O1/2)|z|* ! cosB(a — 1),

we have that

lc+ i+ 2% eaa(1 + O(V/R)) + Oy 2]
> c+ /i + caalz|*7'V2/2(1+ O(v/R)) + On.

Now we bound |1 + T} /y|, from (5.2.35) we have that

T
’1+‘yl > e+ B+ (@ +azf)*ea(l + O(VE)) + Ol
1
——a%|ay1(z + azP)*t!
m laxa( )*T

1+ /i + O(k) + c2a|z|* 1 (V2/2 + O(\/B) + Oy/4).

v
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We note that, if |a| is big enough, we can choose

Yo > 2¢2(a + 1), (5.2.39)

therefore, collecting all the bounds that we do, we obtain,
Gate)l = ol (

5 _IZ, 5
> Jyl[1+ vE+O()

1+
y y y
+e0fz|* " (V2/2+ O(VA) + Oupa)| ~ [Tl
Yolz|*[1 + /12 + O(p) + O174] — cav/plz|*((1 + @) + O())
mwu+f>%ﬁmuﬂwom+am)

Yolz|*

v

\

if we choose |a| big enough (see (5.2.39)) and p, é small enough. Therefore, since for
all z € Q(8) and |y| < yolz|®

G1(=z, )| < |=]
(see (5.2.32)), we have that, if |y| = vo|z|* and z € Q(9),
YlG1(z, y)I* < vlz|* = ly| < |Ga(z,y)|.

Proof of the Theorem 5.2.15

We already have all that we need to prove the Theorem 5.2.15. The proof is as [30]. We
work with the function G” defined by (5.2.29). For convenience we write G"(z,y) =
G(z,y, 1, €). We consider the set the functions H such that, h : Q(6) x V;, — C belongs

to H if and only if

(a) h is real and analytic with respect to = € Q(6).

(b) For all (u,€) € V,, his real analytic with respect to 4 and continuous with respect
to €.

(c) For all z € Q(6) and n € V,, |h(z,n)| < yo|z|*. We recall that v, was introduced
in the preliminaries.
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For any £ € V, fixed, we define I', : H — H implicitly by
Ga(z, (Teh)(2), s €) = h(Gr(z, (Teh)(2), pi€), 1) = 0
for h € H. We introduce the function
Az, w, p) = Go(z,w, p,€) — (G} (z,w, p, €), i, €)
and the set
0 = {(z,w,p) € C* x W,z e Q6), |w| <ylz|® pe WL}

Then, by Lemma 5.2.16, A is analytic on £;. The second estimate of the Lemma 5.2.16
implies, by Rouche’s Theorem, that the functions G2(w) = w and Ga(zo, w, po, €) have
the same number of zeros in the disc

D(zg) = {w € C, |w| < ylz|*}

if we fix any zo € Q(6) and o € W,. Another application of Rouche’s Theorem
gives that the functions A.(zg, w, o) and Ga(zg, w, po, €) also have the same number
of zeros in D(zp). Thus, we can solve uniquely the equation A.(zg,w, o) = 0 for w,
for any zo € €2(6) and po € W, fixed. Moreover, the implicit function theorem and the
uniqueness guarantees the analyticity of I'.(h) with respect to (z, ). We observe that
this function is real for real values of (z, u).

From the estimates in Lemma 5.2.16 one can prove that I'.(k) € H and using Montel’s
Theorem, if we fix any initial condition hg the iterates h* = I'*hy must have a subse-
quence converging to some h € H. The points on the graph of this function converge
to the origin by G, and then by uniqueness, it must coincides with ¢,.

Now we prove the continuity with respect to €. Since the function ¢, is real and
analytic in z and since (8) is compact, we can restrict ourselves to the real part of
the domain and in the real case the continuity is proved in Subsection 5.2.6.

5.3 Local invariant manifolds in the parabolic case

In this section we want to prove that the local stable invariant curve of the system
(5.1.1) can be expressed as the graph of a function. For this we deal with its Poincaré
map defined by

Pfls(xay) = "pp,e(tﬂ + 2me, to, T, Y)
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whhere 1)), . is the solution of (5.1.1). We observe that, in fact, the stable curve of P/
is the intersection with the plane ¢ = ¢, of the local stable curve of the system (5.1.1).

We recall that the Poincaré maps given in (3.4.7) and (3.5.3) have the form

g . T + 2mey 2meqy(z, y, €)
Pi(z,y) = ( y ) + 2me ( ) e lre) (5.3.1)

+,Ur5p+2n+3wﬂ,£ (-'1:: Y, 9; H 5) + ﬂ28p+3R2k—3($3 Y, g! Hy E)

where § = t/e, V'(z), q1, ¢2 € Pn-1(independent of u), Y. € Prn-3 and Ry 3 €
Por_3 X Pyy_3.

In [30] maps of the form

[ z+cy+ flz,y,m)
Fq(x,y)—( y+g(z,y,n) )

with ¢ # 0, are considered. The existence of local stable curves as graphs of analytic
functions in z, and analytically dependent of parameter 7 is proved. After some changes
of variables, the following normal form for F,(z,y) is obtained:

Mnlz,y) = ( I;y ) i ( z*p(z, ) +Om“1yq(x,n) ) 4 ( ::%Ei g 3 ) 3

with 2 < k,l < n, and p(z,n) = ag + ap1T + - - - + a,z* *and q(z,n) = b + bz +
s+ bpz™ !l Let

T
Q(é)— {.’L‘EC 0 < |$‘ <5,|8.1'g($)l<2(k—_1)'}
The following theorem is proven in [30].

Theorem 5.3.1 Let N, : UCC*—-C* 0eU,neV,cC,0€V,, be a family of
analytic maps, depending analytically on n, of the form (5.8.2) satisfying the condition
[ > 5‘3—2“1 and ap > 0. Then

1) if & is small enough the right hand branch of the stable curve is the graph of a
function ¢ analytic on §2(6), depending analytically on 7.

2) ¢ has the following asymptotic expression when |z| — 0:

e(z,n) = v/2a/(k + 1)z° + hott., B=(k+1)/2.
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Remark 5.3.2 This is only one of the cases considered in [30], but it is sufficient for
our purposes.

If we apply Theorem 5.3.1 to Pﬁ we will obtain that the domain of ¢, Q(6), will depend
on &, because the linear part of Pﬁ do depend on €. We can not exclude the possibility
that 6 — 0 when € — 0.

We will state a suitable modification of Theorem 5.3.1 which gives the existence of local
invariants manifolds of the Poincaré maps given in (3.4.7) and (3.5.3) as the graph of
a function in a uniform domain with respect to parameters. We are led to consider
maps of the form

_ [ z+ey+ep(z,y,p,e)
Fue(z,9) = ( Y+ epa(z, v, py€) ) (5:33)

with py, ps € Py, continuous in € and analytic in z,y and p. From now on, if there is
not danger of confusion, we omit the dependence on p. We perform the linear change
of variables Ci(z,y) = (ez,y) in order to put the linear part in the form

11
01"
Then in the new variables, which we rename by (z,y), the map F), . reads as

_ ([ z+y+plez,y)
F#‘s(xay) == ( y+6p2(517:y) )

We write

p(ez,y) = > fi€7'Y + Ry(ez,y)

i+j=k

epa(ez,y) = Z gije 7'y’ + R} (ex,y)
i+j=k

where RL(:I:, y) = o(||(z, y)||¥).

Lemma 5.3.3 There ezists a change of variables Cy of the form

_(E+0En) \ _ [ €+ &y )
Cal&m) = ( n+¥(n) ) B ( M+ D ivink ‘I’;‘fi’?j
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126
such that
Cyo Nye=Fyeo0 Cy (534)
with
_ € +n+ri(e€n)
Nyel€sm) = ( N+ e g of* + eF(egr11 + kfro)z® ly +eri(e€,n) |- (5.3.5)

Moreover the coefficients ®;x—; = O(e'™!) and V;x—; = O(¢') for 0 < i < k and

Qo = Por =0.
Proof. As in [30], we write
Np,s(‘g! n) = (

with

R(Em) =Y kg

it+j=k

§+n+h'(&n)
n+h*(€,n)

fori=1,2

and rt = o(||(&, n)||¥). Collecting the terms of order k from the equality (5.3.4), we
obtain that the coeflicients ®;;, ¥;; and hf,;j must be satisfy the following systems of

linear equations:

g 0 Ty
() 0 0 Vio11
G ¢ o Vi
b G G5 - 0 Wok
and

0 0 Pr0
;1:) 0 0 D11
3 ) o0 q)kl—z,z
B D) 6D 0 o,

k+1 2
e g0 — Ao
k 2
€%k-11 — hi_y
k—1 2
= | € Gk-22— P,

EJoe — hg,k
€* fro — hro + Yipo

k-1 1
e fr-110 — hp_13 + Yk-121
k—2 1
= | € fi-22— hg_go+ V22

for — hox + Yo
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We impose h} o = € 1gro, hi; =0, hZ; = 0if j # 0,1 and ¥xp = —€* fr0. Therefore,
solving the first linear system we obtain that A7 ,, = e**lgp_1y + ke fi o, and for
all j # 0, ¥,—j; = O(e"7). Moreover, solving the second system we obtain that
®,_;; = O(e"7~"'). We observe that we can take ¥q; = g = 0.

Now we deal with the remainders r; and 7. We write ®(£,1) = 3,4 Pi;&'n’ and
(& m) = sk Vi§'n’ and we note that
! E4+n+P+ TV +pi(e(€+P),n+ )

’ N+ ¥ +epy(e( + ®),n+ T)

( E+mn+ h'(E,n) +ri(e€,m) )
n+ h*(E,n) +erke€,n) |-

C'z-'l o -F:t&,E o C2(€1 ??)

This proves the lemma. =

We perform the change of variables C;*(&,1) = (£/e,7n). Then the map (5.3.5) takes
the form

Nue(u,v) = CiloN,eoCi(u,v)

B u+ v + erg(u, v) (5.3.6)
- v+ Egrou’ + e(egr_11 + kfio)u* v + eri(u, v) aa

with gk 0, 9k-1,1, fro and 7k (u,v) = o(||(u,v)||)* depending on &.
Proposition 5.3.4 Let N, : U C C? — C?, such that |u| < po and 0 < € < &g be a
family of analytic maps, depending continuously on € and analytically with respect to p

of the form (5.3.6) with the condition that the coefficient g o(e, 1) satisfies gio(0, u) >
0. Then there exists &6 > 0 independent of € and pu such that

1) the stable curve is the graph of a function ¢ analytic on (6), depending continu-
ously with respect to € and analytically with respect to p.

2) The function ¢ has the form @(u,e, p) = f(u,€) + ph(u, e, p) with
flu,€) = /295 0/ (k+ Du* D2 L hot..

where gi o = gr0(€,0).

Proof. The steps of the proof of the Theorem 3.1 in [30] work in this case except by
one technical lemma. We must substitute Lemma 3.4 of [30] (the equivalent lemma in
the weak hyperbolic case is Lemma 5.2.8) by the following statement:
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Let 0 <r < 2/(k—1). If 6 is small enough, (u,v) € A(§) and 0 < u < 1/5" then
0 < N, (u,v) < 1/(G+e).

The proof of this lemma follows immediately. Hence the stable manifold can be ex-
pressed as the graph of an analytic function ¢ in Q(6), depending analytically with
respect to u. Moreover, we can prove the continuity with respect to € in the same way
as we did in Section 5.2.6.

In order to prove 2), we observe that the function ¢ is analytic with respect to p and
therefore

o(u,e, 1) = ¢(u, €, 0) + pdup(u, €,0) + O(4’)
which gives the result. m
We state a useful corollary for our purposes.
Corollary 5.3.5 There exists 6 > 0 independent of € and p such that the map (5.5.3)

has a unique stable (an unstable) local invariant manifold which can be erpressed as
the graph of a function

o 0(8) x {u € C: 1] < po} x [0,0) > C
which 1s analytic in x € Q(6), analytic with respect to p and continuous with respect to
e. Moreover, ¢*(z,¢e, p) = f(z,€) + pg(z, e, p).

Proof. We must go back to the original variables. It is clear that

F,e=C{'0C20C 0N, 0C10C; 0 C,.

Then if (z,y) = C(u,v) where C = C;! 0 Cy 0 C;, we have

() = rea(® ) =en (VAEE )
_ u+ed(u/e,v)
( v+ ¥Y(u/e,v) )

and by Lemma 5.3.3 (in particular by the conclusion on the orders of the coefficients
¢i k—i and 1, —; with respect to €), the functions

D(u,v,€) = eP(u/e,v) U(u,v,e) = ¥(u/e,v)
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are of the form

®(u,v,e) = @i‘j(s)u"vj
@(‘U,U,E) = ‘i’iij(E)’h‘.in

where the coefficients @i,j (¢) and ¥, j(e) are continuous at € = 0. Thus the change C
is of the form

Clu,v) = (u+ ®(u,v,€),v + ¥(u,v,€)) (5.3.7)
where ® and ¥ are of order k in (u,v) and continuous at & = 0.

Since the local stable invariant manifold of NP_E is the graph of ¢ and the change of
variables C' is of the form (5.3.7), the stable manifold of F},. can be expressed as the
graph of a function ¢°. Moreover, expanding, using Taylor’s theorem, with respect to
u at = 0 we have

©*(x,6, 1) = f(z,€) + pg(z,€, ).

Proof of Proposition 5.1.1

We perform the change of variables Cy(z,y) = (z/2m,v) and, since 2k — 3 > n — 1, it
is obvious that the Poincaré maps given in (3.4.7) and (3.5.3) have the form of (5.3.3).
With slight changes in Corollary 5.3.5 we obtain that the local stable manifolds of the
Poincaré map (5.3.1) and the Poincaré map of the auxiliary system given in (3.5.3)
can be expressed as the graph of a function. Therefore, the stable manifold of systems
(5.1.1) and (3.7.4) can be written as graphs from the graphs of their respective Poincaré
maps.

We introduce the new parameter 7. Later we will evaluate 7 at peP*?, but for the
moment it is useful to consider 7 as an independent parameter.We define the map

G(z,y,6,1,p,¢) = CT'FJ(Ci(z,y))
where C(z,y) = (z/27,y). We observe that G has the form

z + ey +epi(z,y,€)

y +epa(z,y,€) ) +ner(e,y,0,m, 1,€)

G(z,y,0,n, p1,€) = (



130 5. Invariant manifolds as graphs

where py, pa, 7 € P,_;. This map is C° and analytic in z, y, ¢ and 7. Applying
Corollary 5.3.5 to G we obtain that the stable manifold of G can be expressed as the
graph of a function ¥ of the form

@(z,0,n, u,€) = f(z,€) +ng1(x,0,m, u,€) + pga(z, 0,7, 1, €)

analytic with respect to z, n and u. But, since G(z,y, 0,0, i, &) does not depend on p,
by uniqueness of the stable manifold, g»(z, 6,0, u,e) = 0, and, since 1 is analytic with
respect to 7, g2 can be written as

92(2,0,m, u, ) = nga(x, 6,7, p, €).
Hence, the function 7 is of the form
¢(z,0,n, ,€) = f(z,€) +n3(z,0,n, p,€).
Therefore,

p(z,0, ue?*?, p,e) = f(z,€) + pe”*?g(, 0, ue?*?, p, €)
= f(z,€) + pe***g(z, 0, p, €)

is the stable manifold of C7* o P o Cy which is C, analytic with respect to (z, x) in
2(8, o) and, by the fact that Pﬁ is 2w-periodic with respect to # and by the uniqueness
of the local stable manifold it is 2m-periodic with respect to 6.

Going back to the original variables, the stable manifold of Plf is of the same form

Pue(z,0) = f(z,€) + pe?**g(z, 0, p, €).

Moreover we know that, if 4 = 0, the stable manifold of P{o does not depend on &,

therefore, by the uniqueness of the stable manifold, f(z,e) = —/—2V(z) which is
the corresponding to the unperturbed system: f does not depend on €.

In order to prove that g is C' in 6, we introduce
Yue(t to, z,y) = (W) (¢, to, 2, 1), 7 . (t, 10, 2, Y)),
the solution of the system (5.1.1). We observe that, for all 6,
Pue (Ve (€6, 0,2, 0u(2,0)), 0) = ¥ (€6, 0,7, P, (2, 0)).
We invert, with respect to z, the function

u = i,S(EQ, U,.'L', Eop,s(mao))
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which depends C! with respect to # and we obtain a function with the same kind of
dependence with respect to 6:

z = h(u,6).
Therefore, we can obtain an explicit expression of ¢, (u, ) from @, (u, 0):

ﬁop,e(u: 6‘) = ﬁ,e(EQ: 0: h(ua 9)1 Qo,u,s(h(ui 9): 0))

which depends C*! with respect to fl. Therefore, by the uniqueness of the local stable
invariant manifold, the result holds.

5.4 Local invariant manifolds in the weak hyper-
bolic case

Now we prove that there exists an analytic function %, such that the local stable
(unstable) manifold of the system (5.1.2) or equivalently of the map given by (4.4.2),
can be expressed as the graph of this function. As in the previous section we use a
suitable modification of Theorem 5.2.15 in order to prove the existence of invariant
curves of the Poincaré map (4.4.2). We recall that the Poincaré map (4.4.2) has the
form

1+ p?e?*2(c13 + €¢) 2me + cqple?P? T
coplert? 1+ p?e?t2(—c13 + €cs) Yy

o -
Pp (xl y) - (
+27e 2mequ(2,1,€) + pe? 2, (z,y,0, p,€) (5.4.1)
—V'(z) + 2meqa(z, y, €) IENTR S
+#’2€2p+2R2 (.7:, Y, 9: 1, 6)

where ¢13, ¢; are constants and ¢, € Py, q2 € P2, ¥, € P; and Ry = (R}, R3) € P,. We
also recall that in Lemma 4.5.2 we prove that there exists a linear change of coordinates
C(0) = 1d +O(u*e**1) such that the Poincaré map has the form

Gitun) = ( ol smierente ) ()

2'JTEQ1 (u: v, E)
et ( —V'(z) + 2meqa(u, v, €) ) 15:4:2)

+p'€p+gwp,£ (‘U,, v, 90) + u262p+2ﬁ2(u: v, 80)
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with p = p(u, &) = O(ueP*V/?), q1, g2, ¥, are the same that in (5.4.1) and, R, € P,

This form suggests us to consider a model map, F), . given by

_ | czx+ey+ep(z,y,pe)
Fue(@,y) = ( pex + cy + epa(z, y, p, €) ) (6.43)

with ¢ = 1 + eue + O(p’e?) and py, py of order 2 in (z,y) variables. Moreover we
suppose that it is continuous in £ and analytic in z,y and . From now on, if there
are not danger of confusion, we omit the dependence on u,e. We perform the linear
change of variables C)(z,y) = (ex,y) in order to put the linear part in the form

e 1
et ¢ )
Then in the new variables, the map F) . reads as

_ cx +y+ pi(ez, y)
F‘u.s(mly) - ( “52x+cy+6p2(5$:y) -

We perform another linear change of variables Ca(z,y) = (z,y — £,/ux) and then, the
map G = Cy 0 F o Cy' is of the form

Bl = ( (c+evB)z +y + n(ez,y) )
pe (c—ey/R)y + eqa(ez, y)
with ¢1, g2 € P,. We observe that G, is analytic with respect to ,/z and continuous
with respect to e. We write
alez,y) = Y fie'e'y’ + Ri(ez,y)
i+j=2

eq(ez,y) = Y gigetla'y +eRi(ez,y)
it=2

where Rj(z,y) = o(||(z,y)||*). The map G, has the form (5.2.4) considered in Section
5.2. Now we perform a change of variables in order to achieve a normal form.

Lemma 5.4.1 There ezists a change of variables Cs such that

_ £+ _ [ €+ i Pl
Ht ( n+P(€,n) ) B ( n+z;=k m;ginﬁ )
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and
C30N,.=G,.0C3 (5.4.4)
with

_ (c+ey/B)§ +n+ri(e€,n)
Nue(&rm) = ( (c—ey/m)n + €%az0€? + 5201211“1; + er3(e€, ) ) ' (5.4.5)

The coefficients ®;5_; = O(e*?) and V;5_; = O(€*) for i = 1,2 and $g = Yo = 0.
Moreover they are continuous with respect to € and analytic with respect to (/.

Proof. Analogously as we did in Section 5.2.2, we choose h, = hi; = h}, = h3, =0
and ¢pa(p) = Po2(p) = 0. Hence it remains to see that the solutions of the linear

system

ai(u,€) 0 -1 0 0 0 b2 €2 fan
0 0 as(p, €) 0 10 o1 3920
2(c+eym) az(p,e) 0 =1 00 Yoo | _ | €fnn
0 0 2(c+eym)  as(p,e) 0 1 Y g1
1 c—e/i 0 0 00 h, foz
0 0 1 (c—eym) 00 K, €902
where
ar(p,e) = (c+.s\/,t7a)2 —(c+ey/p)
az(p,e) = (c+eyn)’ —(c—evp)
as(u, €) ¢ —ep—(c+eyn)
ay(pe) = —eu—(c—eyp)

give solutions of the form we have stated. We call A the matrix of the linear system
and b its non-homogeneous term. We can write

A = Ao(e) +e/uB(\/1, €)

and then the linear system can be written as

(Ao +ey/AB) = b
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with { = (¢20, d11, T/’zo:?.bll;hgo:h}l)T: b= (52f2015392{},Ef11,€2911;f02:5902)T- There-
fore, the solutions of this linear system are

¢ = A7Y(I +e/BB) b = A3'b — ey /A5 Bb + O(e2p).

Therefore, as in Lemma 5.3.3, since Aj'b satisfies the properties on coefficients bij, Vi
and hfj that we have stated, it is not difficult to see that ;0 = O(e), ®y; = O(1),
\Ijgo = 0(52), lI’ll = O(E), h’%ﬁ = 0(63) and h’%l = 0(62).

Now we deal with the remainders r} and r3. We observe that

B B _ [ etey/m)E+®)+n+ TV +aq(e(€+2),n+7)
G5~ © e 0 Ga(&,m) *( (= ey/B)(n + ) +eqale(€ + @), n + ) )

( (c+eym)E +n+ h (€ n) +ri(e€,n) )
(c—eymn+h*(&n) +eri(e€n) )
This prove the result. m

We perform the change of variables (u,v) = C{(€,7) = (€/e,n), then the map (5.4.5)
takes the form

N.U-.E (us 'U) = C'1_1 9 N#,E o Cy (uv 'U)
_ (c+e/m)u+ ev + erz(u, v)
= ( : ) (5.4.6)

¢ — €/R)v + eagou? + gaynuv + erg(u, v)

with r5(u,v) = o(||(u,v)||)* depending on ¢, e,/i and u. The coefficients az and ay;
can depend on &.

Proposition 5.4.2 Let N,. : U C C* — C?, such that |u| < po and 0 < € < & be
a family of analytic maps, depending continuously on € and analytically with respect
to \/1i of the form (5.4.6) with the condition that the coefficient ax(e, /p) satisfies
a20(0,/it) > 0. Then there exists 6 > 0 independent of € and p such that

1) the stable curve is the graph of a function ¢ analytic on Q(§), depending continu-
ously with respect to € and analytically with respect to (/..

2) The function ¢ has the form o(u, €, pn) = f(u,€) + \/Hg(u, €, /) with

f(u,€) = v/2a%/(k + Du*+V/2 L hoyt.

where a3, = ax(e,0).
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Proof. As in the parabolic case, the steps of the proof of Theorem 5.2.15 work in this
case except one technical lemma. We must substitute Lemma 5.2.8 by the following:

Let 0 < r < 2. If § is small enough, (u,v) € A(6) and 0 < z < 1/5" then
0 < MmN, (u,v) <1/(j+e).

The proof of this lemma follows immediately. Hence the stable manifold can be ex-
pressed as the graph of an analytic function ¢ in Q(§), depending analytically with
respect to u. Moreover, we can prove the continuity with respect to € in the same way
as we did in Section 5.2.6.

In order to prove the second property, we observe that the function ¢ is analytic with
respect to /p therefore

o(u, €, 1) = p(u,€,0) + /1dup(u, €,0) + O(k).
m

We state a useful corollary for our purposes.

Corollary 5.4.3 There exists § > 0 independent of € and p such that the map (5.4.8)
has a unique stable local invariant manifold which can be represented as the graph of a
function

@* 1 Q(8) x {u€C: || < po} x [0,60) = C

which is analytic in x € Q(8), analytic with respect to /i and continuous with respect
to €. Moreover, ¢*(z,€, 1) = f(z,€) + /Bg(x, €, ).

Proof. We must go back to the original variables. It is clear that
Fe=Ci'0C;'0C30C,0N,0C 0 C5 06 Ch0Ch.
Then the original variables (z,y) = C(u,v) where C = C;' o C5' o C3 o Cy, therefore,

(;) = CiloC7'oCy ( u/e ) =CiloCy! ( “I{T‘I:I(’S;f;;’) )

_ 1 U/E -+ tIJ(u/E, ‘U)
= G (v+w(u/s,v)+ﬁu+\/ﬁf‘l’(”/5*”))

u+e®(u/e,v)
( v+ ¥(u/e,v) + /pu+ \/ue®(u/e,v) )
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and by Lemma 5.4.1, the functions
& (u,v,€) = eP(u/e,v) U (u,v) = U(u/e,v)

are of order 2 in the (u, v) variables and continuous with respect to € at ¢ = 0. Therefore
the change C has the form

C(u,v) = (u+ P(u,v,€),v + Eu + ¥(u,v,€) + /ad(u,v,€)). (5.4.7)

Since the local stable invariant manifold of N, . is the graph of ¢ and the change C
has the form (5.4.7), the stable manifold of F, . can be expressed as the graph of the
function ¢®. Moreover, expanding ¢* in /i1, by using Taylor’s theorem, we have

o*(z,e,p1) = f(z,€) + pg(z, €, ).

Proof of Proposition 5.1.2

We recall that the Poincaré map P} given in (5.4.1) is
Pg =C% Gﬁ o (Cg)_l

where C% = Id +O(u?e?*!) is linear and 2m-periodic in 6. Therefore it is sufficient
to prove that the local stable invariant manifold of the map G"Ei can be expressed as
the graph of a function having the properties we want. We wnte the map G" given in
(5.4.2) as

s 2
Gi($19)= C:I:+py+sp1(:::,y,,u,s)
psz + cy + epa(z,y, 1, €)

and we recall that ¢ = cosh(p2me), s = sinh(p27e), p = O(ueP™/?) and p depends 27
periodically on . Moreover we recall that p;(z,y, €, 1) € P,.

Let Ci(z,y) = (x/2m,y). It is clear that the function G% = C; 0 G% o C! has the form
given in (5.4.3) with the parameter u = P2 Therefore by Corolla.ry 5.4.3 we obtain
that the stable manifold of G‘e can be expressed as the graph of a function @*, which
is analytic with respect to (:r: p, 1) € Q(6) x {n € C?: |n| < uo} and continuous with
respect to € and &, with 8, independent of €, 4 and 8. A similar argument to the one
given in the proof of Proposition 5.1.1 gives the result. /



Chapter 6

Flow box coordinates

6.1 Introduction

In this chapter we prove the existence of flow box coordinates of a system with generic
hypotheses, in a neighborhood of the stable manifold which does not contain the origin
and it is independent of the parameters p and . A similar result is in [43]. There, the
flow box coordinates are found implicitly using the variational equations in a neigh-
borhood of the stable manifold. Our proof gives these coordinates in an explicit way
and gives a careful estimate of the distance between the change of coordinates in the
unperturbed case and the change in the perturbed case, using variational equations
with respect to the parameter p.

Delshams and M.T.Seara [20] [21] use flow-box coordinates defined near a hyperbolic
fixed point. To construct such coordinates they use the Birkhoff Normal Form in an
essential way. Also in [68] the authors construct similar flow box coordinates in the
Arnold example. They use that the equation is analytic with respect to the time.

We begin by introducing notation and the hypotheses H1, H2 and H3 we will assume
in this Chapter. With these hypotheses we will prove a result on the existence of flow
box coordinates: Theorem 6.2.5. Then, the application of this theorem to equation
(1.1.1) gives Corollary 6.2.6, in which the result is obtained applying Theorem 6.2.5,
not directly to (1.1.1) but to the averaged equation.

To prove Theorem 6.2.5 first, in Section 6.3, we translate the stable manifold to the first
axis of coordinates and in these coordinates, for the unperturbed system, we construct
explicitely the flow box coordinates, just integrating the equation and using that the
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system is Hamiltonian.

To construct the flow box coordinates for the general system in a neighbourhood of (a
part of) the stable manifold, we use a special parameterization of the solutions of the
equation. We parameterize the solutions, z(¢, s,Y’) with two parameters (¢,s) € R x C
in such a way that £ € R is a time parameter, Y € C and

z(t + 2me,s,Y) = 2(t,s + 27, Y)

in a suitable domain. To obtain this we use a technique designed by Lazutkin to do
a controled analytic continuation. This is done in Sections 6.4.2 and 6.4.3. From this
parameterization we easily obtain another parameterization of the form

w(t+s,t/e,Y),
that is, we separate in some way the slow time ¢ + s and the fast time ¢/e.
Next we find a first flow box coordinates (7, )) from the condition
w(7 (z,v,0),0,Y(z,v,0)) = (z,v)

using the scheme of the proof of the implicit function theorem. We obtain it close to the
analogous ones we have calculated in the non perturbed case. Then easily we pass to
new flow box coordinates (7, F) with F close to the energy variable (the Hamiltonian).

Finally, using the Hamiltonian character of the equations, we slightly modify these
coordinates to make them canonical.

6.2 Definitions and main result

We consider Hamiltonian systems of the form
H(z,y,t/e) = Ho(z,y) + pe'Hi(z,y,t/e, p,€)

where
2

Ho(z,9) = = + V().

Remark 6.2.1 Since we will apply the result of existence of flow box coordinates to an
averaged system, here ¢ and Hy; mean a generic constant and a generic Hamiltonian
respectively which (in general) do not coincide with p and hy introduced in Chapter 1.
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The associated equations are

& = y+ pueld Hi(z,y,t/e, pu,€) (6.2.1)
y = =V'(z)— pe'0-H(z,y,t/e, p,e).

For w = (w;, w;) € C?, we define
[w]| = max{|wi], |wa}.
We will assume the following hypotheses
H1 The potential V is an analytic function in {z € C : |z| < &}, V(z) = —apz"—...
with a, > 0, n € N and 3 < n.

H2 Hy(z,y,0,¢,p) is C° 2n-periodic in § and analytic in the z,y, u variables. The
variables (z,y, 1) belong to

B(bo, po) = {(z,y) € C* : [|(z,9)|| < &} x {n € C: |l < po},
6 € R and 0 < £ < gg. Moreover Hy(z,y,0,¢, 1) = O(||(z,y)||*) with k > 2.

In our applications, k wil be always greater of equal than n — 1.

Under hypotheses H1 and H2, the origin is a fixed point. Next hypothesis deal with
the stable manifold of the origin.

We define the open set

Qb)) = {:1: €C:0<Rezx < b, |arg(z)| < S(ﬁﬂ_ 1)}

where 3 = n/2.

H3 The origin has a stable manifold (in the sense of Chapter 5) which can be repre-
sented as a graph of a function ¢ : 2(é) x R — C having the form

Pue(@,0) = p(z,0,e,p) = f(z) + pelg(z,0,¢, )

with 8 =n/2, f(z) = —\/—2V(z) and g(z,0,¢, ) is C°, C* and 2m-periodic in
6 and analytic with respect to z in (&) and with respect to pin {u € C: |u| <
o }. Moreover

g(z,8,¢,p) = O(a')

for some | > k/2 > 1. owvER
Jgs"l il
FPilnd <
. Vr g P
29 %
" ;‘-: R
[} =1 . as :h
we ~ 3
‘fno‘-f' .-l?,:?
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Remark 6.2.2 In Chapter 5 we have given sufficient conditions for the averaged sys-
tems we will consider, to satisfy H3.

Remark 6.2.3 By Chapter 2, the unperturbed system (u = 0) has a parameterization
of the stable manifold defined in

{fueC:Reu>T , |Imu| <a}

and denoted by yo(u) = (ao(u), fo(u)).
In the next definition we fix some parameters.

Definition 6.2.4 Let é; > 0 be such that 6, < 6y and let Cy and C; be such that
Colzl? < |f(z)| < G|z
for all z € Q(6y) where B =n/2. We define

ro = —( Cuff +1/C263° + CR(E)).

Consider p and e. For any 6, &', r and n such that 0 < 6, < & < § < &, 0 <7 < 19
and 0 < 7 we define the open sets

V(éfi 63?"!”)
= {(x,y,ﬂ) €C*xR:§ <Rex <6, |arg(z)| <

4(6 — 1) -, |y - ‘Pp,e(ma 9)! < T}

and
Vo(8',6,7,m) = {(z,y) € C*: 30 € R such that (z,y,0) € V(&,6,r,7)}.
In fact, since ¢, . depends on yu,€, V and V; also depend on y, €,

We define 1o = 7/(20(8 — 1)). The main result of this Chapter is:

Theorem 6.2.5 (Flow-box coordinates). Let 0 < 6 < 6o/3. If the hypotheses H1-H3
hold, for any 0 < &' < é there ezists v > 0 and a canonical change of variables

(i s = g) € V(8,8,rm0) — (T, 1,6) = (T\(z,4,6), Tz, 1,6),8) € V
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of class C*, 2m-periodic in 6 and analytic in the z, y variables, such that it transforms
the system (6.2.1) to

T=1
. (6.2.2)
and satisfies

T'(z,y,0) = To(z,y) + O(ue?), I'(z,y,0) = Zo(z,y) + O(ue?),

where the change (z,y) — (Zo(z,y),Zo(z,y)) is the corresponding change for the un-
perturbed system. Moreover the change is continuous in (z,y,0, s, €).

To study the splitting of separatrices we will use the following corollary of Theorem
6.2.5 which is obtained when we apply it to a system of the form

T = ey+ pePF + 2P0, Rog o
y = —eV'(z)— peP 0 F — uPePt30, Rk

which comes from the system (1.1.1) by the averaging procedure. The system (1.1.1)
satisfies either the hypotheses HP1-HP4 or HP1-HP3, HP6 (according if we are
considering the parabolic case or the weak hyperbolic case). In such cases the results
of Chapters 3 and 4 apply and we have that the stable manifold can be parameterized
by ;. (2, 5)-

This corollary gives a new flow box coordinates and additional information over the val-
ues of these flow box coordinates on the stable manifold 5 (¢, s). Let C be the change
which transforms the system (1.1.1) to the averaged system and is given in Lemma
3.3.4 and in Remark 4.3.4. (In the weak hyperbolic case, this Remark summarizes all
changes designed in several previous lemmas).

Corollary 6.2.6 Given 8| such that 0 < §] < § < 6y/3, there exist 1, > 0 and a
canonical change of variables

(2,9, = 2) € C(V(8,6,r1,10)) = (5, E,6) = (S(2,4,0), €(z,4,6),6) €

of class C*, 2m-periodic in 6 and analytic in the z,y variables, such that it transforms
the system (1.1.1) to

S =
E =0
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and satisfies
S(z,y,0) = Solz,y) + O(ue”™™),  E(z,y,0) = Eo(z,y) + O(ue?™)

where ig = 1 in the parabolic case and igp = 1/2 in the weak hyperbolic case, and
(z,y) — (So(z,¥), E(z,y)) is the corresponding change when pu = 0.

Meoreover, there exists T > 0 big enough such that for all (t,s) such that T < |t+Res| <
2T, the parameterization vy;, (t,s) of the local stable manifold given in Chapters 3 or
in Chapter 4 satisfies

»},ﬁ,z(t, s) € C(V(§;1 6,71,70))
and
S(vsc(t,s),t/e) =t +s5+puePt™X(s) and  E(y;.(t,5),t/e) =0

and X(so) for some so, which we can choose freely, depending on initial conditions on
the stable curve. Moreover X(s) is analytic and 2me-periodic.

In addition the change (z,y,0) — (S, E,0) is continuous in (z,y,6, 1, €) and analytic
in (:L'v y? P:) %

Remark 6.2.7 To fir ideas we consider only the parabolic case and the weak hyperbolic
case, which are the object of this memorr, but the proof also would work in the hyperbolic
case, with some small changes.

In this Chapter we omit the dependence on p and & which is assumed that it is analytical
and continuous respectively.

6.3 Some preliminaries bounds

6.3.1 A preliminary change of variables

Since we have assumed that the stable manifold can be expressed as a graph of an
analytic function, we can easily move the stable curve to the z-axis. We perform the
change of variables C : V(&) 60,70,0) — C? x R defined by

(2,9,0) = (z,v =y — f(z) — pe’g(z,6),0). (6.3.1)



6.3 Some preliminaries bounds 143

This change puts the local stable manifold at v = 0. The change is canonical. It maps
V (8, 60,T0,0) onto U(8p, bo, 70, 0) where

™

U(8, 60,70,0) = {(sc,'u,f?) € C>*xR: 68, < Rezx < &, |arg(z)| < G=1) lv] < -ro} ;

We note that, in general, we can not extend C' in such a way that it is analytic at z =0
because f and g are not analytic at 0. The equations in these new variables are

& = v+ f(z) + pelg(z,0) + pe'gi(z, v, )
v = —v(f(z) + pe':9(x,0)) + pe’ga(z, v, 0) (6.3.2)
0 = 1/

g(z,v,0) = O,Hi(z,v+ f(z)+ pne'y(z,0),0)
g2(z,v,0) = O:Hi(z,v+ f(z) + pey(z,0),0) — O Hi(, f(z) + ne’g(x,0),0)
+[ff($) + ﬂfqa:rg(:r:e)][a Hy(z,v+ f(z) + uelg(z,0),0)
—8yHy(z, f(z) + pe’g(z,0),0)].
To obtain the expression of g, we have used that ¥ = 0 when v = 0. This condition
gives a relation which permits to simplify the form of g,.

For any 6, &, r and n such that 0 < 65 < § < § < 8, r < 19 and 0 < 7 we define the
sets
»

7= M <)

U(d',é,r,n) = {(:r,'u,f?) €C?*xR:§ <Rex <4, |arg(z)| <

and

Uo(8,6,7,m) = {(:z:,'u) € C?:§ <Rezx <6, |arg(z)| < Rﬁl—T) -, v < r} )

We observe that these sets are convex. We denote by X, : U(6p, 8, 79,0) — C? x R,
the vector field X, = Xy + pe?X; with

'U+f(3.«") g($,8)+§1(:c,v,9)
Xo = —/'uf’(x) and X; = Evé‘zg(x, 6) — go(z,v,0) | .
1/e
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Along this section, K will denote a generic constant independent of u,&,48’ and 6§ and
K(8',6) will denote a constant independent of x and €.

Some preliminary bounds of the vector field X, are necessary.

Lemma 6.3.1 Let » = min{k — 1,1} > 1 (k and | have been introduced in H2 and
H3 respectively). Then

1) The vector field X, is bounded, more precisely, there exists a constant K such that
for all (z,v,8) € U(6), 80, 70,0)
| X1(z,v,0)|| < K||(z,v)]|".

2) The vector field X, restricted to U(8}, 8,70, 0) is Lipschitz with Lip(X;) < K& 1.
8) For all (z,v) € Uy(8y, do,70,0) and h € R? such that (z,v) + h € Uy(8o, &o, 70, 0),
”Xg(x + h,l, v+ hg) — Xg(l’, ‘U) = .DX{)(x, ’U)h.” S K(&B, 6g)||h||2
Proof. We note that f(z) = —y/—2V(z) = O(2™?). To prove the first bound we

recall that g(z,0) is O(z') and that Hi(z,y,6) is a function of order k. For (z,v,6) €
U (64, 80,70, 0) fixed, we define the auxiliary functions:

A Hy(s) = 0 Hy(z, sv + f(z) + peg(x, ), 6)

and
Ny Hy(s) = OyHi(z, sv + f(x) + ueg(z,0),6).
We have
IS H ) = SO S [ 1,0+ @) + pele,0),0)| o] ds
< Kl o)
and

1
|AH (1) — D Hi(0)] < /0 |Oyy H(z, sv + f(z) + pelg(, 0),0)| |v| ds
< Kll(z,v)[F1 '
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Then, if we bound g, we obtain

|2(z,v,0)] < |A1H1(1) = A, Hy(0)] + | f'(z) + pe?eg(z, 0)| |D2H1(1) — Dy Hy(0)]
< Kll(z,v)[*! + Klz[™™A-1 1 (g, 0) [
< K|(z,v)|*
Hence
X3 (z,0,0)] < |G(z,v,0)| + |v] |0:9(z,0)]
< K|(=z)[*! + Klo|lz|
< K||(z,v)|™ ¢ = Ki|(z, )|

Clearly, the first component satisfies

lg(2,0)| + |51 (2, v,0)| < Klz|' + K]|(z,v)[|*
K||(z, )" = K| (z,0)]".

|X11($:'U='9)| &=
<

Now we prove that the field X, is Lipschitz with respect to the (z,v) variables. We
will apply the mean value theorem. Let (§,7,0) € U(8p, d0,70,0). Then, it is clear that

|0 X1(6,m,0)] = 10eg(€,0) + Oedn(€,m,0)|
K¢ + K€, m)]*2
K|(€, )™= 0242 = K| (&, )|

[ VAN |

and
|8, X1 (&,m,0)| = 18,91(&,m,0)] < K[(&,m)]|*>.

Concerning X3, using the above notation, we have

[n0geg (€, 0) + 0ega(€,m, 0)]

[n0geg(€,0)| + |81 Ha (1) — B A1 Hy(0)

+f'(€) + ue0g(§,0)| 10 D2 Hi(1) — 0 L2 Hy(0)]
+F(€) + 1e"0eeg (€, 0)| |82Hi(1) — Do Hi(0))]

Kln| [€]'=* + K& mII*~2(1 + [€1°! + pe?lé' )
+K(EPT + pel€]H) A+ 1P + petlelHIIE, )52
+K(|€1P72 + pel€2)| (€, m) 1

K||(&, n)|[min =142 = K||(¢,m)||* !

|0: X3 (€,n,0)]

IA IA

IA
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and

|0¢9(€,0) + 0r32(&,m, 0)|

0¢g (&, 0)| + |One H (&, + f(&) + ue®g(€,0))]

+|f'(€) + 0 g (&, 0)| |0 H1 (€, n + f(€) + neg(€,0))]
K€+ 11 mI*2 + (1€1PF + pe?l€ I m)II*2)
K| n)| 022 = K||(£, )i

105X (&, 7, 6)]

IA

IAIA

Let (z,v) and (Z, %) be two points of Uy(8}, do,70,0) and & € R. By the mean value
theorem, as well as the previous bounds, we obtain

”DX]_H”(Z', U) = (f") ﬁ)”

K& Hl(z,v) — (,9)|l

||X1(:s,v,9) = Xl(jiﬁag)“ <
<

as we wanted.

The third bound in the statement is a consequence of Taylor’s theorem and the mean
value theorem. We observe that, since Xy is analytic,

S0 DX, o) < K (6, 0) = KIEP ™ + 70(5)"
z,v)elp

By Taylor’s theorem we have
Xg(.’L' + h;,'U e hg) = Xo(.T.-, 'U) + DXQ(Q’.‘, ’U)h
1
+/ (DXo(x + shy,v + shy) — DXo(z,v))h ds
0

and, by the mean value theorem
1 ! 2
”Xg(a"’) + hl,'U + hz) — XD(III,'U) = DXU(.’L', ’U)h” S —2*K(l§ ,6)”}1”

as we want. m

6.3.2 The unperturbed case

When p = 0, the system (6.3.2) is Hamiltonian with Hamiltonian

2

Folz,v) = % +uf(z). . (6.3.3)



6.3 Some preliminaries bounds 147

0

Then for any 20 = (2°%,4°,6°) the solution with initial condition 2 is contained in the

curve

v =—f(z) £ 1/ f2(z) + 2Fo(z", v°)

when one has to choose the sign in such a way that the relation is satisfied by the
initial condition. From system (6.3.2) and hypothesis H3, it is clear that

& = £1/(19)2 + 200 f(20) — V(). (6.3.4)

Let 9o(t, z, v) be the flow of the unperturbed Hamiltonian system. Integrating equation
(6.3.4) we find the time (in general complex time) to arrive from (z,v) to (z*,v*) where
z* = § and v* is determined by the energy conservation. In this way we get that the
functions Z4(z,v), Yo(z,v) defined in Uy(6, o, 70, 0) by

To(z,v) = (6.3.5)

4 ds
"fz V2Fo(z,0) — V(s)

Yo(z,v) = —f(8) =V f2(6) +2Fo(z,v) (6.3.6)

are such that vo(Zo(z,v), 8, Vo(z,v)) = (z,v). We choose the sign minus in (6.3.4),
because it is obvious that, in the real case and over the stable manifold, z(¢) must
decrease as ¢ goes to +00. In the coordinates

(T! Y) = (%(:B! v),yo(:z:,v))
the equations of the unperturbed system become:
F =1
Y

Also we can consider the change
(z,v) € Uy(8p, 60,70,0) — (To(z,v), Fo(z,v)) €V,
where F; is the Hamiltonian. The equations in the coordinates
(T, F) = (To(z, v), Fo(z,v))

also are

T = 1

F = 0
This second change is canonical, i.e. 0,7o0,F¢ — 0,790 F¢ = 1.
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6.4 Flow box coordinates in a complex domain

6.4.1 Introduction and definitions

Now, we fix §, &', r and 71 such that 0 < 38y < &' < 6§ < 6/3, r < r9/3 and ny =
7/(20(8 — 1)). Obviously &, < 6/9. Let z5(u,Y) be the solution of the unperturbed
system (the associated system to the Hamiltonian Fy, (6.3.3)) with 2,(0,Y) = (6,Y).

From the expressions (6.3.5) and (6.3.6) we deduce that there exist some functions
k¥(Y) and ko(Y), depending on the choice of 8, &, r and 7, such that zy(t + s,Y)
belongs to Uy(&',8,7,mp) if |Y| < 7, k7 (Y) < t+Res < x7(Y) and |Im s| < ko(Y). We
remark that if u is such that zo(u,Y) € Uy(é',6,7,m0) then @ (the complex conjugate
of u) also has the same property. To see this we just recall that Up(6y, 6o, 70,0) is
symmetric with respect to real axis and that Zp(z,v) is a real analytic function, in
particular we have that

Im 7y(z,v) = — Im To(Z, D).

Let kg > 0 be small. We define

K = maxsf(Y)
Ky = ik (Y)
= prl?)
and the sets
Du(fci“",fcg,ﬁﬂ) = {se€C:k] — ko <Res <kl +koand |Ims| < ky + Ko}

D(kE kg k0) = {(t,5) ERxC:t+s € Do(kE, Ky, ko) and |t| < dme} (6.4.1)
W(r,kg) = {Y €C:|Y]<r+ro}

Remark 6.4.1 Since v = 0 is a solution of the system (6.5.2), there exist r and Ko
small enough, such that for any (t,s) € D(ki, k2, ko) and Y € W(r, ko), the solution
zo(t +s,Y) belongs to Up(6'/2,26,2r,m0/2).

Our goal is to find flow box coordinates in U(&',8,7,70). We observe that this open set
is a neighborhood of a part of the stable manifold v = 0.
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We will find the solutions of the equations (6.3.2) parameterizated in the form
(2(¢,s,Y),t/e)
with
2(t,8,Y)=2z(t+sY)+ pe?z(t,s,Y),
2(0,0,Y) = (4,Y) and the additional property
2(t+ 2me,s,Y) = 2(¢, s + 27, Y). (6.4.2)

The relation (6.4.2) permits to give a dynamical interpretation of the parameter s: the
iterations of the Poincaré map simply consists in increasing the variable s by 27e. To
get the solutions in this form we will rewrite (6.3.2) in the form

z = Alt+s)z+b(2)(t,s)
= 1/

and we will apply the fixed point theorem to a suitable operator in a Banach space. To
construct this operator we will need another operator which we call increment operator.
This operator was introduced by Lazutkin in [53].

Next, we will prove that, as in the unperturbed case, the solutions with initial condition
in U(&',6,r,m) arrive at = §. Then we will prove that the flow can be straightened
in U(&',6,7r,m0).

Finally, we will construct another change in order to get that the composition of changes
is canonical.

6.4.2 Increment operator and analytic continuation

Let h, 75, 7. We define

D = D(h,‘rft,TQ)
= {(t,s) eRxC:t| <2h, 77 <t+Res<,|Ims| < m}

and

W=W(r)={YeC:|Y|<n}
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We consider the equation
z=A(t+s)z+b(t,s,Y) (6.4.3)

(here - denotes derivative with respect to t), where A(u) is a 2x 2 matrix whose elements
are analytic in

Do = Do(1i5, 1) ={u € C: 77 <Reu< 1, |Imu| < 7} (6.4.4)

and continuous in Dy. The function b: D x W — C? is continuous for any ¢, |t| < h
and b(t, .,.) is analytic. We assume that b verifies

bt +h,s,Y)=0b(t,s+h,Y) (6.4.5)

and we look for solutions z(t,s,Y) of (6.4.3) analytic with respect to s and Y, and
satisfying

z(t+h,s,Y)=z(t,s+h,Y).

Let M(u) be a fundamental matrix of the homogeneous equation

d
EC = A(u)C.

By the general theory of linear equations, M is analytic in Dy and there exists a
constant Cjs such that

IM(W)| < Cy,  |IM~(w)| < Ch, u € Dy. (6.4.6)

By the variation of constants method, the solutions can be expressed as
t
2(t,5,Y) = Mt +5)[M~(s)e(s,¥) + / M7+ s)b(6,s,Y) de]  (647)
0

where ¢(s,Y) is a arbitrary function. Therefore, if the function ¢(s,Y) is analytic in
Dy x W, 2(t,s,Y) given in (6.4.7) is continuous and analytic with respect to (s,Y) in
Dﬂ x W.

We write

2(t+h,s,Y) = M(t+h+s) [M*(s)c(s, Y)+ fom M7 &+ 5)b(,5,Y) d&]-
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Also

At s+hY) = M(t+s+h) [M-l(s +h)e(s +h,Y)
+/£M'1(£+s+h)b(£,s+h,}’) d§]

= M(t+s+h) [M-l(.s +Rh)e(s + h,Y)

N /:Jrh M€ + 8)b(¢, s,Y) d&]

where we have made the obvious change of variables in the integral, and we have used

(6.4.5).

We introduce the auxiliary function f(s,Y) = M~1(s)c(s,Y). We have that

2(t+ h,s,Y) =z(t,s+h,Y)

if and only if

h
f(8,Y) = f(s+hY) = - /0 MYE + s)b(E,5,Y) de.

Therefore, it is natural to study the operator
Dnf(s,Y) = f(s+hY) - f(s,Y).

In a precise way, we want to find analytic solutions of the equation

Anf(s,Y) =g(s,Y), 5,s+heDy,YeW
where g is analytic in Dy x W.
We define the auxiliary open sets

Dy ={s€C:Res< 7 and |Ims| < 72}

and

Df ={s€C: 17 <Resand |Ims| < n}.

(6.4.8)

(6.4.9)

It is clear that Dy = DF N Dy . For any open set Q C C, we define the function space

AQ,W)={H:QxW — C: H is analytic in  x W and continuous in Q x W}.
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The main idea of what was developed by Lazutkin in [53] is the following. Construct
two analytic functions g* € A(Df, W) and g~ € A(Dy, W) such that

g=g 4+g inDyxW. (6.4.10)

Then, because of the linearity of equation (6.4.9), the problem of finding the function f
can be reduced to two simpler problems: to find two functions f* and f~ of A(DJ, W)

and A(Dy , W) respectively such that
Anf* = g*.
Therefore, since the operator A is linear, the function
f=f"+f,
which is defined in (D x W) N (D x W) = Dy x W, satisfies the equation:
Anf(5,Y) = Dnf™(s,Y) + Dnf7(s,Y) =g (s,Y) + 97 (5,Y) = g(s,Y)

ifs,s+heDyYecW.

To follow the previous program the first thing we must do is to construct functions g%,
defined in the corresponding extended domain and verifying (6.4.10). This is done by
using the next lemma which also provide useful bounds of the norm of g% in terms of

the norm of g.

Lemma 6.4.2 Let x : C — C be a Lipschitz bounded function such that
suppx = {£ € C: Re{ < o}.
Let
Q={e€C: s; <Ref < sy, |Imé| < 1},

with 51 € R, 51 < o and s3 € [0,00) U {o0}. Let Q* = Qﬂm (small circle denotes
topological interior) and let g € A(Q*, W). We define

h(§,m) = %/ﬁm Ci(_%g(am d¢ = %/ﬁ %g(c,n) dc. (6.4.11)
Msupp X »

Then
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1) h is analytic on Q x W,

2) h extends continuously to Q x W,

3) if (§0,m0) € (02N supp x) x W

(,}333;) h(&,m) = x(&0)9(&0,m0) + 5;1; - &Cg%(&)g(( yTo) d¢,

and if (§o,m0) € (82N (supp x)°) x W

- _ 1 [ x(©=x(E)
Jm hen) = = [ X=Xy,

4) if (€,m) € Q x K, where K is a compact subset of W we have
1
el < (Il + 5 Lipx length(@)) gl
where ||x|| = sup{|x(€)| : € € C} and ||gllx = sup{|g(&,m)| : (€,n) € O x K}.

The same results hold in the case supp x = {£ € C; Re{ > o}, s; € {—o0} U (—00,0],
89 € R, S92 > 0.

Remark 6.4.3 We observe that, in order to apply this result, we only need that the
function g to be analytic in a bounded complex rectangle.

This Lemma is a parameter (with respect to 1) version of a Lemma in [53].

The proof of the present version of the Lemma can be found in [35]. Using the previous
technical lemma, we will construct a right inverse of the operator A.

Lemma 6.4.4 Let Dy be the set defined in (6.4.4). There is a continuous operator
A7 A(Do, W) — A(Dy, W)
such that given g € A(Do, W), f = A;'g is a solution of the equation
fls+hY)—f(s,Y)=g(s,Y) fors,s+heDy,YeW (6.4.12)

and its operator norm verifies ||| £ Cp,e"™h™t, where the constant Cp, only
depends on the size of the domain Dy.



154 6. Flow box coordinates

Proof. Here Cp, denotes any constant which only depends on Dy. Let x : R —[0, 1],
be the Lipschitz function defined by

1 ifu< 7y
x(u) = 1-—5,_—;{:: fr <u<7
0 if 4>y,

Let x4 (s) = x(Res) and x_(s) =1 — x(Res), defined in C. We observe that
supp x+ = {s € C: Res < 17"}
and

supp x- ={s € C:Res > }.

Moreover it is clear that Dy = DgNsupp x4 and Dy = Dy Nsupp x_. Let p = 75! and
g € A(Dg, W). By Lemma 6.4.2, the functions

Q;];(S, Y) — m /aD Xj:(‘sé (i)ssh(pg) g(g, Y)drf

belong to A(D3, W) respectively. Moreover, by 4) of Lemma 6.4.2, we have

¥ e llgll
< s .|| [
l9£(5,Y)| < (lIxzll + o Lip x4 length (690))|Cosh(ps)| Emeaaxpnlcosh(péf)f
1

< C’DGHQHW

for (s,Y) € DEf x W 6.4.13
ps)| ( ) 0 ( )

where ||g|| means supp, . |9(s,Y)|.

Now we construct the inverse of A,. Given (s,Y) € D x W, we define

fe(sY)==) gi(s+kn,Y).
k>0

A direct substitution shows that f, satisfies (6.4.12) in DF x W. In the same way, if
(s,Y)€ Dy x W,

f-(Y)=> g-(s—kh,Y)

k>1

satisfies (6.4.12) in Dy x W.
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These series are convergent. Indeed, from (6.4.13) we have, for (s,Y) € Df x W

[f+(S,Y)| S Z |9‘+ s+ kh’ Y)l < CDO“Q“ Z |COSh( (il-g + kh))l

k>0 k>0
1

<
< Chllgll ka:) cosh( (Res + kh))| cos(pIm s)|

< Cpollgll Y ——=ePRere?H
k>0 cos(p Im s)

—pRes § :e—phk
k>0

< Cholgll 1= e_phe_pRes < Cp,|lg|lh~tePhe—PRes,

< CDo”Q”

In the same way we obtain, for (s,Y) € Dy x W
[f~(5,Y)| < Cpyllgllh~" e e Re.

Now we consider the function f : Dp x W — C, defined by f = f. + f-. It is clear
that

Drf(8,Y) = Apfr(8,Y) + Dnf-(s,Y) = 94+(8,Y) + g-(s5,Y) = g(s,Y)
for s,s+ h € Dy, Y € W. Moreover, since p = 1'2‘1, on Do x W,
|£(s,Y)| < Cp,llgllh~ et/ = Cp||g||h1e™,

where Cp, is a generic constant which may take different values in different formulas
but only depends on Dy and 73 = max{|7;"|,|77’|}. Then the f so constructed solves
(6.4.12). m

6.4.3 A useful parameterization of the solutions of the system
(6.3.2)

In this section we give a good parameterization of the solutions of the system asso-
ciated to the vector field X, passing through z = §. We introduce an additional
parameter, s € C, to be able to reach {z = §} and to obtain useful properties of the
parameterization.
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We recall that we denote by zo(u,Y) the solution of the unperturbed system

& = v+ f(z)
) = —vf'(z)

such that 2,(0,Y) = (6,Y), which is analytic in (u,Y) € Do(ki, ko, ko) X W(r, ko)
and continuous in this boundary. Therefore, since Xy is analytic in Up(6p, do,70), a
fundamental matrix M(u) of the system

d
= DXo(20(u,Y))z

is analytic in Dy(kY, &2, ko). Moreover as we pointed out in (6.4.6), M(u) and M~} (u)
are bounded in Dy (5, k2, Kg)-

Now we present the annunciated parameterization of the solutions of the system (6.3.2).
Proposition 6.4.5 If € and p are small enough then the solutions of the equation
(6.8.2) can be expressed as parameterized curves

(2(t,5,Y),t/e) = (z(t,s,Y),v(t, s Y),t/e)
with (t,5,Y) € U defined by

U = D(k3, kg, ko) x W (r, Ko),

satisfying the following properties:

1) t— z(t,s,Y) is a solution of system (6.3.2).
2) z(t,s,Y) is C* and analytic on (s,Y).
3) z(t + 2me,s,Y) = z(t, s + 2me, Y).
4) The solution of the system (6.3.2) is of the form
2(t,8,Y) = z(t+s,Y) + pe?z(t,s,Y)
with

sup |z (t,5,Y)| < K(8,6).
U
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5) For allY € W(r, ko), 2(0,0,Y) = (6,Y).

Proof. If
(z(t,s,Y),t/e) = (20(t +s,Y) + pe?z(t,s,Y),t/e)

is a solution of the equation (6.3.2), where 2 is a solution of the unperturbed equation,
it is clear that

51 = DXolzo(t +8,Y))z1 + b(21)(t, 5, Y) (6.4.14)
with
el 5, ¥) =
#ieq[xo(z(t, 5,Y)) = Xo(zo(t + 5, Y)) — ue?DXo(2(t + 5, Y))21(t, 5, Y)]
+ Xi(2(t, 5, Y), t/e). (6.4.15)

Thus, 2 is a solution of (6.4.14) if and only if

z(t,8,Y)=M(t+s) lM'l(s)c(s, Y)+ /t Mo+ 8)b(21)(0,8,Y)do| (6.4.16)

where M (u) is a fundamental matrix of the homogeneous system. At this point ¢(s,Y’)
is an arbitrary function. We choose the function ¢(s,Y") as follows. We consider
27e
g(z1)(s,Y) = — M=o + 5)b(21)(a,s,Y)do (6.4.17)
0

and we take
c(21)(s,Y) = c(s,Y) = M(s)Azpeg(21)(s,Y) (6.4.18)

where A3 is the operator defined in Lemma 6.4.4. This choice of ¢(s,Y’) is the one
which will permit us to check that an operator to be defined below is well defined in

its domain.

We define ¥ to be the space of fuﬂct.ions z1 : U — C? such that z; € & if and only if
z, satisfies

(a) z1(t,s,Y) is C° and analytic on (s,Y).



158 6. Flow box coordinates

(b) For all (t,s,Y) € U, we have that
z1(t + 2me, s,Y) = z1(t, s + 2me, Y).

(c) [lz1]l = supg |z1(t, 5, Y)| < +o0.

We endow ¥ with the supremum norm and it becomes a Banach space. For any
p > 0, we define ¥(p) as the closed ball of radius p of £. We define the operator
G : ¥(p) — X(p) to be the right hand side of (6.4.16):

G(z1)(t,s,Y) = M(t+s) [M~'(s)c(z1)(s,Y) +‘/0 M (o + 5)b(z)(0, s, Y)daJ

with ¢(s,Y) chosen as (6.4.18). Our goal is to prove that G has a fixed point in X(p).
For that we will see that G is well defined and that it is a contraction in ¥(p).

First we prove that it is well defined. Let 2; € X(p), then, by Remark 6.4.15
2(t,s,Y) € U(8'/3,36,3r,0) C U(by, bo,70,0)

and the function b(z;) given in (6.4.15) is well defined. Moreover, it is clear that, since
M(t +s), M~'(t + s) and z(t,s,Y) are C° and analytic on (s,Y), the function g
defined in (6.4.17) is analytic in Uy with

E}g = Dg(fi:lt, Ka, :‘ﬁg) X W(T, Hﬂ)

Therefore, by Lemma 6.4.4, the function ¢(z;)(s, Y) is analytic in Uy. Thus G(z1)(t,s,Y)
is also C? and analytic on (s,Y).

Now we prove that the property (b) holds for G(z;). It is clear that, since z; € ¥ and
Xi1(z,v,0) is 2m-periodic in 6,

b(z1)(t + 2me, s,Y) = b(21)(t, s + 27e, Y).

Then
G(2)(t +2me,8,Y) = M(t+2me +s) [M“l(s)c(s, Y)

i -/:Jrz” M~Yo + s)b(z)(o, s, Y)da]

— M(t+s+ 2me) [M—l(s)c(s, Y)

+ Mo + 2me + s)b(z1)(0, s + 27, Y)dcr]

—2me
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and

G(a)(t,s +27e,Y) = M(t+s-+2me) M~ (s + 2me)c(s + 2e,Y)
t
+/ M~ (o + 2me + s)b(z1)(o, s + 27, Y)dcr] ;
0

Thus, G(21)(t, s + 2me, Y) = G(z1)(t + 27e, s,Y) if and only if

2me

M7 (s)e(s,Y) — M~ (s + 2me)c(s + 2me,Y) = — Mo + s)b(21)(0,s,Y)do.
0
This last equality holds by definition of ¢ in (6.4.18).

Next we will see that if we chose p in a suitable way, G(X(p)) C £(p). Indeed, let Cy
be a constant such that ||M(u)||, ||[M~(u)|| < Cp. We recall that,

f(5,Y) = M7 (s)c(s,Y).

We recall that we have defined s = min{k — 1,/} > 0. By Lemmas 6.4.4 and 6.3.1 we
obtain

e27r5[‘r: g
1711 < Cou S llg(z)l < CuCoyllbe)ll < CuCoul K6, &)zl + K6%).
Thus
IG(21)ll < ChCro(K(6,8)|ule?llz1|| + K6) + Cif[t|(K (6,8 ple?| 21| + K 6*)
< C%,Cp,(K(6,8)|ple?p® + K&) + C2 2ne(K (6,8')|n|e?p® + K &)
< p

if p = 2C% K(Cp, + 2me)6* and |p|e? is small enough.
Therefore, G(a) € ¥(p), and the operator G is well defined.

Finally we prove that G is a contraction. Let 2, and z; be two functions that belong
to X(p):

(G(21) = G(ea))(t,5,Y)] < [M(t+5) [M7(s)(ela1)(5,Y) = elea)(s, V) (6419)

.

+f0 Mo + s)(b(z1)(0,5,Y) — b(2)(0, s, y))dg]
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We observe that, since the operator Az is linear
M~ (s)e(z1) = M7 (s)e(z2) = Dgre(g(21) — g(22)).

By Lemma 6.4.4 we have

e27r£f1'3

lg(21) — g(22)||- (6.4.20)

1M (s)e(zn) = M s)elzm)| < Coy

Now we bound ||b(z1) — b(22)]|. Until the end of the proof, 2y, z; and 2, will stand for
2(t+s,Y), z1(t,s,Y) and 25(t, s,Y) respectively.

It is clear that we can write b(z;) — b(23) as

1
b(zl) — b(ZQ) = '#—E";[Xg(zo + ,U:qul) — Xo(zo + ,LLEqZQ) = ,U,EQDXQ(EQJ(2’1 - 22)]
+X1 (20 + pe¥z, t/e) — Xi(z0 + pelzo, t/c)
1
= E(Xu(zu + pefz) — Xo(zo + pezp))

‘-‘DX(](ZO + ,w‘:qzl)(zl — 22)
+.DXO(3[} + qul)(zl - 22) - DXU(Z[})(.Zl — 2'2)
+X1(2z0 + pe?z, t/e) — Xi(z0 + uezg, t/e).

Using the bounds of Lemma 6.3.1 we get

Ib(z1) = b(z2)ll < |ule®K (12 = 2z2ll* + llzalllz2 — 22])
+(Lip X1)|p|elz1 — 22| (6.4.21)
= K(&,6)|ule?|21 — z||.

Moreover, it is clear that
l9(21) — g(22)|| < Crr27el|b(z1) — b(22)].

Then, using (6.4.20) and (6.4.21) in (6.4.19), we obtain

621&'5/'13
1G(z1) = G(2)ll < CumCpy——llg(z1) — 9(22)ll + CirltllIb(z1) — b(2)
< K(Do, M, 8, 8)|Ib(21) — b()]|
< K(Do, M, 8,6)|ple?||21 — 2]
< gllz-al
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if |p|e? is small enough.

Therefore, since G is a contraction, by the fixed point theorem, there exists a unique
21 € X(p) such that zo(t + s,Y) + pevz (¢, s,Y) satisfies the conclusions of the propo-
sition, except that z is C°. We recall that the function satisfies the equation

z(t,s,Y) = 2(0,s,Y) + /t X,(2(0,8,Y),0/e)do.
0

Therefore z is C', and the proposition holds. =

6.4.4 Proof of the Theorem 6.2.5

The proof of the Theorem 6.2.5 has two parts. The first one consists on constructing
flow box coordinates in Dy x W by using the previous proposition. The change of
coordinates so obtained may be non canonical. In the second step we modify these
flow box coordinates in such way they become canonical.

We begin by defining
w(u,8,Y) = z(ef,u — €6,Y).

Note that w is C! and analytic with respect to its first and third variables for (u,Y) €
Do(kf, kg, ko) X W (r, ko). Moreover, since the solutions of the system (6.3.2) satisfy
that z(t + 27e,s,Y) = z(t,s + 2we,Y’), we have that w is 27-periodic respect to its
second variable. This is a very important property because let us to extend the domain
of w with respect to the @ variable, that is, we can consider w in the domain

Do(K5, ke, ko) X RxW(r, ko).
We have that
(w(t + s,t/e,Y),t/e) (6.4.22)
is a new parameterization of the solutions of (6.3.2). Indeed,

Kw(t+s,t/e,Y)] = Buw(t+s,t/s,Y)+§69w(t+s,t/s,Y)

= 0sz(t,s,Y) + [0,2(t,8,Y)e + 0s2(t,s,Y)(—¢)](1/¢)
= &z(t,sY).
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We observe that, if p = 0, w(u,0,Y) = we(u,Y) = 25(u, V). We denote z;(e6,u—eb,Y)
by wy(u,8,Y) and hence

w(u,8,Y) = wo(u,Y) + petw (u,0,Y).

In the previous arguments we have not mentioned explicitely the dependence on the
parameters, but it is clear that the continuity on € and the analyticity on p is manteined,
and in particular w is C° in € and C" in p.

Lemma 6.4.6 Let 6 < 8y/3. Under the hypotheses H1-H3, for any &' < 6 there ezists
r > 0 small enough and two unique functions T and Y defined in U(8',8,7,m0) such
that

w(7 (z,v,60),0,Y(z,v,0)) = (z,v). (6.4.23)
These functions are C*, analytical in the (z,v) variables and 27-periodic in 8. Moreover
T(z,y,0) = To(z,y) + O(ue?),  V(z,y,8) = Vo(z,y) + O(ue?)
where Ty and Yy are defined in (6.3.5) and (6.3.6).

Proof. We define the function
G(S,Y,z,v,0,p,e) = w(S,0,Y, u,e) — (z,v).
on the set
Do(kT, kg, ko) x W(r, ko) x Up(&',8,7) x RxP
where
P={(p,e) eCxR:|p| < poand 0 <e < e}

with po and €9 small enough. Here we put explicitly the dependence on p and € of the
solutions.

By the definitions of 7y and )} in (6.3.5) and (6.3.6) we have that, when p = 0,
Zg(%(.’ﬂ, 'U), yﬂ(‘rs U)) = T/’G(%(l's ’U), 6) yﬂ(ma U)) = (:'-"‘1 'U) (6424)
where 1/ is introduced in Section 6.3.2. Then

G(To(z,v), Yo(z,v),2,v,0,0,6) = w(Ty(z,v),0,Vo(z,v),0,€) — (z,v)
= 2(To(z,v), Vo(z,v)) — \(:L‘,'U)
= 0.
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We observe that, by Proposition 6.4.5, G is analytic on (S,Y) € Dy(ki, ko, ko) X
W(?’, :‘ED).

Next we study the matrix DgyG. Since the unperturbed system is Hamiltonian with

Hamiltonian

'U2

Foav) = & +vf(a)
the solution z(u,Y) = (23(u,Y), 23 (u, Y)) satisfies
M + 23w, Y) f(z5(u,Y)) = ¥ + Y f(6). (6.4.25)

2 2

Differentiating with respect to Y in (6.4.25) we obtain
(z0(u, Y) + f(2(w, Y)))By 25 (w, Y) + 25 (w, Y) f (2 (w, Y ))Oy 2 (w,Y)  (6.4.26)
=Y + f(6).
Evaluating this expression at (u,Y) = (Ty(z,v), Yo(z,v)), we get
(v + f(2))8y25(To, Vo) + vf'(2)0y 25(To, o) = Yo + £(6).

Now we prove that the derivative dsyG at p = 0 is invertible. Of course,

6838(8! Y) 63’3{%(81 Y) )
3323(5':1/) aYzczl(Sa Y) .

Using (6.4.24) and (6.4.26), its determinant evaluated at (S,Y) = (Zo(z,v), Vo(z,v))
is

DglyG(S, Y, 9, 0, E) = (

det(DsyG) = 8s2y(To, Yo)Oy2(To, Yo) — Oy 25(To, Yo)Bs25(To, Vo)
= X;(z,v)0vz5(To, Vo) — X5(z,v)dy25(To, Vo)
= Yo+ f(6)

and by definition (6.3.6) of Yy, we obtain
det(DsyG) = —v/ f2(6) + v2 + 2uf(z).
We recall that |v| < r < 7, and that Cy6° < |f(6)| < C16°, hence, by Definition 6.2.4,

|det(DsyG)|? > f(6)* — |v]* — 2|vf(z)|
C26% — 12 — 2rCy 6P
0.

s
>
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At this point it would be natural to apply the implicit function theorem to the equation
G(S,Y,z,v,0,u,e) = 0.

However to have a good control on the domains in which we will find the solution 7,
Y in terms of (z,v,8, u,e) we follow the proof of the implicit function theorem using
the special structure of the equation we have to deal with. We will work in a space of

function
(5,Y) = h(z,v,0, u,€).
In the rest of this proof we take the norm

1€, )| = max{[¢], [n}
for (¢,7n) € C2. We define the space I of functions h : Uy x R x P — C? which satisfy
(we call (z,v,0, u,€) the variables of h)
(a) his C°.
b) h is analytic in (z,v, p) € Up(&',6,r,m0) X {p € C: |p| < wo}.

(
(c) h is C! with respect to # and 27-periodic in 6.
(

d) The norm
lhllr = sup |h(z,v,0,u,€)||+ sup |[Bsh(z,v,6,u,6)l
UpxRx P UgxRx P
= [|hlleo + |Gshlloo
1s bounded.

We endow I' with the norm ||.||r and it becomes a Banach space. We call I'(p) the
closed ball of radius p of T, centered at (Zo(z,v), Yo(z,v)) € I'. We observe that, since
(Zo(z,v), Yo(z,v)) do not depend on 8, for any h € I'(p),

I = (To, Yo)llr = I~ — (To, Yo)loo + [105h]| oo
We define the operator G : I'(p) — I'(p) by

G(h)(z,v,0, u,e) = h— (DsyG(To, Vo, 0,0,€)) " G(h, z,v,80,u,¢),



6.4 Flow box coordinates in a complex domain 165

where in the right hand side, h = h(z,v,60, p,€), To = To(z,v) and Vo = Wo(z,v). G is
well defined. Indeed, let h € I'(p) with p small enough. By Section 6.4.1

(%)yﬂ) € Dﬂ(ﬁil:)ﬁﬂa 0) X W(T’, 0)1

thus , if p is small enough, h € Dy(kT, K, ko) X W(r, 59) and then G(h) € . Next we
will check that G(h) € ['(p).

To shorten the notation we will not write the dependence on the variables (z,v, 6, €),
and we will denote (75, ) by ho. By Taylor’s theorem,

G(h) (k) = h—(DsyG(ho,0))'G(h, )
= h— (DsyGlho,0))™(G(ho,0) + DG(ho, 0) (s — ho, )T
+ [ (D6(2(0)) = DG (h, 0)) (1~ hoy ")

where DG = (905G, 0y G, 0,G) and Z(¢) = (ho + {(h — ho), (1). We observe that G is
well defined in Z(() for all ¢ € [0,1]. Then, using that

G(hg,O) = G(TEI) yﬁ: 0) =0,
we obtain

G(h)(s) = ho — (DsyGlho,0))™ (18,G(ho,0)

- /0 (DG(2(0)) - DG(ho, 0)(h — ho, u)"dc ).

We observe that
0,G(ho, p) = €*wi(Zo, 6, Vo, i, €) + pe?0,wi (7o, 6, Yo, 14, €). (6.4.27)
Since G is analytical in h, G has its second derivative with respect to A bounded in
Do (K5, kg, ko) X W(r, kg). Therefore
1G(h) = hollo < K(&',8)(|ule? + p* + plul) < p/2

if p and |p|e? are small enough. Here we have used that ||0,G(ho,0)|lc = O(g7) is
bounded and that, by the mean value theorem,

| DsyG(Z(€)) — DsyG(ho,0))(h = ho)llec < K(&',6)p(p+ |1l
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Using (6.4.27), we have that
0puG = O(€9).
Moreover, since hy does not depends on 6, and that
Opw(S,0,Y) = O(ue?)

and consequently 9y DsyG = O(ue?), we have that
0GRl < WK, 6) / 100(DG(Z(0)) — DG (ho, 0))(h — ho, w)T)dC
< |IK(@,5) / C18s DG(Z(C))(3sh, 0) (h — ho, )T )dC

+ [ (DG(Z(0) ~ DG (ha,0) 300,07
< |ulK(E,6 )|(l#|€ p*+ lule? +0°) < p/2
if |iz|e? is small enough. In fact we can take p = O(ue9).

This operator is a contraction, thus the fixed point theorem can be applied and we find
functions 7 and Y such that for any (z,v,6, u,e) € U(8,6,7) x P

w(T,0,Y,p,¢) = (z,v). (6.4.28)
[ ]
Now we prove that the flow can be straightened in U(&’,,7,m0).

Proposition 6.4.7 Let § < 8y/3. If the hypotheses H1-H3 hold, for any §' < § there
exists r > 0 and a change of variables

(6,0, = z) € U(8,6.1) — (T, F,0) = (T(z,v,6), F(z,v,0),6) € V

analytic in the x, v variables, C' and 2r-periodic in 6, such that it transforms the
system (6.3.2) to

T=1
F=0
=1/

and satisfies T (z,v,0) = To(z,v) + O(ue?) , F(z,v,0) = Fo(z,v) + O(ue?) where
(z,v) — (To(z,v),Fo(z,v)) is the corresponding change for the unperturbed system
and is given in (6.3.5) and (6.3.3).
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Proof. We fix (z,v) € Up(&,8,7,m0) and we consider the solution 1(t) of the system
(6.3.2) such that 9(0) = (z,v,0). By Lemma 6.4.6, there exist 7 (z,v,0) and )(z,v,0)
such that

w(7 (z,v,0),0,Y(z,v,0)) = (z,v).

Moreover since the solutions of (6.3.2) can be parameterized as (6.4.22), taking s = 7
and Y = ) in (6.4.22) we obtain that

Y(t) = (w(T (z,v,0) +t,t/e, Y(z,v,0)),t/e), (6.4.29)
also is a solution of (6.3.2) such that 9(0) = (z,v,0) = 9(0). By uniqueness, 1) = .
On the other hand, if ¢ is such that, ¥(t) € U(&,6,r,m0), by Lemma 6.4.6, applying
(6.4.23) with (z,v,0) = ¥(t) we obtain

P(t) = (w(T (¥(2),t/e, Y(¥(2))), t/e). (6.4.30)

Therefore (6.4.29) and (6.4.30) give us two expressions for the same solution 9(¢). We
observe that,

To(z,v) -+t = To(¢ho(1))
therefore, by the uniqueness of the functions 7 and Y given in Lemma 6.4.6, we have

TWE) = T(zv,0)+t (6.4.31)
y(w(t)) = y(l‘,U,O)

and then
ST@) = 1
SY() = o
We define a new function
F(z,v,0) = Fo(6, Y(z,v,0))
where F; is the Hamiltonian of the unperturbed system given in (6.3.3). We recall that

[V = Volloo = O(ue?),
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then, since Fy is constant along the trajectories of the unperturbed system,

}_(:E:U:g) = FO(‘S'J yo(i', U))-I-O(Mq)
= Fo(z,v) + O(uc?).

Therefore, from (6.4.31), it is easily seen that
(T, F,6) = (T (z,v,6), F(z,v,6),0)
transforms (6.3.2) in U(&',6,7) to

T = 1
F =0
= 1/

and the statement holds. m

Now we turn to modify the change of variables to get a canonical one. Before starting
the result we need some preliminar calculations.

We denote by 1(t, z,v) the solution of the system (6.3.2) such that (z,v,0) = 4(0). In
the proof of the Proposition 6.4.7, concretely in (6.4.31), we have seen that

T(t) = t+7T(z,v,0) (6.4.32)
F@i) = F(z,v,0).

We introduce the matrix

_( &T@() AT(W()
)= ( B F(U(t) BuF((t)) ) |

Differentiating with respect to (z,v) in both sides of (6.4.32), we obtain

Bn(t) Bun(t) | _
() ( Butnlt) Butalt) ) = %(0).

Since system (6.3.2) is Hamiltonian,

Outhr(t) Guihn(t) \ _
deb ( Octfa(t) Ouiha(t) ) =1

and we have that

det (t) = det ®(0) ~ (6.4.33)
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for all ¢ for which the solution is defined. Moreover, we know that for p = 0, det ®(t) =
det ®(0) = 1, thus

det ®(t) = 1+ pe?g(y(t)) (6.4.34)

where § = g(z,v, #) is some C* function, analytic in (z,v) and 27-periodic in 6. More-
over from (6.4.33) it is clear that

d .
7 (¥(t)) =0. (6.4.35)

We define the function g : U — C, by
9(T, F,0) = g(w(T,0, f(6) — V/ f*(6) + 2F),0).

The function g is C*, analytic in (T, F) and 27-periodic in 6. If we differentiate with
respect to the time, ¢, in g evaluated on the solutions of 7 =1, F =0, § = 1/¢, by
(6.4.35), we have the following equality:

1
0= 0rg + 4. (6.4.36)

To deal with equation (6.4.36), we define the change (§,7) = (T' + &6, T — €f) and the
function

h(€,n, F) = g((€ +1)/2, F, (€ — n)/2€)
defined in
{(&,m F) € C*: ((§+m)/2,F, (€ —n)/2) € U}.
Then, by (6.4.36)
Och =0
therefore,
9(T,F,0) = h(T + €0, T — €6, F) = h(0,T — €6, F)

is a function that only depends on first integrals of the system (6.3.2). We define the
function p(F,.S) by the condition

1
L+0ealhiS) =4 + peth(0, S, F)

We remark that, since h is analytic in F' and .S, the function p is O(ue?).
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Proposition 6.4.8 The change of variables defined by
(z,v,0 =t/e) e U(§,6,r) = (T,1,0) = (T(z,v,0),Z(z,v,0),0) €V

with I(z,v,0) = F(z,v,0) + p(F(z,v,0),T (z,v,0) — 0¢) is canonical and is such that
transforms the system (6.3.2) to

Pt
i=0
g =1/e.

Moreover, T (z,v,0) = To(z,v) + O(ue?) and I(z,v,0) = Fo(z,v) + O(ue?) where Ty
and Fgy is the corresponding change in the unperturbed case.

Proof. Let Z = Z(z,v,#) as in the statement. Along the solutions of (6.3.2),
I = F + Dpp(F,S)F + Dsp(F,S)(T — €6) = 0.

Thus, this change transforms the system (6.3.2) to T =1, =1, § = 1/e.

To see that the change is canonical we only have to calculate the determinant of

0.7 0,T
C(z,v,0) = ( 0.1 oI ) .

We have

det C(z,v,0) = 0,70,7—0,70,1
= [0,F + Opp(F, T — 0e)0,F + 0sp(F,T — 6¢)0,T)0.T
— [0,F + 0pp(F, T — 0€)0,F + 0sp(F, T — 0€)0,T) 8, T
= (8,F0,T — 8,F8,T)(1 + dpp(F, T — b¢)
(1 + pe?h(0,7 — e, F))(1 + Orp(F, T — 0¢))
= J.

Now we turn to the system in the original variables (z,y, §). We define

T'(z,y,6) = T(C(z,y,9))
I (z,y,60) = Z(C(z,y,90))
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where C' defined in (6.3.1). It is clear that the change
(z,9,6) € V(8,6,r,m0) = (T, 1,6) = (T"(z,9,6), ' (2,,6),6) € V

is canonical, since it is the composition of two canonical changes. Moreover

T =1
I =0
and
Tl(:r’y:@) = %( (1"))+O(p5q)
Il(I,U,G) = IU(Iy f(x))_'-O(ﬂeq)

= Fo - f( ))+O(Mq)

(z
where Zy(z,y — f(z)) and Fo(z,y — f(z)) is the change when p = 0 in the original
variables.

6.5 Proof of the Corollary 6.2.6

We consider the systems obtained scaling time by € in the averaged systems (3.3.10)
in Chapter 3 given by:
& = y+ pePt 29, F(z,y,0) + p*e?*20, R _o(z, v, 6)
g _VI( ) EP+2‘H+26 F(J: yse) ﬂ25p+2azR2k_2($, y:e) (651)
0 = 1/e,

and the system (4.3.6) given in Chapter 4 that is:

& = y+peP**o,F(z,y,0) + pu’e® (9, fs + 6,Rs)(2,y,0)
y = _V"( )— :U‘ep-i_saxF(:L'z y,0) — #252p+1( Ox f3 + 0 Ra)(z, Y, 0) (6.5.2)
0 = 1/e

We denote by
;?,:,e (f, S) = (&(tv 3)1 B(t: 5))
the stable curve of any of those systems and by

Yo(t + s) = (a(t + 5), B(t + s))

homoclinic orbit of the unperturbed system.



172 6. Flow box coordinates

Definition 6.5.1 We fiz 0 < < 6y/3 small enough. Let T be big enough such that
Rea(t,s) <6
fort+Res > T/2 and let 67 be such that
8 < Reaf(t,s) <é

forT/2 <t+Res <3T.

We observe that the systems (6.5.1) and (6.5.2) satisfy the hypotheses H1-H3, of
Theorem 6.2.5 with ¢ = p+ 2 and ¢ = p + 1/2 respectively, therefore there exists a
canonical change of variables, defined in the set V(é},6,7,m0), which we denote with
the same notation (7, 1) = (Tl( z,7,0),7%(Z,y,0)) in the two cases we consider, such
that it transforms the systems (6.5.1) and (6.5.2) to

T =1
I = 0.

Moreover, 7(z,9,0) = To(Z, §) + O(ueP*) and Z}(z, 3, 0) = Zo(Z, §) + O(pe?t™) with
ip = 1 in the parabolic case and i = 1/2 in the weak hyperbolic case.

We must see that the parametric representation of the stable manifold enters the do-
main of analyticity of (77 (z,y,8),Z(z,y,0)). This is done in the next lemma.

Lemma 6.5.2 For any 0 < n < (ﬁ thens exists T > 0 bzg enough such that, if
T/2<t+Res < 3T and |Ims| < a, then | arg(a(t, s))| < g7=5 — -

Proof. By, Chapters 2, 3 and 4, there exists the ocal stable manifold of (6.5.1) and
(6.5.2) and, if T/2 < t+ Res < 3T and |Ims| < a then

c 2¢
=5 — _ 142
Yp,s(t! 3) - ((t + 8)2‘;(“_2] ) (n . 2)(t + 8)””!("’"2)) + He G(tl S)

sl
Nt + 57D

with ¢ 2 = —2/(an(n — 2)?), A = 1 and 0 € Xan-2)/(n-2) X X(3n—4)/(n—2) in the
parabolic case and A = 1/4 and 0 € )} x yg in the weak hyperbolic case. We deal
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with the parabolic case, the other case is analogous. We denote m = 2/(n — 2),
u=1u +1iuy =t+sand z = uy/u;. Note the z= O(1/T) and that

a1 (t, 8)| < |0t |lnyn2)(t + Res)™/ 2.

Then
* @ + @)™ ’ (t+ 5)2/=D)
(1—-iz)™

1
T e’ FU p+2 —
Cu’f‘(l + 22)m +ueou(t 8) + o((t + s)2f(n—2))

= c% (1 — imz + O(i2?) + pe?*ulta(t,s) + O (i)) (6.5.3)
It is clear that uf*o (¢, s) is bounded if T/2 < t+Res < 3T and |Ims| < a. In fact it
goes to zero when T' — +o00. Therefore if T" is big enough, using the estimate (6.5.3)
we obtain

|[Imay(t,s)|  |0(2) + O(uePt?)| c T _
Rea,(t+s) 1+ 0(z)+O(uert?) — 4(8—-1)

|arg a(t, s)| < n.

We call C the change from the initial to the averaged systems, defined in Chapter
3, Lemma 3.3.4 in the parabolic case, or in Chapter 4, Remark 4.3.4 in the weak
hyperbolic case. We write (z,y,0) = C(z,3,0). Where (Z,7) denote the variables of
the averaged systems. Moreover, we know that

(z,y) = (F,9) + O(ue?*").
We define new flow box coordinates _
(T*(z,9,0),7%(z,y,0)) = (T'(C"(z,,0)),Z"(C" (z,9,9))).

Since the change C is O(ueP*!) close to the identity and canonical, the new change is
also canonical and satisfies

(T%(z,9,6), T%(z,y,0)) = (T (z,9), L (z,y)) + O(ue”**)
with g = 1 in the parabolic case and 7o = 1/2 in the weak hyperbolic case.
The change 73 (z,y),Z3(z,y) = ho(z,y) is the corresponding change for u = 0. The

domain of definition of the new change is C(V/ (61, 6,7,7m0)). Moreover it is clear that
the change (T, 1) = (T%(z,y,6),Z%(z,y,0)) transforms the system (1.1.1) to

T = 1
I = 0.
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Let v5 (¢, s) = (a(t, s), B(t, s)) be the parameterization of the stable manifold of system
(1.1.1) given in Theorems 3.2.1 and 4.2.1.

We define a new change of variables. Let sg be such that |Im so| < a. We define
(z*,y") = Ya(T — Re o, 50)
and the parameter
T =80 — T%(z*,y*, (T — Resp)/e).

We observe that, if 4 = 0, the constant 7 is

fclta,fta}.c) ds
T =
2o v/ 2ho(z*,y*) — 2V (s)

where the superscript denotes the first and second component of the change and zg is
the initial condition of g as it is defined in hypothesis HP1. 7 does not depend on
(z*,y*) while (z*,y*) belongs to the stable manifold of the unperturbed system.

Let 65 < 8, be such that 6§ < 6§ < §; < § and
85 < Rea(t,s) < &

for T <t+ Res < 2T and |Ims| < a. By Definition 6.5.1, if |u|eP*% is small enough,
it is immediate that there exist d; and 6, with the above properties.

Remark 6.5.3 Let Ty and T, be such that T < Ty < Ty < 2T. We observe that,
by Lemma 6.5.2, and by the fact that the change C is O(ueP*!) close to the identity,
there exist 65 < 03 such that 8, < 63 < 03 < 0, and such that the stable manifold of
the system (1.1.1) (75 .(t,s),t/e) = C (7} .(t,s),t/e) belongs to V(85,63,7/2,3n0) C
C(V(8;,6,m,m0)), if |ule?™ is small enough, for Ty < t + Res < Ty and |Ims| <
a. Therefore (7}, (t,5),t/e) belongs to the domain of the new flow boz coordinates
(T*(z,,6), 7(z,3,0)).

Moreover, since C is O(ueP*?) close to the identity, if |u|e?™! is small enough, we have
that

V(égs 52: T'/2, 2”0) C C(V( ;1 6! T, 7?0))

We define the functions

S(z,y,0) = Tz,y,0)+T (6.5.4)
E(z,y,0) = I*(z,y,6) — I*(z*,y",0).

I
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Then, since 72 = 1 and I? = 0, we have that for s = sg,
S(7; (2, 50),t/€) =t + s0. (6.5.5)
Indeed,

SVt s0),t/e) = T(75.(t, s0),t/e) + 7
= t+T*(v; (T —Reso, o), (T — Reso)/e) + 7
t+ T%(z*,y",(T —Resp)/e) + T
= %+ 8.

Let s € C, s # sp, then

S(e(t,s),t/e) = Tz('y;,e(t, s),t/e)+T
= t+ 5+ pePto X (s).

Here we have used that, for the unperturbed system we have that
So(n(t+s))=t+s
and that

S(z,y,0) = So(z,v)+ O(uePt™)
Yoe(t,8) = v(t+s)+ O(uet).

We observe that we can choose freely sy such that X(sg) = 0 and that for any sy we
have a different definition of S.

We also note that X(s) is 2me-periodic in s. Indeed, we have that

S(V5o(t,s + 2me),t/e) = t+ s+ 2me + pe?*OX (s + 2me)
S(75(t+2me,s),t/e) = t+2me+ s+ pePtoX(s)

but, since ;, .(t, s + 27m€) = ;. (t + 27¢, s), from the previous equations we obtain
X (s + 2me) = X(s).
Finally,

g('}’;,e(t!s)at/a) = I2(7;|€(t,s),t/5)—IQ(:B"‘,y*,O)
= 0

This ends the proof.



Chapter 7

The Extension Theorem

7.1 Introduction and main result

This short Chapter is devoted to recall the statement of the extension theorem which
is given in [20]. This theorem is stated for systems of the form

T = y+ p&payhl(&:, Y, t/E)
y = —V’(&:) i nu’Epazh’l (I, Y, t/E)

such that the unperturbed system has a homoclinic orbit, vo(u) = (ao(u), Bo(u)) and
Bo is an analytic function in |Imu| < a and has singularities at u = +ia which are
poles.

Following the proof in [20] one can see that one can replace the condition of u = +ia
being poles by u = *ia being branching points in the sense we have introduced in HP1
in Chapter 1. For this reason here we do not reproduce the proof of the extension
theorem and we will simply comment a small difference that appears in the weak
hyperbolic case.

The goal of this theorem is to extend the domain of the parameterization v}; .(Z,s) (in
our case produced in Chapters 3 and 4) of the unstable manifold until v}, enters the
domain of the flow box coordinates. To do this, the parameterizations v} (¢,s) and
vo(t + s) are compared in the complex domain D&*:

D™ ={(t,s) eERxC:|t+Res| <27, |Ims| < a—e}.

The extension theorem gives an useful bound for the distance between the unstable
manifold 7}, and the homoclinic orbit 7o of the unperturbed system for (¢,s) € D"
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That is,
Viie(ts 8) — yo(t + s) = O(ue”),
where v is a parameter which depends on the system.

Therefore, if ¥ > 0 and u and € are small enough v (¢, s), for some values of (¢, s),
belongs to the domain of the flow box coordinates.

We recall that / is defined in Chapter 1.

The extension theorem is

Theorem 7.1.1 Let 2(t,s) = (z(t, s), y(t, s)) be a family of solutions of

= y+ pePoyhi(z,y,t/e, u,€) (7.1.1)
3;' = ——V’(.I‘) - P“Epazhl (:C: Y, t/&‘, Hy E)
defined for to + Res = —2T, for some T > 0, such that
2(to, ) — Yo(to + 8) — ue? ' G(r0(to + 8), to/e, 1, €) = O(pe?*'+?), (7.1.2)

where G 1is the function such that

agG(.T, Y, 9: 1, E) = (ayhl (LL‘, Y, 9: H,y 8)} _azh'l(x: Y, 9: Hy E))

and has zero mean with respect to 8, and (to, s) € D™* verifies to+Res = —2T. Also A
is an index which have the value 1 in the parabolic case and 1/4 in the weak hyperbolic
case.

We assume that
v=p—{¢20. (7.1.3)

Then, there ezist €g, o and K such that the solution z(t,s) can be extended to values
of t € [to, 2T — Re s], with the bound

|2(t,8) — 70(t + 5)| < KpeP™ (7.1.4)
for (t,s) € D™, 0 < e < &g and |p| < po-
Remark 7.1.2 Theorem 7.1.1 is also valid if V is a trigonometric polynomial and we
suppose that hy is also a trigonometric polynomial in x and a polynomial in y. We

observe that in this case ag(u) ~ iClog(u F ia) near of singularity u = +ia with C a
constant which depends on the degree of V. (See [20] for more details about this case).
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Remark 7.1.3 Although in the extension theorem given in [20], the initial condition
of the solution z(t, s) is

z(to, 8) — Yo(to + 8) — ue?* ' G(o(to + 5), to/e, p, €) = O(ue?*?)

and thus, this hypothesis is not satisfied in the weak hyperbolic case, it is not difficult
to check that the proof also works in this case.

Remark 7.1.4 We note that, if s € R, the estimate (7.1.4) can be tmproved. Con-
cretely, for (t,s) € R? such that —2T < t + s < 2T we have that

2(to, 8) — Yo(to + 8) = O(ueP*™).



Chapter 8

Splitting of separatrices

8.1 Introduction

This chapter is devoted to prove Theorem 1.2.1 and Corollary 1.2.3 which we reproduce
below for the convenience of the reader. Let

= y+ uePo,hi(z,y,t/e) (8.1.1)
= —Vf(l:) — ,Uagpazhl (3-:1 Y, t/E)

We denote by A the area of a lobe generated by the stable and unstable manifold of
system (8.1.1) associated to two homoclinic points and by ¥ the angle between them
at one of these homoclinic points.

Theorem 8.1.1 Under hypotheses HP1-HPG6, for ¢ — 0%, u — 0, the following
formulae hold:

S0
A= “Ep/ M('U, E) dv + O(ﬁ252u+r’u2Ev+p+éa’#Ep+1+io)e—a)’£,
s0

M!(s0,¢€) , _
) 0 2629+r—2 2 _v+ptig—2 p—1+ig\ ,—a/e
Fo(aa)]F * O e weTERTES

where sy < 8y are the two consecutive zeros (associated to two consecutive homoclinic
points) of the Melnikov function

M(s,e) = f " (ho, b} (ot + 8), t/¢) dt,

sind = ueP
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closest to zero and
. ] in the parabolic case
0= 1/2 in the weak hyperbolic case.

Corollary 8.1.2 If HP1-HP7 holds, then fore — 0%, p— 0
1

A ~ ;LE?’+18?T|JIU'H!,__{_I)'€_“"IE
1 —afe 1

sind| ~ ue’ l4r|J;t e - :
[ I / | l'D|I’({‘+1) ”,),0(80)”2

where I' is the Gamma function.

Remark 8.1.3 The constants v, a and Jl":(, are introduced in the hypotheses HP1-
HPT.

To prove this theorem we will use many of the results established in the previous
chapters. In particular the parameterizations of the stable manifolds, in Chapter 3 and
4 an the flow box coordinates developed in Chapter 6 will play an important role.

We recall that in Chapter 6, we have constructed flow box coordinates (S, FE) =
(S(z,y,t/e),E(z,y,t/e)) defined in a complex neighbourhood of a piece of the sta-
ble manifold of the system (8.1.1). In these coordinates the original system becomes
the simple equation:

S =1

E = 0.
Moreover, we had proved that on the parameterization of the stable manifold of the
system (8.1.1), 7;, . (¢, s) (with s depending on the initial condition)

S('yf"e(t, s),t/e) =t+s+ ue”““k’(s), 8(7;‘5(@ s),t/e) = 0.

We can prove the existence of primary homoclinic points by using that the Poincaré
map is area preserving and that the system (8.1.1) is a perturbation of one which has
a homoclinic orbit. Moreover, by the extension theorem, we get that the parameteri-
zation of the unstable manifold v} (¢, s) enters, for some values of (¢, s) in the domain
of the flow box coordinates.

In flow box coordinates the stable manifold corresponds to E = 0. If, in these variables,
the unstable manifold can be written as £ = ¢(S), with ¢ a suitable function, in (S, E)
coordinates we have the following situation:
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Unstable manifold

Lobe

Y/ So §y
Stable manifold 7

Consequently the area of the lobe generated by two consecutive intersections between
the stable and the unstable manifold, expressed in flow box coordinates, is

5o

A={] ¢(S)ds|. (8.1.2)

So

The function ¢ is called the splitting function. Since the change from the original
variables to the flow box variables is canonical, the area given by (8.1.2) is the same
as the area of the corresponding lobe in the original variables (z,y).

The scheme of the proof is the same as the one given in [20]. For the convenience of
the reader we present the main points of it. In Section 8.2 we construct the splitting
function and we stablish its properties. In Section 8.3 we prove the main results. The
flow box coordinates we use and the definition of the splitting function permit to prove
that the Melnikov function is a good approximation of the splitting function.

Finally we will prove Corollary 1.2.3. We recall that we consider the case that the
singularities of the homoclinic orbit may be branching points in the scnse we have
indicated in Chapter 1. This case is not considered in [20]. This fact forces several
technicalitics in the computation of the Melnikov function.

The asymptotic computations of the Mclnikov function are deferred to Subsection 8.3.1.
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8.2 The splitting function

To define the splitting function and to establish the properties we shall need we begin
by recalling some notation and some previous results.

We recall the definitions of the sets
D&t = {(t,s) eRXC:|t+Res| <2T, |Ims| <a—e},

D = {(t,s)eRxC:t+Res>T, |Ims|<a}l,
D* = {(t,s) eRxC:t+Res<-T, |Ims| <a},

The homoclinic orbit of the unperturbed system is
Yo(u) = (ao(u), Bo(u))

which is defined in (at least in) {u € C: |Imu| < a}.

We denote 7;%(t, s) the parameterizations of the stable and unstable manifolds of the

perturbed system and we recall that, by Theorem 3.2.1 (in the parabolic case) and
Theorem 4.2.1 (in the weak hyperbolic case), the invariant curves are solutions with

respect to ¢ and satisfy
Voe(t +2me, s) = Ye(t, s + 2me). (8.2.1)
Moreover,
Vse(t,8) = n(t + 8) + O(uePt?) for (t,s) € D
Yeo(t,5) = y(t + s) + O(ueP*?) for (t,s) € D"

We call U = C(V(6},6,71,m0)) the domain of the flow box coordinates (S, E), con-
structed in Chapter 6 (see in particular Corollary 6.2.6), which is a neighbourhood
of

{7.e(t,8) : T <t+Res < 2T, |Ims| < a}

and it is independent of y,e.

By the extension theorem (Chapter 7) the domain of the parameterization of the un-
stable manifold +}; .(¢, s) can be extended to values of (¢, s) € Dg*, and in this extended

set verifies

Vet 8) = Yo(t + ) + O(pe”)
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where v =p — £.

Since v > 0, for any s > 0, there exist g and g such that, for all 0 < £ < g, |u| < po
and (t,s) such that T+ 3 < t + Res < 2T — 35 and |Ims| < a — €, the unstable
manifold, 7% .(t,s), is so close to y(t + s) and o(t + ) is so close to v; (¢, s) that
Yt o(t,s) € U for those values of (t,s).

Hence the functions
S*(s) = S(vpe(t, 8),t/e) — ¢, E¥(8) = E(ue(t, 8), t/e), (8.2.2)

are well defined for s € C such that 7'+ 35 < t + Res < 2T — 55 and |Ims| < a — .
We write some immediate properties of S* and £*:

Remark 8.2.1 By Theorem 6.2.6, S* and &" do not depend on time, then, in the
definition of S* and E* the time t can be chosen arbitrarily. We choose it in such a
way that T+ 300 < t + Res < 2T — .

Hence S* and £* can be analytically extended for all s € C and |Ims| < a—e.

Remark 8.2.2 The functions S*(s) — s and £%(s) are 2me-periodic with respect to s.
Indeed, we prove it for S*(s) — s. By property (8.2.1) and since S*(s) — s does not
depend on t, we have that

S*(s+2me) — (s +2me) = S(7,.(t s+ 2me),t/e) —t — (s + 2me)
= S(,(t +2me,s), (t +2me) /e) — (¢ + 2me) — s
= S%s)—s.

Analogously, E*(s + 2me) = E%(s).

The next proposition asserts that the Melnikov function is a good approximation of
the function £%(s) for |Ims| < a — € and it gives that, in particular when s € R, the
approximation is exponentially small. We denote

1 2me
£3(c) = 5= fo £4(s)ds.

To treat simultaneously the parabolic case and the weak hyperbolic case we introduce
the quantity 49, which takes the values ip = 1 in the parabolic case and iy = 1/2 in the
weak hyperbolic case.
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We introduce the Melnikov function

M(s,e) = /, m{hg,hl}(q’o(t + s),t/e) dt.

00

Since hy(z,y,t/e) is 2me-periodic in t, the Melnikov function has the same periodicity
with respect to s. We denote by Mj(¢e) its Fourier’s coefficients, i.e.,

M(s,e) = Z M ()e*s/e,
keZ

Given (t,s) € D" and ¢ : D™ — C?, we introduce T = |t + s — ia| and
£, 8)|- = [&u(t, 8)| + T]&a(2, 8)].

Now we enunciate two lemmas which we will need. They can be found in [20].

Lemma 8.2.3 Fort, tg, | real and s complez, such that 0 < Ims < a and
—2T' <ty +Res <t+ Res < 2T, to+Res <0
we denote
P[::.,:](S) = { P lo + s —ial|t’ 71
sup |In(lo +s—1a|)|, fl=0
where the supremum is taken for o € [to, ).

Then there exists a constant K which only depends on | such that

t do

—(1-1)

[ m __<_ Kp[tu,tl (S), (823)
0

Lemma 8.2.4 Let 6 € (0,1) and let 6 : [0,+00) — R be a function such that 6(1) <
8o/7t. Suppose that £(t,s) and &(t,s) are two functions defined in DF. We will
write §(t,s) = § = (§1,&) and £(t, ) = & = (&,&2). Assume that

€7, 1€l < 8(T).
Then we have that
Flaalt+8)+&) — flao(e+5) + &) < KEZ8L 5 pee
|'E _glr

l9(r0(t + ) +&,t/e) — g(n(t +5) +&,t/e)l. < Koy (t,s) € D¢

where f(z) = —/=V'(z) and g(z,y,t/e) = (9 (2, y,t/e), ~:hi (2, y, t/e)).
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Remark 8.2.5 Since
flao(u)) = 50(’“') = do(u)

has a singularity of order r + 1 at uw = ia, we have that, for (t,s) € D such that
0<Ims<a:

. 1 .
|[fP(ao(t + )| < Kggmyey» for 3 2 0. (8.:2.4)

By hypothesis HPS8, hi(z,y,0) is a polynomial in (z,y). When we evaluate h, at
(z,y) = Yo(u), by the definition of £ in Chapter 1, the function has a singularity of
order at most { at u = ia, hence for (t,s) as before

1
Ia;cl@:?hl(’m(t + S),t/&)l < Km, fOT‘ kl, kg > 0. (825)

Next result establishes some important properties of the functions S* and £%, in par-
ticular the closeness of £* and the Melnikov function.

Proposition 8.2.6 Under hypotheses HP1-HP6, 8* and E* satisfy the following es-
timates:
a) For s € C such that |Ims| < a —¢,

E%(s) = pe” M(s,€) + O(u’e™* 1, peP*™). (8.2.6)

b) For s € R, and E¥(e) = 5= 02“ E%(s) ds,

2mEe

£%(s) — E3(€) = pePM(s,) + O(u*e™*™ 71, pueP*io)e~o/e. (8.2.7)

c) For s € R, S = 8%(s) is real analytic and invertible, and its inverse s = s*(S5)
satisfies that s*(S) — S is O(ueP*™) and 2me-periodic in S.
Proof. In Corollary 6.2.6 we have proved that
E(e(t,5),t/e) =0 (328)
and

E(z,y,0) = ho(z,y) + O(ue™™). (8.2.9)



188 8. Splitting of separatrices

Since £%(s) does not depend on ¢, for any s we choose ¢t = T with Ty = T + 5 — Res
and therefore, for (t,s) = (7%, s), 7;.(t,s) and 7, (¢, s) belong to the domain of the
flow box coordinates U. Then, from the definition (8.2.2) of £“and properties (8.2.8)

and (8.2.9):

£4(s) = E(he(t,s),t/e) — Ealtis) t/e)
= ho(aielt, ) — ho(e(t 8)) + O(ue?*), (8:2.10)

if |Ims| < a-—e.

Since, for any s, such that |Im s| < a — € we have that

’Y;,s(ts S) - 0 when £ — 400
’}':.:,s(ta S) - 0 When t— —00
we deduce
Jim o(v;.(t,8) = limho(vic(t, 5)) =0.
Then

Ts +oo
ho(Yie(Tor 8)) = ho(7e(Ter 8)) = [ 8 [Ro(¥ji (2, 8))] dt — fT 0 [ho(yc(t, 5))] it

= peP [/T’{hg,hl}(wﬁis(t,s),t/s) dt+/

—00 T,

+00

(o I}t 5), £/6) dt] |

Adding and subtracting the Melnikov function we obtain

e

hg(’}’E’E(Ts, S)) - hU(FY;,E(TM 5)) = ,U:Epf a{h‘ol hl}('Y:,s? t/E) - {h'fh h’l}(’YOs ‘.‘:’/8) di

—00
Ts

+pe? [ {ho, i} (Ve t/€) — {ho, ha} (0, t/€) dt

400

¢ ‘UEP - {hg, hl}('yf;,s: t/E) = {h‘U! hl}(’}’ﬁ: t/&') dt
+o0
+ peP {ho, h1 }(y0,t/€) dt (8.2.11)

where 7} ., 75, and Yo denote 7 .(¢,5), ¥, .(t,5) and Yo(t + s) respectively. The last
term in (8.2.11) is the Melnikov function. By the conclusion 4) of Theorem 3.2.1, the
first and the third lines in (8.2.11) are O(u2e%*!). It remains to bound the second line.
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It is not difficult to see that, if we write v} (¢, s) = (a*(t, s), B*(¢, 5)) for * = u, s,

{ho, i }(Ver t/€) — {ho, h1} (70, t/€) =
— f(@)[Byh1 (Ve t/€) — Oyha(r0, t/E)] — [f(a) — f(@)]0yha (0, /)
- ﬁ*[axhl(’]f;,y t/E') e 6:chfl ('TO: t/E)] = (6' = ,B)an:hl (’YO: t/E)
Using bounds (8.2.4), (8.2.5) and Lemma 8.2.4 and taking into account that, by the

extension theorem, v, . — 70 = O(ue”), we get

[{ho, b} (e, t/2) = {ho, hu} (10, /)] < K=

(we recall that 7 = |t + s — 1a]). Then applying the estimate (8.2.3) with [ = £ —r + 2
we obtain that the second line in (8.2.11) is O(ueP**—#+-1). Thus

h{)(']f;:,g (T-'H 3)) = ho(’}’;,e (TM 3)) = ,U,EPM(S, 6) 4 O(p'2€2p+1‘ #252p+r—1)'

Now a) follows from (8.2.10) and from the previous expression. Note that, since £ >
r—1,onehas 2p+12>2v+r—1.

To prove b) we recall that the function £%(s) is 2me-periodic in s and analytic in the
complex strip | Im s| < a — €, then, expanding in Fourier series

E'(s) =) _EX(e)e™*

kEZ
with
EXe) = e f e E4(s)e~ks/eds.
2me 0
For s € R, since £* is analytic for |[Ims| < a — ¢ and it is 27e-periodic we can write
1 2me ) )
Ele) = — E%s + i(a — g))e klsEile—e/e gq (8.2.12)
2me 0

Thus, by the conclusion a) of this proposition about the estimate (8.2.6) of £(s) in
the complex domain, for k # 0 we obtain
e—|k|‘r,/£ 2me

EXe) = o, E¥(s +i(a—e))e /e ds

= #EpMk (E) Ik O(#2E2v+r—1’ ,LLEPHO)e_Ik[“’!E‘
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where we consider the sign + for k¥ < 0 and the sign — for k > 0. Here My(e) are the
Fourier coefficients of the Melnikov function. Now b) follows from the above equality.

Next we prove c). We recall that, by Corollary 6.2.6:
S .(t,5),t/e) =t + s+ pePo X (s)
and, for (z,y) € U
S(z,y,0) = So(z,y) + O(ue"*™)
where Sy is a flow box coordinate when p = 0. Also, by the extension theorem,
Vet 8) = Yo(t + 5) = O(ue”) (8.2.13)

for any t € R and s € C such that T+ 5 < t + Res < 2T — 3 and |Ims| < a — .
Then we obtain that

S*(s)—s = S(’yie(t, s),t/e) —t—s
= So(Yo(t+5)) =t — s+ Oue”, ue**)
= O(ue").
We expand S*(s) — s in Fourier’s series,
S%(s) —s = ZSE(E)BikS‘,E.
keZ

Thus for s € R, estimating the Fourier coefficients of S*(s) — s for s € R, in the same
way as we did for £* we have that for k # 0,

e—lkire/e

2me
Sk(e) = /o SU(s £i(a —¢€))e */¢ ds = O(ue”)eIFlo/e,

2me
From this we deduce

S'(s)—s = Sy(e) +O(ue")e™*

ds" _ vy —aje
7 (5) =1 = O(ue")e™",

(taking into account that 92-(s) — 1 has zero mean).

On the other hand, if s € R, by Remark 7.1.4 we have that

Vet 8) = Yot + ) = O(ue?*™),
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hence
S*(s) — s = O(ueP*™).

Therefore S¥(¢) = O(ueP™™). This implies that S = S*(s) (restricted to R) is in-
vertible. We denote s = s%(.S) its inverse which is analytic. Moreover s*(S) — S =
O(pePt®). To see that s*(S) — S is 2we-periodic, we observe that, by Remark 8.2.2,
S*(s + 2ne) = §*(s) + 2me, thus

s*(S + 2me) — (S +27me) = s*(S"(s) + 2me) — (S + 27e)

s*(S%(s + 2me)) — (S + 2me)

= s+ 2me — (S + 27e)
s*(S)-S

as we wanted. m

Now we define the splitting function. From Corollary 6.2.6 it follows that the local
stable manifold v;(¢, s) (for (t,s) such that |[Ims| < a—eand T+ < t+Res <
2T — 35) can be written in the (S, E) coordinates:

(S,E) = (S(1(t,8),t/€), E(ve(t,5), t/€)) = (t+ s + pePt X (s), 0) (8.2.14)

and the local unstable manifold vy (,s) (for (Z,s) such that [Ims| < a — ¢ and
T+ 3 < t+ Res < 2T — 34) can be expressed as

(S, E) = (S(1e(t: 8):t/€), E(ve(t: 8), t/€)) = (¢ + 5™(s), £¥(5))-

We define the Poincaré map

Pue(z,y) = pue(2me,0,2,y),
where @, (¢, to, ,y) is the solution of system (8.1.1).

The restriction to U of the unstable curve C* of P, ., is given by v (0, s) parametrizes
for s € C such that 7'+ 3 < Res < 2T — 35 and |Ims| < a — €. therefore in the
(S, E) variables C* is represented by

(S, B) = (8(14(0,5)), E(7,1,£(0, 8))) = (8(s), £(s))-
Thus, it is very natural to put the unstable manifold in implicit form, i.e., the variable

E as a function of S, because the measure of splitting can be computed by using this
function. The function ¢ is defined implicitly by

$(5%(s)) = £%(s).
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By property c) of Proposition 8.2.6, the equality S = S*(s) can be inverted for real
values of s, s = s%(.9), thus the function ¢ is, in fact, defined explicitly by:

&(S) = £4(s“(S)). (8.2.15)

We observe that the splitting function is defined in R.

The parameterization for the unstable manifold introduced in Theorem 3.2.1 and
defined in (6.5.5) in Chapter 6 is not uniquely determinate. Indeed, if we define
s = S+ o(S) where g is a 2me-periodic function which is O(ueP**), then v} (¢, S) =
¥:e(t, S+ 0(S)) is another parameterization which all properties we have proved until
now.

Since s*(S) — S is O(ueP*™) and 2me-periodic in S a new parameterization for the
unstable manifold can be defined as

Ve, S) = 7, (8, 8%(S5))
and for the stable manifold
Vet S) = 7,(t,S).

Finally, after this change of parameter, the splitting function defined in (8.2.15) can
be also represented in the form

$(S) = E(1(ts%(9)), t/e) (82.16)
= g(’?ﬁls(t,S),t/E).

8.3 Proof of the Theorem 1.2.1 and its corollary

First we will show that the function ¢ given in (8.2.15) can be used to measure some
magnitudes related to the splitting. Then we will prove the formulas in Theorem 1.2.1.
In the next proposition we prove the existence of primary homoclinic points and we
give a formula for the area of the lobes, as well as useful properties of the splitting

function.

Proposition 8.3.1 The function ¢ : R — R is 2we-periodic, real analytic and satisfies
the following properties:
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a) There exists h* € R such that ; (¢, h*) = v, (¢, h°) (giving a homoclinic orbit),
with h® = S*(h*). For n € N, we define

h;, = h® + 2men

which gwe homoclinic points. Clearly, for all n, ¢(hs) = 0. Moreover, ¢'(hS) is
ndependent of n, and

¢'(hy) = 057 (t, hs) N OsHy . (t, h3) (1 + O(uePt™))
10535, (t, R)I| 110577 (£, h3)| sind(t, hS) (1 + O(ue?*™)),

e
where A denotes the exterior product on R?, and U(t, h%) is the angle between
¥'(¢, hy) and v*(t, hy,).

b) The area of the lobe between the invariant curves is given by

A=

/h " 5(5) dS

where h and h are two consecutive zeros of $(S). We may choose the ones which
are closest to zero.

c) do= [r " $(S)dS = 0.

Proof. We begin by proving the existence of homoclinic orbits. Let P,. be the
Poincaré map

Pus(2,9) = @ue(2ne,0,2, ).

Let W**(P,.,0) (¥ = s,u) be the right hand side of the stable and the unstable
invariant curves of the origin of the map F, .. Since the parameterizations Vier ¥ = 8, U,
as functions of ¢ are solutions of the system (8.1.1), we have that

C° = {7.0,5):Res>T, |Ims|<a—e}C W*(P,,0)
C* = {7,.(0,5):Res<~T, |Ims|<a—e}CW“F(P,,0).

Moreover, since
’Y,;,s(t + 2me, s) = 'Y;,s(tr s + 2me) * = 5,U,
in their respective domains, we have that

Pe(7,£(0,8)) =7} (2me, s) = 7; (0, s + 2me),
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which means that if we consider s as the variable in C* C W**(P,0) the dynamics of
P,. on C? is just

S+ S 2me.

Since P, is area preserving and Fy. has a homoclinic connexion (which coincides with
the homoclinic orbit of the unperturbed differential equation), a well known geometric
argument, applied to P, restricted to the real numbers, gives that P, . has (real) pri-
mary homoclinic points. Since the iterates of the homoclinic points also are homoclinic

points there will be such points in U.
Then there exist h*, h* € R, T + 3¢ < h*, h® < 2T — 31, such that
" = (0,h%) = 7;..(0, h°).
Hence
Vue(ts B*) = 73 (8 1°)
are defined for all ¢ € R and are a homoclinic solution of (8.1.1).
Moreover, taking ¢ such that
T+ 35 <t+h*t+h* < 2T — 3.
We recall by Corollary (6.2.6), we can choose so = h®. Therefore, we can write
S(1e(t,R°), t/e) =t + A,
therefore
h* = S(7,(t h°),t/e) —t = S(v, (¢, hY), t/e) — t = S*(h").
Moreover, by the definition of ¢ in (8.2.15) and the definition of £* in (8.2.2) we have
¢(h) = @(S*(h*)) = £¥(s*(S"(h"))
= E&Y(h") = E(1(t, hY), t/e)
= E(a(t ), tfe) = 0.
By the 2me-periodicity of ¢, ¢(hs) = ¢(h® + 2men) = ¢(h*) = 0.

Obviously ¢' is also 2we-periodic, thus ¢/(h,) does not depend on n. Now we compute
¢'(h*). We recall that

Voue (6 1Y) = V(8 84(R%)) = 7 (¢, 1°)

L]
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and formula (8.2.16):
¢'(S) = g(ﬁzﬁlﬁ(t! S),t/E).

We differentiate the above equation at the point S = h® and then ¢'(h;) can be ex-
pressed in the following way:

¢ (h°) = BoE(Fpe(t, h°), t/€)BsG™ (¢, h°) + B,E (T (8, 1°), £/€)s B (¢, h°)  (8.3.1)

where 7 (t,5) = (&*(t,s), B*(t,s)). Moreover, differentiating with respect to s = S
the equation

(S(re(ty5),t/€), E(e (8, ), t/€)) = (t + 5 + pe™™ ™ X (s),0),
(given in (8.2.14)) we obtain
14 0(uePol) = 0,S(x,(t,5),4/)050"(t, 5) + 8,S(v (8, 5),t/e)Os8°(t, S)
0 = axg('}';,s(tr S): t/&)asas(i, S) X 895(7f1,£(t! S)v t/g)asﬁs(t, S)

and from this, taking into account that the change (z,y) — (S, E) is canonical, we get
when S = h®

0sa’(t, h*) (1 + O(ueP*t)) = 8,E(v) . (t, h°),t/e) = B,E(i (¢, h*), t/e)
= ayg(’?:,e (t._. hs)? t/E)
3363(t, hs)(l : 3 O(“ep.'-iﬂ_l)) = _a:xg('f;,s(t! h‘s)! t/E) = _aa:g(;}":,s(t! hs)! t/E).

Substituting the derivatives of £ in (8.3.1) we obtain the formula stated in a).

In order to prove b) of Proposition 8.3.1 we recall that the change C, given in Corollary
6.2.6, which transforms the initial coordinates (z,y) to the flow box coordinates (S, E),

is canonical. Therefore.
f/ dmdy‘ = ‘/[ dSdFE
Lobe C(Lobe)

Moreover, since the Poincaré map P, . is orientation preserving, there exists at least
one primary homoclinic point of P, . between z* = ~; (0, %) and P, .(z"). We denote
this homoclinic point by v; .(0, h°*). By definition of the splitting function, the area of a
lobe, in (S, F') coordinates, is the area of the splitting function between two consecutive
zeros of ¢, hence

A:

" 6(5) ds

hs

A=
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with h* and h® are two consecutive zeros of ¢.

The conclusion c¢) asserts that the splitting function has zero mean. To prove it we
note that since P, . is area preserving, a standard geometric argument gives that the
area of two consecutive lobes one inner and the other outer, coincide. Therefore c)
follows from b) and the fact that the change C is canonical. m

Now we have a suitable expression, but not the final one, of the splitting function ¢(S)
and consequently of the area of the lobe. By the second estimate of Proposition 8.2.6
as well as by the definition of ¢(S) = £*(s*(S)), we have that for real values of S

B(S) = E4(s(S)) = E4(€) + P M(5%(S), €) + O(W2e™* 2, e io)e o/,

where we recall £(g) that is the 0-Fourier coefficient of £*. Therefore, in order to
prove Theorem 1.2.1 we need to estimate £f. For this we enunciate a technical lemma
which we will prove in Subsection 8.3.1.

Lemma 8.3.2 Under the standing conditions we have

dM

v—1y\ _—a/e

A direct consequence of this lemma is the following corollary which finishes the proof
of Theorem 1.2.1.
Corollary 8.3.3 For S € R, ¢(S) satisfies the estimate
#(S) = peP M(S, €) + O(URe?+7=1, y2ev+p-1ti ycptin)g-afe,
Proof. The proof of this corollary is a direct consequence of the Lemma 8.3.2 and the
Taylor’ Theorem. Indeed,
pePM(s4(S),e) = ue?M(S + O(ueP*®),¢)

= M (5,6) +net [ DS+ CO(uer ™), )0uer ) de

= pePM(S,€) + O(ple+P-1t+io0)ee/e
therefore,

¢(S) — 86: Kk )‘J.EPM(S, E) s O(#252v+r 1, “2€V+P 1410 #Epﬂg)e—a{s
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and since by c¢) of Proposition 8.3.1 ¢g = 0, and the average of M is zero
56; — O(#’2€2u+r—13u2ev+p—1+io‘}uep+io)e—a,’£

and the corollary holds. =

The proof of Theorem 1.2.1 is an immediate consequence of Proposition 8.3.1 and
Corollary 8.3.3.

8.3.1 Proof of the Lemma 8.3.2

The proof of this lemma has big differences from the proof of the corresponding Lemma
in [20]. As we pointed out before, we are considering the case such that the parameter-
ization of the homoclinic orbit has a singularity which is a branching point. The proof
of Lemma 8.3.2 is the place where this hypothesis has to be taken into account. Since
u = =+ia are branching points, the homoclinic orbit is defined in a neighbourhood of
the singularities except a segment starting at them, and therefore we can not use the
residue theory in order to estimate the Melnikov integral.

The case such that the singularity is a pole also follows from this proof taking below
qg=1.

We recall that as we pointed out in Remark 1.1.1, near of singularities +ia, the homo-
clinic orbit vy = (ap, Bo) can be written as

Cy s vk d:b i ok
ag(u) = ————=(1+ O(u £ ia)9), Bo(u) = ————(1+O(u +1a)9).
o(u) (uim)?( ( )7) o(u) (uim)z_ﬂ( ( )7)
where we take
_ T 3w ’ . ;
arg(u +ia) € (_E’ ?) ; near the singularity — ia
and
, 3r w . , .
arg(u — ia) € (-w?, -2—) , near the singularity + a.

Here we write

r=1+2€Q.
q
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We recall the definition of J given in Chapter 1:

J(z,y,t/€) = {ho, 1 }(z,y,t/e) ~ ZJ(xy ne/e
n#0

and that J(yo(t+s),t/e) has a singularity of order at most £+ 1. We also observe that
the perturbation h;(z,y,6) can be written as

h(z,y,0) = Y  al@)zy™

k<l <, lEN?

We recall that, by its definition, ¢, can be expressed in the form

b=5(r=1+jr=5n+G+ jz)g, (8.3.2)

where 7; and j, are such that

jl(r — 1) + Jor = ma.x{ll(r = 1) +lor i+l > k 3 l = (31,32) 3 a.;(f?) —'/—' 0}

Now we write the Fourier’s coefficients of M (s, €) in terms of the Fourier’s coefficients of
J evaluated at yo(u): J(70(u)). We note that, since J is only continuous with respect
to t/e, the Fourier’s series may not converge, although their Fourier’s coefficients are
well defined. However, since M(.,¢) is analytic and 2me-periodic with respect to s, its
Fourier series converges and thus, we have that

£) = Z M, (e)e™*/¢
nei
with
1 2me

M,(e) = e J, M(s,e)e™™/¢ ds.

We claim that we can relate the Fourier coefficients of M with the ones of J, concretely

1 S
M,(e) = 2—m-/ e~ ne I (vo(u)) du.
—00
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Indeed, by definition of M(s,€), we obtain

My = o ([ sente-+9)t/e1at) e as

2me

+00 y
e g —ins/e
T 27e / / J ’TU( )

— el e—um,’e./ em(u S)XEJ('}’{](H), == S)ds dii
2*;'rs » 0 €

1 +o0

- gimie J_n(Y0(w)) du.

)du ds

Here we have used that, since the integral

f+w e‘i“SJ’EJ('}'g(u), = ; s)d‘u

—00

is absolutely convergent, we can change the order of integration.

Now, our goal is to estimate the integrals

/jw e~ /e J_ (yo(u)) du (8.3.3)

oo

forn € Z.

We observe that, since J is a polynomial in z, y variables, near the singularities u =
+ia, J,(v0(u)) has the form:

To®) = m( S JE (utia) %)

m=0
L% 1
_ E : n,(j1+j2)p-m
- (u + da)’s T2+ (8.34)

—oo<m<(j1+72)p
where j; and j, are defined in (8.3.2) and J* (i1 +ia)p—m are coefficients which depend
on ¢ and p.

Now we proceed to evaluate the integrals (8.3.3). We consider first the case n < 0. We
choose the path of integration I' =I'; VI3 V...V I'g as indicated in the figure:
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I n%jr I

-R i R (+Res

where b > a, p is small (obviously p < a) and R is big. Since we will play with the
dependence of I" on p, we will denote the path by I'(p).

Since the function J_,(yo(u))e™ /¢ is analytic in the region enclosed by I'(p),
/ Jon(yo(w))e™ ™/ du=0,  Vpe (0,p0)
'(p)

with po small enough. The advantage of considering these curves is that the above
integral does not depend on p. Therefore, in order to compute the dominant term of

8

f { )J_n("m(u))e—inu}f du = — Z J—n(’Yf}(‘U»))B_inufE du
Ti(e

j=2 /Tie)

the strategy consists on to expand the right hand side in terms of powers of p and then
to take limit when p goes to zero. The terms with negative powers of p must cancel
and the terms with positive powers of p tend to zero. Therefore we only have to take
into account the coefficients of p° in such expansion.

We begin to look for the asymptotic expression of (8.3.3). First we observe that

Jn(ro(w)e™ ™ du+ [ J_n(yo(w))e™™/¢ du — 0 when R — +00
Iz I's

and that

J-n(70(u))e™™/* du, J_n(vo(w))e™ ™/ du = O(e™/*),
Fa(e) I7(p)

uniformly with respect to p. Next we will compute the integrals over the paths I's(p),
I'4(p) and ['(p). For these three integrals we stay near the singularity ia, thus we can
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use the expansion of J_,(vo(u)) given in (8.3.4). For j = 4,5, 6, we have that

—inu/fe
—inu/e E : = e
T;(p) T;(p) (

m<(j1+j2)p W= m)

To evaluate the integrals in the right hand side of (8.3.5) we distinguish two cases:
m/q ¢ N and m/q € N.

First we deal with the case m/q ¢ N:

1. Integral over I's(p). This path can be parameterized by g5(f) = ia + pe~*® where
6 € [0, m]. Using the series expansion of the exponential we have that

e—~inu{£ /e T e—inpe—ie;ge—-iﬁ
I e

I 2 . m I3
= na,-’sp = Jz/ e—inpe“‘?/sew(-;ﬂz) dé
0

A EDY / (—mﬂ) —19('“+Jz—1}1 df.

=0

Therefore, if 5 ¢ N, the integral over I's(p) has not constant term in p. Then

the integral
e—inu/e
du
]l"r,(p) (u _ za) Ztja+1

has not contribution.

2. Integral over I'y(p). This path can be parameterized by

94(0) = p — 16, 6 € (b, —a].
Then
-/~ e—inufe -a —pni/e —nfl/e
du = —i / do 8.3.6
ra(o) (u —da)’s 2+ - (p—(a+0))* " 5:39)

b -—pm/’e nﬂfs
= _%f +J2+1 d@
a (p+(0—a)i)®
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We need some notation, we introduce

enB /e

b
10 = [ e 4

where [ = jo + 1+ [ﬂ and = ¢ - [%] € (0,1). Here [.] denotes the integer

part function. Integrating by parts in [;(p) we obtain a recurrence formula for
Ii(p):

1 n
= —( fi_ —I_
Ii(p) -y (fe 1(P)+E ! 1)
where
em/s enbfs

ft~1(P) = p'H"-l - (p-{—z‘(b—a))'?*‘"l'

From the recurrence relation it is not difficult to prove by induction that,

A= | 1
gl = ;(E) E(nﬂ—1)---(u+£—j)f“"(p) 85T}
nyt 1 1
+(3) Yo

(we observe that 7 > 0). We recall that we only have to look for the constant
terms in p of I;(p). The contribution of the j-term in the sum (8.3.7) is

_ (E)j—l l 1 enb/’s
e/ dn+i-=1)--(n+1-7) (b~ a))m-1

(8.3.8)
Now we analyze Iy(p). We observe that, since p > 0, for z > a, we have that
, vy
arg(p+i(z —a)) — ) when p — 0.

Therefore, using the dominate convergence theorem

b enf/e /2 b enf/e
In(p) /ﬁ Gri@—a) df — e /a G—ay dg when p — 0.
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With elemental changes of variables we get

/b enG/E 5 ( £ )1—?’.' y f|n|(b—a)/e “ p (8 : 9)
— dh=(—= greis s "e™* ds. B
o (0—a)" In| 0

Moreover we have that
[n|(b—a)/e
/ s~e=* ds = (1 — 1) + (e) (8.3.10)
0

where I' is the Gamma function and

e € " nl-a)/
(e =f s e % ds < (—) e~ IMo—a)/E
) In|(b—a)/e [n|(l— a)

which is exponentially small. Using (8.3.8) and (8.3.9), we obtain that the con-
stant term in p of [;(p) is

_ nyi-1 1 —e™/e
L= Y 3) snrpomrames g

5 (E)I 1 1 ( € )1—n enafee—ninﬂ[r(l —n) +¥(e)).

e) d(n+l—1)---n \|n|
Clearly, by (8.3.9), the dominant term of I, is

[~1+n —nim/2
L = (—_1)‘(@) ( i nr(l—n)e—lf‘*“f’f(1+0(s))

4 \e ey g
(YL A S S ey
o A3 1 naje 1 .
i € © sin?rnf‘(l+n)e Peblhel)

where we have used the formula I'(1 — n)I'(n) = n/sin(nw). Thus the constant
term in p of

/ e—inu{e
Ta(p) (v — i)tz

is

CED RN e L e
e . e sinﬂ"nl"(l-l-'q)e (1+0O(g)), (8.3.11)

where we recall that

N N
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3. Integral over I's. This path can be parameterized by

g6(2) = —p+ 10, 6 € [a,b).

Therefore,

—inu/e b pnife nf/e
/ - 2 +ja+1 du = ?.f : - o Btig+1 df
re(e) (u —da) @ o (=p+(0—a)i)"

Thus, if we define

7 b epni{s i
ip) = /a (—p+ (6 —a)i)™"

we have that Ji(p) = [;(—p) and for n > 0, by using the previous computations,
we obtain

Z() P Iy B ey e ¥ L)

Jj=1

+(E)E%(n+z-11)---n"”'

As before we calculate the constant term Jy of Jy(p). In this case, the argument

of —p + (z — a)i belongs to (=3, —) and therefore,
b né/e b nf /e
_ & m‘sn;z/ ¢
Jo(p) /ﬂ Crti0—a) dd — e 1 (G—Q)ﬂdg when p — 0.

Consequently the constant term in p of

e-—-mu,-’s
du
/I‘s(p) (u — ia)a T2t

is

_(_1)1 M i nidn/2__ T 1 —|nla/e
- e e 1r?)e (1+ O(g)). (8.3.12)

Now we consider the case such that 7+ € N. Taking into account that, 7 +j2+1 €N,
the functions

e—inu;"s

(,u = w.) 2ty +1
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have a pole of order = + j + 1. Therefore we can apply the residue theory. We consider
the integration path I(p) given by

["(p) = Ta(p) vV I's(p) V Ts(p) V I7(p)

where I',(p) is

I Ims
7
[T
Fa% 9 I
N
R +Res
Then
[ e du=miRes( i)
— u = 2miRes(f, ia
o) (u—da) e
e—inu/’e
where f(u) = = It is not difficult to calculate the following residue:
(u _ ia)7+}2+1
1 —in\ @ 2
Res(f,ia) = -— e"/¢(1+ O(e)).
(i) = () (1+0(e)
Then,

f =2miRes(f,1a) — /

fn (P)VTs(p)VTs(p) Ie)

It remains to estimate the integral over the path I';(p). This curve can be parameterized
by ¢4(8) = ib — pe®?, 6 € [0, 7], thus

/~ e—inu;’s 4 . b /Tl' inpei? [e i
— u = —pie™'€ — A
r @—ia) s 00 o (i(b—a)— pet) T
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This integral goes to zero when p — 0, therefore the constant term in p of

e—inu/’s

du

1
/Fa(P)Vf's(PJVra(P) (u — da) T t7*

is

-+ 2
2miRes(f,1a) = Qm( -igz) (—;n) ¥ e~mle/e(1 4 O(e)).

Now we compute the dominant term of M, (¢) for n < 0. We recall that

‘ 4
2232+(31 32)?’

and we denote

_itpp [(h+i2)p
g { q ]E(U’l)'

Finally, if £ ¢ N and n < 0, by (8.3.11) and (8.3.12) we obtain that the dominant term
of My(e) is

( ) 0o e—mu{s
M,(e) = J_n 3 m / du
Y (g1 +32)p— oo (u—1a) % =yl
N e—inu/s
= = 3 Tl 400 [

m<(j1+J2)p

o eInlefe .
= —i[fl(';"') Slm:m;(ngl)e"’“”"‘?(lme’“‘?‘“)(1+0(5)). (8.3.13)

And if £ € N, the dominant term of M, (e) is

0o e—inu,’z
_ +
Mn(E) - Z J~n‘(j1+jz)p-—m/ (u__ ?’a) +J2+1 d‘u
m< (k+5)p e
- ¥ (1+0()) / e
m<(k+5)p i I'4VIs Ve ('U' = m) Al

= (Inl) e"/eQmi g+ no(l+0(e)). _ (8.3.14)
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Remark 8.3.4 We observe that the expression of M,(e) in (8.3.18) goes to (8.3.14)
when n goes to zero.

For the case n > 0, it is sufficient to observe that M,(e) = M_,(¢) and J_, o = H',o-
Thus, if £ ¢ N and n > 0

¢ —|nla/e
= (—) |_n.|. ﬂ- € —ngim/2 nei2m

andif e Nandn >0

1,0 = (- (1) geritanias, 1 +.0(e),

€
Consequently, for all n,
pe? My, (€) = peP~te 1"o/e M, = peveImo/e M, (8.3.15)
where, choosing the sign + for n < 0 and the sign — for n > 0

™ 1
sin7ne (£ 4 1)

M, = (- )fn|f 2mJ_n0(1+O(E))= if £ € N.

My = (=9)"n|< e (1 — eI 5(1+ O(e)), fL¢N

8.3.2 Proof of the Corollary 1.2.3

Assume the same hypotheses as Theorem 1.2.1 and the further hypothesis HP7. We
note that, if HP7 is satisfied, Ji, = T o are different to zero, and then by (8.3.15)

}.EepM(S, 6) = pev Z e—na/s(Mneius;’E T M_ne—insg’a)
n>0

— #aue——afs(ﬂleés/s+M_le-—isfe)+#Euo(e—2ajs)_

Next we compute Mie*/¢ + M_e~*/¢. If £ ¢ N

o isfe  vr —isfe . __ T 1 0 ¢ nin/201 _ —mi2my 7~ \is/e
Mie™" + Mo six‘m1‘7‘;1"(£?+1)‘6 (€751 —e )J-10)e

™ 1 (-
“sinm T(€+1)

) It4 (e—mwﬂ(l _ eniz-rr)‘]iil-o)e~isfe
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where n, = £ — [{] and, if we write J;', = |Jf;|e*?, and since J_,; o = |J{ple™®, with
|J7o| > 0, we obtain
/e

2r e . . ;
P S~ + _\@ —min/201 _ ni2my i(f-2
peP M (s, €) UE P 7 l)lJl‘OlRe(( i)e (1—e™Me )

+ue”O(e=2/¢),

We can calculate more explicitly this formula. We consider three cases. If £ € @@ and
[¢] is odd,

Rc(z-[f’]e—qiwﬂ(l _ 811:’2#)6{(6-—.9/5)) = (_1)([£]—1)f2 (Im ei(ﬁ—sfs—qwﬂ)) _ Inl(ei(sﬂag’s——nawﬂ)))

— (—1)tE-Dr2 (sm( = -ES- = %’3) — sin (9 = "z' + %))
e (e (0 - T)

and then we get

/:D M(s,€)

™ 1
siny T'(4 + 1)

= e8|

— jJ,Ey+1

p‘Ep |J1,0|85in(?'r7?)e_af£ +MEV+IO(3_2“!"5)

1
—afe v+1 —2afe
T+ 1)6 + pe’ T 0(e**)

where so and 3, are two consecutive zeros of M(s,e). Moreover,

1
T(+1)

| M (s0,€)| = pe” " dm|Jto| /% + pe10(e72/*)

If £ € Q and [/] is even,
Re(z-[f}e—mrﬂ(l _ eni?w)ei{ﬂ-sfs}) — (___1)[3}/2 (Re(ei(ﬂus/’s-—qarj@) _ Re(ei{ﬂ-—s;’e—q3m’2)))

= (1)l (cos (9 — —S - %E) — cos ( - S ] "737'"-))
= (=1)1/295in () (sin (9 —-ES- - ?}'W)) ‘

]:ﬂ M(s,€)

|M(s0,€)| = pe”" dm| |

and therefore

1
—afe v+1 —2a/e
TZ+D e + pe" T 0(e™*)

pe? = ps"+187r|.f{':0|r

e—-a/s + Mv—lo(e—2a/€)

1
T(+1)
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Therefore, in the two cases, applying the formula of Theorem 1.2.1 we obtain that

1
A = pue’8xl|J —e‘“"f+ gt (e=2ale
e |l e+ Ol
+O(;U2 2v+‘r,ﬂ2ev+?+to #6p+1+io)e—a/e (8.3.16)
1 1
sing| = pe Mr|Ji|——e " ———— + ue*10(e~%/%)
sind] = pe T TGl

+O(,u2 2u+r— 2’#2£v+p+w Z’Mp 1+to) /s‘
Finally, if £ € N,
M6t/ + M_jeio/e = Qgr ()10, (e + i+ Te/e)
and thus
ueP M(s,€) = MEV?FUml—Re( itH1ei0=s/))gmale | vl (—2ale),
And, with a similar argument to the previous ones, we deduce the formulas:

1
A = pe"“SﬂJ{" [—e'“!€+;¢£"+10(8'2“”5)
+O(u 2 3”+T‘H2EV+P+10‘ pep"'l"'i“)e_“/e

1
sind] = per Ml Jfolye e 4 pet 1O 2e)
) ol g™ eGP

+O(;.L2€2y+r ] #269+p+zo—2 “Ep—1+io)e—a[£_

Remark 8.3.5 We note that if £ is an integer, the formulae of the area and the angle
given in (8.3.16) also apply and they coincide with the last formulas ezplicitely computed
for £ e N.
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Invariant manifolds of maps



Chapter 9

Invariant manifolds of parabolic
points in higher dimensions

9.1 Introduction

Invariant manifolds are very important objects in dynamics because they provide es-
sential information for the analysis of the dynamical structure of a system.

Invariant manifolds are associated to invariant objects, the simplest ones being fixed
points. There are many results about invariant manifolds associated to objects having
some kind of hyperbolicity [50] [51] [58].

The case of invariant objects without hyperbolic “directions” is more complicated.
The full neighborhood of the object is a central manifold. If we consider dynamical
systems generated by maps, the fact that a neighbourhood of the fixed point is a central
manifold means that all the eigenvalues of the linear part of the map at the fixed point
have modules one. The case that all eigenvalues are exactly equal to one is the most
degenerate. For two dimensional maps, this case is considered in [63] [8] [30].

Some cases in higher dimension have been considered in [70] [26]. Such maps appear
as Poincaré maps in some problems of Celestial Mechanics [63] [70] [62] [14].

In this case (all the eigenvalues are exactly equal to one) the sets of points whose
positive iterates converge to the fixed point may be non-void. This set is invariant
by the map. We can call it stable invariant set or stable invariant manifold in some
generalized sense. In the analogous way we can define the unstable invariant set.
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In this context, it may happen that both the stable and the unstable invariant sets are
open sets. See an example of such case in [30].

Here we will consider multidimensional maps with a fixed point with linear part equal
to the identity and we will give sufficient conditions to find stable invariants sets formed
by points such that their iterates converge to the fixed point and some projection of
them stay in a chosen set.

First we will obtain these sets as graphs of Lipschitz functions. Then we will add
analyticity hypotheses and we will obtain these sets as graphs of analytic functions.

The methods we will use in this chapter are generalizations of the ones of McGehee in
[63] where he studies a two dimensional case.

Finally we will present some simple examples to illustrate the application of the results.

9.2 Definitions and notation

We consider maps F : U C R*™™ — R™™ of the form
x m+p(ﬂ:,y)+f(m,y))
— 9.2.1
(3)- (Gt 934

where p(z,y), g(z,y) are homogeneous polynomials of degree N,, N, respectively with
N,, N, > 2, f(z,y), g(z,y) are differentiable functions of orders o(||(z,y)||**) and
o(||(z,y)||N) respectively, and their derivatives Df(z,y), Dg(z,y) are o(||(z,y)||"*~*)
and o(|(z,y)||¥e!) respectively.

Given a subset V C R™ we define
W = {(z,y) €U : 7' F*(z,y) €V, k>0, F¥(z,y) = 0, ask — 00}  (9.2.2)
and its local version
Vir (9.2.3)
= {(z,y) €U : 7' F*(z,y) e VN B(0,r), k >0, F*(z,y) — 0, as k — oo}

These definitions depend on the decomposition R**™ = R" x R™. Particular cases are
n =1 or m = 1. In the two dimensional case, if n =1 and m = 1, V can be taken as
(0,7) or (—r,0). When V' = (0,r) the corresponding invariant manifold is denoted by
We* in [30].
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We shall use the following two norms: if z € R¥,
I2]] = max(|z],. .., |z])
and therefore, if (z,y) € R™™, ||(z,y)| = max(||z||, [y||), and
k 1/2
Izl = (3°22)
1=1

Of course both norms are equivalent, but some sets defined through the norm will have
different shape.

Given V C R™, we introduce the following notation:

Vir)={z eV :|z|2 <r},

Vir) = {z/lz]2: z € V(r)}.
Notice that if r; < rg then V1(r;) C V1(rs).

Also we introduce the projectors:

7z, y) =2, 7 (29) =2 1<i<n,
m(z,y) =y, @y =y, 1<j<m

and the following sets,

V(r,B) = {(z,y) e R™™: sce@, lyll2 < Bllzll2},
Vir,B) = {(z,y) eR™™: z e V(r), lylla > Bllzll2},
vi(rf) = {(z,9) eR™™: (z,y) € V(r, ), llyll2 = Bllz|2},
S(a) = {(&n) eR™™: [In]l > ell]]},
Sf(a) = {(€mn) eR™™: n; > al¢]},
Si(@) = {(&n) eR™™: n; < —al€|},
for j € {1,... ,m}. Notice that
S(e) = | J (55 (@) U S} (). (9.2.4)

J=1
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9.3 The Lipschitz case

This section is devoted to prove, under suitable hypotheses, the existence of a Lipschitz
stable invariant manifold in the sense of definitions (9.2.2) and (9.2.3). We consider
maps F of the form (9.2.1).

We will assume that there exists r > 0 such that:

H1. The polynomial p satisfies

i

_"D:Ftpi(ma 0) > Z ]Dmkpi(xi 0)| =+ Z IDM}‘J;‘(E, 0)’:
k=1,k#i k=1

Vi € {1,...,n} and Vz € V(r).
H2. The polynomial ¢ satisfies

m

D.q(z,0)=0 and D, q(z,0) > Z | Dy, q;(x,0)],
k=1,k#j

Vj € {1,...,m} and Vz € V1(r).
H3. 3A > 0 such that Yz € V(r), dist(z + p(z,0), V(1)) > Al z||">.
We remark that in H3, dist(z, A) = inf,c4 dist(z, z) where dist(z, z) is measured with
the norm ||.]|.

The main theorem of this section is:

Theorem 9.3.1 Let F : U C R™™™ — R™™ be a map of class CN, N > 2, of the

form
(2) (st ton) 031

where p(z,y),q(z,y) are homogeneous polynomials of degree N, and N, respectively
(Np, Ny > 2), f(z,y) is of order o(||(z,y)||**), Df(z,y) is of order o(||(z,y)™"),
g(z,y) is of order o(||(z,y)[I"*) and Dg(z,y) is of order o(||(z, y)[|Ne~1).

Then, if there exists a conver open set V. C R", 0 € 8V and r > 0 such that the
hypotheses H1-H3 hold, Wy, is the graph of a Lipschitz function

w:V(r)—R™
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Remark 9.3.2 Hypotheses H1 and H2 provide a kind of weak hyperbolicity for the
fized points in a suitable domain,through the nonlinear terms.

Remark 9.3.3 Hypothesis H2 implies that q(z,0) = 0.

Remark 9.3.4 An unstable manifold theorem can be obtained by considering the in-
verse map.

The rest of this section is devoted to prove Theorem 9.3.1. For that we need several
lemmas. In all of them we will assume implicitly the hypotheses of Theorem 9.3.1.

We shall use several times the following simple lemma on homogeneous functions.

Lemma 9.3.5 Let V C R™ be an open set with0 € V, and let h: V xR™ — R be a
homogeneous continuous function of degree N and ro > 0 such that

h(z,0) > 0, Vz € V(ry).
Let h: V x R™ — R be such that h(z,y) = o(||(z,%)||¥). Then 3r,B, K >0, such that
h(z,y) +h(z,y) 2 Kllz|y,  VzeV(r), |lyl: < Bz
As a consequence 3r, K > 0, such that

h(z,0) + h(z,0) > K||z||y¥, Vze V().

Proof. Since V(rp) is compact, by continuity there exists 8 > 0 such that h(z,y) > 0
if (z,y) € B(ro, 8) = {(z,y) : z € V¥(ro), [lyll2 < B}. Also since B(ro, §) is a compact
set there exists M > 0 such that h(z,y) > M in B(r, 3).

If z € V(r), r <o, ||yll2 < Bllz||2 and z # 0, by the homogeneity of h, we have that

_ N z y N
h(m!y) = ”.’L’”2 h(”IHZ, ”$”2) Z M”:E”2 .

On the other hand, if r is small enough, we have
& M,
a9l < S lzllz, Ve e V(r), llyllz < Bllzll.:

Hence h(z,y) + h(z,y) > h(z,y) — |h(z,y)| > Y |||y which proves the lemma. m
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Lemma 9.3.6 Ifr >0 and B > 0 small enough, then ¥(z,y) € V(r,3) we have that
™ F(z,y) € V(r).

Proof. It is a consequence of hypothesis H3. Note that V(z,y) € V(r, 8)

| F(z,y) —z —p(z,0)| < lp(z,y)—p(x,0) + || f(z,v)ll
< sup |[Dyp(z, Ol Iyl + nllzll™ < (CB+n)lz|™

gl <Ilull

with suitable C' and n depending on 1y and [ small enough, and hence

dist(7'F(z,y),V(r)?) > dist(z + p(z,0),V(r)°) — [|[x*F(z,y) — = — p(z,0)|
> Alz|" — (CB+n)|lz||™ >0

if (CB +n) < A which implies that 7' F(z,y) € V(r). m
Lemma 9.3.7 There exist r, K, 8 > 0 such that for all (z,y) € V(r,3) we have

1) |#'DF(z,y)|| <1 - K|z|™,
2) |=' F(z, )|l < lIl=ll,

Proof. 1) With the norm we are working with:

i=1,...,n

ImDF| = max (3D Fl+ Y D, F).

For i € {1,...,n} we introduce

n

h(:ﬂ, y) = Dxipi(:c! y) Z |‘D$kpi(331 y)l X Z |Dy;¢pi($, y)l
k:]-‘k?ét k=1

and
E(I,y) = Z ‘kaf;(l',‘y” + Z |Dykfi($uy)|'
k=1 k=1

By hypothesis H1, for z € V'(r) we have that —h(z,0) > 0. By the hypotheses of
Theorem 9.3.1 we also have that —h(z,y) = o(||(z, y)||V*7}).



9.3 The Lipschitz case 219

Then, by Lemma 9.3.5 there exist r, K, 8 such that V(z,y) € V(r,5),
~h(z,y) — h(z,y) > K|jz|| %,

and therefore

n m
Y |Du Fi(z,v)l + Y IDy Fiz,y)| < 1+ h(z,y) + h(z,y)
k=1 k=1

< 1- K|z,

since | D, Fi(z,y)| = 1+ Dppi(z,y) + Dy, fi(z,y) > 0 if r is small.

2) It follows from

7' F(z, )l Sfo |7 DF (tz, ty)(z, y)| dt</0 (1 = Klftz||™)l(z, y)| dt < |||

if B and r are small enough. =

Lemma 9.3.8 There exists a constant My such that for (z,y) € V(r,3) and for any
te[o,1],

Iz + tp(z, y) + t£(z,9))ll2 < llzlla2(1 — tMu ]l ).

Proof. Let (z,y) € V(r,) and t € [0, 1]. We define two auxiliary functions

h(z,y) = Ni(xTD:p(m,y)x+wTDyp(x,y)y)
h(z,y) = 2(z, f(z,y)) +tlp+ fl3

where (.,.) denotes the euclidean scalar product. Since hypothesis H1, implies that

Dz.'.'pi(mu 0) 2= Z |Dzkp£(x: 0)'
k#i

it follows that

h(z,0) = NixTDxp(x,O):c <0, z #0.
P
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Moreover, since hs(z, 1) = o(||(z,y)||¥*!) and 0 < t < 1, by Lemma 9.3.5 there exists
3 small enough and a constant M such that, if ||y||z < 8||z||2 then

h(z,y) + he(z,y) < —M||z|;7*.

We observe that, by Euler’s theorem, the homogeneous polynomial p can be written as

1 1
p(z,y) = FDxp(x, y)z + FDyp(z:, Y)y.
p P

Therefore,

Iz +tp(z, y) + tf(@ W3 = ll=ll3 + 26z, p(z,v) + f(z,9)) + £llp(z,v) + £(2,9)II2
= |lz||3 + 2t(z, p(z, y)) + the(z,y)

23 + th(z, y) + th(z,y)

=3 — Mtz ”*

A

and the statement holds. =

Lemma 9.3.9 There ezists a constant M, such that for any (z,y) € v*(r, ) and for
any 0 <t <1 we have

ly + ta(z, y) + ta(z, )2 > lyll2(1 + tMa|z]3e)

Proof. Let (z,y) € v". We study carefully the polynomial ¢(z,y). By hypothesis H2,
D,q(z,0) = 0, therefore we have that g(z,0) = 0. Moreover for j € {1,... ,m}

4@y =y @+ > wd(z,y)

k=1k#j

where qﬁk)(z, y) = fol Dy, q;(z,sy)ds are homogeneous polynomials of degree N, — 1.
Therefore if we define the matrix

@ .,
Qz,yy=| : ...
¢ ... ¢

we have that

q(z,y) = Q(z,y)y
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On the other hand, since g; ®)(z,0) = D,,q;(z,0), hypothesis H2 gives that for all
z e Vi(r)

m

¢(2,0)> > 1g(z,0)].

k=1,k#7

By Lemma 9.3.5, there exists > 0 and a constant K, such that, if (z,y) € V(r,3)
and for any j € {1,... ,m}

m
(k Ng-1
¢ (zy) - Y laP(@,y) > Kzll3"
ey

Consequently, the matrix Q(z,y) verifies
vIQ(z,y)v >0 for v#0 and (z,y) € V(r, ).
Let M > 0 be such that for all (v,&,n) € R™xV!xR™ such that ||v]jz = ||(¢,7)]2 = 1
vIQ(&,n)v > M.

Such M exists by compactness. We define the functions
h(z,y) = 2" Qz,v)y
h(z,y) = 2y7g(z,y) +tla(z,y) + 9(z,v)[3-
We deal with h(z,y). Taking (z,y) € v*(r, ), since ||y||2 = B||z||2, we have that

o) = 2l e e )
> 26%|all;"" M.

Therefore, since hy(z,y) = o(||(z,»)[|Y**") and 0 < t < 1, by Lemma 9.3.5 there exists
C such that

h(z,y) + he(z,y) > CF?||z||3*

if # and r are small enough. Now we compute the norm ||y + ¢(z,y) + g(z, v)||%:

ly +ta(@,y) +tg(@v)llz = lvllz +2t{y, a + 9) + lip(z,y) + 9(z, )13
Iyll3 + th(z, y) + thy(z,y)
IylI3(L + tCll2ll2* ™)

and the statement holds. m
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Lemma 9.3.10 There ezist r > 0 and a € (0, 1] such that ¥(z,y) € V(r, B),
DF(z,y) : S(a) — S(a).

Proof. We write

DF — Id+ D;p+ D, f Dyp+ D, f
o D.q+ D,g Id+Dyg+Dyg |-

We define the auxiliary functions

T

'Pl(xiy) = DIipi(xiy)_’_ Z IDIkpi(:ray)l+QZIDykpi($=y)ls

k=1 ki k=1
1" m
Pz(fﬁ,y) = _Dijj(x:y) # E Z lDqu_j(.T,y)] =2 Z IDkaj(xs y)l
=1 ki ki

and

Ql(xay) = Z|D2kfi(:r1y”+QZ]Dykfi($:y)|1
k=1 k=1

1 n m
Q2($1 y) = a Z [Dzkgj(g"! y)l + Z lDykgj(m,y)l-
k=1 k=1
By hypotheses H1 and H2, since a € (0, 1], we have P;(z,0) < 0 and P(z,0) < 0 for
z € V(r). Moreover Qi(z,y) = o(||(z,y)|["*™*) and Qa(z,y) = o([|(z,)[**~?).
By Lemma 9.3.5 we have that Z_f=1(1’j(:n, Y) + Q,(z,y)) <0 for (z,y) € V(r,5).

Let (&,m) € S(a) and let j € {1,...,m} be such that |n|| = |n;|. We are going to
check that Vi € {1,...,n}

| + Dop& + Do f €+ Dypn+ Dy fn)i| < |(D2q€ + Dog€ +n+ Dygn+ Dygn);l.

By the choice of j
k] < |m;| for all k € {1,...,m},

and by the definition of S(a)
alg| < Injl forallle{1,...,n}.
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Using all this we obtain

alé + Dopi & + Zj Dypi & + Z Dy, fi & + Z wePi + Dy, f:) T

k=1 ki k=1
— | + Dy;q5 m; + Z 2e8j + Dz, 95) & + Z Dy,.q; me + Z Dy, 9; i
k=1 k=1,k#j
k]
< algl(1+ Dopi) + o Z | Da,pil [k + D:Z | Dz, fil €|
k=1k#1 k=1

+a Z([Dykpil + [ Dy, fil)|me| = (1 + Dy, ;) n;]
k=1

m

ki m
+ 3 " (1D2,05] + Dz giD) €kl + D 1Dugslimel + Y [Dyegsl Il
k=1 k=1k#] k=1
n

g [(1 g Dzipi) + Z |D$kpi| + Z IDzkle i3 GZ(lDykpil -+ |Dykfi!)
k=1,k#i k=1 k=1

1 n m
—(1+Dyﬂj)+32(lﬂrk%|+|Dzk9:'|)+ > |Dykq3‘|+E|Dkaj|}]??j|

k=1 k=1,k#j k=1

= 3" (Pul(z,9) + Qulz, ) In;] < 0.

k=1
Then for alli € {1,... ,n}

o|m} [DF (z,y)(€, )"l < |7} [DF(z,y)(€,m)"]| < |7*[DF(z,y)(& )]l

Lemma 9.3.11 Ifr, 3 > 0 are small enough, (z,y) € V(r,) and ¢ € S(a) we have
that
Im2DF= (2, y)¢|| < I7*Cll.

Proof. It is clear that F' is locally invertible in a neighbourhood of the origin and that
F~! is defined in a set of the form V(r,3). Moreover F~! and DF~! can be written as

(5 ) s (S pmd e )
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and

pp-t— ( 1d=Dap+Daf —Dyp+Dyf
—D,q+D,§ Id— Dyq+ Dyg

with F(z,y) = oll (@,0)I™), 3(z,3) = o(I(z9)|1%), Dz, ) = of{(z.)]*) and
Dg(z,y) = o(||(z,y)||N~1). Given j € {1,...,m} we define the auxiliary functions

1 n m
}DJ(I1y) = _Dyqu‘(xsy) + E Z |Dm¢%(’3:y” + Z ]Dkaj(xsy)l
k=1 k=1,k#3

and
13 i m i
Qj(i',y) = & Z |D$kgj(xv y)l i Z |Dy;,gj(3:,y)|-
k=1 k=1

By hypothesis H2 we have

m

P(z,0) = —Dy,q;(z,0) + Y |Dyq;(z,0)| <0
k=1,k#j

and hence, by Lemma 9.3.5, there exist r, # and K such that
Pi(z,y) + Q;(z,y) < —K]z|¥*
for (z,y) € V(r,B). Let { = (§,n) € S(a). We have
| DF~ (2, y)¢|

=D (=Dzg; + Do, 3)ék + 15 — Dyyaini — D Dygime+ Y Dy 3

k=1 k=1,k#j k=1
n m
< D (1Deugl + 1Dz i)l + 11 = Dygsl Imsl + D 1Dyt el
k=1 k=1,k#j
+ > 1Dy, g1 el
k=1
1.2 ) m
== Y (1D245] + 1Dz giDlinll + (1 = Dy,q)llnll + D |Dygs! lInll
k=1 k=Lk#j

+ 3 1Dy gl Il
k=1

(1+ Py(z,5) + Q;(z,v)l

<
< (1= Kllz|*H]nll < llnll-
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Lemma 9.3.12 Letj € {1,...,m}, (&,7') € S (a) and¢; 20, 1 <i <, withl > 1.
Then
l

Y alE,n') € 87 (a).

1=1

The same is true for S; (a).

Proof. For SJ—+ (a) it follows immediately from

l 1 1
o Y el <Y coléil <Y et
i=1 i=1 i=1

and for S; (a)from

l

l 1
—a] Y cbil > =Y aalé] =D an).
fe=] i=1

i=1

n
Lemma 9.3.13 Let r and 3 be small enough. Let z*,2? € V(r,B) be two different
points such that 22 — 2! € S(a). Then, if a > /nf,

2+ t(22 - 2t) e V(r,B) for all t € [0,1].

Proof. We put z* = (z*,3*) for i = 1,2. Since, by hypothesis, V is convex, we must
see that for all ¢t € [0, 1]

ly* +t(* — y')ll2 < Blla* + t(z® — )2
We note that, if & > 8+/n,

Ily* = ¥2ll2 > lly* — 4°|l > allz! — 2?|| > 22 > Bllz* — 2?||.  (9.3.2)

a g
ﬁ"‘” -z
We claim that

Bzt 2% — (v, %) > 0. (9.3.3)
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Indeed, by (9.3.2)

85 [l I + 112%18 — 12" - 2212
(1 13-+ 1521 = Iy" = 421

[ly* —v*)13 — BPll=* — 23]

;32 (3:1 | IQ} - (y11 yz)

AV AV
(=N N

Then, using (9.3.3) as well as that 2!, 2% € V(r, 8), we have that

Fllat +t(a® - 2")l; ~ lly" +t® - vl = 2 N12%)3 - v*]12)
+(1 = (Bl Iz — lly'lI2) + 261 — £)(B*(=", 2%) — (¥, %))
>0

as we wanted. m
Lemma 9.3.14 Let r and (3 be small enough. Let z*,2* € V(r,3) be different points
such that z° — z' € S(a) and F(2?), F(2') € V(r,8). Then

1) F(2%) - F(2?) € S(a),

2) ||m*(F(2%) — F(2))|| = [|7*(2* — 2')||.

Proof. By Lemma 9.3.13, 2 + t(22 — 2!) € V(r,3), then since DF is continuous we
write

F(2) — F(zY) = /0 DF(2' +#(22 — 1)) (2 — 2) dt

= lim Z %DF(:&'1 + -;:Jrz-(z2 — zl))(22 - 2.
k=0

n—0oQ

From (9.2.4) there exists j such that 2* — 2! € S (@) U S; (a). We suppose that
z* — z' € S} (), the other case being analogous. By Lemma 9.3.12

3 %DF(zl + %(32 - zl)) (2* = z') € 8f (a) € S(e)
k=0

| SR

for all n € N and hence the limit when n — oo has to belong to S(a) = S(a).
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To deal with the second property, we observe that, since F(2!), F(z?) € V(r,3) and
as we have already seen in 1), F(2?) — F(z') € S(a), hence by Lemma 9.3.13 applied
to F(z'), F(2?%), the segment

W(t) = (1 —-t)F(2") +tF(2*) e V(r,B), te[0,1].
By the mean value theorem, Lemma 9.3.11 and the definition of %, we have that
I7%(2* = 2)|| = |7 o F~ 0 (1) — 7® 0 F~" 0 9(0)
< [ o F oyl

f |m*DF (a(e)) ' ()] dt

[ L.

[ In(F(22) — F())]| dt
= [T (F(2) - F()

and the statement holds. m

We will use a little bit of degree theory. See [59] for details. We denote by d(f, D, p)
the degree of f at p relative to D. We recall that if d(f, D,p) # 0, then p € f(D).

We recall that two functions f,g € C°(D) are homotopic if there exists a continuous
function H : [0,1] x D — R" such that H(0,.) = f and H(1,.) = g. We say that H is
a homotopy from f to g.

Proposition 9.3.15 Let f,g: D CR™ — R" be two continuous maps. If there exists
a homotopy H : [0,1] x D — R™ from f to g and

p¢ H(t,0D) forallt e [0,1]
then

d(f,D,p) = d(g,D,p).

We consider the set of m dimensional manifolds defined as follows: let V be an open
neighbourhood of V' (r, 5)\{(0,0)} such that

Vn{z=0}=0.
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Below D" will denote an open set of R™, such that 0 € DI' and that D_:{“ is home-
omorphic to a closed ball. Therefore D7 will be homeomorphic to a sphere. Given
v : DI* — V we will denote by I' the image of v, i.e. 7(D'). At some places we will
identify v with T'.

Let
H(a)
={y:DF > V:yeC, T,T C S(a) Yze'NV(r,B), ¥(DT) C (V(r,B))}.

We note that the condition T,I" C S(«) implies that I' NV (r, ) can be expressed as a
graph of a function v : #?(I'N V(r, 3)) — R2, in the form

I'={®)y):yenV(r,p)}

and

IDy(y)ll < é (9.3.4)

This is easily seen because if v € R™\{0} we have that t — (¥(y + tv),y + tv) is a
curve in I" and hence its derivative at ¢t = 0, (Dv(y)v,v) belongs to Ty, C S(a
and then

[v]l > el DY (y)o]]

which proves (9.3.4).

Our goal is to iterate manifolds of H(a) by F. A subtle and delicate point is to
check that the iterates remain non-void. When m = 1 this is a simple consequence of
Bolzano’s theorem, but if m > 1 we are forced to apply degree theory. This motivates
in part the definition of H(a).

Lemma 9.3.16 If 8 < a/\/n, we have that if I' € H(a) then

FI)nV(r,p) € H(a).

Proof. We perform the change of variables C' defined by

(z,0) = (2,y = v||zl]2) | (9.3.5)
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which transform the cone-like domain V(r, 3) to the cylinder-like domain
V(r,B) = {(z,v) e R*™™: 2 € V(r), |[v|l2 < B}

This change is a diffeomorphism when restricted to V(r, 8)\{z = 0}. Indeed if (z,y) €
V(r,3) then z # 0, and we can write the inverse explicitly as

Y
z,y) — (z:,v — —)
( [T
Note that z — ||z||2 is C! except at z = 0.

In these new variables F' is expressed as F' = C~1 o F o C with

WFse) = PPl =2+l +fe vl
) = 12F(e el < el a@vlelh) + ole,vlls)
st @ vllele) = Y7 o vliolh) + 7, ozl

IfI" € H(a), we denote by [ the image of I" by this change of variables, i.e. I'=cY(I).
We claim that I' can also be represented as a graph of a function 1. Indeed, if

I'={(¥(y),y) :y € Dy},

then

f={ (v ) sve Do}

Now, we are going to check that

y
1)l

is a diffeomorphism. First note that 1) # 0 and then it is well defined and C*. Now we
prove that X is one to one. If ¥, y2 € Dy, and X(y;) = X (y2) we can write

1 [[[Y(w2)ll2 = [ (w)ll2] + (31 — v2)l[%(3)ll2 = 0
and then, if we assume that y; # y»

lo)llz = @l Io()le
o —wele ~ Twils 1.36)

X:ym
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By (9.3.4)
% Cy2)llz — l[¥Cy)lla o llb(v2) =Pyl L
lyr — well2 R [ 771 | PR’
and by the fact that (¥(y1),v1) € V(r, 8)
lllz
Ml = 5

Putting these two last bounds in (9.3.6) we obtain

<

Q]H

™|~

which gives a contradiction.

Next we prove that X is a C! diffeomorphism. Since we already know that it is one to
one we only have to check that DX (y) is invertible. We compute

((y), DY (y))

1 1
DxW) = ok R

_ 1 Y Y(y)
= "ol {“ )T <|J¢(y)uz D"”(y)>]

Since (|lyll2/llY(w)ll2 < B, [|1DY(y)|| £ 1/ and f < o we immediately see that DX (y)
is invertible.

Therefore
= {( (X7 (v)),v) : v € X(Dy)}.

We call ¥ = o X1,

Now we look at the image of ' = grapht) by F. First we prove that 72F o (¢(y),y)
covers

Bg(0) ={y € R™: |ly|| < B}
For this we will use degree theory. Let

V()2 + ta(P(v), vlzl2) + tg((v), vl[$(v)]]2)
[(v) + tp((v), vlizll2) + tf (W (v), v]lP(v)l|2)l2

H(tv) =
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be a homotopy from the identity to 72F o (¥(y),y). Let vy € BF(0). If vy € 8BF(0)
then (1(y),y) € dV(r,3) and by the conclusions of Lemmas 9.3.8 and 9.3.9 translated
to F' we deduce that

v ¢ H(t,0B}(0)
and hence from Proposition 9.3.15 we get that
d(7*F o (3, 1d), BF(0), v) = d(Id, BJ'(0),vo) = 1.

Going back to the variables (z,y) we obtain that F(T") is the image of

vi=Foy=Co(C'oFoC)o(Cloy)=CoFo(Con).
We will need to restrict the domain D, to D,, so that

V¢ € D,,, F~(C) e V.
Therefore we also obtain that
F(8D,) c (V(r, B))°.
Finally the fact that
T.(F(I') c S(a)

for all z € F(I') NV (r, §) comes from Lemma 9.3.14. m

With the previous lemmas we can prove Theorem 9.3.1, that is the existence of a
Lipschitz manifold.

Proof of the Theorem 9.3.1. Given I' € H(«) we define the sequence

Iy = P,
Tv = FCw)nV(r,B), k>1.

By Lemma 9.3.16 all the elements of this sequence belong to H(a). We introduce
I, = F7%(';). We claim that (Ii); is a nested sequence of nonempty compact sets.
Indeed:

I = F*(F(Cx-1) N V(r, B)) C F*(F(Tg-1)) = F~*D(Ty) = Loy
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The fact that Iy are nonempty comes from Lemma 9.3.16. Hence ()5 [x # 0. Next
we will prove that mkgo Ii. reduces to a point. For that we consider a particular sort
of initial I'y. Given z° € V we define I' = I'y by

ks { lollz < Blzll.

It is clear that I' € H(«) and that V2!, 22 € Ty, 22 — 2* € S(a).

Assume that there exist 2',2% € (\,5olk- Then F¥(21), F¥(2%) € V(r,8), Vk > 0.
By Lemma 9.3.7 we have that ||x}(F¥(z'))|| is a strictly decreasing sequence of real
numbers. Therefore it has a limit which must be 0. Moreover, for all &, ||72(F*(z1))| <
Bl|w (F*(21))]|, so that m*(F¥(z')) also goes to 0. The same happens to m2(F*(22)).
Applying Lemma 9.3.14 iteratively we get

lm*(F*(2%) = F*(2)| > |l7*(a" = 22)lI.

Taking the limit when k — oo we obtain m%(2%) = 7w%(2!). Also, since 22 — 2! € S(a),
we have that 7'(2%) = 7'(2') and 2* = 2'. Therefore (5, Ix is a point and has the
form (2% y°). Furthermore

(& =Tn{(z,y) eR™™: Lim F*(z) =0, F¥(z) € V(r,B), k > 0}.
k>0

We define ¢ by ¢(z°) = y°. The graph of ¢ is the invariant manifold we looked for.
Now it remains to be proved that ¢ is Lipschitz. If we assume that Lip ¢ is not smaller
than «, there would exist two different points z',z* € V/(r, ) such that

lp(z®) = o(=DI
lz2 =t

Applying Lemma 9.3.14 iteratively we have
17 (F*(z?, p(2?)) = F*(z", (@ D) 2 lle(2?) — ()| 2 allz? - 2.
Since (!, ¢(z!)) and (z?, ¢(z?)) belong to the stable manifold
Jim 7 (F(a, p(a?)) - (", ¢(a')) =0

and hence we deduce that 2% = z!, which is a contradiction. Therefore  is Lipschitz
with Lipp<a. =

Remark 9.3.17 From the fact that we can take a as small as we want if we take r
small enough, we get that ¢ has an arbitrarily small Lipschitz constant in a sufficiently
small neighbourhood of the origin. Therefore  is differentiable at 0 and Dp(0) = 0.
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9.4 The analytic case

In this Section we shall prove that if F' is analytic ¢ is also analytic in a suitable
domain. We consider F defined in an open set of C**™. We introduce the following
notation: if z € C*

|Rez|| = max(|Rez,...,|Rez,l|),
[Imz|| = max(|Imz4,...,|Imz,]),
lzl| = max(|z], ..., |za]).

Given 7,7 > 0 we define
Qy) ={z€C":Rex € V(r), | Imz| <v||Rez|}.

We will need that the set () to be invariant. In fact, we only need that there exists
a invariant set contained in {2(7y). A sufficient condition for that is:

H4 For all 4,1l € {1,... ,n} and for all z € V(r),

NP(Dxipi(mao)‘l' Z Iani(x:O)i)<Dm;pl(-73r0)+ Z | Dz, pi(z, 0)].
k=1 ki k=1, ksl

Theorem 9.4.1 Let F' defined as in (9.8.1). Assume that the hypotheses H1-HS3 hold
for z € Q(v) NR™ and that H5 holds in Q(8) (or more generally that 2(6) is invariant
by 7' F(.,0)). Then, the map @ obtained in Theorem 9.3.1 is analytic in V (r).

The following estimate will be required.
Proposition 9.4.2 There exist r,y, 3 > 0 such that

1) if x € Q(y), and |ly|| < Bl then =* F(z,y) € Q(y),
2) if z € ), and |ly|| = Bllz|| then ||7*F(z,y) -yl < llyll,
3) if z € Q(y), and ||y|| = Bllz|| then Bl|x'F(z,y)| < 7> F(z,y)|.
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Proof. 1) Let z € Q(v). We write z = x; + iz, with z,, 7, € R® and
p(z,0) = p'(z1, 22) + ip*(21, T2), pl(z1,22),p*(21,22) € R™.
We want to see that there exists a constant B such that
22 + p?(z1, 22) || = ¥ll21 + ' (21, 22) || < — Bl ™.

Since p?(x1,0) = 0, we have that

1
pz(xl,xg) =/ D,,p*(z1, 872)2y ds
0

Moreover, since p' is a vector of homogeneous polynomials, by Euler’s theorem

1 1
Pz, 22) = FDmPl(ﬁ?h Ty)T1 + R}Drzpl(xl: T2)T2. (9.4.1)
Also, since p(z,0) is analytic, by the Cauchy-Riemann equations, we have that
Do mym) = Dop¥(wi,m) (9.4.2)
Dyp,p'(z1,22) = —Dg,p’(z1,72). (9.4.3)

We observe that, since p?(z,0) = 0, by (9.4.3)

Dy,p*(21,0) = =Dy, p*(21,0) = 0. (9.4.4)
We denote
1
Clz1,22) = (cij(21,22))1<ii<n E/ D, p*(z1, 5z2)ds (9.4.5)
0
1
Alzr,z2) = (ai(21,22))1<ij<n = 'N-”'Dmpl(xlux?.) (9.4.6)
7]
1
B(zy,z3) = (bij(z1,72))1<ij<n = Fngpl(ml,:EQ) (9.4.7)
P
and we note that, by (9.4.2) and (9.4.4)
C(z1,0) = Dg,p*(21,0) = Dy p*(1,0) = N,A(z1,0) (9.4.8)
B(l‘hﬂ) = {

Let z € Q(v) be such that [|z3|| < v||z1]]. Then

lz2 + p*(z1,22)| = [|(Id+C (21, 72))22|| < [[2al]| 1d +C (21, 22) |
< Azl Td +C (a1, z2)
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and, by (9.4.1)

lz1 +p'(z1, )| = [|(Id+A(21, 22))21 + B(21, 22) 22|
2 |lzall(X = | Az, 22)l| = 7l B(z1, 22)])-

Since that in the norm we are working with, the operator norm is the maximum over
the #* norm of rows, there exist ¢,/ € {1,...,n} such that

Az, z2)|| = lasi(zy, z2)| + Z |aij (21, z2)|
k=1 ksti
11d+C(z1, )| = 1+eu(z,z)+ Y laj(@, ).
k=1,ksl

Then
“.'Bz + P2(331= 332)“_’)’”931 + pl(ml,mz)"
<Allza|l([ 1d +C(zy, z2)|| = 1 + [|A(1, z2)|| + ]| B(z1, 22)||)

=“f|lx1||(cu(331,$2)+ > le(@, )| — lai(z, 25)]
k=1k#l

= Y laglen,z)| + 1B, z)])

k=1k#i

and it is negative if and only if the functions

h!i(l‘l,xz) = Cl£($1:$2)+ Z |C£j($1:$2)|—]f1ie($1.$2)|
k=1,k#l
= Y laij(@1, x2)| + I By, )|
k=1k+#i

are negative. We observe that, by (9.4.8)

hi(21,0) = Ny(au(@,0)+ 3 lay(ar,0))

k=1,k#l

—lai(21,0)| = Y laij(21,0)]

k=1,ks#i

and by hypotheses H4 hj;(z1,0) < 0. Thus, by Lemma 9.3.5 there exist v > 0 small
enough and a constant B such that

|hii(z1, 22)| < —2B]|z||Ne!
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if ||z2|| < 7||z1||. Thus, for all z € () with v small enough, we have
122 + p* (21, z2)|| — |21 + ' (21, 22) || < —Bryl|| ™.
Let 3 > 0 be small enough such that for all z € Q(v) and ||y|| < B||z|| we have that

| 1mp(z,y) ~ @)l < 1Dy Impllyll < 7o lall™

B
IRep(z,y) = p'(z1,22)| < [IDyRepllllyll < 'YEUS'JHN”- (9.4.9)
On the other hand there exists r > 0 such that if ||z|| < r and |y|| < B]|z]|,
B
IRe fz, )l < g llal™ (9.4.10)
B
I Im f(z,y)ll < 'Y*S—lellN"-
We have that

Rem F(z,y) = Re(z + p(z,0)) + Re(p(z, ) — p(x,0)) + Re(f(z,3))
by (9.4.9) and (9.4.10)
[Re(p(s,4) ~ p(z,0)) + Re(f(z,))| < v Ia]™
and then, if 7 is small, by H3, Rew!F(z,y) € V(r).
Moreover,
| Tm(7* F(z, y))|| = vl| Re(w F(z,y))|| < llz2 + p*(z1, 22)|| — V21 +p' (21, z2) |

+ [|p*(21, z2) — Imp(z, y)|| + 7||lp* (21, 22) — Rep(z, y)||
+ || Im f(z, y)|| + I Re f(z, y)]

1 1 B
< -Brlal + B (5 +3 ) (- )l <~ el

which implies that 7' F(z,y) € Q(y).
2) We let z € Q(v) and ||y|| = Bl|z||, Let j € {1, o ,m} be such that |y;| = ||y|. Then
l7*F(z,y) - yll = lla(z,y) + g(=, y)ll
< Kljz|[™

—11Y;
- Kol

B
< ly;l = llvl



9.4 The analytic case 237

if r is such that KrV-1 < 3.

3) We fix j € {1,...,m}. Since D;,gj(z,0) =0, 1 < k < n, we have that ¢g(z,0) =0
and

k
gi(z,y) = ;00 (x Z wa) (z
k=1,k#j
where q fo wqi(z,8y)ds, 1 < k < m, are homogeneous polynomials of

degree N —1 Clearly
Dy, q;(z,0) = ¢P(2,0) 1<k<m.

If we restrict us to R**™, by hypotheses H2 we have that for z € V(r),

m
Dy,q;(z,0) > Y |Dyq;(z,0)| > 0.
k=1,k#j
Hence
D@0 > Y @00 (9.4.11)
k=1,ks#3

Now let (z,y) € C™™ be such that z € Q(y) and ||y|| < B||z||. In order to apply
Lemma 9.3.5, we consider q( ) as maps of the form qj(»k) :V(r)xR*xR™"xR™ - Rx R,
depending on the real and the imaginary parts of  and y. Then

Re(¢{” (Rez,0,0,0)) = q}"’(Rew,o,o,O)

> Z |4 (Re,0,0,0)|.

k=1,k#j

There exist v, 8, K > 0 such that if, || Imz|| < v||Rez| and ||y|| < B||z||,

i k - =
Re(g;(z,%) = . lg”(z,y)| > Ky|| Rez| Mo > Kalz| M.
k=1k+#j
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Now we bound |7?F(z,y)|, with 2 € Q(v), and |y;| = ||z
[T E )| = |y + (@) + g;(=,)|

j k
= |y +yd" @y + Y wd (@) +gi(z,y)l
k=1,k#j

> lyl(1+ @l - Y 16PE ) - oz )
k=1k#j

> [yl (1+Rel@@v) = Y 16 @ )l) - los(z,)
k=1,k#j

> [yl (1 + K|zl = |gj(z,9)] > |yl

if r is small enough since g;(z,y) = o(||(z,y)||?).

Now we claim that if 8 and v are small then ||[7'F(z,y)|| < ||z||. Indeed, by Euler’s
theorem,

1 1
P P

We denote

A(I!y) = (ﬁ'j(xly))i.jE_sz(x!y)

B(z,y) = (Efj(x.y))f,jEEDyp(wry)-

By hypothesis H1, there exists a constant K such that, for 7 € {1,...,n} and for
z € Q(y)NR"

Redi(z,0)+ Y |Redy(z,0)] < —Kllz|™ .
o1 gohd

Therefore, by Lemma 9.3.5, there exist v and 3 small enough such that if || Imz|| <
V| Rez|| and ||y|| < Bl|z|, then

Redi(z,y) + »_ |Redy;(z,y)| < —K|jz|™. (9.4.12)
j=1:j?£‘:
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We consider the functions a;; = (a};,a?) : V x R* x R™ x R™ — R? defined by

a}j(Rem,Im:z:,Rey,Imy) = Rea;;(z,y),
a’,(Rez,Imz,Rey,Imy) = Imay(z,y).

Then
a;;(Rez,0,0,0) = (Rea;;j(Rez,0),0).

We denote v = (Imz,Rey,Imy), and we recall that ||v|| < §||z| = max{S,~v}|z||.
There exists a constant K such that

1
| Im & (z, y)| = |aZ;(Rez,v)| < / |Dya;(Rez, sv)|||v]|ds < SK|z||M1.  (9.4.13)
0

Let i € {1,... ,n} be such that

I1d+A(z,y)]| = 11+ @z, v)| + Y |z, v)l
=1

then, by (9.4.12) and (9.4.13)

Id+A(z,p)| = 1+au(zy)l+ Y. lay(z,y)l

=1,j#i

= [(1+ Rea(z, y))2 + (Im ay;(z, y))2}1f2

" i [(Red;(z,y))* + (Imay;(z, )]/
J=Li
[(1 5 Reﬁ,,;i(g:, y))2 + 6202”3:”2}\!,,—2]1}2

+ 3 [(Redi(z,y))* + 8C2||a]|?Me=2 /2

=1,

1+ Redy(z,y) +6C||™ ' + Y |Redy(z,y)| + 6C| x|~

j=1i#i

IA

IA

IA

1— (K = 60)||| ™.
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Moreover, it is clear that || B(z,y)||[lyll < KoB|z||"r and since, f(z,v) = o(||(z, y)||V),
there exists r small enough such that || f(z,y)| < £|z||*. We bound ||='F(z,y)],

Iz + p(z,y) + flz, 9)l|
< [ Id+A(z, y)lllll + 1Bz, )|yl + |If (2, y)]

I F (=, y)|

< (1 (K~ 80) el el + Bollal™ + 2 el
< lall - (K ~ 60— Ko ~ 2ol
< el

if ¢ is small enough.
As before the take z € Q(v), z # 0, and |y;| = fB||z|. We can bound the expression
[ F (2, y)| - Bliw' F(z,y)]:
[T F(z,9)l = Blm' F(z, )l = ly; +gi(z,9) + 9;(z, )]
~llja + p(ay) + fa)]
[kl

> sl = 2L — g

> |yl ijl”-t”
which proves 3). m

We also will need a multidimensional version of the classical Rouche’s theorem. First
we recall the definitions of index and multiplicity.

Definition 9.4.3 Let D C C" be an open set and let f € H(D) be a holomorphic
function. Let xy be an isolated solution of f(xy) = p.

(1) We define the index of zo as i(f,zo,p) = d(f,U,p) where U is a neighborhood of
xo which does not contain any solution of f(z) = p different from z,.

(2) We define the multiplicity of zo as a p-point of f as i(f,zo,p). We say that zq is
simple if its multiplicity is 1.

The following theorem can be found in [59].
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Theorem 9.4.4 (Rouche’s theorem) Let D be a bounded, open set in C*. Suppose that
f,g € H(D) are such that ||g(2)| < ||f(2)|| for all z € 8D. Then f has finitely many
zeros in D, and, counting multiplicity, f and f + g have the same number of zeros in
B

In particular, if f has a unique zero in D of multiplicity one, f + g also has a unique
zero i D.

We define the set of functions
H = {h:Q(y) = C™: real analytic in Q, ||h(z)| < B||z|}

and also the sets

A’ = {(z,y) €C"x C™:z € Q(y), Iyl < Bll=ll},

A = {(z,y) €C*" xC™:z € Qy), llyll < Bll=|},

D(zo) = {z€C":|z| <Blzoll}-
where 2 € Q(7).
For zo € Q(7), y € D(z) and h € H, we define
H(zo,y) = mF (0, y) — h(m' F(z0,y))

and we want to solve H(zg,y) = 0 with respect to y. The interpretation of H(zg,y) = 0
is that, if we solve y = y*(zo), graphy* is the preimage by F' of graph h. Notice that
if zo € Q(8) and y € D(zp), H is well defined and analytic in A®. Let us see that
H(zo,y) = 0 has a unique solution in D(zp). Indeed, by Lemma 9.4.2, if zo € Q(y)
and |lyl| = flzoll then

l7* F (2o, ) — yll < llyll.

Therefore by Rouché’s theorem, the functions y and 72F(zp,y) (as functions of y) have
the same number of zeros in D(xzp). Since the first function is the identity they have a
unique zero.

On the other hand, if ||y|| = £]|zol|, by Lemma 9.4.2 we have that
Bllm F(zo, y)|l < ll* F (o, y)|
and hence

1 (zo,y) — 7*F(zo,y)ll = [|h(m" F(zo,y))|
< Bll7' F(zo,y)|
< [I7*F(zo,y)ll
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and again by Rouché’s theorem, H has a unique zero in D(2) which we denote by
y*(z0). Clearly [|y*(zo)]l < Blioll-

By the implicit function theorem, since this zero is unique, it depends analytically with
respect to zg. Hence we can define the map F : H — H by

Fhiz) = y'(z)

where y*(z) such that H(z,y*(z)) = 0 for all z € Q(6).

Since H is real analytic and the solution y(z) is unique it must be real analytic.
Otherwise the conjugate would be another solution on D(z) we have proved that F
sends H into H

Furthermore by construction we have
F(graph(Fh)) C graph(h)
andif0<m<n
F™(graph(F™h)) C graph(F" ™h) € A.

Given hy € H we define the sequence h, = F"hy € A. Since h, € H the sequence
is uniformly bounded and, by Montel’s theorem, it has a subsequence convergent to
some function h € H. To check that F™(graph(h)) € A, we shall assume the contrary,
that is, that there exist m > 0 and z € Q such that F™(graph(h)) ¢ A. Since F™ is
continuous there exists € > 0 such that if ||y — h(z)|| < € then F™(z,y) ¢ A, but for
n > m big enough ||h,(z) — h(z)|| < €, and this would imply F™(z, h,(z)) ¢ A which
is a contradiction. Hence

F™(graph(h)) € A, Ym € N.

If z € QNR™ =V we have, if § is small enough, that

graphhyy € Wy, . N{y € R™: |ly|| < Bl=|}
c Wy, n{yeR™:|lyllz < vnblz|2}

= graph .

Therefore, hjy = ¢ which implies that ¢ is a real analytic function.
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9.5 Example 1

A simple example of application of the above theorem is the map F : R**! —

R2+1defined by
T z -z + 3zy® + fi(z,y, 2)
y | — | y+vy°-32%y+ foz,y, 2)
z z+q(z,y,2) + 9(z,y, 2)

where ¢(z,y, z) is an homogeneous polynomial of degree 3, fi, f> and g have order 4
and their derivatives have order 3. Let

V(r) = {(z,y) €R* z € (0,r), 4ly| < |z[}.
We assume that ¢(z,v, z) = 2¢(z,y, z) and ¢(z,y,0) > 0 on
Vir) = {(@,9)/Il(z,y)l2: (z,y) € V(r)}.
Below we will check that F' satisfies the hypotheses of Theorem 9.4.1. Therefore there

exists a stable invariant manifold of the origin given by the graph of an analytic function
@ : V(r) — R. Next we check the hypotheses of the theorem.

| 2%+ 3zy?
= y3 _ 3:9'332 .
—3z2 + 332 6zy 0
Dp(&:, Y, Z) = "-ﬁﬂl'y 3y2 _ 3$2 0 s

The conditions of hypothesis H1 read 3z — 3y? > |6zy| for (z,y) € V*(r) (the condi-
tions for p; and p, coincide). The condition is equivalent to

127> |2yv/1 — 92 for y < 1/V/17

which is easy to verify that it holds.

Let

et S’

pl(x,y,z
p2($! Y,z

We have

Since D,q(z,y, z) = 2D.4(z,y, z) we have that D,q(z,y,0) =0 and D,q(z,y,0) = 0.
Also D,q(z,y,0) = g(z,y,0) > 0 which implies the second condition of H2.
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Now we deal with H3. We have to prove that 3A > 0 such that if (z,y) € V(r)
dist(m! F(z,y,0), V(r)¢) > Al(z,y)|> = Az®. We estimate the distances of 7' F(z,y,0)
to the three parts of OV (r) :

{(z,y) : 2—4y=0, 0<z<r}

{(z,y) : z+4y=0, 0<z<r} and

{y) : z=r, [y <1/4}.

We have that forz — 4y > 0and 2 > 0

=

z —z° + 3zy? — 4(y + y® — 3yz?)

dist(m' F(z,9,0), X —4Y =0) =

3

z(1—2* + 3y?) — dy(1 + y* — 32?)

a V17
- z(2z* + 2y?)
- V17

2
> —2>0
V17

which means that 7' F(z,y,0) stays at the same side of X —4Y = 0 than (z,y) and
that the distance is O(||(z,y)||*).

Also, if z+4y >0and z > 0
z — 2% + 3zy? + 4(y + ¥ — 3yz?)

dist(m' F(z,y,0), X +4Y =0) =

V17
oz(l -2+ 3y%) + 4y(1 + y* — 32?)
- V17
S z (2% + 2y?)
- V17
> —2—-5:3.
T VT
The third distance we must compute is, if —x +r > 0and z > 0
dist(m'F(z,9,0), - X +r=0) = ~z+a°—3zy*+r
> z(2? - 3y?) > }—933:3 > 0.

— 16
the conditions of the hypothesis H4 is equivalent to
3[(—32? + 3y® + 6|zy|] < 6|zy| + 3y* — 32, (z,y) € Vi(r)

I

which is satisfied since 6|zy| + 3y? — 3z? is strictly negative.
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9.6 Example 2

The second example is the elliptic three body problem. It consists in the study of the
motion of three bodies of masses 1 — u, u, 0, with x € (0,1). The first two bodies,
called primaries, move on ellipses of eccentricity e and semimajor axis a in a plane. The
third body moves in the plane of motion under the effect of the attraction of the two
primaries. In a fixed system of coordinates X, ¥ we use complex variables notation
Z = X +1iY. The formulae Z; = z1e¥, Z, = —ze/ with

_p(l-é?) _(1=p(1—€?) df  (1+ecosf)?

" l+ecosf’ 2= 1+ecos f WS (1 — e2)3/2

describe the position of the primaries. The motion of the third body is governed by
the equation

21

2 Z -7 Z — Zn
Z=—(1- -
(1—n) I
where R; = ||Z — Zi|| and Ry = ||Z — Z,||. McGehee introduced the set of coordinates
x,y, p, @ to study the behavior in a vicinity of infinity. These are defined by
_ 2

2 E0
Z = Fe‘“ 4 = (y + %T)eta.

The equations become

& = —%x:’y
. 1 1
¥y = —Z$4+§Iﬁp2+F1
1
a = Z:c“p
= F,
where
1 l—p  p 1 (1 —p)u(l — &)
R = =zt(1- £ Vb ol
! 4x( (a{’ +ag))+8$ coele—J) 1+ ecos(f) 7
pd—p)A-e?) ,_.
B = — (=
5 21 + e cos(])) z*sin(a — f)(—o)
= e
T A g
ol = 1—2:1:1,'2cos(a—.a")-l-izf;c4
1
05 = 1+ za’cos(a— f)+ -z’

4
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The set
I={(z,y,0,p, ) : =0}

is called the infinity manifold. The flow extends analytically to it and it is invariant
by it. Iy = I N{y = 0} is called the parabolic infinity. It is foliated by periodic orbits
which can be labeled by a and p. Our objective is to prove that they have an analytic
stable invariant manifold.

We will compute the Poincaré map from f = 0 to f = 27. For this we calculate
z(f)|f=2m Y(f)iy=2m> @(f)|f=2+ and pjj—2r. We need some preliminary computations.
Evaluating at f = 0:

1-p 1—p
o3 (1—2%(z cosa— z21x2))3/2
= (1—p)(1+g$2z1 cos a + O(z*))
= 1—p+0(z?
and
H 1
a3 - JL‘b(l + 2?(22 cos o + 23 322))%/?
= p(l- ngzg cos a + O(z*))
= u+0(z?).
Therefore

B 1 u 4 O + e+ O(?) = 14 Oa?).

We compute o

o = 1— %mzzz cosa+O(z?) — (1 + g:c221 cos a + O(z*))

= —gmz cos az1 + 22)

3 1-—¢? 3 ;
= —53:2 GoH = = —5:1:2 cosa(l —e).
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We write (z,y,a,p) = (2(0),y(0),x(0),p(0)), evaluated at f = 0, and then the

Poincaré map is:

where
_ E(l —e)%2
2 (1+e)i2

= z— Kz3y+ hot.
y— Kz* + h.o.t.

a+ Kz*p+ h.ot.
= p—Cz8a+hot.

C = Su(l - p)(1 - €K,

We observe that the fixed points of the Poincaré map are of the form (0,0, Gtos, pPoo)-
This map is not yet in a suitable form. We perform the change of variables,

u = z+y
v = -y
t = (a— @)V

z = (p— poo)v.

Then, the Poincaré map in this variables is

u(2w) =
v(27) =
t(2r) =

z(2w) =

3
+ h.o.t.

u— Ku (u +v
o\ 3

) + h.o.t.
ul®

) + h.o.t.

3
'v) + h.o.t..

+ o

u

'U+K-v(

T o

u

t+Kt(

o+ N

z+ Kz (u

This map satisfies the hypotheses H1-H4 of Theorem 9.4.1, when we consider it defined
in a neighbourhood of R x R?, and therefore there exists a one dimensional stable
invariant manifold of the origin, which can be expressed as the graph of a Lipschitz

function ¢ : (0,7) — R® where

v = ¢i(u)
t = pau)
z = p3(u).
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We note that v(27) = 0 if and only if u = v = 0. Therefore, v = ;(u) # 0. It remains
to put the invariant manifold in the originals coordinates. On the invariant manifold,

x_u+v__u+f,01(u)
T2 2

= h(u).

We observe that A is a Lipschitz function such that Liph < % + Lip ¢ < 1, therefore
h is invertible. In other words, there exists 1 such that u = 9(z), thus the manifold
can be represented as

vy = 2
_ L ealw(@)
@ T e @)
~ 3(9(z))
P= Pt o (@)

With z belonging to a complex neighbourhood of and interval (0, 7).



Bibliography

(1] D.K. ARROWSMITH, C.M. PLACE, An introduction to dynamical systems, Cam-
bridge university press 1990.

(2] V. I. ArRNOLD, Instability of dynamical systems with several degrees of freedom,
Soviet Math. Dokl. 5, 581-585 (1964).

(3] V. I. ArRNOLD, Les méthodes mathemdtiques de la mécanique classique, Mir,
Moscou (1976).

[4] V. I. ArRNOLD, Dynamical systems III, Springer (1988).

[5] R.I. BoGcDANOV, Versal deformations of a singular point on the plane in the case
of zero eigenvalues, Functional Anal. Appl. 9, 144-145 (1975).

[6) H.W. BROER, R. RoussARIE, C. SiMO, On the Bogdanov-Takens bifurcation
for planar diffeomorphisms, International Conference on Differential Equations
(Equadiff 91). Eds. C. Perellé et al. World Scientific, 81-92 (1993).

(7] H-W. BRrOER, R. RoussARIE, C. SiMO, Invariant circles in the Bogdanov—
Takens bifurcation diffeomorphisms, Ergod. Th. € Dynam. Sys. 16, 1147-1172
(1996).

(8] J. CAsAsAYAS, E. FONTICH AND A. NUNES, Invariant manifolds for a class of
parabolic points, Nonlinearity 5, 1193-1210 (1992).

[9] J. CasAsAYAs, E. FONTICH AND A. NUNES, Transversal Homoclinic Orbits for a
Class of Hamiltonians in Hamiltonian Systems and Celestial Mechanics, pp. 35-44,
edited by E.A. Lacomba and J. Llibre, World Scientific Publishing Co., Singapore,
1993

(10] J. CasasAayAs, E. FONTICH AND A. NUNES, Poincaré-Melnikov method for
parabolic points, New Trends for Hamiltonian Systems and Celestial Mechanics,



250 BIBLIOGRAPHY

Advanced Series in Nonlinear Dynamics, vol. 8, pp. 61-72, World Scientific, Sin-
gapore (1996).

[11] J. CasAasAavAs, E. FONTICH AND A. NUNES, Homoclinic orbits to parabolic
points, Nonlinear Differential Equations and Applications 4, 201-216 (1997).

[12] V. CHERNOV, On separatrix splitting of some quadratic area-preserving maps of
the plane, Regular & Chaotic Dynamics, 3, no. 1, 49-65 (1998).

[13] S-N. CHOW AND J.K. HALE, Methods of bifurcation theory, Springer 251, (1982).

[14] S. CrAIG, F. Diacu, E.A. LAcoMBA AND E. PEREZ, On the anisotropic Manev
problem, J. Math. Phys., 40 1359-1357 (1999).

(15] H. Dankowicz H. AND P. HoLMES, The existence of transverse homoclinic
points in the Sitnikov problem, J. Differential Equations 115, 468-483 (1995).

[16] A. DELSHAMS, R. RAMIREZ-R0OS, AND T.M. SEARA, Splitting of separatrices
in Hamiltonian systems and symplectic maps, Hamiltonian systems with three or
more degrees of freedom (S’Agaré, 1995), 38-45, Kluwer Acad. Publ.

[17] A. DELSHAMS, AND P. GUTIERREZ, Exponentially small estimates for KAM
theorem near an elliptic equilibrium point, Hamiltonian systems with three or
more degrees of freedom (S'Agard, 1995),386-390, Kluwer Acad. Publ.

(18] A. DELSHAMS, R. RAMIREZ-R0S, Exponentially small splitting of separatrices
for perturbed integrable standard-like maps, J. Nonlinear Sci, 8, 317-352 (1998).

[19] A. DELSHAMS, AND R. RAMIREZ-R0S, Melnikov potential for exact symplectic
maps, Comm. Math. Phys., 190 231-245 (1997).

[20] A. DELsHAMS AND T.M. SEARA, Splitting of separatrices in Hamiltonian sys-
tems with one and a half degrees of freedom, Math. Phys. Electron. J., 3 4-40

(1997).

[21] A. DELsHAMS AND T.M. SEARA, An asymptotic expression for the splitting of
separatrices of the rapidly forced pendulum. Comm. Math. Phys., 150 433-163

(1992).

[22] A. DELsHAMS, V.G. GELFREICH, A. JORBA AND T.M. SEARA, Exponen-
tially small splitting of separatrices under fast quasiperiodic forcing, Comm. Math.
Phys., 189 35-71 (1997).



BIBLIOGRAPHY 251

[23] A. DELsHAMS, V.G. GELFREICH, A. JORBA, T.M. SEARA, Lower and upper
bounds for the splitting of separatrices of the pendulum under a fast quasiperiodic
forcing, Electron. Res. Announc. Amer. Math. Soc., 3 1-10 (1997).

[24] A. DELSHAMS, R. RAMIREZ-RO0S, Poincaré-Melnikov-Arnold method for analytic
planar maps, Nonlinearity, 9 1-26 (1996).

[25] P.M. D1aAMOND, Analytic invariants of mappings of two variables, J. Math. Anal.
Applic. 27, 601-608 (1969).

[26] R. EASTON, Parabolic orbits for the planar tree body problem, Journal of Dif-
ferential Equations 52, 116-124 (1984).

[27] R. EASTON AND R. MCGEHEE, Homoclinic phenomena for orbits doubly asymp-
totic to an invariant three-sphere, Indiana Univ. Math. J. 28, 211-240 (1979).

(28] .N. FENICHEL, Persistence and smoothness of invariant manifolds for flows, Ind:i-
ana Univ. Math. 87, 193-226 (1971/1972).

[29] E. FonTicH, Transversal Homoclinic Points of a Class of Conservative Diffeomor-
phisms, J. Differential Equations 87, 1-27 (1990).

[30] E. FONTICH, Stable curves asymptotic to a degenerate fixed point, Nonlinear
Anal., 35 711-733 (1999).

[31] E. FonTicH, Rapidly forced planar vector fields and splitting of separatrices, J.
Differential Equations, 119 310-335 (1995).

(32] E. FonTICH, Exponentially small upper bounds for the splitting of separatrices
for high frequency periodic perturbations, Nonlinear Anal., 20 733-744 (1993).

[33] E. FonTiCcH AND C. SiMO, The splitting of separatrices for analytic diffeomor-
phisms, Ergodic Theory Dynamical Systems, 10 295-318 (1990).

[34] E. FonTiCcH AND C. SiMO, Invariant manifolds for near identity differentiable
maps and splitting of separatrices, Ergodic Theory Dynamical Systems, 10 319-346
(1990).

[35] E. FONTICH, preprint.

[36] G. GALLAVOTTI, G. GENTILE AND V. MASTROPIETRO, Separatrix splitting
for systems with three degrees of freedom, Prepint, in mp_arc@math.utezas.edu,
#97-472 with the title Pendulum: separatrix splitting.



252 BIBLIOGRAPHY

[37] V.G. GELFREICH, Splitting of a small separatrix loop near the saddle-center
bifurcation in area-preserving maps, Phys. D, 136 266-279 (2000).

[38] V.G. GELFREICH, Splitting of separatrices near resonant periodic orbits, preprint
in mp_arc@math.utezas.edu (2000).

[39] V.G. GELFREICH, On higher-order Melnikov method for the exponentially small
splitting of separatrices, preprint in mp_arc@math.utezas.edu (2000).

[40] V.G. GELFREICH, Exponentially small splitting of separatrices for area-preserving
maps, Chaos, solitons and fractals, 11 241-243 (2000).

[41] V. GELFREICH AND D. SAUZIN, Borel summation and the spliting of separatrices
fo the Henon map, Notes Scientifuges et techniques du Bureau des Longitudes,
S067 (1999).

[42] V. GELFREICH, A proof of the exponentially small transversality of the separa-
trices for the standard map, Comm. Math. Phys., 201 (1999), 1, 155-216.

[43] V.G. GELFREICH, Melnikov method and exponentially small splitting of separa-
trices, Phys. D, 101 227-248 (1997) .

[44] V.G. GELFREICH, Reference systems for splittings of separatrices, Nonlinearity,
10 175-193 (1997).

[45] V.G. GELFREICH, Separatrices splitting for the rapidly forced pendulum, Seminar
on Dynamical Systems (St.\ Petersburg, 1991), 47-67, Birkhiiser.

[46] J. GUCKENHEIMER AND P. HOLMES, Nonlinear Oscillations, Dynamical Sys-
tems, and Bifurcations of Vector Fields, Springer Verlag, New York, 1990

[47] I. GumowskKl, C. MIRA, Dynamique chaotique, Cepadues Editions, Toulouse,
1980.

[48] H. HANSMANN, The quasi-periodic centre-saddle bifurcation, J. Differential
Equations 142 305-370 (1998).

[49] P. HoLMES, J. MARSDEN AND J. SCHEURLE, Exponentially small splitting of
separatrices with applications to KAM theorey and degenerate bifurcations. Con-
temp. Math., 81 213-244 (1988).

[50] M. HirscH AND C.C. PucH, Stable Manifolds and Hyperbolic Sets, in “Proc.
Symp. in Pure Math.,” Vol. 14, pp. 133-164, Amer. Math. Soc., Providence, RI,
1970.



BIBLIOGRAPHY 253

[51] M. Hirsch, C.C. PUGH AND M. SHUB, Invariant Manifolds, Lecture Notes in
Math, 535, Springer 1977.

[52] E.L. INCE, Ordinary differential equations, Dover publications, Inc. (New York)

[53] V.F. LAzZUTKIN, Exponential Splitting of Separatrices and an Analytical Integral
for the Semistandard Map, Université Paris VII (1991).

[64] V.F. LAZUTKIN, Splitting of separatrices for the Chirikov’s standar map, VINITI,
6372/84, (1984). (English version in www.maia.ub.es/mp_arc).

[55] V.F. LAZUTKIN, I.G. SCHACHMANSKI AND M.B. TABANOV, Splitting of sepa-
ratrices for standard and semistandard mappings, Physica D, 40,235-348 (1989).

[56] A. LiTvAK-HINENZON AND V. ROM-KEDAR, Parabolic resonances in near inte-
grable Hamiltonian systems, preprint in mp_arc@math.utezas.edu (2000).

[57) A. LITVAK-HINENZON AND V. ROM-KEDAR, Parabolic resonances in 3 d.o.f.
near integrable Hamiltonian systems, preprint in mp_arc@math.utezas.edu (2000).

(58] R. DE LA LLAVE, Invariant manifolds,

[59] LLoyD, Degree theory, Cambridge Tracts in Mathematics, 73 Cambridge Univer-
sity Press, Cambridge-New York-Melbourne (1978).

[60] P. LOCHAK, ”Arnold diffusion”; a compendium of remarks and questions. Pro-
ceedings of SDHAM, s’Agaro (1994).

[61] E. LOMBARDI, Oscillatory integrals and phenomena beyond all algebraic orders,
Lecture Notes in Math, 1741, Springer (2000).

[62] R. MARTINEZ AND C. PINYOL, Parabolic Orbits in the Elliptic Restricted Three
Body Problem, Journal of Differential Equations 111, 299-339 (1994)

[63] R. MCcGEHEE, A stable manifold theorem for degenerate fixed points with appli-
cations to Celestial Mechanics, J. Differential Equations 14, 70-88 (1973).

[64] E. M. MCMILLAN, A problem in the stability of periodic systems. In E.Brittin
and H.Idabasi, editors, Topics in modern physics, a tribute to E.V. Condon, 219-
244. Colorado Assoc. Univ. Press, Boulder, CO, 1971.

[65] V.F. MELNIKOV, On the stability of the center for time periodic perturbations,
Trans. Moscow Math. Soc. 12, 3-56 (1963).



254 BIBLIOGRAPHY

[66] R. MOECKEL, Heteroclinic phenomena in the isosceles three-body problem, Siam
J. Math. Anal. 15, 857-876 (1984).

[67) H. POINCARE, Sur les Courbes Définies par les Equations Différentielles, Oeuvres
1, (1886).

[68] A. PUMARINO AND C. VALLS, Instability in Hamiltonian systems, preprint in
mp-arc@math.utezas.edu (2001).

[69] R. RAMIREZ, Splitting of separatrices for maps, Ph Thesis.

[70] C. RoBINSON, Homoclinic Orbits and Oscillations for the Planar Three-Body
Problem, Journal of Differential Equations 52, 356-377 (1984).

[71] V. RoM-KEDAR, Parabolic resonances and instabilities, Chaos 7, 148-158 (1997).

[72] M. RUDNEV AND S. WIGGINS, Separatrix splittings near resonance in pertur-
batins of integrable, a priori stable Hamiltonian systems with three or more de-
grees of freedom, prepint in mp_arc@math.utezas.edu (2000).

(73] M. RUDNEV AND S. WIGGINS, On the use of the Melnikov integral in the Arnold
diffusion problem, preprint in mp_arc@math.utezas.edu (1997).

[74] J.A. SANDERS, Melnikov’s Method and Averaging, Celestial Mechanics 28, 171-
181 (1982).

[75] C. SmmO, Invariant curves near parabolic points and regions of stability, Lecture
Notes in Mathematics 819, pp. 418-424, Springer Verlag, Berlin (1980).

[76] C. SiMO, Stability of degenerate fixed points of analytic area preserving mappings,
Astérisque 98-99, 184-194 (1982).

[77] C. SMO, editor. Hamiltonian systems with three or more degrees of freedom.
NATO Adv. Sci. Inst. Ser. CMath. Phys. Sci. Held in S’Agard, Spain, 19-30 June
1995. Kluwer Acad. Publ., Dordrecht, Holland (1997).

[78] K. SrTNikov, The existence of oscillatory motions in the three-body problem,
Soviet Physics, Doklady 5, 647-650 (1961).

[79] D. L. SLOTNIK, Asymptotic Behavior of Solutions of Canonical Systems Near
a Closed, Unstable Orbit, in “Contributions to the Theory of Nonlinear Oscil-
lations,” Vol. IV, Ann. of Math. Studies 41, Princeton Univ. Press, pp. 85-110,
(1958).



BIBLIOGRAPHY 255

[80] S. STERNBERG, On the Behavior of Invariant Curves Near a Hyperbolic Point of
a Surface Transformation, Amer. J. Math., 77, 526-534 (1955).

(81] YURrI B. Suris, On the complex separatrices of some standard-like maps, Non-
linearity 7, 1225-1236 (1994).

[82] F. TAKENS, Singularities of vector fields, Pub. Math. IHES 43, 47-100 (1974).

[83] D.V. TRESCHEV, An averaging method for Hamiltonian systems, exponentially
close to integrable ones, Chaos 6, 6-14 (1995).

(84] D.V. TRESCHEV, Separatrix splitting from the point of view of symplectic geom-
etry, Mathematical Notes 61, 744-757 (1997).

[85] D.V. TRESCHEV, Width of stochastic layers in near-integrable two-dimensional
symplectic maps, Physica D 116, 21-43 (1998).

[86] F. VERHULST, Nonlinear differential equations and dynamical systems, Universi-
text. Springer-Verlag, Berlin, (1996).

[87] S. WIGGINS, Introduction to Applied Nonlinear Dynamical Systems and Chaos,
Springer Verlag, New York, (1990).

[88] Z. X1A, Melnikov Method and Transversal Homoclinic Orbits in the Restricted
Three-body Problem, J. Differential Equations 96, 170-184 (1992).



