
Recommender
for

restaurants

Hello!
I am Pablo Granatiero
This is my Experimental Final Project
In Fundamental Principles of Data Science

2

Hello!
I am Pablo Granatiero
This is my Experimental Final Project
In Fundamental Principles of Data Science
Supervised by
Dr. Jerónimo Hernández González

3

Hello!
I am Pablo Granatiero
This is my Experimental Final Project
In Fundamental Principles of Data Science
Supervised by
Dr. Jerónimo Hernández González
In Collaboration with

David Martin Suarez (Product Officer)

4

“ Objective of this
experimental thesis
is to build
a Recommender System
for the new spanish
gastronomic app Velada

5

“ In principle one of the main
purpose was to consider
the parameter time.
Giving particular attention
to recurrency:

6

“ to build a recommender,
not just able to suggest
the right restaurant,
but able to do it
in the right moment.

7

Contents

8

1
The app

2
The data

3
The

Recommenders

4
Conclusions -

Future
implementations

The App
Description and user journey

1

Velada
￮ Released on September 2021.
￮
￮ An app for android and apple devices.
￮
￮ Born to modernize the world of gastronomic

guides. For the more demanding foodies..
￮
￮ It aims to find the perfect match between

a user and his restaurant:
“It is the Tinder of restaurants”.

￮
￮ it is adds to the usual features of a food

application (reviews, geo-localization or
food-type), filters linked with more insightful
needs, like First Date or Covered Terrace.

￮

￮
￮
￮

10

User
journey

11

In the next slides
we will see more
in detail how the app
works, trying to follow
the user from
switching on the app
to choosing the
restaurant.

1
Home
page

12

The user can choose
between
a pre selected set
of restaurants, based
on a pre setted set of
filters
(detecting a particular
need like “With
Michelin Stars”, “With
delivery”, ...).

2
Restaurant
card

13

The user enters to a
restaurant card of a
restaurant under the
given filters.

Here he can choose:

swiping left he skips
the restaurants;

swiping down he
saves it in his personal
favourite list;

pushing view button
he goes inside the
restaurant page.

3
Restaurant
page

14

Here a series of actions
and information about
the specific restaurant
are accessible.

Here the user can:

go to the restaurant
website or its position
on Google map;

go to the restaurant
Instagram page;

save it into his
favourite list, reserve,
call or request a
delivery.

4
Filters
list

15

In any time the user
can push the button
on the upper right
corner, opening the
filters menu.

Here he can customize
his search activating
three different filters:

Vibes (insightful needs
like Good brunch,
special occasions or
first date),

Food-Type (like Italian
or Japanese);

neighborhoods.

The Data
Description and analysis

2

Raw data files come from two
different sources:

17

From the app itself

Several tables with all
the information about
users and restaurants,
collected by the app at
the moment of the
user and restaurant
registration. They are
static.

Raw data files come from two
different sources:

18

From the app itself

Several tables with all
the information about
users and restaurants,
collected by the app at
the moment of the
user and restaurant
registration. They are
static.

Raw data files come from two
different sources:

Collected by Google
Analytics

Different dataframes
describing the different
actions the users do
interacting with the
app. They are dynamic
data and each file is
related to the
information collected
in one day of activity.

19

“
Preprocessing in real life is
a background, hard to see,
job that takes a lot of time
and effort. It happened in
our case too: indeed we
spent a good percentage
of our total time cleaning
and preprocessing data.
 20

“
You can find in the Github
repository the program to
convert raw data in an
exactly ready-to-use
dataframes.

21

22

Analyzing Data coming from
the app itself:

It mostly regards
restaurants. In particular
each restaurant is defined
by these five features plus
its city.

23

Restaurants' and users’ cities

● the total number of restaurants is 289.
● Of these 196 restaurants from Madrid, 189 are active, in the meaning that users made with them one

interaction or more
● the total number of users is 7503
● Of those users ∼ 91% are from Madrid, where by this we mean users that interacted only with Madrid

restaurants

24

Analyzing Data coming from
Google Analytics:

It collects all the
interactions between
users and restaurants saw
in the user journey. A
timestamp defines the
instant they happened.

25

Overall interactions:
The mean number of actions per
user is ∼ 61.13 with the 75% of all users
between 1 and 71 actions. If we do not
consider swipe left, the mean
reduces to ∼ 24.18 with the 75% of all
the users between 1 and 26 actions,
highlighting that most of the users
are at the very first experiences with
the app. We can also observe the
presence of outliers, probably due to
someone testing the app.

26

Overall interactions:
The most common action is by far
card swipe: swipe restaurants is the
most entertaining action. View item
is, with almost an order of magnitude
less, the second most common
action. Followed by restaurant
favourite (good news for a
Recommender) and restaurant
action (we will see them in next slide).
Then the filters and the black lists.

The big majority of swipe is left
(skipping the restaurant).

27

Restaurants actions
-actions inside a restaurant’s page-

The most common actions are the
menu button and the favourite
button. Even if less popular, there are
other actions that can be translate
unequivocally as a thumb up: book,
delivery and call. Indeed they
express an active intention to enjoy
the restaurant by the user.

28

Likes
One of the key elements of a Recommender Model is
the presence of an explicit rate, we will need the
information if a user actually has positive opinion of a
given restaurant. In absence of it, we built a target
variable in a qualitative way, i.e. grouping together
all the interactions that are unequivocally positive
and we will simply call them like. We detect as
positive features:

● Saving in favourite list (in any way it happens)
● Book
● Delivery
● Call

The two curves show the typical long tail shape,
where some restaurants are more popular than
others and some users are more generous in likes
than others.

29

Time 1

Dynamic aspects: almost
two months of data. From
the first timestamp,
2021−03−07, 13:01,
to the last timestamp,
2021−04−30, 21:59.

We plot the distance in days tlast − t0, where tlast is the instant of the last interaction and t0 is
the instant of the first one: we can see that actually the vast majority of the users interact for
just one day and, by one order of magnitude less, we observe a time length of 5 days (O(102)).

30

Time 2

Dynamic aspects: almost
two months of data. From
the first timestamp,
2021−03−07, 13:01,
to the last timestamp,
2021−04−30, 21:59.

How often they use the app: we plot for each user the number of different days of activity, the cardinality of the
set d0, ...,dn where di is a given day where he did at least one action. In this case too, it falls down by one order of
magnitude (from O(103) to O(102)) passing from 1 single day to 5 different days of interaction.

“
These numbers suggest us that it is
too early to build a recommender
with a time dependency.
Indeed our recommender,
more than learning a clear
users’ opinion about the
restaurants, will learn their very
first opinion about them
due to a first interaction
with the app.

 31

“
Nevertheless, focusing our work on
the static part
of the recommender system,
with these premises,
we obtained some result which
leaves us hopeful for the future.

32

The Recommenders
Description and results

3

“
A Recommender System is an
algorithm that takes as input a
user identification tag, a user id,
and gives as output a set of one or
more suggested items.

It analyzes patterns of user
behaviours about products to
provide highly personalized and
customized recommendations
that suit a user’s taste.

34

Main families of
Recommender Systems:

Non
Personalized

They stand out for
making the same
recommendation
to everyone.
The simplest non
personalized
recommenders
are the K Most
Popular Items, for
example top ten
movies

Content Based

The key concept
behind a Content
Based is to
recover for users
and items the
same
representation as
to be able to eval-
uate distances
between them.

35

Collaborative
Filtering

The item oriented
approach tries to
infer a user’s
preference for an
item, based on the
ratings he gave in
the past to other
items, basing on
the assumption
that similar items
will have similar
score.

36

The Recommenders we built:
Preprocess

We choose to filter the data as to take into account the users that have a number of
interactions N : 10 ≤ N ≤ 1000. To have a minimum quantity of information and at the
same time to remove the outliers.

Actually our data does not have an explicit feature such as score, rate or bought. We
derive it from our existing features, for instance: we create a boolean feature called
Is_Positive, it takes True as a value if the restaurant is in the user’s favourites list (in all
the different ways it is possible) or if the users consumed the item (book, delivery,
call). And takes False in all the other cases or if the restaurant has been removed
from favourites or blacklisted.

The first decision we took is to filter our data to the restaurants (and interactions)
located in Madrid.

37

The Recommenders we built:
Binary User-Item Matrix
Selecting users and restaurants with at least one like, aggregating all the likes, we obtained
a matrix where each row corresponds to a user, each column to a restaurant.

With our data U I matrix has a shape (3027 × 189), with a sparsity, evaluated as the ratio of
number of total ones over number of total elements, of 0.048.

38

The Recommenders we built:
the metrics we choose
To define them, we let RecK (u) = {ri1 , .. , rjK } be the set of the K recommended restaurants
and RealN (u) = {ri1 , .. , rjN } the restaurants that are in the test set and the user u actually
likes.
Precision@K: the number of restaurants guessed over K.

Recall@K: the number of restaurants guessed over N.

Accuracy: the number of restaurants guessed if K=N, over N.

39

The Recommenders we built:
the base models
Two models we will use as a baseline to compare recommenders with each other.

Random Recommender Most Popular Recommender

It takes as input a user_id u
and it gives as output K
restaurants randomly
chosen from
a set of R(u) = {r1, ... , rn} : UI(u,
ri is a restaurant that the user
u still does not like.

We sort the restaurants in R(u) by
the number of likes. Ordered by
the quantity

obtaining the set

In this way we define the set of the
most popular K recommended to
the user u, the first
K restaurants of the set

40

The Recommenders we built:
the Collaborative Filtering

Is based on the sparse binary user-items UI matrix:

Each restaurant is described by a N dimensional sparse vector r = (0, ... 0, 1, 0 ... , 0), a column of the
UI matrix.

We try to suggest to u, K restaurants he still does not like, based on the choices of the other users.
In order to do that we define a distance between two restaurants ri and rj, a function d(ri, rj).

In the binary case, the most used distance is the cosine distance:

Alternatively we can define:

Using the similarity of ri with others restaurants we

can assign a score to all the restaurants r ∈ R(u):

We will then sort all the restaurants r ∈ R(u) based on their scores score(u, r). The first K
restaurants in the list are the restaurants we are recommending to u.

41

The Recommenders we built:
the Content Based Model

We will represent the restaurants in a different way. The restaurants in Velada are defined by a
series of features: Vibes(30), Price-range(6), Food-Type(24), Stars(4), Neighborhood(19).

The restaurant r is represented as a One-Hot-Encode of these five features, obtaining a
vector Vr = (0, ... ,1, ... ,0) where Vr ∈ RNfeat and Nfeat is the total number of different values
the five features can assume, in this case Nfeat = 83.

We then normalized each part of the vector corresponding to a particular feature to a l1 norm.
Finally the obtained vector is normalized in an l2 norm.

We initialize an empty user vector Vu for the user u in the same space of Vr.
We then select the set of restaurants the user u liked, r : UI(u, r) = 1.
We add one to each component Vu(i) each time a restaurant has Vr(i)≠0.
We normalize twice the vector Vu, in an l1 for each category slice, and in l2 the whole vector.

We obtained a representation of the user comparable with items.
The nearest K restaurants, using cosine distance, are the restaurants we will recommend.

42

The experiments we did:
setup (unless specified)

● Madrid users and restaurants (interactions)

● Filtered data with a number of actions N, s.t. 10 ≤ N ≤ 1000

● Users and restaurants with at least 5 likes as to have enough information

● The number of recommended restaurants as K = 5

● A dataframe with all the likes of all the user/restaurants couples. We splitted it into
train and test set with a test size of 0.1

● To have more consistence of results we repeated the experiment for 5 different splits

43

The experiments we did:
base models results

These results are not surprising. Indeed in general, the number of restaurants a user u
really like in the test set, is N s.t. N < 5, so P@5 < R@5. As we will see in all the cases
P@5 < R@5.

Furthermore by measuring if Accuracy ≶ P@5, we can evaluate how much |RecN(u) ∩
RealN(u)| ≶ |RecK(u) ∩ RealK(u)|, i.e. how much count the order inside the list of the
recommended K restaurants. As might be expected, the only case where it does not
count is the random case.

44

The experiments we did:
Collaborative Filtering results

Rising the minimum number of likes

Rising the minimum number of likes, the accuracy and other metrics are improved
considerably. The price to pay is that with this setup we are able to make predictions
for less users and restaurants: passing from 3027 Madrid users and 189 restaurants to
1450 and 187 restaurants.

45

The experiments we did:
Collaborative Filtering results
Adding the "neighbors" parameter

Evaluating

Rather than summing over all the restaurants, we will sum just over the Nneigh
restaurants more similar to r, basing the similarity on cosine distance.

With the setup of the last experiment with min_like = 5,
adding the parameter N_neigh = 10, we obtained another big improvement in accuracy,
this time for free, without sacrificing users:

46

The experiments we did:
Collaborative Filtering results
Rising the volume of data through time

Analyzing the change in accuracy, taking the different data set through time: passing
from just 205 users (indeed big sigma) and 3243 likes of a two weeks data set, to the
1450 users and 24740 likes of full dataset.

This result supports our
hypothesis: the currently
available amount of data is
too limited, and the results of
this type of recommender are
expected to improve as the
app gets more interactions
within time.

47

The experiments we did:
Collaborative Filtering results
Trying to add features

We added 1 in the UI train matrix, for every u that did a specific action on restaurant r.
We used view_item, menu, website, instagram, considering how many consecutive
times was pushed (Reap_min).
We performed a grid search with all the combinations of these four actions and 1
≤ Rep_min ≤ 3, obtaining 45 different settings.

In all the setups the value of the
accuracy is comparable with the one
without extra features. It seems also that
the view_item actions, at the present
moment, acts more as a noise, becoming
bigger the accuracy rising the Reap_min

parameter. the number of users that did an
action more than three times is very small.
All this means that this action not adds
relevant information to the model

48

The experiments we did:
Content Based results 1
Feature importance and adding information

-Features’ importance- each user and each item is a sparse vector V, where each slice of
the vector is a one- hot-encode of a given categorical variable. We select features from the
vectors, just slicing and removing the part corresponding to the desired features.

-Adding information- We assigned
a score to each action in a
qualitative way. (Skip it → Enter his
page → More Actions on it →
Favourite → Reserve).
We then consider for each couple (u, r)
all the set of actions user u did on
restaurant r, we assign the score on
each action, obtaining for each (u, r) a set
of scores. We finally assign to (u, r) the
max of the set.

Score Rules

49

The experiments we did:
Content Based results 2
Feature importance and adding information

It performs worse than the Collaborative
Filtering. Price, Stars and Neighborhood do not
affect considerably the result, otherwise vibe
improves it and food type worsens it (and this is
quite wondering).

The best set up is the one without food type
considering the rates assignated with the score
rules.

50

The experiments we did:
Comparing all models

After two months of data all models perform
better than the Random Model.

The Collaborative that actually, with acc ∼ 0.13, is
our best model.

The number of different restaurants suggested
by the Most Popular model, applied to the whole
data set is 22. the number of different restaurants
suggested by the Collaborative, that is 189.
It means more restaurants’ rotation and better
user experience (serendipity).

Future
Implementations and conclusions

4

“
At an app level, the introduction in
the app of an explicit score in the
meaning of a five star scoring like
the one existing in Netflix.

A more clear way to verify if a user
actually went to a reserved
restaurant.

52

“
At a model level, two main
implementations: regarding the
static part, Factorization Machine.
Then we can finally have a very
first approach to the dynamic part.

53

54

Factorization Machine 1
Having a lot different possibilities, this model will permit a compact way to test all
different scenarios of features engineering that Velada’s data offer.

The starting point of the model is a different user-item representation. We introduce
the sparse vector:

X, rather than representing a user or an item, represents a user-item interaction. Every
slice of x is a one-hot-encode of the N users, the M restaurants and the F different
values of the features. The factorization machine model tries to infer the real score
with a prediction that takes into account the second order interactions:

55

Factorization Machine 2
Having a lot different possibilities, this model will permit a compact way to test all
different scenarios of features engineering that Velada’s data offer.

If Z = N + N + F, are the dimensions of x. The linear part is made by Z + 1 parameters
(the bias w0 plus the Z components vector w). The non linear interactions are
characterized by a Z × Z matrix Vij, giving a huge amount of parameters.

The key idea of FM is to make a factorization of Vij as to reduce the dimensionality.
V is approximated by:

Passing from (Z × Z) parameters to K × K, where K is a parameter of the model.

56

Adding the time component to the
recommender system

Two central but less explored questions: how to recommend the most desirable item
at the right moment, and how to predict the next returning time of a user to a
service.

In both cases we need a periodic behaviour that we don’t have in our data:

● we saw all the activity is concentrated in the first day of usage

● if we state that a user enjoyed a restaurant with delivery, call or book,
the day with more reservations is Friday, with a total number of reservations
equal to 243. Of those 18 users made a reservation two different Fridays and 3
users did it 3 different Fridays

● the same restaurant has been reserved by the same user is still very rare, it
happened just 99 times

57

Adding the time component to the
recommender system:

Our simple model: linear increasing with time starting from the last reservation.

Let’s say we built a recommender that suggests K restaurants RecK = r1, ... , rK, without
dropping from RecK restaurants u already reserved. In order to suggest a single
restaurant to u, we initialize a probability vector p = (1/K, ... , 1/K) for a multinomial
distribution Mult(p). Let μ = ∆t, the mean distance in time between two consecutive
reservations of the same restaurant ri. We then modeled the probability pi in a linear
way:

If we are near the day user u reserved the
restaurant ri, this restaurant has small
probability to be suggested. If we are at a
distance near or bigger to μ from the last
reservation, the probability returns to be the
same of the other, unseen, restaurants.

58

Adding the time component to the
recommender system:

Recommender for LBSN (Location-Based Social Network) with multiple frequencies.

It’s a very simple, easy to implement, way to learn and store multiple recurrency between
user and restaurants. For example if a user use to reserve every Friday and every two
Saturday.

It start with the binary series:

We then store all the periods:

With a support SUP, with hi
the number of times a period
spi occurs, we can select the
real periods.

Fixed a threshold l, if
l ≤ SUPi(t) we can finally
store spi = μi in our list
of periods (μ1, ... , μn).

Conclusion

4.2

60

● Collaborative Filter using a binary rate is our best model with a 13% of
accuracy score. Rising the volume of the data, we improved the accuracy of
our model, suggesting that one of the bigger problems of the model is the lack
of data.

● Most of the users interacted with the app just the first day. It means that, more
than learning users’ tastes, the model is learning how the users are making
their first exploration of the app.

● How to use all the implicit information, was one of the biggest challenges: we
tried to create an assignation rule, giving a rate to each couple
user-restaurant based on their interactions. It is not clear at all if this strategy
works for the Collaborative Filter. Instead, we obtained good improvements for
the Content Based.

● We would suggest Velada’s developers to include a more clear, explicit,
feature about user-item preferences (such as one-to-five stars or a simple
like) and/or a more clear way to verify if a user actually went to a reserved
restaurant.

Thank you!

61

