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Abstract

We present a method to integrate telematics data in a pay‐
how‐you‐drive insurance pricing scheme that penalizes

some near‐miss events. We illustrate our method with a

sample of drivers for whom information on near‐miss

events and claims frequency records are available. We

discuss the implications for motor insurance ratemaking.

Our pricing principle is to combine a baseline insurance

premium with added extra charges for near‐miss events

indicating risky driving (or discounts) that can be updated

on a weekly basis. This procedure provides an incentive for

safe driving. In our real‐case study illustration, hard‐
braking and acceleration events as well as smartphone use

while driving increase the cost of insurance.
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1 | INTRODUCTION

The amount of data available in the motor insurance industry is expanding enormously, with the
emergence of numerous new sources of data via the internet and social networks. Indeed, new
telematics devices provide vast amounts of information that create a challenge for traditional sta-
tistical techniques, or machine learning techniques (Barry & Charpentier, 2020). In this paper, we
present a new methodology that breaks down telematics data into strategic components that can be
used both for pricing and for attempting to alter driver behavior. By introducing the concept of
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“near‐miss telematics,”we change the focus of motor insurance from a low‐frequency model based on
claims to a high‐frequency model based on near‐misses and reduce the complexity of further data
analytics for data scientists, statisticians, and actuaries. Near‐miss telematics offers a solution to the
big data problem of modern telematics information; it also provides a new way of presenting the car
insurance bill, which now resembles a phone bill. This paper considers billing on a weekly basis, but
there is no reason why bill information should not be processed in real‐time, thus providing drivers
with a direct and clear incentive to drive more safely to save insurance costs.1

To assess the association between near‐misses and claims in a telematics motor insurance
company, claim records for pay‐how‐you‐drive (PHYD) policies must be consulted. Claims frequency
in motor insurance is generally very low: For example, in many countries, it is below one claim at
fault every 10 years. It is therefore difficult to develop dynamic insurance ratings based on observed
claims only, while state‐of‐the‐art telematics data are being collected. The problem is the slow
dynamics of the claims data. In this paper, we show that a near‐miss approach can transform
dynamic insurance rating from a difficult problem based on low‐frequency events to a straightfor-
ward exercise based on high‐frequency events simply because near‐misses are much more frequent
than claims. A positive side effect of this new high‐frequency rating system is that it is much more
transparent to the policyholder and may act as an incentive to drive more safely. The car insurance
bill will look more like a traditional phone bill, where one can follow the cost of each call that
increases the flat rate fee; the insurance bill will specify the cost of every near‐miss event caused by
the driver that adds to the standard fee paid for insurance coverage. As an immediate example of a
likely behavioral change, our approach will probably lead most drivers to stop any mobile use while
driving.

In this article, we propose to use the past claims history available in an insurance company
for a group of insured drivers with vehicles equipped with an on‐board‐device (OBD) to find
evidence of the association between claim frequency records and currently observed near‐
misses. We use Poisson regression models to develop a basic pricing scheme based on the
traditional claim frequency model and the near‐miss data. This scheme will allow companies to
calculate near‐miss telematics rates by means of a basic price, which can be personalized with
traditional rating factors (age, driving experience, zone, vehicle power, and so on), and most
interestingly, a variable rate that includes penalizations for some dangerous near‐miss events.
In this way, drivers with higher frequencies of near‐miss events pay more than the rest. This
scheme is integrated in the claim frequency model to account for incoming telematics data,
thus creating a natural dynamic pricing plan. We suggest that this ratemaking mechanism can
be implemented on a weekly basis, but the price can also be accommodated at other time
intervals (for instance, daily or monthly). In addition, summary information about near‐miss
behavior can be released to the customers to provide feedback on their driving style and ideally
to improve their future behavior behind the wheel. A general structure of near‐miss telematics
ratemaking in motor insurance is provided in Figure 1.

We illustrate our methodology with an example taken from a real case study, where we
found a positive association between past claim records and some observed weekly frequencies
of near‐misses. Based on these results, a new ratemaking mechanism applying claims fre-
quency records and near‐miss observations is proposed.

This paper is organized as follows. In Section 2, we present related literature. Section 3
describes telematics ratemaking methods and the billing process. In Section 4 we present the

1
Gaming and the awarding of prizes for the best customers might be a field for telematics insurers to explore. Nevertheless, insurers should be aware of the

possibility that drivers could behave less save due to certain incentives.
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real data set used in this article, show the model's results, and propose a pricing method based
on telematics information. Finally, thśe last section concludes.

2 | NEAR ‐MISS TELEMATICS AND USAGE ‐BASED
INSURANCE

A near‐miss—a term borrowed from aviation safety—is a situation in which an accident is
narrowly avoided, such as when a driver brakes suddenly to avoid a crash (Arai et al., 2001).
Telematics offers the possibility of recording this type of near‐miss data in everyday trans-
portation. Near‐misses in the context of automobile insurance have recently been investigated
by Guillen et al. (2020) in a sample of drivers with an OBD designed to collect information on
driving indicators through continuous measurement. They found that risky driving behaviors
such as driving fast or at night are associated with the occurrence of near‐misses, but they did
not apply this result to actual claims and they did not discuss insurance ratemaking. For their
part, Gao et al. (2021) concluded that both classical actuarial risk factors and telematics car
driving data are necessary to create the best predictive models for claims frequency.

In PHYD motor insurance policies also known as usage‐based insurance (UBI), the
premium is calculated on the basis of the customer's driving patterns, such as excess speed,
hard acceleration, hard braking, or hard cornering—that is, potentially dangerous acts that
we call near‐miss events. Based on telematics information on drivers’ performance, a risk
score can be obtained which can be used to calculate the insurance premium. Arumugam
and Bhargavi (2019) describe a PHYD payment approach based on risk scores at a theo-
retical level, but they do not discuss any real case study examples. Eling and Kraft (2020)

FIGURE 1 Near‐miss telematics ratemaking in motor insurance [Color figure can be viewed at
wileyonlinelibrary.com]
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analyze the use of telematics in insurance and conclude that the reduction of information
asymmetries, as well as the possibility of carrying out more accurate risk pooling, improves
the insurability of risks; however, they stress the need for further research on loss frequency
and severity in the context of telematics data. Geyer et al. (2020) analyze a telematics data
set with detailed information about driving behavior (speed, distance driven, and road type)
in pay‐as‐you‐drive (PAYD) contracts that are based on distance driven and road type.
Weidner et al. (2016) discuss the problem of intractably large amounts of telematics in-
formation, also including driving context data, and the application of different methods for
signal processing and driving pattern recognition. Although the authors are not able to
assess the accident risk of any identified pattern, they conclude that given a comprehensive
risk experience, these methods can be used for representing driving situations with the
purpose of scoring driving behavior for pricing. Compared to them and to create a pricing
structure, we compensate the lack of claims during the period when telematics information
was collected with past claim history of insureds. We also provide details on the design of a
pricing scheme based on telematics.

The literature in computer science and electrical engineering has also considered similar
questions, specifically many contributions aim at identifying the context of driving events. In that
sense, Qi et al. (2018) build a system called DrivAid that is able to detect three types of driving
activities, namely, turns, hard brakes, and lane changes. They also extract context information
from audio–visual signals in real time to develop a deep understanding of driving events. The
advances in engineering are relevant to us because pricing based on near‐miss information will
only develop further if sensors are reliable and if stored telematics data are accurate.

Wüthrich (2017) was the first author to introduce pattern recognition and machine learning
in actuarial modeling. All these studies agree that driving behavior data collected from telematics
devices are helpful for auto insurance underwriting (see also Baecke & Bocca, 2017, Fan & Wang,
2017). Moreover, Ellison et al. (2015) conclude that personalized feedback alone is sufficient to
induce significant changes in driving behavior, but that the largest reductions in risk are observed
when drivers are also awarded a financial incentive to change. As part of a wide‐ranging research
project on behavior‐based personalization in European insurance, Meyers and Van Hoyweghen
(2020) report a case study carried out in 2016 aimed at tracking the driving behavior of 5000
participants through smartphone sensors in return for a 20% discount on their premium.
However, they only recruited 243 participants in the study, and no clear evidence on the relation
between driving style and loss ratios was found.

Many researchers whom we will mention below indicate that the occurrence of near‐
misses seems related to a higher risk of being involved in future accidents. However, near‐
misses have not been analyzed in the literature for the purposes of rating. In general, the
existing contributions on telematics ratemaking refer to the measurement of general pat-
terns related to driving style such as speed, acceleration, total distance, trip length, and so
on, but not near‐miss counts (see Lemaire et al., 2016 and the related contributions by
Gao, Meng, et al., 2019; Gao & Wüthrich, 2019; Gao, Wüthrich, et al., 2019; Silva &
Henriques, 2020). To the best of our knowledge, the combined dynamics of near‐misses and
claims frequency data have not been assessed with a view to designing an insurance rate-
making scheme. The paper by Denuit et al. (2019) proposes the use of multivariate mixed
models to describe the joint dynamics of telematics data and claim frequencies. The ap-
proach proposed in that paper recognizes the a posteriori nature of telematics data and their
variety among insured drivers. However, there are two major differences between Denuit
et al. (2019) and what is presented here. First, they use a posteriori corrections that are
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based on both past claims and what they name “the signals,” that is discretized telematics
information. Their contribution is inspired in the bonus‐malus, or experience rating
principles in a multivariate setting, where counts coming from telematics information are
integrated. Second, Denuit et al. (2019) do not look at the type of events that are considered
in our current approach. They mainly work with claims, discretized mileage, and mileage
driven under certain conditions, namely, night driving or urban driving. Denuit et al. (2019)
implicitly look at yearly premium corrections because claims are usually compiled on a
yearly basis and, although they admit that telematics are about to gain notoriety in the
future, they do not discuss dynamic pricing mechanisms on a more frequent basis, that is
weekly. However, their approach could be used with near‐miss event counts.

The positive association of near‐misses and accidents is well documented in the literature.
Analyzing driving risk associated with near‐crashes, Wang et al. (2015) found that the speed when
braking and the potential crash type, among other factors, had the greatest influence on the driving‐
risk level of a near‐crash. Ma et al. (2018) estimate a logistic regression model for the probability of
accident and a Poisson regression for the number of accidents. Telematics and contextual driving
information are used as explanatory variables. These authors find that vehicle mileage, hard brakes,
hard starts, peak‐time travel, and speeding are strongly correlated with higher accident rates; driving
at a speed significantly different from that of traffic flow is also a relevant risk factor. Similarly to us,
Ma et al. (2018) also use the past claim history of drivers (during the previous 3 years) and discuss
premium implications, but they do not have information on smartphone usage. Stipancic et al.
(2018) analyzed hard braking and accelerating events and compared them with historical crash data,
and found that both maneuvers were positively correlated with crash frequency. Huang and Meng
(2019) investigate the use of driving behavior variables for predicting the risk and frequency of
claims in UBI products. They use logistic regression and four machine learning techniques for the
risk probability models, and Poisson regression for the claim frequency model. They have five types
of explanatory variables: traditional ratemaking factors, usage, travel habits, driving performance,
and critical incidents. They carry out an empirical analysis with data from an insurance company in
China. Compared to us, they have a sample of drivers larger than ours, but their drivers are observed
during a shorter period of time. Their telematics information is quite similar to ours, but they do not
include smartphone usage. The main difference is that they use driving performance variables and
critical incidents as explanatory variables, while we mainly focus on the role of near misses and in
our case, only the total distance traveled is included as a driving performance variable. Similarly to
us, Huang and Meng (2019) conclude that driving behavior variables have a great potential in
automobile insurance and ratemaking for UBI products. What makes the two contributions different
is the objective. We focus on ratemaking and the role of near‐misses, or incident, in dynamic pricing,
whereas Huang and Meng (2019) confirm that the frequency of some types of near‐misses is
associated with the frequency of claims.

Focusing on three types of near‐misses (accelerations, braking, and cornering), Guillen
et al. (2020) found that age was significant for predicting near‐miss events, but that gender did
not have a significant effect. These authors also found that engine power was associated with a
higher frequency of cornering and acceleration events; that nighttime driving presented a
significant association with a lower risk of cornering events than daytime driving; that urban
driving was associated with a higher frequency of braking events; and that excess speed in-
creased the expected frequency of abnormal accelerations. Hynes and Dickey (2008) found that
even the rate of change of acceleration had an influence on rear‐impact vehicle collisions. We
refer the reader to Eling and Kraft (2020; Table B1) where they can find an updated, exhaustive
and systematic summary of existing model approaches in telematics insurance.
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3 | METHODS: FREQUENCY MODELS AND BILLING
SCHEMES

This section presents the methodology that has been used to design the billing scheme. First, we
describe the classical frequency model and second we introduce near‐miss information to obtain
a pricing scheme. The fundamental aim of near‐miss telematics motor insurance is to reward safe
driving. We believe that this can be achieved by linking safe driving to lower insurance prices.2

Let Y ,i with i n= 1, …, denote the number of claims corresponding to observation i during a
specific period of time, Ti, where n represents the total number of observations and here, Ti is the
duration of policy i. Let x x x= ( , …, )i i ik1 represent the vector of k exogenous variables or risk factors
that are assumed to have an effect on the expected number of claims and which are collected when
the policy is underwritten, so they are static. Usually, the first component, xi1, equals 1 to have an
intercept in the model. Let us assume that given xi, the dependent variable Yi follows a Poisson
distribution with parameter λi, which is a function of the linear combination of parameters and
regressors, ⋯β x β x+ +1 i1 k ik, where β β β= ( , …, )1 k represents the vector of unknown parameters to
be estimated in the Poisson model. The linear predictor is usually denoted x β′i .

An offset is included in the model when the exposure to risk is not the same for all drivers.
Ti is also called the exposure to risk for individual i. In that case, the model can incorporate the
risk exposure factor (or the offset variable Tln i) as follows:

⋯ ⋯E Y x T β x β x T β β x( | ) = exp(ln + + + ) = ·exp ( x + + ),i i i 1 i1 k ik i 1 i1 k ik (1)

where x βexp ( ′ )i provides a model for the number of claims per unit of exposure. If the duration
of contracts is homogeneous then Ti is constant and it can be droped from Model (1).

In our real case analysis, each individual in the telematics data set corresponds to a vehicle‐week
observation. Therefore, each observation contains the telematics and event information collected for a
specific vehicle during a specific week, and driver i is observed overWi weeks. However, when we
consult past information on claims the duration of contracts is not usually homogeneous. The past
claims history available for a contract in an insurance company generally extends over more than 1
year. Then, the offset variable has to be appropriately rescaled to allow comparisons between the past
claims data set and the weekly summaries of the telematics datasets.

3.1 | The role of risk exposure

Risk exposure must be carefully handled in the two sources of information: first, the historical
records, and second, the incoming telematics data. We suggest that a telematics summary be
available each week; accordingly, we accommodate our timeframe to weekly data.

Past claims history reflects the duration of the insurance contract and the reported claims.
Indeed, someone who is covered for 2 years by a motor insurance policy is exposed twice as
long as someone who is covered only 1 year. We will not include distance driven in the
coverage period because the historical records of traditional insurance companies do not
generally include this information.3 So, we consider only contract time duration, Ti, in the

2
In fact, this is not a new concept in insurance: Traditional bonus‐malus systems reward good drivers with no claims with a bonus rebate in the following year's

premium, and penalize drivers with claims with an extra charge, or malus, in the following year's price.
3
Note that in the case study we also consider that the distance driven in the historical coverage period can be estimated by the average weekly distance driven

observed in the telematics observation period. The results are presented in the Appendix.
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exposure to risk component of Model (1) to cope with unequal contract lengths for the pol-
icyholders sampled. If Ti is expressed in weeks, then a policy that covers 1 year, has Ti ap-
proximately equal to 52.25 weeks.

On the other hand, we want to use telematics data to estimate the driver's behavior
behind the wheel. We can imagine that this telematics analysis might be a sort of screening,
in which drivers agree to be monitored by the insurer to assess their driving patterns and
estimate the claims risk. So, an OBD telematics system would normally be installed in the
vehicle and data would be recorded for a fixed and short period of time: for example, a few
weeks. Then, we may take into account distance driven during the telematics observation
period, so that the number of near‐miss events that are observed can be related to the
distance driven. In fact, each week, we may consider the absolute frequency observed of
near‐misses, that is, frequency counts, or alternatively we may take into account the dis-
tance driven that particular week, depending on whether or not we consider that the average
weekly distance driven does change over time and, consequently counts per kilometer can
be considered in our models.

3.1.1 | Near‐misses per kilometer driven

Let us start with the traditional claims frequency model, like (1), E Y x T x β( | ) = exp( ′ ),i i i i

where Ti is the contract duration in weeks and Yi refers to the frequency of claims occurring
during the contract coverage. We have one observation per driver. If we include near‐miss
information in the linear predictor, then one specification including the near‐miss telematics
data can be written using the relative frequencies of near‐misses per kilometer, as follows

⋯ ⋯z θ β x β x α E α E′ = + + + + +i i k ik i s si1 1 1 1 , where θ β α β β α α= ( , ) = ( , …, , , …, )1 k 1 s is the
vector of parameters to be estimated and E E E= ( , …, )i 1i si represents the near‐miss average
for individual i, and we denote the vector of all covariates as z x E′ = ( , )i i i . Here, we record
telematics information for each driver over a number of weeksWi , sum the total number of
near‐miss events, and divide them by the total distance driven duringWi weeks to obtain the
near‐miss average.

Our unit of analysis is the driver. On the one hand, we have information on the past claims
history and general static characteristics of the policy and, on the other hand, we include average
near‐misses per distance driven, which we obtain from the telematics observational window. So,
our approach is equivalent to extending the model with additional regressors. Model (1) becomes.

E Y x T x β E α T x β E α( | ) = exp( ′ + ′ ) = exp( ′ )exp( ′ ).i i i i i i i i (2)

The claims frequency model has three components: T ,i which indicates weeks at exposure
for the past‐claims information, x βexp( ′ ),i which measures the influence of exogenous factors
that are available in the insurance policy and E αexp( ′ )i , which measures the influence of
weekly near‐miss information relative to the distance driven.

While Model (2) is useful for understanding the driver's behavior, its main limitation is that
the incoming weekly telematics information is smoothed in the near‐miss average for driver i
and we cannot directly see the impact of each particular individual near‐miss event.
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3.1.2 | Weekly near‐miss counts

If we want to include near‐miss events directly as counts, we ignore the distance driven and use
observation time as risk exposure. For example, we may assume that drivers have repetitive behavior
over time and tend to have constant exposure to risk. In this case, the rates would be proportional to

E Y x T x β E α( | ) = exp( ′ )exp( ′ ),i i i i it
⁎ (3)

whereTi indicates the exposure to risk in weeks for the claims records for driver i, and E ′it
⁎ is

the near‐miss vector of absolute frequencies, that is, a count data vector for driver i and Week t.
The problem here is that the number of observations from the past claims is one per driver,
while the number of telematics observations isWi per driver.

One way to overcome the problem of the unequal number of data points in the claims records
and in the telematics data set is to replicateWi times the past claims information, so that Y Y=i it

for all t, and similarly for the static regressors x ′i . Then, we may analyze driver‐week data. This
means that if we have n drivers each observed overWi weeks, then the final data set has∑ W

i

n

=1 i

observations and we initially treat them as independent observations. Note that the positive
correlation between observations of the same vehicle impacts the model inference causing an
overestimation of standard errors, but our aim is primarily to produce predictive models.
Alternatively, a Poisson panel regression can be specified, and these results are presented for our
case study in the Appendix.

3.2 | Design of a PHYD motor insurance rating scheme with
near‐miss telematics data

Our pricing model stems from the calculation of the basic pure premium, where the pure
premium price is calculated as the product of the expected cost of a claim, for which we take a
general average, C̅, times the expected number of claims.

With Model (3), a weekly premium (T = 1i ) is proportional to the product
C x β E α¯ exp ( ′ ) exp ( *′ )i it . As we can see, when there are no near‐miss events, the premium is
C x β C x β¯exp( ′ )exp(0) = ¯exp( ′ )i i , a basic pure premium, which we call Pibase, whereas each ad-
ditional near‐miss j multiplies the premium by αexp ( )j , which is a relative increase in the
premium (if αj is positive) or a decrease (if αj is negative). In this way, we can introduce a
ratemaking structure in which the premium is dynamically updated when near‐misses occur.

We expect near‐misses to have positive coefficients so that the premium increases every
time that the frequency of near‐misses increases. Model (3) works on a scheme where the fitted
insurance premium is recalculated whenever new information on counts reaches the insurance
company through a telematics gate. If the insurance company prefers to establish a charge per
kilometer, then distance‐driven information could be included as an extra regressor of the
telematics part or as an additional offset.4 We do not include distance driven in (3) because we

4
Following Boucher et al. (2013, 2017), we believe that premium rates should not be proportional to distance driven, because there is a natural learning curve. This

means that intensive drivers who drive more kilometers are more experienced than novel or occasional drivers; therefore, each additional kilometer should cost slightly

less for experienced drivers than for occasional drivers (see also, Guillen et al. 2019). Recently Boucher and Turcotte (2020) have investigated again the relationship

between distance driven and claim frequency and they have shown that an approximately linear relationship can be derived once additional information is included.

Specifically, the authors conclude that the learning curve that we seem to observe when looking at total distance driven over 1 year can actually be explained by other

factors, such as more frequent use of the highway, higher proportion of driving outside rush hours, and so on. They conclude that, for each driver, independently of their

driving risk per kilometer, the risk of an accident increases by approximately 1/15,000 for each additional kilometer driven.
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think that it tends to be quite stable over time, it is correlated with the number of near‐misses,
and price tranches can be established depending on the average weekly distance driven by
policyholders, in the same way, that portfolio segments or risk classes can be used combined
with our pricing scheme.

The near‐miss telematics ratemaking scheme that we propose is the product of a weekly
premium Pibase that depends on static characteristics collected at policy issuance times a factor
that takes into account the influence of each additional near‐miss event, namely the factor
contained in vector Eit

⁎. We can use the following approximation for the weekly premium to
interpret the coefficients, α, as percent increases per near‐miss event of the base rate Pibase, but
we can also approximate a linear rate that would penalize each additional near‐miss:

≅ ≤C x β E α P E α P E α P E α¯exp( ′ )exp( ) = exp( ) (1 + ) + ,i it
⁎′

ibase it
⁎′

ibase it
⁎′

ibase it
⁎′

max (4)

where
≤ ≤

α = max (αP )max
1 i n

ibase .

Note that αmax depends on the maximum value of Pibase. In practice, to determine αmax a
reasonable threshold for Pibase could be, for example, three times the average of Pibase.

The availability of near‐miss information gives insurers with telematics equipment the oppor-
tunity to promote the use of discounts and penalizations more often than the yearly adjustments that
are produced by bonus‐malus systems (also known as experience rating mechanisms, meaning that
the price adjusts to the number of past claims). In a sense, we propose to include near‐miss records as
a way of reflecting the evidence of dangerous driving by means of the frequency of near‐miss counts.
This corresponds to the last term in (4).

4 | CASE STUDY

The database used in this article consists of a sample of 641 drivers with an insurance policy
that includes a telematics recording system. Telematics information is available for these
policyholders for the period between the 30th week of 2016 until the 30th week of 2019, but not
all drivers were observed during the whole period. None of the drivers reported any claims
during the period in which their corresponding telematics information was collected. In total,
there are 7570 vehicle‐week observations in the telematics data set.

4.1 | Data description

The list of variables and their descriptions are provided in Table 1. All drivers in our sample
carried an OBD in their car, most of them for several months. Bolderdijk et al. (2011) reported
that after 3 months drivers tend to forget that their driving behavior is being monitored,
however, we did not analyze this change of behavior here.

Given the small observation period per driver, it is unlikely to observe a claim in any given
driver. A typical annual frequency for “at fault” claims is below 5%, in most developed
countries, which means that, since we have observed 7570 vehicle week observations, we
should be expecting to observe about seven claims in the telematics observation period. Note
that drivers were aware that they were monitored and it is well known that this fact may induce
prudence on the wheel. Therefore, the information on claims by drivers in our telematics data
set is taken from the past claims history made available by the insurance company. The claims
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file includes the total number of claims at fault (NumT), and the exposure period measured in
weeks (ExpoT). Additionally, we also know the level of severity of these claims, classified in
four categories: low, medium, high, and extreme.

The telematics information was collected at weekly intervals and included for each vehicle
and week total distance traveled in 000 s (DistThous). Preprocessing and curation of data
leading to weekly summaries were performed by the telematics manufacturer and no major
issue was reported. Additionally, for each vehicle and observed week, the number of near‐miss
events of various kinds was computed, including acceleration (EAclr) and braking (EBrak). For
each event type, we know the intensity level (1 =moderate, 2 =medium, and 3 = dangerous).
Note that the data were provided to us by a telematics manufacturer with limited information
on these three classes of severity which was considered proprietary, and this is a limitation. The
identification of each near‐miss is based on a severity score that lies between [0,10] (following
the same definitions as in Guillen et al., 2020). For example, in the case of acceleration events,
the intensity score level takes into consideration the difference between the maximum accel-
eration reading and the acceleration detected in the first reading above the acceleration event
detection threshold, set at 6 m/s2 in accordance with the previous literature: see, for example,
Hynes and Dickey (2008), where 5.7 m/s2 was considered as the threshold for a low peak
acceleration event during rear‐end impacts. We calculate the ratio between this difference and
the corresponding timestamps of the latter readings. A transformation of this ratio multiplied
by 10 yields the final severity score, which lies between [0,10]. Acceleration is also used to
determine the severity of braking events, given that negative acceleration can essentially be
considered as deceleration. Smartphone usage (EPhone) while driving is also recorded. Re-
garding the variables that are traditionally used in motor insurance pricing, only engine ca-
pacity and engine horsepower were available to us. In fact, they are redundant because they
both measure the vehicle's engine power. Engine capacity was included in the final model,
while engine horsepower was finally excluded.

Table 2 shows some descriptive statistics and also includes the sum of events by type, such
as EBrak (total number of brakes, i.e., sum of EBrak1, EBrak2, and EBrak3), EAclr (total
number of acceleration events, NumT [total number of at‐fault claims]) and total exposure in
weeks. Additionally, Figures 2–4 show the histogram of EBrak, EAclr, and EPhone. Due to the

TABLE 1 List of variables in the telematics/claims data set

Variables Description

Near‐miss event information

EAclr1, EAclr2, EAclr3 Acceleration event (three intensities: 1, 2, and 3)

EBrak1, EBrak2, EBrak3 Braking event (three intensities: 1, 2, and 3)

EPhone Smartphone usage event (in seconds)

Other telematics information

DistThous Total distance traveled during the week (in 000 s Km)

Claim information

ExpoT Exposure time (in weeks)

NumT Total number of at‐fault claims during the exposure period.

Vehicle information

EngineCapacity Engine capacity of the vehicle (in 000 s cc).
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large frequency of zeroes we represent only the positive observations. The data present a long
right tail, so we also decided to limit the representation up to a maximum value, specifically
50 for EAclr and EBrak, and 300 for EPhone. Note that EAclr has 83.66% of zeroes, and 0.62%
are equal or greater than 50. EBrak has 80.91% of zeroes, and 0.82% are equal or greater than
50, and finally, EPhone has 79.78% of zeroes and 0.65% are higher than 300.

TABLE 2 Descriptive statistics in the telematics and claims data sets

Variable Mean SD Minimum Maximum

EBrak1 1.8629 6.3567 0 93

EBrak2 0.6764 2.7104 0 33

EBrak3 0.1703 1.1368 0 29

EBrak 2.7095 8.6934 0 119

EAclr1 1.3931 7.1128 0 202

EAclr2 0.1180 0.7488 0 20

EAclr3 0.1655 1.1916 0 30

EAclr 1.6766 7.9614 0 219

EPhone 16.0008 77.7907 0 4150

DistThous 0.1523 0.1865 0.0010 2.7230

EngineCapacity 1.8383 0.7328 0.4250 6.2550

NumT 0.0764 0.4352 0 6

ExpoT 287.3532 53.5283 52.2857 545.8571

FIGURE 2 Histogram of EBrak (the number of braking events)
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The most frequent event was smartphone usage; drivers recorded an average of 16.00 s of
smartphone usage while driving per week. The second most frequent event was braking, with a
weekly average of 2.71. Finally, acceleration events were the least frequent events, with an
average of 1.68. For each event type, events of intensity Level 1 were the most frequent.
Regarding telematics variables, the average distance traveled per week was 152.3 km. The
average engine capacity was 1838 cc. The claims history of the drivers in the telematics sample
reflected an average weekly number of claims equal to 0.0004, which corresponds to a yearly

FIGURE 3 Histogram of EAclr (the number of acceleration events)

FIGURE 4 Histogram of EPhone (seconds of smartphone usage)
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claim frequency of 0.0316. This is a rather low frequency because only claims at fault were
considered in the design of our ratemaking structure.

4.2 | Results

We estimated a Poisson regression model like (3) where the number of claims is the dependent
variable. The exogenous variables were: braking events, acceleration events, smartphone use,
and engine capacity. Table 3 shows the results of the Poisson model.

In Table 3, we observe that acceleration events of Intensity 1 (EAclr1) have a significant
effect (p= .0019) and are associated with a lower claim frequency because the coefficient is
negative (−0.0825). On the other hand, acceleration events of Intensity 2 (EAclr2) are sig-
nificantly associated with a higher claim frequency with a positive coefficient (0.3069;
p= .0162). Acceleration events of Intensity 3 (EAclr3) do not have a significant effect in the
model (p= .8072). We interpret that a moderate level (Intensity 1) of acceleration avoids ac-
cidents, while Intensity 2 is associated with aggressive driving and thus, with more claims. The
conclusion regarding braking events is similar: braking events of Intensity 1 and Intensity 3 are
associated with a higher claim frequency with coefficients equal to 0.0268 and 0.0984, re-
spectively and p‐values lower than 1%, while braking events of Intensity 2 are associated with a
lower claim frequency. This means that braking events of Intensity 2 seem to be associated with
avoiding at‐fault accidents. Smartphone usage has a significant effect at the 10% significance
level (p= .0776). Finally, EngineCapacity has a positive and significant effect on the claim
frequency.

Given that some near‐miss frequency variables have a negative coefficient, we conclude
that some braking or accelerating events are not necessarily bad. A driver who brakes
whenever necessary is probably a good driver who is able to react swiftly in situations of
danger. A similar conclusion can be reached for moderate acceleration events. Regarding
the existence of three severity levels of near misses (rather than collapsing them in one

TABLE 3 Parameter estimates of the Poisson model of the weekly rate of at‐fault claims for the telematics
and claims data set

Parameter Estimate Standard error p‐Value

Intercept −8.0637 0.0673 <.0001

EAclr1 −0.0825 0.0265 .0019

EAclr2 0.3069 0.1277 .0162

EAclr3 0.0095 0.0390 .8072

EBrak1 0.0268 0.0086 .0018

EBrak2 −0.4966 0.0770 <.0001

EBrak3 0.0984 0.0336 .0034

EPhon 0.0004 0.0002 .0776

EngineCapacity 0.3644 0.0287 <.0001

Note: The Akaike information criterion equals 7345.00 and the Bayes Information criterion equals 7407.39. The pseudo‐R2

equals 21.83%.
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single category), we would like to remark that it enables to address pricing by considering
the fact that a higher frequency of near‐misses does not necessarily correlate with a higher
frequency of claims. We have seen that a moderate amount of near‐misses may indicate that
the driver has good reflexes to actually avoid accidents. This is why we do believe that a
certain level of near‐miss counts could perhaps not be penalized, but more data are more
detailed on the definition of class severity of near‐miss events is needed to analyze this
question.

In addition, there is a strong positive correlation between the number of pricing events
and the number of kilometers driven. Therefore, if the number of kilometers was to be considered
in the pricing model, the marginal impact of pricing events (brakes, accelerations, etc.) would be
low, as it would already be captured by the total number of kilometers. Indeed the number of
kilometers driven and near‐misses are very much correlated, though not homogeneously for ev-
eryone. This is the main reason why insurers tend to prefer UBI, based on a comprehensive view of
driving patterns, rather than PAYD which only pays attention to distance driven. We believe that
our approach encompasses the two worlds. In fact, the price paid depends both on the distance and
on the near‐misses. There are natural and straightforward ways to weight the importance of these
two components and that would be a mission for insurers to decide what combination of a pricing
scheme they would prefer to offer. For example, an insurer could decide to compose a final UBI
pricing scheme where only 10% of the price depends on distance, while 90% depends on near‐
misses. Another insurer could set a price mechanism where 90% of the price would depend on
distance, while only 10% would depend on near‐misses. In general, one could fix a linear combi-
nation of both components, where a pure PAYD scheme would arise naturally as a particular case
when distance takes 100% of the pricing weight and near‐misses have a 0% weight.

A limitation of our model is that we replicate the past claim information across person‐
specific observations and treat them as independent observations. Even if we focus on pre-
diction, we need to have valid information on the statistical significance of our estimates.
Therefore, we have introduced a correction for the standard errors to cope with the panel effect.
Specifically, we have introduced fixed effects and we have also tried a week trend. The results
are presented in Table A1. Our conclusions do not change. The model presented in
Section 3.1.1 aggregates all telematics information into one single row per driver and then
combines the data to produce a model for the number of claims. The results again produce
similar conclusions and are available from the authors.

Finally, we would like to remark another limitation of our analysis. We do not have
data on the distance driven during the period in which claims were made. We could make
the assumption that an individual drove as much back then as he/she drives during the
period in which we collect telematic information. In that case, we could estimate a model
that includes the logarithm of the distance traveled during the coverage period. The
results of this alternative model are presented in Table A2. The logarithm of the distance,
as expected, has a positive significant effect, but the rest of the variables in the model do
not change after introducing this new variable. An alternative approach to our model
would be to re‐estimate the model taking into account only events with intensity higher
than 2 (which for both braking and acceleration have a positive correlation to claims). In
that case, only EBrak has a significant (positive) effect. The results are shown in Table A3.
Given that we did not observe distance driven in the claims period, we have only provided
the basic model results including distance.
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4.3 | Examples of a billing process for near‐miss telematics motor
insurance

A step‐by‐step elaboration of the billing mechanism follows easily from implementing the model
results in (4) and additional details are provided in Appendix B. To show how near‐miss billing can
be performed, let us consider an example driver in our real case study data set who had no claims
in the past 5 years and who was observed from Week 20 in 2018 to Week 11 in 2019. During these
44 weeks this driver, whose car had an engine capacity of 1769 cc,5 did not report any claims. Our
billing scheme would start by charging this driver a flat fixed rate which could be based solely on
the type of car, that is, on its engine capacity, and possibly other standard characteristics such as
driving zone, age of the car, and so on. Then, the insurer's near‐miss telematics rate would proceed
by adding extra costs for near misses or phone use. We will also explore a second billing option: A
slightly higher fixed basic rate than in our initial proposal, with the addition of extra charge for
each type of near‐miss event only if the near‐misses exceed a certain level (e.g., two per week). We
will explore the ratemaking examples in the following two subsections.

4.3.1 | Basic rate plus additional cost of near misses

We illustrate our approach via one concrete insured from our portfolio. In this section, we want
to illustrate the practical outlook of our new approach. The insurer would bill a flat pure rate of
1.95 Eur per week, which is equivalent to a yearly rate of 101.84 Eur. Each near‐miss brake
would cost 0.75 Eur, each near‐miss acceleration would cost 2.36 Eur, and each active minute
of mobile phone while driving would cost 0.185 Eur. Additional insurance costs should be
added to account for solvency, marketing and administration, among others.

Table 4 displays an illustration of the price paid in 5 consecutive weeks, according to the
driver's experience. The first week the example driver did not have any near‐misses and so he

TABLE 4 Weekly breakdown of a total bill per week

Week
Distance
driven (km)

a=Number
of near‐miss
brakes

b=Number of
near‐miss
accelerations

c=Minutes of
smartphone
use

d=Cost of
near‐misses
(Eur)

e=Bill per
week (Eur)

1 30 0 0 0 0.00 1.95

2 73 0 0 2 0.37 2.32

3 104 2 2 2 6.59 8.54

4 260 6 2 1 9.40 11.35

5 705 19 4 21 27.51 29.46

Note: Pure premium in motor insurance as a function of near‐miss events for a driver of a car with engine capacity 1769 cc.
Basic weekly rate 1.95 Eur.

Total bill for 5 weeks: 53.61 Eur.

e= 1.95 + d.

d= 0.75 × a+ 2.36 × b+ 0.18 × c.

5
This driver had an average number of near‐miss events per week equal to 2.7 hard brakes and, 1.1 hard accelerations, and his weekly average phone usage

during driving was only 2.7 s. His total distance traveled during the observation window was 13,400 km, which is an average of about 300 km/week.
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paid the basic rate equal to 1.95 Eur. In Week 2, he used the smartphone for 2 min, but the use
was minimal and was barely penalized. In Week 5, the number of brakes and accelerations
increase, as did phone use, adding 27.51 Eur to the basic rate and thus giving a total bill of 29.46
Eur for that week. Over this 5‐week period, the policy‐holder would pay a total sum of 53.61
Eur. This is of course a pure premium based on near‐miss information, and so expenses and
insurer‐added loadings should be added on top. In addition to the near‐miss scheme, a per
kilometer rate could also be considered here as in a UBI scheme, but we do not include this here
and so the distance driven column had no impact on the bill for each week.

The practical implementation illustrated in this subsection of our new near‐miss approach
to telematics is of course just one out of many possibilities. In the next subsection, we illustrate
our approach via a slightly difference market concept.

4.3.2 | Basic rate with a reward for safe driving and the additional charge for
near misses

In the previous subsection, near‐miss events were charged at some given cost on top of some
low basic fee. In this subsection, we reverse the order of payment and start with a high basic fee
with a bonus or discount when the absence of near‐miss events is recorded.

In the scenario where insurers explicitly want to reward safe driving, they would have to bill
a basic rate higher than the previous example: For example, 6.66 Eur per week, which is the
price for an average driver. They then apply a discount (−5.65 Eur) if no near‐miss records are
observed each week. Intermediate discounts may exist depending on the type of near‐miss until
their frequency exceeds a threshold (up to 2 for accelerations and up to 1 for braking and
smartphone use). If the counts are larger than 2, then the penalizations are twice those in the
cost scheme for the example shown in Table 4 in the previous subsection.

Table 5 displays the price that the driver in the above section would pay over the 5‐week
period. In the first couple of weeks, since the counts of near‐misses are below the threshold,
the insured policyholder would obtain a full discount of 5.65 Eur in the first week, so his
weekly bill equals 6.66 – 5.65 = 1.01 Eur. In the second week, the discount is 5.29 Eur because

TABLE 5 Weekly bill of pure premium in motor insurance as a function of near‐miss events for a driver of a
car with engine capacity 1769 cc)

Week
Distance
driven (km)

a=Number
of near‐miss
brakes

b=Number of
near‐miss
acceleration

c=Minutes of
smartphone
use

d=Cost of
near‐misses
(Eur)

e=Total
weekly bill
(Eur)

1 30 0 0 0 −5.65 1.01

2 73 0 0 2 −5.29 1.37

3 104 2 2 2 0.93 7.59

4 260 6 2 1 9.00 15.66

5 705 19 4 21 54.94 61.60

Note: Basic weekly rate (6.66 Eur) minus discounts for safe driving, or plus penalizations for near misses.

Total bill for 5 weeks: 87.23 Eur.

e= 6.66 + d.

d= if a> 2, 1.5(a), −0.75(1–(a)); if b> 2, 4.71(b), −2.36(2–(b)); if c> 2, 0.36(c), −0.18(1–(c)).
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of the minimal smartphone use and the bill for that week would be 6.66 – 5.29 = 1.37. In the
third week, the near‐misses would not exceed the threshold count for braking and accel-
eration, but overall the driver receives a lower discount than before and he would be pena-
lized 0.93 Eur. So, his total bill for the third week would be 6.66 + 0.93 = 7.59. Overall, these
3 weeks turn out better under this billing scheme than in the example shown in Table 5. From
that week onwards all near‐misses incur a penalty twice that in the example in Table 5, so the
extra cost added to the flat rate is 9.00 Eur for Week 4, and the bill would come to
6.66 + 9.00 = 15.66 Eur. For Week 5 the extra cost would be greater, 54.94 Eur, and the bill
would come to 61.60 Eur.

There is a substantial difference between the rating schemes displayed in Tables 4 and 5.
Overall the second scheme rewards safe driving more than the first, while dangerous driving
increases the sum of the weekly bills considerably. For this particular example in Table 5, the
total sum of the pure premium paid after 5 weeks is 87.23 Eur.

5 | CONCLUSIONS

We have introduced near‐miss telematics to insurance ratemaking via a recently compiled data
set with high‐quality telematics information but with only historical claims data. This is both a
strength and a weakness of our study. The weakness is that the prediction would be more precise
if claims were recorded using only the high‐quality telematics data. However, this is also its
strength, because our approach using historical claims information from customers is extremely
useful for newcomers to the telematics business; one can start with dynamic near‐miss telematics
pricing after a few weeks of data collection when a portfolio of customers with previous claims
records in the company is available. Our current study, therefore, introduces a new concept of
near‐miss telematics and at the same time introduces a way to address the challenging period of
transition from classical insurance rating to near‐miss telematics ratemaking. In that sense, there
are many ways to bill near‐misses and we selected two of the main strategies after interviewing
several stakeholders. That is, we have concentrated on near‐misses implying charges (driver pays
per near‐miss) and we have also contemplated that the absence of near‐misses induces discounts,
which seems to be the preferred way to go. Unfortunately, we cannot report how consumers will
react to near‐miss ratemaking as this has not been implemented in practice. We do not have
references to compare to other approaches. For PAYD schemes we have not found evidence of
drivers changing their behavior, that is driving less, due to the adherence to a PAYD contract. We
are not able to discern whether near‐miss telematics has any additional benefit over a distance‐
based pricing scheme, and we are unable to say from our empirical analysis whether drivers
adopting telematics schemes will in general change their behavior in the long term as a con-
sequence of the impact on the price of their usage‐based insurance ratemaking. (see, Meyers &
Van Hoyweghen, 2020, for an extensive economic experiment discussion).

Regarding claim severities, our approach has some limitations. We do have information on the
severity of past claims, but we do not introduce a model for severities. We follow the classical
ratemaking principle based on a frequency model times average cost. We wanted to keep the
approach as simple as possible and we wanted to avoid claims cost data which is generally known
to be quite noisy. Another limitation of our study is that we do not have data on the distance driven
during the period in which claims were made. Nevertheless, we saw that inferring this distance
from the available telematics information does not change much the conclusions of our analysis.
An additional limitation comes from the fact that some levels of intensity of the risk behavior are
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actually associated with significantly lower numbers of claims. The interpretation could be that
some near‐misses are good, meaning that the driver is able to react promptly to avoid crashes.

Of course, it would be extremely interesting to provide analytical results for an extended data
set based on years of near‐miss telematics data. No such data set exists at this moment in time. The
near‐miss telematics approach needs to be implemented first using a transition data set from
classical insurance to near‐miss telematics, as illustrated in this paper. Therefore, while the ap-
proach of this paper seems most suitable at a time when no full near‐miss telematics data exist, it
would be of great interest to analyze a mature near‐miss data set considered over several years with
a significant number of customers. However, even with the simpler transition data set considered
in this paper, we obtain very promising results, and we consider this paper to be a proof of concept
that our near‐miss telematics pricing could indeed be introduced at this point in time. Choosing the
right structure of penalization of near‐misses is a question that will remain in the area of each
insurer's ratemaking strategy. Maybe some would decide to penalize only severe near‐misses,
whereas others may have much more refined systems, even nonlinear near‐miss penalization
which would match what we have found in the model results. However, the impact of near‐miss
telematics ratemaking on driving behavior and, ultimately, on claims is now an open question and
we believe that further theoretical and empirical research will need to be carried out in the future
and specially if near‐miss ratemaking schemes are implemented in practice.

ACKNOWLEDGMENTS
Montserrat Guillen and Ana M. Pérez‐Marín thank Fundación BBVA Big Data grant and
Spanish Ministry of Science and Innovation grant PID2019‐105986GB‐C21, Montserrat Guillen
thanks ICREA Academia. The authors also thank the editors and two anonymous reviewers for
providing feedback and helping us.

ORCID
Montserrat Guillen http://orcid.org/0000-0002-2644-6268
Jens Perch Nielsen https://orcid.org/0000-0002-2798-0817
Ana M. Pérez‐Marín https://orcid.org/0000-0002-8318-0603

REFERENCES
Arai, T., Nishimoto, T., Ezaka, Y., & Yoshimoto, K. (2001). Accidents and near‐misses analysis by using video

drive‐recorders in a fleet test. Proceedings of the 17th International Technical Conference on the Enhanced
Safety Vehicles, Amsterdam. https://www.sae.org/publications/technical-papers/content/2001-06-0001/

Arumugam, S., & Bhargavi, R. (2019). A survey on driving behavior analysis in usage based insurance using big
data. Journal of Big Data, 6(86), 1–21.

Baecke, P., & Bocca, L. (2017). The value of vehicle telematics data in insurance risk selection processes.
Decision Support Systems, 98, 69–79.

Barry, L., & Charpentier, A. (2020). Personalization as a promise: Can Big Data change the practice of
insurance? Big Data & Society, 7(1), 2053951720935143.

Bolderdijk, J. W., Knockaert, J., Steg, E. M., & Verhoef, E. T. (2011). Effects of pay‐as‐you‐drive vehicle insurance on
young drivers’ speed choice: Results of a Dutch field experiment. Accident Analysis & Prevention, 43(3), 1181–1186.

Boucher, J.‐P., Côté, S., & Guillen, M. (2017). Exposure as duration and distance in telematics motor insurance
using generalized additive models. Risks, 5(4), 54.

Boucher, J. P., Pérez‐Marín, A. M., & Santolino, M. (2013). Pay‐as‐you‐drive insurance: the effect of the
kilometers on the risk of accident. Anales del Instituto de Actuarios Españoles 3ª Época, 19, 135–154.

Boucher, J. P., & Turcotte, R. (2020). A longitudinal analysis of the impact of distance driven on the probability
of car accidents. Risks, 8(3), 91.

586 | GUILLEN ET AL.

http://orcid.org/0000-0002-2644-6268
https://orcid.org/0000-0002-2798-0817
https://orcid.org/0000-0002-8318-0603
https://www.sae.org/publications/technical-papers/content/2001-06-0001/


Denuit, M., Guillen, M., & Trufin, J. (2019). Multivariate credibility modeling for usage‐based motor insurance
pricing with behavioural data. Annals of Actuarial Science, 13(2), 378–399.

Eling, M., & Kraft, M. (2020). The impact of telematics on the insurability of risks. Journal of Risk Finance, 21(2),
77–109.

Ellison, A. B., Bliemer, M. C. J., & Greaves, S. P. (2015). Evaluating changes in driver behaviour: A risk profiling
approach. Accident Analysis and Prevention, 75, 298–309.

Fan, C. K., & Wang, W. Y. (2017). A comparison of underwriting decision making between telematics‐enabled
UBI and traditional auto insurance. Advances in Management and Applied Economics, 7(1), 1–2.

Gao, G., Meng, S., & Wüthrich, M. V. (2019). Claims frequency modeling using telematics car driving data.
Scandinavian Actuarial Journal, 2019(2), 143–162.

Gao, G., Wang, H., & Wuthrich, M. V. (2021). Boosting Poisson regression models with telematics car driving
data. Mach Learn. https://link.springer.com/content/pdf/10.1007/s10994-021-05957-0.pdf

Gao, G., & Wüthrich, M. V. (2019). Convolutional neural network classification of telematics car driving data.
Risks, 7(1), 6.

Gao, G., Wüthrich, M. V., & Yang, H. (2019). Evaluation of driving risk at different speeds. Insurance:
Mathematics and Economics, 88, 108–119.

Geyer, A., Kremslehner, D., & Mürmann, A. (2020). Asymmetric information in automobile insurance: evidence
from driving behavior. Journal of Risk and Insurance, 87(4), 969–995.

Guillen, M., Nielsen, J. P., Ayuso, M., & Pérez‐Marín, A. M. (2019). The use of telematics devices to improve
automobile insurance rates. Risk Analysis, 39(3), 662–672.

Guillen, M., Nielsen, J. P., Pérez‐Marín, A. M., & Elpidorou, V. (2020). Can automobile insurance telematics
predict the risk of near‐miss events? North American Actuarial Journal, 24(1), 141–152.

Huang, Y., & Meng, S. (2019). Automobile insurance classification ratemaking based on telematics driving data.
Decision Support Systems, 127, 113156.

Hynes, L. M., & Dickey, J. P. (2008). The rate of change of acceleration: implications to head kinematics during
rear‐end impacts. Accident Analysis and Prevention, 40(3), 1063–1068.

Lemaire, J., Park, S. C., & Wang, K. C. (2016). The use of annual mileage as a rating variable. ASTIN Bulletin,
46(1), 39–69.

Ma, Y. L., Zhu, X., Hu, X., & Chiu, Y. C. (2018). The use of context‐sensitive insurance telematics data in auto
insurance ratemaking. Transportation Research Part A, 113, 243–258.

Meyers, G., & Van Hoyweghen, I. (2020). ‘Happy failures’: Experimentation with behaviour‐based
personalisation in car insurance. Big Data & Society, 7(1), 2053951720914650.

Qi, B., Liu, P., Ji, T., Zhao, W., & Banerjee, S. (2018). DrivAid: Augmenting Driving Analytics with Multi‐Modal
Information, 2018 IEEE Vehicular Networking Conference (VNC), Taipei, Taiwan. https://ieeexplore.ieee.
org/document/8628415

Silva, M. I., & Henriques, R. (2020). Finding manoeuvre motifs in vehicle telematics. Accident Analysis and
Prevention, 138, 105467.

Stipancic, J., Miranda‐Moreno, L., & Saunier, N. (2018). Vehicle manoeuvers as surrogate safety measures: Extracting
data from the GPS‐enabled smartphones of regular drivers. Accident Analysis and Prevention, 115, 160–169.

Wang, J., Zheng, Y., Li, X., Yu, C., Kodaka, K., & Li, K. (2015). Driving risk assessment using near‐crash
database through data mining of tree‐based model. Accident Analysis and Prevention, 84, 54–64.

Weidner, W., Transchel, F. W. G., & Weidner, R. (2016). Classification of scale‐sensitive telematic observables
for riskindividual pricing. European Actuarial Journal, 6(1), 3–24.

Wüthrich, M. V. (2017). Covariate selection from telematics car driving data. European Actuarial Journal, 7(1), 89–108.

How to cite this article: Guillen, M., Nielsen, J. P., & Pérez‐Marín, A. M. (2021).
Near‐miss telematics in motor insurance. J Risk Insur. 88, 569–589.
https://doi.org/10.1111/jori.12340

GUILLEN ET AL. | 587

https://ssrn.com/abstract=3596034
https://ieeexplore.ieee.org/document/8628415
https://ieeexplore.ieee.org/document/8628415
https://doi.org/10.1111/jori.12340


APPENDIX A: ADDITIONAL MODEL RESULTS

TABLE A1 Parameter estimates of the Poisson model of the weekly rate of at fault claims for the telematics
and claims data set with fixed effects

Parameter Estimate Standard error p‐Value

Intercept −27.1159 10538.89 .9979

EAclr1 −0.0844 0.0286 .0032

EAclr2 0.2681 0.1349 .0468

EAclr3 −0.0395 0.0407 .3317

EBrak1 0.0185 0.0121 .1275

EBrak2 −0.6304 0.0833 <.0001

EBrak3 0.1071 0.0350 .0022

EPhon 0.0003 0.0002 .1597

EngineCapacity 0.3081 0.0303 <.0001

Note: The Akaike's Information Criteria equals 7340.57 and the Bayesian Information Criteria equals 8297.17. The pseudo‐R2

equals 22.64%.

TABLE A2 Parameter estimates of the Poisson model of the weekly rate of at fault claims for the telematics
and claims data set (also including the logarithm of the distance travelled as explanatory variable)

Parameter Estimate Standard error p‐Value

Intercept −8.6026 0.1325 <.0001

EAclr1 −0.0811 0.0266 .0023

EAclr2 0.2896 0.1281 .0238

EAclr3 0.0090 0.0386 .8155

EBrak1 0.0245 0.0087 .0047

EBrak2 −0.5011 0.0769 <.0001

EBrak3 0.0822 0.0334 .0137

EPhon1 0.0003 0.0002 .2379

EngineCapacity 0.3331 0.0295 <.0001

Log(Distance) 0.1726 0.0357 <.0001

Note: The Akaike's Information Criteria equals 7322.37 and the Bayesian Information Criteria equals 7391.69. The pseudo‐R2

equals 21.91%.

TABLE A3 Parameter estimates of the Poisson model of the weekly rate of at fault claims for the telematics
and claims data set (only near misses of intensity higher than 2)

Parameter Estimate Standard error p‐Value

Intercept −8.1588 0.0675 <.0001

EBrak3 0.0690 0.0166 <.0001

EngineCapacity 0.3723 0.0288 <.0001

Note: The Akaike's Information Criteria equals 7524.17 and the Bayesian Information Criteria equals 7544.96. The pseudo‐R2

equals 21.28%.
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APPENDIX B: PRICING WITH TELEMATICS NEAR ‐MISS COUNT DATA
Our proposed pricing model takes into account the number of brakes, the number of accel-
erations each week and smartphone use while driving. To simplify its practical implementation
by insurance companies and by customers, the intensity of near‐miss events may be dis-
regarded at this stage. In addition, the premium can either be accommodated to the type of car
(as a function of engine capacity), or it can be expressed as a uniform flat rate for all types of
vehicles.

To calculate an example premium, we averaged the information on claim cost. In our data
set, a low‐intensity claim costs 500 Eur, a medium‐intensity claim costs 5500 Eur, a high‐
intensity claim costs 30,000 Eur and an extreme‐intensity claim costs 100,000 Eur. With these
assumptions, the average at‐fault claim cost in the claims record information in the sample was
3250 Eur. Note that we calculate pure premiums, and additional costs should be added by the
insurer. The loadings to be added to the pure premium are general expenses, marketing,
administration, and solvency.

Using the results of the model presented in Table 3, for an EngineCapacity equal to 1769 cc
(see example in Section 4), and an average claim cost of 3250 Eur, we have that the weekly flat
rate is approximately 1.95 and the additional cost of each braking event, where the additional
cost of 0.75 Eur per each braking event is obtained by calculating αmaxbraking and three times the
average EngineCapacity has been used. Proceeding in the same way, we can easily calculate the
additional cost per each acceleration event, and the result equals 2.36. Similarly, the additional
cost per each minute of smartphone usage equals 0.18.
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