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“ Objective of this 
experimental thesis 
is to build 
a Recommender System
for the new spanish 
gastronomic app Velada
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“ In principle one of the main 
purpose was to consider 
the parameter time. 
Giving particular attention 
to recurrency:
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“ to build a recommender,
not just able to suggest 
the right restaurant, 
but able to do it 
in the right moment.  
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The App
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Velada
￮ Released on September 2021.
￮
￮ An app for android and apple devices. 
￮
￮ Born to modernize the world of gastronomic 

guides. For the more demanding foodies..
￮
￮ It aims to find the perfect match between    

a user and his restaurant:                                        
“It is the Tinder of restaurants”.

￮
￮ it is adds to the usual features of a food 

application (reviews, geo-localization or 
food-type), filters linked with more insightful 
needs, like First Date or Covered Terrace. 

￮

￮
￮
￮
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User
journey
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In the next slides        
we will see more          
in detail how the app 
works, trying to follow 
the user from 
switching on the app 
to choosing the 
restaurant.

 



1 
Home
page
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The user can choose 
between    
a pre selected set       
of restaurants, based 
on a pre setted set     of 
filters  
(detecting a particular 
need like “With 
Michelin Stars”, “With 
delivery”, ...). 
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Restaurant
card

13

   

   

   

The user enters to a 
restaurant card of a 
restaurant under the 
given filters.

Here he can choose: 

swiping left he skips 
the restaurants; 

swiping down he 
saves it in his personal 
favourite list;

pushing view button 
he goes inside the 
restaurant page.
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Restaurant
page
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Here a series of actions 
and information about 
the specific restaurant 
are accessible. 

Here the user can: 

go to the restaurant 
website or its position 
on Google map;

go to the restaurant 
Instagram page; 

save it into his 
favourite list, reserve, 
call or request a 
delivery. 
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Filters
list
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In any time the user 
can push the button 
on the upper right 
corner, opening the 
filters menu. 

Here he can customize 
his search activating 
three different filters: 

Vibes (insightful needs 
like Good brunch, 
special occasions or 
first date), 

Food-Type (like Italian 
or Japanese);

neighborhoods. 

 



The Data
Description and analysis
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Raw data files come from two 
different sources: 
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From the app itself

Several tables with all 
the information about 
users and restaurants, 
collected by the app at 
the moment of the 
user and restaurant 
registration. They are 
static.

   

Raw data files come from two 
different sources: 
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From the app itself

Several tables with all 
the information about 
users and restaurants, 
collected by the app at 
the moment of the 
user and restaurant 
registration. They are 
static.

   

Raw data files come from two 
different sources: 

Collected by Google 
Analytics

Different dataframes 
describing the different 
actions the users do 
interacting with the 
app. They are dynamic 
data and each file is 
related to the 
information collected 
in one day of activity. 
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“
Preprocessing in real life is 
a background, hard to see, 
job that takes a lot of time 
and effort. It happened in 
our case too: indeed we 
spent a good percentage 
of our total time cleaning 
and preprocessing data. 
  20



“
You can find in the Github 
repository the program to 
convert raw data in an 
exactly ready-to-use 
dataframes.  
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Analyzing Data coming from 
the app itself:

It mostly regards 
restaurants. In particular 
each restaurant is defined 
by these five features plus 
its city.
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Restaurants'  and users’ cities

● the total number of restaurants is 289.
● Of these 196 restaurants from Madrid, 189 are active, in the meaning that users made with them one 

interaction  or more
● the total number of users is 7503
● Of those users ∼ 91% are from Madrid, where by this we mean users that interacted only with Madrid 

restaurants
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Analyzing Data coming from 
Google Analytics:

It collects all the 
interactions between 
users and restaurants saw 
in the user journey. A 
timestamp defines the 
instant they happened.
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Overall interactions:
The mean number of actions per 
user is ∼ 61.13 with the 75% of all users 
between 1 and 71 actions. If we do not 
consider swipe left, the mean 
reduces to ∼ 24.18 with the 75% of all 
the users between 1 and 26 actions, 
highlighting that most of the users 
are at the very first experiences with 
the app. We can also observe the 
presence of outliers, probably due to 
someone testing the app.
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Overall interactions:
The most common action is by far 
card swipe: swipe restaurants is the 
most entertaining action. View item 
is, with almost an order of magnitude 
less, the second most common 
action. Followed by restaurant 
favourite (good news for a 
Recommender) and restaurant 
action (we will see them in next slide). 
Then the filters and the black lists.

The big majority of swipe is left 
(skipping the restaurant). 
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Restaurants actions 
-actions inside a restaurant’s page-

The most common actions are the 
menu button and the favourite 
button. Even if less popular, there are 
other actions that can be translate 
unequivocally as a thumb up: book, 
delivery and call. Indeed they 
express an active intention to enjoy 
the restaurant by the user. 
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Likes 
One of the key elements of a Recommender Model is 
the presence of an explicit rate, we will need the 
information if a user actually has positive opinion of a 
given restaurant. In absence of it, we built a target 
variable in a qualitative way, i.e. grouping together 
all the interactions that are unequivocally positive 
and we will simply call them like. We detect as 
positive features:

● Saving in favourite list (in any way it happens)
● Book
● Delivery
● Call

The two curves show the typical long tail shape, 
where some restaurants are more popular than 
others and some users are more generous in likes 
than others.
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Time 1

Dynamic aspects: almost 
two months of data. From 
the first timestamp, 
2021−03−07, 13:01,               
to the last timestamp, 
2021−04−30, 21:59.

We plot the distance in days tlast − t0, where tlast is the instant of the last interaction and t0 is 
the instant of the first one: we can see that actually the vast majority of the users interact for 
just one day and, by one order of magnitude less, we observe a time length of 5 days (O(102)). 
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Time 2

Dynamic aspects: almost 
two months of data. From 
the first timestamp, 
2021−03−07, 13:01,               
to the last timestamp, 
2021−04−30, 21:59.

How often they use the app: we plot for each user the number of different days of activity, the cardinality of the 
set d0, ...,dn where di is a given day where he did at least one action. In this case too, it falls down by one order of 
magnitude (from O(103) to O(102)) passing from 1 single day to 5 different days of interaction. 



“
These numbers suggest us that it is 
too early to build a recommender 
with a time dependency. 
Indeed our recommender, 
more than learning a clear 
users’ opinion about the 
restaurants, will learn their very 
first opinion about them 
due to a first interaction 
with the app. 
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“
Nevertheless, focusing our work on 
the static part 
of the recommender system, 
with these premises, 
we obtained some result which 
leaves us hopeful for the future. 
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The Recommenders
Description and results
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“
A Recommender System is an 
algorithm that takes as input a 
user identification tag, a user id, 
and gives as output a set of one or 
more suggested items. 

It analyzes patterns of user 
behaviours about products to 
provide highly personalized and 
customized recommendations 
that suit a user’s taste. 
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Main families of 
Recommender Systems:

Non 
Personalized

They stand out for 
making the same 
recommendation 
to everyone. 
The simplest non 
personalized 
recommenders 
are the K Most 
Popular Items, for 
example top ten 
movies

 

Content Based

The key concept 
behind a Content 
Based is to 
recover for users 
and items the 
same 
representation as 
to be able to eval- 
uate distances 
between them. 
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Collaborative 
Filtering

The item oriented 
approach tries to 
infer a user’s 
preference for an 
item, based on the 
ratings he gave in 
the past to other 
items, basing on 
the assumption 
that similar items 
will have similar 
score. 
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The Recommenders we built: 
Preprocess

We choose to filter the data as to take into account the users that have a number of 
interactions N : 10 ≤ N ≤ 1000. To have a minimum quantity of information and at the 
same time to remove the outliers.

Actually our data does not have an explicit feature such as score, rate or bought. We 
derive it from our existing features, for instance: we create a boolean feature called 
Is_Positive, it takes True as a value if the restaurant is in the user’s favourites list (in all 
the different ways it is possible) or if the users consumed the item (book, delivery, 
call).  And takes False in all the other cases or if the restaurant has been removed 
from favourites or blacklisted. 

The first decision we took is to filter our data to the restaurants (and interactions) 
located in Madrid. 
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The Recommenders we built: 
Binary User-Item Matrix
Selecting users and restaurants with at least one like, aggregating all the likes, we obtained 
a matrix where each row corresponds to a user, each column to a restaurant.

With our data U I matrix has a shape (3027 × 189), with a sparsity, evaluated as the ratio of 
number of total ones over number of total elements, of 0.048. 



38

The Recommenders we built: 
the metrics we choose 
To define them, we let RecK (u) = {ri1 , .. , rjK } be the set of the K recommended restaurants 
and RealN (u) = {ri1 , .. , rjN } the restaurants that are in the test set and the user u actually 
likes.
Precision@K: the number of restaurants guessed over  K.

Recall@K: the number of restaurants guessed over  N.

Accuracy: the number of restaurants guessed if K=N, over  N.
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The Recommenders we built: 
the base models 
Two models we will use as a baseline to compare recommenders with each other.

Random Recommender Most Popular Recommender

It takes as input a user_id u 
and it gives as output K 
restaurants randomly 
chosen from                              
a set of R(u) = {r1, ... , rn} : UI(u, 
ri is a restaurant that the user 
u still does not like. 

We sort the restaurants in R(u) by 
the number of likes. Ordered by 
the quantity 

obtaining the set 

In this way we define the set of the 
most popular K recommended to 
the user u, the first                                     
K restaurants of the set 
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The Recommenders we built: 
the Collaborative Filtering 

Is based on the sparse binary user-items UI matrix: 

Each restaurant is described by a N dimensional sparse vector r = (0, ... 0, 1, 0 ... , 0), a column of the 
UI matrix. 

We try to suggest to u, K restaurants he still does not like, based on the choices of the other users.     
In order to do that we define a distance between two restaurants ri and rj, a function d(ri, rj).

In the binary case, the most used distance is the cosine distance: 

Alternatively we can define: 

Using the similarity of ri with others restaurants we 

can assign a score to all the restaurants r ∈ R(u): 

We will then sort all the restaurants r ∈ R(u) based on their scores score(u, r). The first K 
restaurants in the list are the restaurants we are recommending to u. 
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The Recommenders we built: 
the Content Based Model

We will represent the restaurants in a different way. The restaurants in Velada are defined by a 
series of features: Vibes(30), Price-range(6), Food-Type(24), Stars(4), Neighborhood(19).

The restaurant r is represented as a One-Hot-Encode of these five features, obtaining a 
vector Vr = (0, ... ,1, ... ,0) where Vr ∈ RNfeat and Nfeat is the total number of different values 
the five features can assume, in this case Nfeat = 83. 

We then normalized each part of the vector corresponding to a particular feature to a l1 norm.  
Finally the obtained vector is normalized in an l2 norm.

We initialize an empty user vector Vu for the user u in the same space of Vr.                                 
We then select the set of restaurants the user u liked, r : UI(u, r) = 1.                                                  
We add one to each component Vu(i) each time a restaurant has Vr(i)≠0.                                   
We normalize twice the vector Vu, in an l1 for each category slice, and in l2 the whole vector. 

We obtained a representation of the user comparable with items.                                                   
The nearest K restaurants, using cosine distance, are the restaurants we will recommend. 
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The experiments we did: 
setup (unless specified)

● Madrid users and restaurants (interactions)

● Filtered data with a number of actions N, s.t. 10 ≤ N ≤ 1000  

● Users and restaurants with at least 5 likes as to have enough information 

● The number of recommended restaurants as K = 5 

● A dataframe with all the likes of all the user/restaurants couples. We splitted it into 
train and test set with a test size of 0.1  

● To have more consistence of results we repeated the experiment for 5 different splits
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The experiments we did: 
base models results

These results are not surprising. Indeed in general, the number of restaurants a user u 
really like in the test set, is N s.t.  N < 5, so P@5 < R@5. As we will see in all the cases            
P@5 < R@5. 

Furthermore by measuring if Accuracy ≶ P@5, we can evaluate how much |RecN(u) ∩ 
RealN(u)| ≶ |RecK(u) ∩ RealK(u)|, i.e. how much count the order inside the list of the 
recommended K restaurants. As might be expected, the only case where it does not 
count is the random case. 
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The experiments we did: 
Collaborative Filtering results

Rising the minimum number of likes

Rising the minimum number of likes, the accuracy and other metrics are improved 
considerably.  The price to pay is that with this setup we are able to make predictions 
for less users and restaurants: passing from 3027 Madrid users and 189 restaurants to 
1450 and 187 restaurants.
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The experiments we did: 
Collaborative Filtering results
Adding the "neighbors" parameter 

Evaluating 

Rather than summing over all the restaurants, we will sum just over the Nneigh 
restaurants more similar to r, basing the similarity on cosine distance. 

With the setup of the last experiment with min_like = 5,                                                   
adding the parameter N_neigh = 10, we obtained another big improvement in accuracy, 
this time for free, without sacrificing users: 
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The experiments we did: 
Collaborative Filtering results
Rising the volume of data through time

Analyzing the change in accuracy, taking the different data set through time: passing 
from just 205 users (indeed big sigma) and 3243 likes of a two weeks data set, to the 
1450 users and 24740 likes of full dataset. 

This result supports our 
hypothesis: the currently 
available amount of data is 
too limited, and the results of 
this type of recommender are 
expected to improve as the 
app gets more interactions 
within time. 
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The experiments we did: 
Collaborative Filtering results
Trying to add features

We added 1 in the UI train matrix, for every u that did a specific action on restaurant r. 
We used view_item, menu, website, instagram, considering how many consecutive 
times was pushed (Reap_min). 
We performed a grid search with all the combinations of these four actions and                1 
≤ Rep_min ≤ 3, obtaining 45 different settings.

In all the setups the value of the 
accuracy is comparable with the one 
without extra features. It seems also that 
the view_item actions, at the present 
moment, acts more as a noise, becoming 
bigger the accuracy rising the Reap_min 

parameter. the number of users that did an 
action more than three times is very small. 
All this means that this action not adds 
relevant information to the model
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The experiments we did: 
Content Based results 1
Feature importance and adding information 

-Features’ importance- each user and each item is a sparse vector V, where each slice of 
the vector is a one- hot-encode of a given categorical variable. We select features from the 
vectors, just slicing and removing the part corresponding to the desired features. 

-Adding information- We assigned 
a score to each action in a 
qualitative way.  (Skip it → Enter his 
page → More Actions on it → 
Favourite → Reserve).                            
We then consider for each couple (u, r) 
all the set of actions user u did on 
restaurant r, we assign the score on 
each action, obtaining for each (u, r) a set 
of scores. We finally assign to (u, r) the 
max of the set.

Score Rules
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The experiments we did: 
Content Based results 2
Feature importance and adding information 

It performs worse than the Collaborative 
Filtering. Price, Stars and Neighborhood do not 
affect considerably the result, otherwise vibe 
improves it and food type worsens it (and this is 
quite wondering).  

The best set up is the one without food type 
considering the rates assignated with the score 
rules.
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The experiments we did: 
Comparing all models

After two months of data all models perform 
better than the Random Model. 

The Collaborative that actually, with acc ∼ 0.13, is 
our best model. 

The number of different restaurants suggested 
by the Most Popular model, applied to the whole 
data set is 22. the number of different restaurants 
suggested by the Collaborative, that is 189.                
It means more restaurants’ rotation and better 
user experience (serendipity).



Future
Implementations and conclusions
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“
At an app level, the introduction in 
the app of an explicit score in the 
meaning of a five star scoring like 
the one existing in Netflix.  

A more clear way to verify if a user 
actually went to a reserved 
restaurant.
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“
At a model level, two main 
implementations: regarding the 
static part, Factorization Machine.  
Then we can finally have a very 
first approach to the dynamic part.
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Factorization Machine 1
Having a lot different possibilities, this model will permit a compact way to test all 
different scenarios of features engineering that Velada’s data offer.

The starting point of the model is a different user-item representation. We introduce 
the sparse vector:

X, rather than representing a user or an item, represents a user-item interaction. Every 
slice of x is a one-hot-encode of the N users, the M restaurants and the F different 
values of the features. The factorization machine model tries to infer the real score 
with a prediction that takes into account the second order interactions: 
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Factorization Machine 2
Having a lot different possibilities, this model will permit a compact way to test all 
different scenarios of features engineering that Velada’s data offer.

If Z = N + N + F, are the dimensions of x. The linear part is made by Z + 1 parameters 
(the bias w0 plus the Z components vector w). The non linear interactions are 
characterized by a Z × Z matrix Vij, giving a huge amount of parameters.

The key idea of FM is to make a factorization of Vij as to reduce the dimensionality.           
V is approximated by:

Passing from (Z × Z) parameters to K × K, where K is a parameter of the model.
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Adding the time component to the 
recommender system

Two central but less explored questions: how to recommend the most desirable item 
at the right moment, and how to predict the next returning time of a user to a 
service.

In both cases we need a periodic behaviour that we don’t have in our data:

● we saw all the activity is concentrated in the first day of usage

● if we state that a user enjoyed a restaurant with delivery, call or book,
the day with more reservations is Friday, with a total number of reservations 
equal to 243. Of those 18 users made a reservation two different Fridays and 3 
users did it 3 different Fridays
 

● the same restaurant has been reserved by the same user is still very rare, it 
happened just 99 times
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Adding the time component to the 
recommender system:

Our simple model: linear increasing with time starting from the last reservation.

Let’s say we built a recommender that suggests K restaurants RecK = r1, ... , rK, without 
dropping from RecK restaurants u already reserved. In order to suggest a single 
restaurant to u, we initialize a probability vector p = (1/K, ... , 1/K) for a multinomial 
distribution Mult(p). Let μ = ∆t, the mean distance in time between two consecutive 
reservations of the same restaurant ri. We then modeled the probability pi in a linear 
way: 

If we are near the day user u reserved the 
restaurant ri, this restaurant has small 
probability to be suggested. If we are at a 
distance near or bigger to μ from the last 
reservation, the probability returns to be the 
same of the other, unseen, restaurants.
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Adding the time component to the 
recommender system:

Recommender for LBSN (Location-Based Social Network) with multiple frequencies. 

It’s a very simple, easy to implement, way to learn and store multiple recurrency between 
user and restaurants. For example if a user use to reserve every Friday and every two 
Saturday.

It start with the binary series:

We then store all the periods:

With a support SUP, with hi 
the number of times a period 
spi occurs, we can select the 
real periods. 

Fixed a threshold l, if        
l ≤ SUPi(t) we can finally 
store spi = μi in our list 
of periods (μ1, ... , μn). 



Conclusion

4.2
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● Collaborative Filter using a binary rate is our best model with a 13% of 
accuracy score. Rising the volume of the data, we improved the accuracy of 
our model, suggesting that one of the bigger problems of the model is the lack 
of data. 

● Most of the users interacted with the app just the first day. It means that, more 
than learning users’ tastes, the model is learning how the users are making 
their first exploration of the app. 

● How to use all the implicit information, was one of the biggest challenges: we 
tried to create an assignation rule, giving a rate to each couple 
user-restaurant based on their interactions. It is not clear at all if this strategy 
works for the Collaborative Filter. Instead, we obtained good improvements for 
the Content Based. 

● We would suggest Velada’s developers to include a more clear, explicit, 
feature about user-item preferences (such as one-to-five stars or a simple 
like) and/or a more clear way to verify if a user actually went to a reserved 
restaurant. 



Thank you!
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