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The rise of machine learning in the last decade has facilitated great advances in fields
such as medicine, where very powerful models have been developed, capable of
predicting certain medical conditions with an accuracy never seen before.

The present work is focused on predicting one of the leading causes of death among
patients with cancer: venous thromboembolic events (VTE). Over the years, several
statistical models based on clinical/genetic data have been developed, and have
made it possible to create some risk assessment tools, like the Khorana score [2].
However, none of them are based on machine learning.

In this way, we propose a new model that uses advanced machine learning tech-
niques and is able to outperform all models currently available. Furthermore, the
model is based on a very recent and promising learning paradigm that has barely
been tested, hence it is a great opportunity for us to explore and evaluate it.

This breakthrough ultimately has an impact on the patient’s quality of life, improv-
ing the ability to detect patients at high risk of developing a VTE, who would benefit
from preventive treatment.
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Chapter 1

Introduction

1.1 Problem description

The present work is focused on the prediction of venous thromboembolism events
(VTE) in patients with cancer. A venous thromboembolism occurs when a blood
clot forms in a deep vein, usually in the leg, groin or arm, and travels through the
bloodstream, reaching the lungs and blocking the blood supply in some cases. Pa-
tients with cancer have a 7-fold increased risk of developing this potentially deadly
medical condition, specially in the first months after diagnosis [1].

Prevention is critical in this area. If a patient with high risk of developing a VTE is
detected, then doctors can apply thromboprophylaxis (a medical treatment to pre-
vent the development of thrombosis), reducing the risk of death. Accuracy in de-
tecting high-risk patients is also important, since this treatment should be applied
only in necessary cases, as it may increase the risk of bleeding.

Different guidelines for assessing the risk of developing a VTE have been considered
in the last years, with the Khorana score [2] being probably the most popular one.
The patient receives a risk score based on some clinical variables such as the cancer
type, body mass index (BMI) and hemoglobin level'. However, its accuracy has been
called into question recently [3, 6]. With the aim of developing a better model, the
authors in [4] proposed the TiC-Onco risk score, a model based on multivariate logis-
tic regression analysis, which takes into account not only clinical information from
the patient, but also genetic variables. Results showed that the TiC-Onco risk score
was better at predicting VTE than the Khorana score. However, none of the tools
discussed above use the potential of the recent artificial intelligence-based models,
which could be very useful in this area.

Therefore, the development of an effective prediction tool, able to detect patients
which are in high risk of suffering VTE is still open, and its deployment would sup-
pose a breakthrough in preventive medicine.

1.2 Obijectives

The objectives proposed at the beginning were the following:

¢ First, analyze and preprocess the data we have in order to generate the database
we will work with.

LThis interactive tool can be used to calculate the Khorana score.


https://www.mdcalc.com/khorana-risk-score-venous-thromboembolism-cancer-patients
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1.3

Second, be able to replicate the results of the TiC-Onco risk score reported in
[4], that will be used as a baseline.

Next, to explore several machine learning techniques that can be used for the
problem and find the most suitable ones.

Lastly, be able to test some models and improve the previous results, propos-
ing a new tool for predicting VTE based on artificial intelligence.

Summary of the contributions

Once the project has been completed, we can identify the following contributions to
each of the objectives described above:

1.4

We have recreated the dataset that was used in [4], that can be used to compare
the results obtained and also for further experiments.

The results provided in [4] have been validated with our own methodology,
demonstrating that the TiC-Onco score is better than the Khorana score in pre-
dicting VTE.

A wide variety of machine learning models have been tested, including clas-
sical and innovative models. In particular, we have experimented with a new
technique that promises to be a breakthrough in the next few years [8].

We have been able to develop an artificial intelligence-based model that out-
performs all the previous ones, obtaining a new and more accurate tool for
predicting VTE.

Work outline

This document is organized into five chapters:

The initial chapter provides an introduction of the problem and summarizes
the objectives an contributions made.

Chapter 2 covers the background concepts that are fundamental to understand
the procedures and decisions we have made. The methods used in [4], the data
processing, as well as the metrics and evaluation techniques used throughout
the work are discussed.

Chapter 3 presents the new machine learning technique that will be used to
approach the problem. It includes a brief explanation of the idea and the most
important technical details for implementing the algorithm, along with a few
basic examples using this approach.

Chapter 4 covers all the experiments done with machine learning models, ex-
plaining some important aspects as well as analyzing and comparing the re-
sults obtained.

Finally, chapter 5 provides some final conclusions and some ideas that can be
used in the future.



Chapter 2

Background

Before testing any model, let’s analyze the problem and the data we have considered,
as well as define the metrics and evaluation techniques that will be used throughout
the work.

2.1 Problem statement: predicting venous thromboembolic
events in patients with cancer

Patients with cancer should be periodically examined for VTE risk, as they have an
increased risk of developing this medical condition. Here we will discuss one of
the most recent risk assessment tools, the TiC-Onco risk score [4]. This score was
proposed in 2018 to improve the results provided by the Khorana score [2], which is
commonly recommended for evaluating the VTE risk.

The innovation of this tool is that it does not only uses clinical variables for the
analysis (as the Khorana score does), but also genetic variables, under the hypothesis
that a genetic component is involved in the apparition of VTEs, as stated in recent
studies [5].

The TiC-Onco risk score will be the starting point of our work, so we will now briefly
explain the methodology and the variables considered in [4], as well as the results
they obtained with this tool.

The TiC-Onco risk score was developed in three steps:
1. Selection of clinical variables.

The following clinical variables, considered as risk factors, were collected from
a total of 391 patients at the time of cancer diagnosis: sex, age, diabetes, use
of tobacco, family (first degree) history of VTE, body mass index (BMI), high
blood cholesterol level, hypertension, primary tumour site, tumour node metas-
tasis stage and haemoglobin, platelet and leukocyte concentration in blood,
using the same cut-offs as for the Khorana score.

Then, they performed a statistical analysis to determine the variables asso-
ciated with the occurrence of VTE in the first 6 months after the diagnosis,
selecting those variables that lead to a high risk of VTE (p < 0.25).

2. Development of a genetic risk score.

All the patients were genotyped at the time of cancer diagnosis, considering
the number of risk alelles in some specific genes that could be associated with
the appearance of VTE: F5 156025, F5 rs4524, F2 rs1799963, F12 rs1801020,
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F13 rs5985, SERPINA1 rs121909548, SERPINA10 rs2232698 and the A1l blood

group.

After 6 months, multivariate logistic regression analysis was performed to de-
termine and select the genetic variables associated with an increased risk of

VTE (p < 0.25).

3. Development of the clinical-genetic model.

Finally, they applied multivariate logistic regression analysis on the variables
selected in the previous steps to determine the weight of each variable in the
occurrence of VTE. Table 2.1 shows the selected variables and their associated

p-values.

Variable p-value
BMI >25 0.0658
Family history 0.1076
Primary tumour site:

HR (lung) 0.3483
VHR (stomach, pancreas) 0.0033
Tumour stage > 3 0.0003
Genetic risk score: 0.0049
rs2232698 0.1460
16025 0.2064
rs5985 0.2003
rs4524 0.0396

TABLE 2.1: Variables considered in the TiC-Onco risk score and re-

ported p-values [4].

Results were calculated for the Khorana and TiC-Onco risk scores using the boot-
strap approach (described later in this chapter, section 2.4), considering 100 resam-
ples from the original data. Table 2.2 summarizes the results, which clearly suggest
that the TiC-Onco risk score can better predict high risk patients than the Khorana

score. We will explain those metrics in section 2.3.

It can be seen that there is still

substantial progress to be made in this field, as some of the scores are still too low.

Khorana

TiC-Onco

AUC (95% CI)  0.58 (0.51-0.65)
Sensitivity (95% CI) 0.23 (0.13-0.32)
Specificity (95% CI)  0.82 (0.78-0.86)

PPV (95% CI)  0.22(0.12-0.31)

NPV (95% CI)  0.83 (0.78-0.87)

0.73 (0.67-0.79)
0.49 (0.38-0.61)
0.81 (0.77-0.86)
0.37 (0.27-0.47)
0.88 (0.84-0.92)

TABLE 2.2: Predictive capability of Khorana and TiC-Onco scores [4].

2.2 Dataset and data preprocessing

In order to be able to compare our results with those on [4], the authors have pro-
vided us with their data. Concretely, we were given a file containing data from 408
patients, with a total of 90 variables, including all the clinical and genetic variables

mentioned previously.
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Using the data provided, we have recreated the dataset that was used in [4]. The
process we followed is described below.

2.2.1 Row selection

Some of the VTE have been dismissed by the authors after being included in the
dataset. The variable excluido indicates whether a row is discarded or not. Thus,
only the rows where excluido==0 are considered, resulting in 391 samples in total.

2.2.2 Column selection

We have considered only the variables that were selected after the statistical analysis
for calculating the TiC-Onco risk score, that is, those that are highly associated with
the appearance of VTE (see table 2.1). The columns associated to these variables in
the dataset are described in the table 2.3.

Column Description Values
Underweight: BMI <18.5 Kg/m?2,
Normal: BMI ~18.5-24.9 Kg/m?2,

Overweight: BMI ~25-25.9 Kg/m2,

Obese: BMI >30 Kg/m?2

Family Family (first degree) history of VTE 0 (no), 1 (yes)

Céncer colorrectal,

Céancer de pulmén no microcitico,

tipusTumor_desc Primary tumour site Céncer de pancreas,

Cancer gastrico o de estémago,

Céncer es6fago
1A, IB, IIA, 1IB, IIC,

bmi Body Mass Index

estadiGrup Tumour node metastasis stage 11, ITIA, IIIB, TIIC, IV, IVA, IVB
1s2232698 SERPINA10 gene SNP CC, CT, NoCall

rs6025 F5 gene SNP GG, AG

rs5985 F13 gene SNP GG, GT, TT

rs4524 F5 gene SNP TT, CT, CC

TABLE 2.3: Columns considered in the dataset.

2.2.3 Target variable

The column caseAtVisit takes the values 0, 1, 2 and 3 and indicates whether a
patient has suffered a VTE at 0, 6, 12 or 18 months after the monitoring period,
respectively. If the patient has not suffered a VTE, then the column contains NA.

The objective is to predict VIE within the first 6 months after the diagnosis of cancer,
so we will consider values 0 and 1 for the positive class, and the rest for the negative
class.

This gives a total of 73 positive cases and 318 negative ones. Thus, we will deal with a
highly imbalanced problem, where less than 20% of the data is on the positive class,
as can be seen in figure 2.1. We will have to address this issue when considering
some models, as will be discussed later in chapter 4.

2.24 Data preprocessing

The next step is to preprocess the data of the previous columns to obtain the same
variables that were used to compute the TiC-Onco risk score.
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Mo-NTE (D)

VTE (1)

FIGURE 2.1: Distribution of positive and negative classes in the data.

In the genetic variables, each gene can take different pairs of values, representing its
alleles (A1A3). Some of them are considered as risk factors for thrombosis. There-
fore, each allele configuration is replaced by the number of risk alleles it includes,
up to a maximum of 2 risk alleles.

Table 2.4 summarizes all the changes introduced. These are the variables that will be
used during the rest of the work, unless otherwise specified.

Variable Associated column Values
BMI > 25 bmi 0 (BMI < 25),1 (BMI > 25)
Family history Family 0 (no), 1 (yes)
Primary tumour site . 0,
HR (}I,{igh Risk) tipusTumor_HR 1 (cancer de pulmén no microcitico)
. . 0,
Vlig?(i;zr;ug;irﬁil:i) tipusTumor_VHR ) 1 (cé/nce.r de péncre:as,
céncer gastrico o de estémago)
0 (IA, IB, ITA, IIB, 1IC,
Tumour stage > 3 estadiGrup III, TITA, IIIB, IIIC),
1 (IV, IVA, IVB)
rs2232698 risk alelles 1s2232698 0(CC),1(CT)
rs6025 risk alelles rs6025 0(GG), 1 (AG)
rsb985 risk alelles rs5985 0 (GG), 1 (GT),2(TT)
rs4524 risk alelles rs4524 0(TT), 1 (CT), 2 (CC)
VTE (target) caseAtVisit 0(NA,2,3),1(0,1)

TABLE 2.4: Variables considered for the problem.

Thus, we are considering 9 variables derived from the original data to predict the
target variable, as done in [4] (see table 2.1).

2.2.5 Data summary

Figure 2.2 shows the characteristics of the population studied. Concretely, it pro-
vides the distribution of the different values of the variables within the positive
(VTE) and negative (No-VTE) classes. For example, among the patients who have
family history of VTE, 6 of them suffered a VTE, representing 8.2% of the patients
in the positive class, and 12 did not experience a VTE, which accounts for 3.8% of
the patients in the negative class. We can see that some variables are strongly asso-
ciated with VTEs. For example, patients with tumours located in very high risk sites
(stomach and pancreas) represent 50.7% of the patients that suffered VTE.
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Variable VTE (n) VTE (%) No-VTE (n) No-VTE (%)

N 73 100.0 318 100.0

Family 6 8.2 12 3.8

bmi 37 58.7 145 45.6

estadiGrup 49 67.1 132 41.5

rs2232698 - @ risk alleles 69 94.5 313 98.4
rs2232698 - 1 risk allele 4 5.5 5 1.6
rs4524 - @ risk alleles 1 1.4 22 6.9
rs4524 - 1 risk allele 23 31.5 114 35.8
rs4524 - 2 risk alleles 49 67.1 182 57.2
rs5985 - @ risk alleles 38 52.1 182 57.2
rs5985 - 1 risk allele 30 41.1 119 37.4
rs5985 - 2 risk alleles 5 6.8 17 5.3
rs6@25 - @ risk alleles 70 95.9 312 98.1
rse@25 - 1 risk allele 3 4.1 6 1.9
tipusTumor_HR 11 15.1 76 23.9
tipusTumor_VHR 37 50.7 99 28.3

FIGURE 2.2: Data distribution among positive and negative classes.

Figure 2.3 provides a correlation heatmap, that shows the correlation between the
different variables considered in the problem. It can be observed that the variables
that influence the most on the target varible (VTE) are tipusTumour_VHR (tumour
located in very high risk places) and estadiGrup (tumour in advanced stage). The
high negative correlation between the last two variables comes from the fact that
these variables are exclusive, as the primary tumour site can only be in one location.

Family Ml 01 00 00 00 00 00 00 00 00 -
wg-o_l 00 02 01 01 00 01 D1 02 0.8
bmi -0.0 00 RGN 00 00 01 01 00 01 02 os

estadiGrup -0.0 02 00l 00 00 01 01 00 01 _
152232698 -0.0 01 00 o0 RGN 01 00 00 01 00 -04

4524 -00 01 01 0.0 -0.1-0.0 01 00 0.0 0

5985 -00 00 01 01 00 00kl 01 00 00 -

6025 -0.0 01 00 01 00 01 01NN 01 00 -00

tipusTumor HR --0.0 0.1 01 00 01 00 00 01 BNl04 | oz

tipusTumer_VHR - 0.0 02 0.2

£ E

[=1
=
&
[=]
=]
[=]
[=1
[=]
=)
b
tipusTumaor_WVHR -E

Family -
estadiGrup - =
2232698 _

tipusTurnor HR - °

FIGURE 2.3: Correlation between different variables of the problem.

2.2.6 Some remarks

¢ The column rs2232698 contains a missing value, which is replaced by CC (the
mode).

¢ The data distribution (figure 2.2) is slightly different from the one shown in [4]
(Table 1). For example, we end up with 73 samples in the positive class and
318 in the negative one, different from the 71/320 proportion that appears in
the paper.
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These differences may be due to some error or change in the data that we have not
been able to identify, but we will ignore them as they have practically no influence
on the results obtained.

2.3 Metrics

We are dealing with a binary classification problem, where the possitive class (1)
indicates that a patient is at high risk of suffering a VTE, and the negative class (0)
indicates medium or low risk.

This section covers the explanation of the metrics that have been used in the prob-
lem. We have considered most of the metrics used in [4], in order to compare the
results obtained.

2.3.1 Confusion matrix

The confusion matrix allow us to measure the performance of a model in a machine
learning classification problem. It consists of a table with 4 different entries, one for
each combination of predicted and actual values, as can be seen in the figure below.

Actual Values

Positive (1) Negative (0)

Positive (1) TP FP

Negative (0) FN N

Predicted Values

FIGURE 2.4: Confusion matrix (source).
¢ TP (True Positives) indicates the number of samples correctly predicted as pos-
itive.
* TN (True Negatives) indicates the number of samples correctly predicted as

negative.

* EN (False Negatives) indicates the number of positive samples incorrectly pre-
dicted as negative.

¢ FP (False Positives) indicates the number of negative samples incorrectly pre-
dicted as positive.

These values can be combined to obtain useful metrics. We will use the following;:

* Accuracy: indicates the proportion of correctly predicted samples.

TP+ TN
TP+ TN+ FP+FN

accuracy =


https://bookdown.org/f_izco/BDC-POC/metricas.html
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* Sensitivity (or TPR, True Positive Rate): indicates the proportion of correctly
predicted samples among all the positive ones.

nsitivity = TP
SV = TP N
¢ Specificity (or TNR, True Negative Rate): indicates the proportion of correctly
predicted samples among all the negative ones.

specificity = _IN_
PeieY = TN+ FP
¢ PPV (or Positive Predictive Value): indicates the proportion of actual positive
samples among all those predicted as positive.

TP
PPV = TP+ FP
e NPV (or Negative Predictive Value): indicates the proportion of actual nega-
tive samples among all those predicted as negative.

NPV = _IN
TN +FN

When dealing with dangerous medical conditions (as in our case), it is particularly
interesting to obtain high sensitivity values, since it is crucial to detect all the high-
risk patients. The PPV is also important, to avoid false positives, resulting in unnec-
essary dangerous treatments. On the other hand, the accuracy is not very represen-
tative when dealing with unbalanced datasets.

2.3.2 ROC curve and AUC

The ROC (Receiver Operating Characteristic) curve is a graph that shows the perfor-
mance of a model by plotting two metrics at different values, the TPR (True Positive
Rate) and the FPR (False Positive Rate). Each value represents a classification thresh-
old, that is, the probability threshold for classifying a sample as positive.

The TPR is defined above (sensitivity) and the FPR is defined as follows:

FP

FPR=tp TN =

1 — specificity

If the threshold is lower, then more samples will be considered as positives, increas-
ing both False Positives and True Positives. A perfect classification will result in
TPR =1and FPR = 0, as can be seen in figure 2.5.

In our experiments, we are working in the point of the ROC curve that gives the
same specificity as provided by the Khorana score (around 80%), in order to use
the same approach as the authors of [4]. That is, the cut-off to determine whether a
patient is at high-risk of developing a VTE is set on this particular point of the curve,
and the rest of the metrics are obtained from using the corresponding threshold.
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TPR or sensitivity

FIGURE 2.5: The ROC space with four prediction examples (source).
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FPR or (1 - specificity)

The AUC score (Area under the ROC Curve) measures the area underneath the ROC

curve, providing an aggregate measure of performance, considering all possible clas-
sification thresholds. It can be interpreted as the probability that the model assigns
a higher score to a random positive example than to a random negative example.

This metric takes values between 0 and 1 (see fig 2.6), being 1 the most desirable one.

True Positive Rate

The AUC is interesting because it is scale-invariant, that is, it measures how well
predictions are ranked, rather than their absolute values, and it is also classification-

Receiver operating characteristic example

1.0

0.8 1

0.6

0.4

0.2 1

ROC curve (area = 0.79)

0.0

T T T
0.2 0.4 0.6 0.8 1.0
False Positive Rate

FIGURE 2.6: ROC curve and AUC example (source).

threshold-invariant, since it does not takes into account what classification threshold
is being used, as opposed to the other metrics defined above.


https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html##sphx-glr-auto-examples-model-selection-plot-roc-py
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2.4 Evaluation techniques

Finally, the objective of this section is to explain some techniques that will be used
to evaluate the models.

Usually, in a machine learning problem the dataset is split in three subsets:
* A training set, used to fit the model.

¢ A validation set, that can be used to evaluate a model while tuning its hyper-
parameters.

¢ A test set, used to provide a final evaluation of the model.

In our case, as we are dealing with a small dataset with only 391 samples, we have
followed other approaches in order to exploit the data as much as possible, while
trying not to bias the results.

2.4.1 Bootstrapping

Bootstrapping is a resampling technique that consists on selecting various subsets of
the dataset to train and test the model, aggregating the obtained results.

This is the procedure followed in [4], that can be summarized as follows:
1. Set the number of subsets that will be created, n.
2. Choose the number of samples that will be included in each subset, k.
3. For each bootstrap subset (1...n):
(a) Draw k samples with replacement from the original dataset.
(b) Fit the model on these samples.
(c) Calculate the desired metric on these samples.

4. Aggregate the results obtained in each subset, using (for example) the average
value.

The main drawback of this procedure is that it uses data that has been previously
fed to the model for testing, so the results may be optimistically biased, as we will
discuss later.

2.4.2 Cross validation

In order to make more realistic estimations, we decided to use cross validation, a
very popular resampling method that uses different splits of the dataset to estimate
the performance of a model.

The general procedure is as follows:
1. Shuffle the dataset randomly.
2. Split the dataset into k groups (folds).
3. For each group:

(a) Take the group as the test dataset and the remaining groups as the training
dataset.
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(b) Fit the model on this training set and evaluate on the test set.
(c) Compute the desired metrics.
4. Aggregate the results (usually mean and standard deviation).

The method described above receives the name of k-fold cross validation. Figure 2.7
shows an example. We have used k = 10 in all the experiments performed using this
technique.

Validation Training
Fold Fold
1st | I I I I |—> Performance
»
% 2nd | I:l | | |—) Performance ,
w
<
@ 3rd | | | | |—> Performance 3 |- Performance
Ke] 5
© = % Z Performance,
o 4th | | l I:I |—> Performance 4 =
>
5th | | | | | |—> Performance g

FIGURE 2.7: 5-fold cross validation example (source)

The advantages of this technique are that we are not testing the model using data
from the training set, and that different test sets are used to evaluate the model.
However, itis slightly biased, since the training set used in cross-validation is smaller
than the actual one, specially when considering low values of k (in our case, with
k = 10, we are training with 352 samples instead of 391). Besides, as we will use this
technique for tuning the hyperparameters of the models, the evaluation becomes
more biased because skill on the validation set is incorporated into the model config-
uration. Nonetheless, we will use different partitions for fine-tuning and evaluating
a model in order to reduce the bias. In general, this method yields more accurate
results than those obtained using only one training set and one test set.


https://zitaoshen.rbind.io/project/machine_learning/machine-learning-101-cross-vaildation/
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Chapter 3

Learning using statistical
invariants

This work explores one of the most recent and promising paradigms in the area of
machine learning, known as LUSI (Learning Using Statistical Invariants).

This learning paradigm was introduced in [8], and supposes a new way of address-
ing the learning problem, not only based on data but also on some statistical invari-
ants (specific for the problem) that act as a teacher during learning.

The purpose of this chapter is to give a brief explanation of how this technique
works, explaining the most important technical details. For a complete and more
detailed understanding, refer to [7, 8].

3.1 Estimation of conditional probability function

The ultimate goal in any supervised machine learning problem is to obtain an esti-
mate of the conditional probability function P(y = 1|x), i.e., given a data point x, we
want to know the probability for this point to belong to a certain class'.

The classical paradigm of learning relies on the strong mode of convergence in the
Hilbert space, trying to find a sequence of functions {P;(y = 1|x)} such that

lim ||Py(y = 1]x) = P(y = 1[x)|[ = 0 V¥x

However, there exists a weak mode of convergence (convergence in inner products),
given by
lim (Py(y = 1|x) — P(y = 1|x), $(x)) =0 Vp € L,

[—00

Note that the convergence has to take place for all functions in the Hilbert space L,.

Here is where the new mechanism comes into play, replacing this infinite set of func-
tions with a finite set P = {¢1(x),..., ¥u(x)}, whose elements, that receive the
name of predicates, are specially designed to describe some interesting properties
of the desired conditional probability function. These properties are defined by the
following equalities, that receive the name of invariants:

/ws(x)P(y — 1|x) dP(x) = /ws(x) AP(y=1,x)=as, s=1,...,m

Here it is supposed that there are only two classes in the problem, 0 and 1, since any classification
problem with more than 2 classes can be reduced to some binary classification problems.
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where a; is, by definition, the expected value of ¢s(x) with respect to the measure
Py =1,x).

The exact values of a; are unknown, but they can be estimated using the training
data {(x;,y;), i =1,...,n}. Thus, the above expression is replaced by:

1

%les(xi)Pl(y — 1) ~a~ Y gipe(x), s=1,...m 3.1)
i=1

i=1

In other words, the idea is to look for the approximation P;(y = 1|x) in the subset of
functions that preserve the invariants associated with the predicates in P, reducing
the set of candidate functions to those fulfilling 3.1.

The authors of [8] provide a way of sequentially adding different predicates to obtain
an approximation of the conditional probability function P(y = 1|x): let’s suppose
we have constructed an approximation Pf(y = 1|x) using k predicates. Before con-
sidering the next predicate iy 1, we calculate the value

T X Yt () P (y = 1x) — Ty yitprea (x1) |
Y1 Vit (xi)
If T > J (6 is a small positive threshold), then the new invariant defined by predi-

cate iy is considered. Otherwise, expression 3.1 is treated as an equality and the
invariant is not considered.

(3.2)

3.2 Closed-form solution

It can be proven [8] that, in a specific type of Hilbert space known as RKHS (Repro-
ducing Kernel Hilbert Space), the estimate for P(y = 1|x) has the form

flx)=ATK(x)+c

for some vector of coefficients A € IR” and some bias ¢ € IR. The vector of functions
K(x) = (K(x1,x),.. .,K(xn,x))T is determined by the kernel associated with the
RKHS?, evaluated on the training data.

Let's denote Y = (i1, ..., yn) the labels of the training set, K € R"*" the matrix with
elements K(x;,xj), i,j =1,...,n, ®5 = (Ps(x1),--.,¢s(x;)) " the vector obtained
evaluating the predicate s on the training data, 1, = (1,..., 1)T and I the identity
matrix of dimension n.

When considering the constraints defined by 3.1, we can obtain a closed-form solu-
tion for A and ¢, given by

A= (AV — CAc) — (i y5A5>
s=1

where:
Ay = (K4++4D)71Y

2In our experiments we will use the Gaussian (or rbf) kernel, given by

K(x,x") = exp{—d||x — x/HZ}, 5>0
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Ac = (K+9D) "1,
As= (K+9D)'d, s=1,...,m

Coefficients c and y; are obtained from the system of linear equations given by

c [1,II<AC - n} + f;lys [1;{1<A5 - 1;{@4 = [1,IAV - 1;{1/}
=

c [A(T;chk - 1,Ic1>k] n i 1, ATK®Dy, = [A$1<c1>k - Ychk} L k=1,...,m
s=1

The parameter v > 0 controls the amount of regularization applied.
This algorithm receives the name of SVM algorithm with m invariants, or SVMé&I,,.

Remark. The closed-form solution presented in [8] is slightly different from the one de-
scribed above, as they consider a special matrix (the V-matrix) for some convergence purposes
that have not been very useful in our problem, so we have set V = I.

Remark. The algorithm supposes that the data is scaled in the range [0, 1].

3.3 A simple LUSI algorithm

Following the example in [8], we have considered the following learning method
based on predicates ¢ (x), k =1,...,m and training data (x;,y;), i=1,...,m

Step 0: Construct SVM estimate of conditional probability function using the closed-
form solution described in 3.2 (without considering predicates).

Step 1: Compute the disagreement values (77, ..., T,) (see 3.2) for vectors

D = (Pr(x1), .., Pe(xn)), k=1,...,m

and find the maximum 7; = max(7,..., Tm).
Step 2: If 7; > ¢, add the invariant associated with ; otherwise stop.

Step 3: Compute the new approximation of the conditional probability function using
the SVM&,, algorithm and if there are more predicates go to step 1; otherwise
stop.

3.4 Testing SVM with invariants

Once the SVM&I,, algorithm was implemented, we decided to run several experi-
ments in simple problems (see fig. 3.1) to test its performance.

The first dataset is a linearly separable problem, with 50 points belonging to each
class (50 red and 50 blue). The second one presents a non-linearly separable imbal-
anced problem, with 90 points in the blue class and only 10 in the red one. Lastly,
the third one is a non-linear problem, with 50 points of the red class in an exter-
nal circle, containing 50 points of the blue class in a smaller one. In each case, we
are considering 70 samples for training and 30 for testing, that appear lighter in the
images.
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FIGURE 3.1: Datasets used for testing the SVMé&I,, implementation.

For each dataset, we will show the accuracy and the classification boundaries ob-
tained with three different versions of SVM:

i) The scikit-learn implementation (SVC class).

ii) The SVM algorithm obtained when not considering predicates in the previous
closed-form solution.

iii) The SVM&I,, algorithm described above, using some simple predicates.

The goals are to check that our implementation is correct, comparing the first two
versions (which should be similar), and to test if we get any improvement with the
use of predicates in the third version.

The invariants considered are defined by the predicate functions

Po(x) =1, ¢1(x) =x1 and ¢Pa(x) = x2

The first invariant reduce the candidate functions to those preserving the frequency
of elements of class 1 observed in the training data, while the last two lead to func-
tions preserving the center of mass (in the x or y axis, respectively) of samples be-
longing to class 1.

3.4.1 Results in the linearly separable problem

In this case we are dealing with a linearly separable problem, so we used a linear
kernel with C=1 and gamma=1/2. All the models obtained a perfect classification on
the test set.

The classification boundaries obtained with each version are shown in figure 3.2.
The figure on the left contains the results obtained with the scikit-learn implemen-
tation, while the other two show the boundaries obtained with our implementation,
without using predicates (center figure) and considering the three predicates de-
scribed above (right figure).

We can see that the decision line (dotted line in the figures) is almost the same in
the first two versions. The differences in the colored regions are due to the fact that
we are using raw predicted scores in our algorithm, while the scores used in SVC
are converted to probabilities (in the range [0, 1]). Yet, we can see that they follow a
similar pattern.

The effect of predicates is really clear in this example. The boundaries in the last
figure preserve the alignment of the training data, which is really interesting.
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Classification boundaries with SVC Classification boundaries with 0 invariants Classification boundaries with 3 invariants

FIGURE 3.2: Classification boundaries obtained with the different
versions of SVM in the first problem.

3.4.2 Results in the imbalanced problem

Now we will focus on an imbalanced problem, where 90% of the data belong to the
blue class. This is a more difficult and interesting framework, considering that our
problem is also unbalanced.

In this case, we are using again a linear kernel with C=1 and gamma=1/2. The classifi-
cation boundaries obtained with each model are represented in figure 3.3.

Classification boundaries with SVC Classification boundaries with 0 invariants Classification boundaries with 3 invariants
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FIGURE 3.3: Classification boundaries obtained with the different
versions of SVM in the second problem.

The scikit-learn implementation (left figure) achieves a 90% accuracy on the test set.
In our implementation, it can be noted that the solution obtained when not consider-
ing predicates (center figure) does not take into account the red points, classifying all
points as blue ones. The reason for that behaviour is that, in imbalanced problems,
one can obtain high accuracy considering only the majority class, as occurs in this
case, where we obtained a 90% accuracy. The use of predicates solves this problem,
as can be seen in the right figure. The right picture shows a more appropriate clas-
sification boundary, which gives a 97% accuracy, better than the one obtained with
SVC.

3.4.3 Results in the circle problem

The objective of this last problem is to test non-linear solutions in our implementa-
tion. Thus, we are using the rbf kernel with C=0.01 and gamma=1/2.

The boundaries obtained are depicted in figure 3.4.
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FIGURE 3.4: Classification boundaries obtained with different imple-
mentations of SVM in the third problem.

It is interesting that, in this case, our algorithm has not selected any predicate, as
the disagreement values (see 3.2) are close to 0. That is, the invariants are satisfied
without being included in the algorithm, which achieves a perfect classification on
the test set. The scikit-learn implementation also achieves a perfect score, with a
similar classification boundary.
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Chapter 4

Results

Once the technical part has been explained, we can now proceed to test several ma-
chine learning models to reproduce and improve the results of the TiC-Onco risk
score.

4.1 Validating TiC-Onco score results

The first step before trying to improve the results is to validate them. This section
covers this process, showing the results obtained and comparing them with those
reported in [4].

As indicated in [4], “the genetic risk score and the clinical variables selected were subjected
to multivariate logistic regression analysis using an AIC-based backward selection process”.
In this case, we are using a simple logistic regression model to replicate the results.
This is approximate, since we do not have the exact details and the code that was
used for this process, but it allows us to see that there are no major differences in the
results obtained.

The following metrics are used in the paper: AUC, sensitivity, specificity, PPV, NPV,
PLR (Positive Likelihood Ratio) and NLR (Negative Likelihood Ratio). Here, we
have considered the first five, including the 95% confidence interval, as in the paper.

The authors in [4] use bootstraping to validate the results, considering 100 resamples
from the original data. However, we have considered another approach, based on
cross validation, as we believe that the previous procedure can lead to optimistic
results, as we have explained in section 2.4.

Table 4.1 summarizes the results reported in [4] and our results, using the bootstrap
approach (as in the paper) and 10-fold cross validation, which provides a more real-
istic estimate.

Original Bootstrapping Cross validation
AUC (95% CI) 0.73 (0.67-0.79)  0.75(0.70-0.81)  0.68 (0.48-0.89)
Sensitivity (95% CI) 0.49 (0.38-0.61) 0.53 (0.39-0.67)  0.34 (0.00-0.71)
Specificity (95% CI) 0.81 (0.77-0.86) 0.80 (0.79-0.82)  0.80 (0.73-0.86)
PPV (95% CI) 0.37 (0.27-0.47)  0.38 (0.30-0.46)  0.27 (0.01-0.52)
NPV (95% CI) 0.88 (0.84-0.92) 0.88 (0.84-0.92)  0.84 (0.76-0.92)

TABLE 4.1: Results comparison for the TiC-Onco risk score.
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The results obtained using bootstrapping are close to those reported in [4]. The
variations may be due to randomness in the selection of the sets used during for
bootstrapping, as well as minor differences in the model considered. However, the
results change significantly when cross validation is used. Here we can check that
the previous results are indeed optimistic. The AUC, sensitivity and PPV are signif-
icantly lower, and provide a more realistic estimate of the accuracy of the TiC-Onco
risk score. The specificity and NPV present similar values because there is a trade-off
between these metrics and the previous ones. Another aspect to consider is the wide
range observed in the confidence intervals when using cross validation, indicating
more variability in the results.

These last results obtained with 10-fold cross validation will be used as baseline for
the next experiments.

We can validate also the results reported in [4] for the Khorana score, using boot-
strapping.

Original Validation

AUC (95% CI)  0.58 (0.51-0.65) 0.53 (0.49-0.57)
Sensitivity (95% CI) 0.23 (0.13-0.32)  0.24 (0.16-0.32)
Specificity (95% CI) 0.82 (0.78-0.86) 0.82 (0.78-0.86)

PPV (95% CI) 0.22 (0.12-0.31) 0.24 (0.16-0.31)

NPV (95% CI)  0.83(0.78-0.87) 0.82 (0.78-0.86)

TABLE 4.2: Results comparison for the Khorana score.

Here the results are almost identical, except for the AUC score, where we obtained
a slightly lower value. Nonetheless, we can verify that the TiC-Onco score actually
improves significantly the Khorana score.

4.2 Testing some machine learning models

Once we have defined a baseline, the next step is to test several machine learning
models, trying to improve the scores obtained.

Finding the right estimator is one of the hardest part when dealing with a machine
learning problem, as each estimator may be better suited for different types of data
and different problems. In our case, we have followed some of the recommendations
of the scikit-learn algorithm cheat-sheet guide.

The approach adopted is as follows: for each estimator under consideration, we
performed 10-fold cross validation to find the best hyperparameters, selecting as
best model the one with the highest AUC score. Then, we tested the model using 10-
fold cross validation again (with different partitions of data), to get reliable results.

Below there is a description of all the models used and the results obtained with
each one. At the end of the chapter there is a comparative table containing all the
results.

4.2.1 Basic models for classification

Let’s start with some classic classifiers, such as logistic regression and support vector
machine.


https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html
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Logistic regression

The first step we took was to tune the hyperparameters of the logistic regression
model we used for the baseline. We also considered another version with the data
scaled in the range [0, 1].

The best values found for the hyperparameters considered in each case are described
in table 4.3.

Estimator Hyperparameter Best value Estimator Hyperparameter Best value
penalty (norm used b penalty (norm used "
LR in the penalization) LR in the penalization)
¢ -(mv-erse of 0.00625 (normalized data) C FlnYerse of 0.00202
regularization strength) regularization strength)
class_weight (weight 18] class_weight (weight {1:10}

associated with each class) associated with each class)

TABLE 4.3: Tuned hyperparameters for both versions of logistic re-
gression.

In both cases, the L, norm (or euclidean norm) was selected for the penalty on the
weights. The low values of C indicate a strong regularization, forcing the weights
associated with each variable to be small. Regarding the class_weight hyperparam-
eter, the positive class receives 8 (10 in the second version) times more importance
than the negative class, in order to adjust the imbalance between the two classes.

Figures 4.1 and 4.2 show the results obtained with each version.

Receiver operating characteristic curves

— e Lo ROC fold 0 (AUC = 0.85)
AUC 067 (0.44,0.91) ROC fold 1 (AUC = 0.73)
0.8 ROC fold 2 (AUC = 0.64)
ROC fold 3 (AUC = 0.67)
accuracy 0.72 (0.64,0.79) 5 g ROC fold 4 (AUC — 0.81)
: o O ROC fold 5 (AUC = 0.50)
sensitivity 0.33 (0,0.71) 3‘5;:: ROC fold § (AUC = 0.46)
£ ROC fold 7 (AUC = 0.67)
specificity 0.80 (0.76,0.85) g o4 ROC fold 8 (AUC = 0.65)
ROC fold 9 (AUC = 0.75)
PPV 026 (-0.0,052) 02 —= Chance
—— Mean ROC (AUC = 0.67 £ 0.12)
NPV 084 (0.76,0.92) 0.0 £ 1 std. dev.

o0 0z 04 06 08 10
False Positive Rate

FIGURE 4.1: Results obtained with logistic regression using 10-fold
cross validation.

Receiver operating characteristic curves

score mean 95% CI 10
ROC fold 0 (AUC = 0.91)
AUC 069 (0.42,0.97) ROC fold 1 (AUC = 0.80)
‘ 0.8 ROC fold 2 (AUC = 0.61)
ROC fold 3 (AUC = 0.71
accuracy 0.71 (0.58,0.84) g oo iAUC o 79:
~ 06 -0
L v ROC fold 5 (AUC = 0.47)
sensitivity  0.41 (0,0.9) ;,:’:: ROC fold 6 (AUC = 0.44)
€ o4 ROC fold 7 (AUC = 0.73)
specificity 078 (0.72,0.84) g - ROC fold 8 (AUC = 0.73)
& ROC fold 9 (AUC = 0.75)
PPV 0.28 (0,0.59) 02 == (hance
—— Mean ROC (AUC = 0.69 £ 0.14)
NPV 085 (0.74,097) 00 £ 1 std. dev.

0.0 0.2 0.4 0.6 k] 10
False Positive Rate

FIGURE 4.2: Results obtained with logistic regression using 10-fold
cross validation and scaled data.
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Only the second version outperforms baseline results, specially regarding sensitivity,
where the difference is significant.

We can appreciate how the ROC curves change significantly with each partition of
the data. For example, in the second version, the fold 0 gives an AUC of 0.91 while
the fold 6 leads to an AUC of 0.44. This shows that the results are strongly influenced
by the subset of the data considered, which translates into wide confidence intervals,
as it was observed in the previous section.

Linear SVC

We repeated the process using linear support vector classification. Support vector
machines assume that the data is in a standard range, usually [0,1] or [—1, 1], so we
have scaled feature vectors again in the range [0, 1].

The norm selected for penalization is the L, norm. The regularization strength and
the weight associated with the positive class remain high (see table 4.4).

Estimator Hyperparameter Best value
penalty (norm used 1
Linear in the penalization)
SvC C (inverse of
regularization strength) 0.00146
class_weight (weight (1:8)

associated with each class)

TABLE 4.4: Tuned hyperparameters for linear SVC.

Results obtained with this estimator are shown in figure 4.3. They are nearly the
same as those obtained with the best version of logistic regression (see figure 4.2).

Receiver operating characteristic curves

score mean 95% CI 104
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ROC fold 2 (AUC = 0.61)
ROC fold 3 (AUC = 0.71)
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ROC fold 8 (AUC = 0.71)
ROC fold 9 (AUC = 0.75)
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= Mean ROC (AUC = 0.69 + 0.14)
+1 std. dev.
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FIGURE 4.3: Results obtained with linearSVC using 10-fold cross val-
idation.

K-Nearest Neighbors classifier

Now we consider a totally different classifier, based on k-nearest neighbors. It relies
on majority voting based on the class of the k nearest samples for a given data point.

As we did with logistic regression, we will consider two versions, the second one
with the data scaled in the range [0, 1].



Chapter 4. Results 23

The hyperparameters are different in this case, controlling the number of neighbors
considered and the way to calculate distances between them. Table 4.5 shows the
selected hyperparameters for both versions.

Estimator Hyperparameter Best value Estimator Hyperparameter Best value
n-neighbors (number n-neighbors (number
KNN of neighbors to use) 163 ClI:sl:iIf\iTer of neighbors to use) 219
classifier p (power parameter 1 (normalized p (power parameter
for the Minkowski metric) for the Minkowski metric)
. . . data) . . .
weights (weight function . weights (weight function .
. - uniform . - uniform
used in prediction) used in prediction)

TABLE 4.5: Tuned hyperparameters for both versions of KNN classi-
fier.

It should be appreciated the high number of neighbors considered (more than half
of the dataset in the second case), which lead to smoother decision boundaries. This
shows that it is difficult to classify an example based only on its immediate environ-
ment. The metric used for computing the distances is the Manhattan distance (L;
metric) in the first version and the Euclidean distance (L, metric) in the second one.
Both versions use uniform weights, meaning that all points in the neighborhood are
weighted equally when voting.

The results obtained with these estimators are shown in figures 4.4 and 4.5.

Receiver operating characteristic curves

score mean 95% CI 10]
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ROC fold 1 (AUC =0.72)
ROC fold 2 (AUC = 0.56)
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ROC fold 5 (AUC = 0.50)
ROC fold 6 (AUC = 0.47)
ROC fold 7 (AUC =0.73)
ROC fold 8 (AUC = 0.561)
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FIGURE 4.4: Results obtained with KNN classifier using 10-fold cross
validation.

Receiver operating characteristic curves
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FIGURE 4.5: Results obtained with KNN classifier using 10-fold cross
validation and data scaled.

Both versions lead to similar results, with the second one having a slightly better
AUC and sensitivity scores, and the first one having a higher PPV. In any case, both
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estimators offer a modest improvement on the baseline in all scores considered ex-
cept the AUC, which is slightly lower.

Support Vector Machine

Support vector machines one of the most robust prediction methods available. The
difference with respect to linearSVC is that we can now use kernels to obtain repre-
sentations of the data in high-dimensional feature spaces, which is a very powerful
tool. Again, we are working with the data scaled in the range [0, 1].

Several kernels have been tested, as well as other hyperparameters for the estimator.
The selected ones are shown in the table 4.6.

Estimator Hyperparameter Best value

C (inverse of the

o 0.01
regularization parameter)
SvC kernel (kernel type to be bf
used in the algorithm)
gamma (kernel 01
coefficient) ’
class_weight (weight {1:5)

of each class)

TABLE 4.6: Tuned hyperparameters for support vector classifier.

Results obtained (figure 4.6) situate this estimator next to the baseline. Only a small
improvement in the sensitivity and PPV is observed.

Receiver operating characteristic curves
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FIGURE 4.6: Results obtained with SVM classifier using 10-fold cross
validation.

Until now, the best estimators found have been logistic regression (fig. 4.2) and
linear SVC (ftig. 4.3), reaching an AUC of 0.69, which underlines the effectiveness of
linear models in this particular data set.

4.2.2 Ensemble classifiers

Following the guide mentioned above, we tested some ensemble methods. These
kind of classifiers (also known as meta-estimators) allow to combine the predictions
of several base estimators in order to improve the generalization capacity and the
robustness of a single estimator.
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Bagging classifier

This meta-estimator fits several base classifiers on random subsets of the original
dataset (using random subsets of features) and then aggregate their individual pre-
dictions, either by voting or by averaging, to output the final prediction.

Three different base estimators have been tested: a decision tree classifier, the tuned
version of logistic regression (table 4.3 right) and the tuned version of k-neighbors
classifier (table 4.5 left).

Various combinations of the number of base estimators and subsets of the dataset
and features have been evaluated. Here we only show the results of the best version,
obtained when using logistic regression as base estimator.

Table 4.7 indicates the best hyperparameters for this meta-estimator: we are using
40 base estimators, each one trained using 80% of the samples in the dataset (drawn
with replacement) and 90% of the features (without replacement).

Estimator Hyperparameter Best value
n_estimators (number
. . 40
Bagging of base estimators)
(LR) max_samples (proportion of 0.8

samples used in each base estim.)
max_features (proportion of

. . 9
features used in each base estim.) 0

TABLE 4.7: Tuned hyperparameters for bagging using logistic regres-
sion as base classifier.

The results obtained are provided in figure 4.7. We can see that they are slightly
better than those obtained with logistic regression, situating this model in the first
place so far.

Receiver operating characteristic curves
score mean 95% CI P 3

10 ROC fold 0 (AUC = 0.51)

ROC fold 1 (AUC = 0.80)
ROC fold 2 (AUC = 0.61)
ROC fold 3 (AUC = 0.72)
ROC fold 4 (AUC = 0.78)
ROC fold 5 (AUC = 0.47)
ROC fold & (AUC = 0.45)
ROC fold 7 (AUC = 0.74)
ROC fold 8 (AUC = 0.71)
ROC fold 9 (AUC = 0.75)

== (Chance

= Mean ROC (AUC = 0.6% = 0.14)
+1 std. dev.

AUC 069 (0.420.97)
0.8

accuracy 0.72 (0.59,0.84)
0.6
sensitivity 0.41 (0,0.9)

0.4

Tue Positive Rate

specificity 079 (0.71,0.88)

PPV 029 (0,0.59) 02

NPV 086 (0.74,097) 0.0

0.0 02 0.4 0.6 0.8 10
False Positive Rate

FIGURE 4.7: Results obtained with bagging classifier using 10-fold
cross validation.

Random Forest & Extra-Trees classifier

These two algorithms are based on randomized decision trees. In both cases, a di-
verse set of classifiers is created selecting various sub-samples of the dataset for
training each base classifier. The extra-trees classifier also introduces randomness
in the classifier construction. The final prediction is given by computing the average
of the individual predictions.

After testing both meta-estimators, the extra-trees classifier obtained the best results,
which are described below.



Chapter 4. Results 26

Table 4.8 includes the hyperparameter selection. We can see that it uses 5 simple
decision trees (with a maximum depth of 2), considering 3 features when looking
for the best split. The positive class is given 10 times more importance than the
negative class.

Estimator Hyperparameter Best value
n_estimators (number
. 5
of base estimators)
Extra-trees .
classifier max_depth (maximum 2
depth of the tree)
max_features (proportion of sart
features used in each base estim.) 4
class_weight (weights {1:10)

of each class)

TABLE 4.8: Tuned hyperparameters for extra-trees classifier.

Figure 4.8 shows the results. The model improves all the scores except the AUC of
the baseline. The specificity of this model is particularly high.

Receiver operating characteristic curves

R e o ROC fold 0 (AUC = 0.73)
AUC 067 (0.43,091) ROC fold 1 (AUC = 0.73)
0.8 ROC fold 2 (AUC = 0.65)
' ROC fold 3 (AUC = 0.75)
accuracy 0.74 (0.69,0.79) 5 g ROC fold 4 (AUC = 0.77)
L w ROC fold 5 (AUC = 0.53)
sensitivity  0.39 (0,0.82) ;,:‘:: ROC fold 6 (AUC = 0.38)
£ ROC fold 7 (AUC = 0.77)
specificity 082 (0.73,09) E o4 ROC fold 8 (AUC = 0.70)
ROC fold 9 (AUC = 0.68)
PPV 0.30 (0.07,0.54) 02 -= Chance
—— Mean ROC (AUC = 0.67 + 0.12)
NPV 086 (0.78,0.93) 0.0 +1 std. dev.

o0 0z 04 06 (k] 10
False Positive Rate

FIGURE 4.8: Results obtained with extra-trees classifier using 10-fold
cross validation.

AdaBoost

The AdaBoost classifier is a meta-estimator that fits an initial classifier on the original
data and then fits additional copies of the classifier focusing on the difficult cases
(incorrectly classified instances).

These are the best hyperparameters found for AdaBoost:

Estimator Hyperparameter Best value
AdaBoost n_estlmator.s (number 30
of base estimators)
learning_rate (weight applied to each 16

classifier at each boosting iteration)

TABLE 4.9: Tuned hyperparameters for the AdaBoost classifier.

Results are good in terms of AUC, but not the best ones with respect the other met-
rics, as can be seen in figure 4.9.
Gradient boosting

Gradient Boosting works using an additive model in a forward stage-wise fashion,
(here you can find a detailed explanation).


https://scikit-learn.org/stable/modules/ensemble.html#gradient-boosting
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Receiver operating characteristic curves
score mean 95% CI

Lo ROC fold 0 (AUC = 0.74)
AUC 069 (0.51,087) ROC fold 1 (AUC = 0.71)
0.8 ROC fold 2 (AUC = 0.59)
ROC fold 3 (AUC = 0.84)
accuracy 0.72 (065,079) 5 g ROC fold 4 (AUC = 0.77)
L : ROC fold 5 (AUC = 0.55)
sensitivity 0.37 (0.03,0.71) ;§ ROC f;dﬁ (AUC = 0.55)
& 04 ROC fold 7 (AUC = 0.69)
specificity 0.80 (0.76,0.84) g - ROC fold 8 (AUC = 0.72)
& ROC fold 9 (AUC = 0.72)
PPV 0.29 (0.08,0.49) 02 == Chance
—— Mean ROC (AUC = 0.69  0.09)
NPV 085 (0.78,0092) 0.0 +1 std. dev.

o0 0z 04 06 (k] 10
False Positive Rate

FIGURE 4.9: Results obtained with AdaBoost using 10-fold cross val-
idation.

The hyperparameters selected are explained in table 4.10 and the results obtained
with this classifier are detailed in figure 4.10. The AUC score obtained is below the
baseline, while the sensivity and PPV are slighlty improved. Thus, this estimator is
far away from being the best model.

Estimator Hyperparameter Best value
n_estimators (number

of base estimators) 15
. . learning_rate (shrinks the

Gradient Boosting contribition of( each tree) 0.2

max_depth (maximum 5

depth of each tree)

max_features (features 0.8

considered for splitting '
subsample (fraction of data 05

used for fitting base classifiers)

TABLE 4.10: Tuned hyperparameters for Gradient Boosting classifier.

Receiver operating characteristic curves

1o ROC fold 0 (AUC = 0.76)

ROC fold 1 (AUC = 0.66)
ROC fold 2 (AUC = 0.62)
ROC fold 3 (AUC = 0.60)
ROC fold 4 (AUC = 0.66)
ROC fold 5 (AUC = 0.63)
ROC fold & (AUC = 0.54)
ROC fold 7 (AUC = 0.74)
ROC fold & (AUC = 0.78)
ROC fold 9 (AUC = 0.48)

score  mean 95% CI

AUC  0.65 (0.47,0.83) 0.8

accuracy  0.71 (0.63,0.78) 06

sensitivity  0.30 (0,0.69)

specificiy 0.0 (0.73,0.87) o4

Tue Positive Rate (Positive label: 1)

PPV 023  (0,049) 02 -— Chance
, ~ = Mean ROC [AUC = 0.65 £ 0.09)
NPV 084 (0.76.0.91) o0 +1 std. dev.

0.0 0z 04 06 0.8 10
False Positive Rate (Positive label: 1)

FIGURE 4.10: Results obtained with Gradient Boosting classifier us-
ing 10-fold cross validation.

Voting & Stacking classifiers

We have considered these last two ensemble techniques, which allow us to combine
different classifiers.

The idea behind the voting classifier is to combine different classifiers using the av-
erage predicted probabilities (soft vote) to predict the final class labels.
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On the other hand, stacking classifiers use the predictions of each individual estima-
tor, which are stacked together and used as input to a final estimator to compute the
prediction.

Among all the combinations of classifiers that we have tested with these methods,
none of them improves the results of the best classifiers used individually (although
they are very close in some cases), so we will not detail here the results, since in this
case no hyperparameter tuning is needed. Table 4.13 at the end of this chapter shows
these results for comparison purposes.

4.3 Results obtained with LUSI

This section summarizes the results obtained with the SVM&I,, algorithm explained
in chapter 3. The idea is to find some predicates that allow us to outperform the
models in the previous section.

We have tested several SVM&I, classifiers, considering different sets of predicates.
The process is summarized below.

4.3.1 Basic predicates
We started by considering two basic sets of predicates:
P1) Predicates based on zeroth and first order moments.

This set of predicates was the one used in the examples in chapter 3. It consists
of d 4+ 1 predicates, where d is the dimension of the data. One predicate is
defined by p(x) = 1 and the others d predicates are given by . (x) = x;, k =
1,...,d. Our dataset has 9 features, so we end up with 10 predicates in total.

The invariant associated with the first predicate defines the set of functions
that preserve the frequency of samples belonging to class 1, while the rest of
invariants preserve the mean values of each feature among samples of class 1.

P2) Predicates based on local structure.

Here, ¢ (x;) is defined as the number of vectors of the positive class among
the k nearest neighbors of the point x;. We are considering k = 1,...,11, that
is, 10 predicates in total.

This kind of predicates provide information about the local structure of the
conditional probability function P(y = 1|x).

Our implementation of the SVM&I,, algorithm includes an hyperparameter to select
whether to use the set of predicates P1 or P2, so we have included it in the hyperpa-
rameter tuning process. The other hyperparameters are associated with the kernel
and the regularization applied. Table 4.11 lists the values that have been selected.

The high value of C indicates that a strong regularization is being applied. The model
uses a rbf kernel and the set of predicates based on local structure (P2) is selected. In
fact, we can check that only 8 of the total 10 predicates have been used in this case
(the invariants associated with two of them are already met).

Figure 4.11 provides the results obtained with this first version of the LUSI paradigm.
The model is close to the best ones, but there is still room for improvement.
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Estimator Hyperparameter Best value
SVM&Ig C (regularization strength) 942.67
kernel (kernel type) rbf
gamma (parameter for 0.6
rbf kernel) ’

pred_nn (whether to use set of

predicates based on KNN or not) True

TABLE 4.11: Tuned hyperparameters for SVMé&Ig classifier.

Receiver operating characteristic curves

score mean 95% CI 10
ROC fold 0 (AUC = 0.83)

ROC fold 1 (AUC = 0.43)
ROC fold 2 (AUC = 0.64)
ROC fold 3 (AUC = 0.56)
ROC fold 4 (AUC = 0.79)
ROC fold 5 (AUC = 0.58)
ROC fold & (AUC = 0.59)
ROC fold 7 (AUC = 0.79)
ROC fold 8 (AUC = 0.85)
ROC fold 9 (AUC = 0.76)

== (hance

= Mean ROC(AUC = D.68 = 0.13)

+1 std. dev.
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FIGURE 4.11: Results obtained with SVM&Ig classifier using 10-fold
cross validation.

4.3.2 Custom predicates

Let’s consider some custom predicates, specifically designed for this problem. This
is where the power of this algorithm lies, because it is possible to add some specific
information to the algorithm, acting as a guide during the learning process.

Concretely, we have tested the following predicates:
P3) Predicates based on features with low p-value.

The idea behind this kind of predicates is to select those candidate functions
that preserve some characteristics of the features with a low p-value (tumour
stage, 154524 and primary tumour site VHR, as reported in [4]), in order to
better reflect changes in their values.

P3.1) Preserve risk values: we want to maintain the proportion of patients with
risk values in those variables that are predicted to be in the positive class.

1 Zf Xstage >0, Xrsd524 > 0 and XVHR > 0

p(x) =

0 otherwise

P3.2) Preserve normal values: we keep the proportion of patients with normal
values in those variables predicted to be in the positive class.

1 if Xstage = 0, Xrsasp4 = 0 and xypr =0

p(x) =

0 otherwise

P4) Predicates based on the genetic risk score.
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Here we focus on some characteristics of the genetic variables: rs2232698,
rs4524, rs5985 and rs6025.

P4.1) Preserve total genetic risk score: here we select functions that preserve
the total genetic risk score (sum of all the risk alleles) for patients in the
positive class.

P(X) = Xr52232698 + Xrsasoa + Xrs5985 + Xrs6025

P4.2) Preserve normal values: select functions that preserve the proportion of
patients with normal values in the genetic variables belonging to the pos-
itive class.

1 if Xrs2232698 = 0, Xrs4504 = 0,
Xrs5085 = 0 and xys6025 = 0

p(x) =

0 otherwise

P5) Combinations of the previous predicates.

Among all these options, the one that provided the best results was using the pred-
icates based on local structure (P2) and the predicate that preserve the number of
samples of the class 1 with normal values on the genetic variables (P4.2).

The hyperparameters selected in this case are described in table 4.12. Now, the
amount of regularization applied is not so high, and the total number of predicates
used has been 10.

Estimator Hyperparameter Best value
SVM&Iyg C (regularization strength) 55.41
kernel (kernel type) rbf
gamma (parameter for 05
rbf kernel) ’

pred_nn (whether to use set of

predicates based on KNN or not) True

TABLE 4.12: Tuned hyperparameters for SVMé&Ij classifier.

Figure 4.12 contains the results. We have obtained a model that significantly im-
proves the previous results, specially the sensitivity, which increases up to 0.49.

Receiver operating characteristic curves
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FIGURE 4.12: Results obtained with SVM& I classifier using 10-fold
cross validation.



Chapter 4. Results

31

4.4 Models comparison

Finally, table 4.13 provides a summary of the results obtained with all the models
tested, in order to compare them.

Model AUC accuracy | sensitivity | specificity | PPV | NPV

Baseline (LR) 0.68 +-0.10 0.71 0.34 0.80 0.27 | 0.84

LR 0.67 +-0.12 0.72 0.33 0.80 0.26 | 0.84

LR (scaled) 0.69 +-0.14 0.71 0.41 0.78 0.28 | 0.85

Linear SVC 0.69 +-0.14 0.71 0.41 0.78 0.28 | 0.85

KNN 0.65 +-0.10 0.73 0.35 0.82 0.30 | 0.85

KNN (scaled) 0.66 +-0.10 0.72 0.38 0.80 0.28 | 0.85

SvC 0.68 +-0.11 0.72 0.37 0.80 0.29 | 0.85

Bagging 0.68 +-0.11 0.72 0.41 0.79 0.29 | 0.85

Bagging (LR) 0.69 +-0.14 0.72 0.41 0.79 0.29 | 0.86
Bagging (KNN) 0.67 +-0.13 0.73 0.37 0.81 0.29 | 0.85
Random Forest 0.65 +- 0.12 0.72 0.38 0.80 0.29 | 0.85

Extra Trees 0.67 +-0.12 0.74 0.39 0.82 0.30 | 0.86
AdaBoost 0.69 +- 0.09 0.72 0.37 0.80 0.29 | 0.85

Grad. Boosting 0.66 +-0.12 0.73 0.39 0.80 0.29 | 0.85
Voting (LR+KNN+ET) 0.67 +-0.13 0.73 0.38 0.81 0.31 | 0.85
Voting (LR+KNN+bagging_lr) | 0.69 +-0.13 0.73 0.39 0.80 0.30 | 0.85
Stacking (linSVC+bagging_1Ir) | 0.69 +-0.14 0.71 0.37 0.79 0.28 | 0.85
SVM&Ig (KNN) 0.68 +-0.13 0.71 0.37 0.79 0.28 | 0.85
SVM&I;y (KNN + gen=0) 0.71 +- 0.10 0.74 0.49 0.80 0.34 | 0.87

TABLE 4.13: comparison of all machine learning models tested.

In view of the results, we can conclude that SVM&I (fig. 4.12) provides the best
results for our problem, outperforming the rest of estimators in all the metrics con-
sidered (except specificity). Other remarkable estimators are extra-trees, that gives
the best results in terms of accuracy and specificity, and those based on linear models
such as logistic regression and linear support vector classification.
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Chapter 5

Conclusions and future work

This final chapter contains a summary of the conclusions drawn from the entire pro-
cess, as well as possible improvements for the future.

5.1 Conclusions

The machine learning model developed in section 4.3.2 outperforms all previously
tested tools including the Khorana and TiC-Onco risk scores, according to the results
obtained (see table 4.13). Nevertheless, it is worth noting that the high variability of
the results obtained (wide ranges in the confidence intervals) makes comparison
difficult, as there may be certain subsets of data where one of the previous models
performs better than ours. Even so, the procedure followed guarantees that in most
cases our tool will be the one that obtains the best results, provided that the metrics
described in the previous sections are used.

With respect to the initial TiC-Onco score results obtained with bootstrapping (table
4.1), they are still slightly higher than those we have obtained with our method-
ology, which supports our assumption about the optimistic bias introduced by the
evaluation method used in [4].

Concerning the new machine learning paradigm we have tested (LUSI), our expe-
rience has been positive because, despite the fact that we have very few data, this
approach is capable of extracting a lot of information from it when the appropriate
predicates are used.

In conclusion, we believe that our model could be used as as a complementary tool
when determining the risk of VTE, contributing to detect cancer patients that are at
high risk of VTE. These patients would receive the appropriate treatment, leading to
important improvements in their quality of life.

5.2 Further work

Here are some suggestions for possible improvements in the future:

* The SVM&I, algorithm we have used can be optimized in several ways. We
have limited us to implement the closed-form solution described in [8]. Other
approaches may consider different flavors for the algorithm, some of them
leading to faster and more stable implementations (for example, use stochastic
gradient descent instead of the exact solution). In our case, as we have worked
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with very few data (less than 400 samples), the execution times have been rea-
sonable, but maybe our implementation is unpractical when considering more
data.

¢ Regarding the LUSI approach, experimentation with more elaborate predi-
cates, based on certain assumptions or expert knowledge, may lead to further
improvement of the model.

¢ The dataset we were given contains lot of information that we have not used
for the problem. For example, we have considered only 9 variables out of the
total of 90 available, in order to compare our results with those reported in [4].
Although we did some tests considering more data, we did not obtain good
results, but perhaps a more detailed study could lead to improve the results
obtained.

* Another important point would be to create a larger database for this prob-
lem, which would help to obtain more robust results, and also to test different
methodologies, such as a deep learning models.
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Appendix A

Developed software

Several software tools have been developed to perform the experiments in chapter
4, as well as to generate the dataset. Here we are going to briefly describe the code,
which is organized in two python modules and four Jupyter notebooks.

All the code is available in this GitHub repository.
The python modules developed are the following:

¢ lusi.py contains all the code of the SVM&I, algorithm implemented for the
LUSI approach, explained in chapter 3 and used in the last experiments in
chapter 4. Concretely, it contains the implementation of the classes SVM_I and
SVM, with this last one being the SVM algorithm obtained when not considering
predicates in the learning process.

* utils.py defines the rest of functions used during the work. Some of them are
used to analyze the data (print_summary and corr_heatmap), others to validate
the results in paper (test_khorana_bootstrap and test_model_bootstrap)
and the last one for evaluating the models used in chapter 4 (test_model).

The Jupyter notebooks are described below:

* The notebook data_preprocessing.ipynb is used to create the dataset that
will be used during the project (stored in file data/data_TiC_Onco.csv). Con-
cretely, the file with the data provided by the authors of [4] is read and prepro-
cessed, in order to obtain the desired variables, as explained in section 2.2. It
also includes a simple analysis of the data.

¢ The notebook SVM_I. ipynb was designed for the experiments performed with
the LUSI approach, in order to test the SVM&I,, algorithm (see section 3.4).

® The notebook validating_results.ipynb contains the validation of the re-
sults reported in [4] for the Khorana and TiC-Onco risk scores, using different
evaluation techniques, as detailed in section 4.1.

¢ Lastly, the notebook improving_TiC_Onco_score.ipynb collects all the exper-
iments performed in chapter 4, with all the results obtained to be reviewed if
necessary’.

n all the procedures involving a random component, a certain random seed has been fixed, which
allows to reproduce the experiments performed obtaining the same exact results.


https://github.com/pabloac31/TFM
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