
UNIVERSITAT DE BARCELONA

FUNDAMENTAL PRINCIPLES OF DATA SCIENCE MASTER’S
THESIS

A restaurant recommender system for a
new-born app-based gastronomic guide

Author:
Pablo GRANATIERO

Supervisor:
Dr. Jerónimo HERNÁNDEZ

GONZÁLEZ
and

David Martin SUAREZ
(Product Officer)

A thesis submitted in partial fulfillment of the requirements
for the degree of MSc in Fundamental Principles of Data Science

in the

Facultat de Matemàtiques i Informàtica

July 1, 2021

http://www.ub.edu
http://www.johnsmith.com
http://www.jamessmith.com
http://www.jamessmith.com
http://www.jamessmith.com
http://www.jamessmith.com
http://www.jamessmith.com
http://mat.ub.edu

i

UNIVERSITAT DE BARCELONA

Abstract
Facultat de Matemàtiques i Informàtica

MSc

A restaurant recommender system for a new-born app-based gastronomic guide

by Pablo GRANATIERO

This is a project of applied data analysis made in collaboration with the CPO

of the restaurants app Velada. We analyze the data collected by the app with

the objective of building a recommender system for its restaurants. The ini-

tial objective was to give particular attention to the parameter time, building

a model able to make the right recommendation in the right moment for

each user of the app. Different attempts have been performed, using both

collaborative filtering and content based recommender systems, with differ-

ent types of information as data input. We show that the best approach is

a binary collaborative filter, although the results are preliminary due to the

lack of enough data. We also show that the performance will be easily im-

proved as new data becomes available. Finally, we provide some insights on

how the problem of making a recommendation for a restaurant just in time

could be solved in the future.

The notebooks and the codes of this project can be found in

https://github.com/pablogrr/TFM_granatiero

HTTP://WWW.UB.EDU
http://mat.ub.edu

ii

Acknowledgements
I would first like to thank my supervisor, Dr. Jerónimo Hernández González,

for his insightful feedback, his great kindness and patience.

A special thanks to David Martin Suarez for his willingness to cooperate.

Thanks to my wonderful classmates Mattia, Alex, Dave, Alejandro, Petar and

Marya.

To the girl I love and to my father who would be proud of me.

1

Chapter 1

Intro

1.1 Introduction

Nowadays a consumer who is about to buy an item has to swim in a ocean, is in-
undated of, different possibilities. Choosing is becoming one of the most common
activities of a consumer everyday life (think to Netflix, Amazon, Youtube, ebay) and, for
this reason, one of the key elements of every online business. As choosing something
is becoming more and more important, recommending the right thing is becoming
crucial.
Therefore, more companies started using recommender systems, which analyze pat-
terns of user behaviours about products to provide highly personalized and cus-
tomized recommendations that suit a user’s taste. Good personalized recommenda-
tions can add another dimension to the user experience.
So Recommender Systems is actually a hot topic in Data Science and data scientists
never stop developing new Recommender Algorithms, with a prolific productions
in the scientific literature.

1.2 What is a recommender system

A Recommender System is an algorithm that takes as input a user identification tag, a
user id, and gives as output a set of one or more suggested items. There are several
ways to do it, based on the information and the tools we are using to generate the
recommendation. The first difference we enlight is the one between Non Personal-
ized recommenders and Personalized ones.
Non personalized recommenders are very common and they stand out for mak-
ing the same recommendation to everyone. The simplest Non Personalized Recom-
menders are the K Most Popular Items, for example top ten movies in Spain we
found in the Netflix homepage (the first ten movies ranked for number of views in
Spain), even if very simple, it is still one of the most important recommenders in
many platforms.
On the other way Personalized Recommenders are the ones that try to guess a spe-
cific user’s taste inferring from his past behavior. This kind of recommender has
several advantages, because it aims to give a more personalized suggestion, increas-
ing the variety of recommended items and the user’s serendipity. There are several
ways to build a Personalized Recommender, but the two most important and bigger
branches are the Content Based and the Collaborative ones. In the next two sec-
tions we will briefly introduce these systems, in the third and last section we will
introduce a third kind of recommender, part of the collaborative ones, called model
based.

Chapter 1. Intro 2

1.2.1 Content Based

Following (Pasquale Lops and Semeraro, 2011), the key concept behind a Content
Based is to recover for users and items the same representation as to be able to eval-
uate distances between them. Broadly speaking, Content Based Recommender Sys-
tems are based on the approach to create a profile for each user and for each product
to characterize its nature. For example, a restaurant profile could include attributes
regarding its type of food, its price, the number of Michelin Stars, the Neighborhood
and so forth. Then a user profile is built using exactly the same features, assign to
each feature a score based on the restaurants actually visited by the user (for exam-
ple if a user usually appreciates Japanese and Chinese restaurants we will assign to
him a high score to the food type feature Asian).
In this way we can evaluate similarities between the user and all the restaurants.
For example we can evaluate the 5 nearest neighbors in the set of the restaurants
he hasn’t tried yet. A known successful realization of Content Based Models is the
Music Genome Project, which is used for the Internet radio service Pandora.com using
more then 400 features.

1.2.2 Collaborative Filtering

Another way to make recommendations was introduced for the first time in (David
Goldberg and Terry, 1992) and it is called precisely by the paper’s author Collabora-
tive Filtering. These models do not require to build a user vector features representa-
tion and it is based just on his past behaviour.
The system is centered on computing the relationships between items or, alterna-
tively, between users (it can be indeed user oriented or item oriented). The item
oriented approach tries to infer a user’s preference for an item based on the rat-
ings he gave in the past to other items, basing on the assumption that similar items
will have similar score. Similarities between the items are investigated inside all the
users preferences, where items appreciated more or less by the same users, are more
or less similar.
For example, consider a Japanese restaurant. Its neighbors might include other
Japanese restaurants, Korean restaurants and other Asian ones among others. To
predict a particular user’s rating for this restaurant, we would look for the restau-
rants’s nearest neighbors that this user actually rated.
A major appeal of collaborative filtering is that it is domain free, yet it can address
data aspects that are often elusive and difficult to profile using Content Based and it
is generally more accurate than Content Based techniques.

1.2.3 Model based

The last kind of models we will introduce are a Collaborative Filtering called Model
Based mostly using matrix factorization techniques. These models are properly de-
fined Collaborative too, in the meaning that they are based on the same idea and tools.
Thanks to matrix factorization these models aim to embed users and items in a latent
space whose dimensionality is a parameter of the model.
Such latent factors are a machine alternative to the aforementioned human crafted
items feature. For restaurants, the discovered features might measure obvious di-
mensions such as Asian cuisine versus Italian cuisine, amount of price, or neighbor-
hood. But, depending from the number of dimensions, it can understand more hard
to find, sometimes uninterpretable, aspects.
In the recent past more sophisticated and complex model, like in (Rendle, 2010) or

Chapter 1. Intro 3

deep models, try to merge the information retrived from both the systems, Content
and Collaborative, the so called hybrid models.

1.3 Restaurant Recommender

The objective of the present project is to build a recommender for restaurants, in
particular for the new Spanish app Velada. In the next chapter we will describe the
app main features but we can anticipate here that Velada is a digitized gastronomic
guide, so a recommender system, suggesting the right restaurant to the right user,
can obviously play a key role. Furthermore time can be also a crucial parameter, in
particular the initial proposal suggests to pay attention to recurrency, i.e. trying to
recommend restaurants considering, not just how much a user likes a given restau-
rant but also how often he enjoyed it.
In order to develop our models we followed these steps: the first one was to under-
stand how the app works, and in the second chapter we will try to see in detail its
main tools. Then we will see the data we used, describing how we collect them, all
the analysis we perform in order to derive insights indispensable to take important
decisions to model the recommenders. Finally, we will show the recommenders that
we built, starting from very basic models proceeding to more elaborated ones. We
will present the resluts that these recommenders reached, quite limited due to the
lack of enough data. In the last chapter we tries to investigate the recommender’s
dynamic aspects, paying attention to recurrency, suggesting how we could include
temporal dynamic, possible solutions and future implementations.

4

Chapter 2

Velada

2.1 The App

Released on September 2020, Velada is an app for android and apple devices. It was
born with the aim of modernizing the world of gastronomic guides, updating the
user experience of the most demanding foodies, loyal to the quality of guides such us
the famous Michelin, to a more practical and digitized way.
They present themselves as the Tinder of restaurants finding the perfect match of
users’ needs and restaurants. The way Velada does it is adding to the usual features
of a food application, like reviews, geo-localization or food-type, also filters linked
with more insightful needs, like First Date ore covered terrace.

Currently is restricted to Madrid and Barcelona but in the future it will work in
other cities like Milan, Lima, London, Paris.

The opportunities behind a recommender system for an app like Velada are sev-
eral. Indeed it would allow a better experience for the user and a better way to
promote restaurants and restaurant diversification inside the app.
In principle one of the main idea of the app developer was to build an algorithm
tailor made for the restaurants’ commodity sector needs, in particular an app able
to consider time as a key parameter, not only able to suggest the right restaurant
but also able to do it in the right moment. For a problem like this, considering the
products characteristics plays a key role. Indeed, restaurants, contrary to a movie or
a song have a very different degree of recurrency. As we will see, we would argue
that the app is in a too early stage to develop a recommender that considers time as
a parameter, that needs clear users’ behaviour paths through time, in a range of time
longer than the actual one (we have data of two months).

2.1.1 Flow

In this section we will see more in detail how the app works, trying to follow the
user from switching on the app (figure 2.1, Step 1) to choosing a restaurant.
The user journey starts at the home page (figure 2.1, Step 2), where the user can choose
between a pre selected set of restaurants, based on a pre setted set of filters (detect-
ing a particular need like With Michelin Stars, With delivery, ...).

Pushing on one of the home page buttons, the user enters to a restaurant card of a
restaurant under the given filters (figure 2.1, Step 3). Here we can understand why
they call themselves the Tinder of restaurants. Indeed here the user can perform the
swipe action that becames famous with the date app: swiping left (figure 2.1, Step 4a)
he skips the restaurants, swiping down ((figure 2.1, Step 4b) he save the restaurant in

Chapter 2. Velada 5

his personal favourite restaurant list. In both cases, a new restaurant card is showed.

From the card section in any time the user can push the button on the upper right
corner, opening the filters menu. Here (figure 2.1, Step 5) he can customize his search
adding from three different kind of filters: Vibes (as we said insightful needs like
Good brunch, special occasions or first date), Food-Type (precisely the types of food,
like Italian or Japanese) and the neighborhoods.

Alternatively, in the restaurant card section a fourth action is allowed. Pushing the
view item button the user enters into a restaurant dedicated section, where a series of
actions and information about the specific restaurant are accessible (figure 2.1, Step
6). Here the user can: go to the restaurant website or restaurant position on Google
map, go to the restaurant and/or chef Instagram page, save the restaurant into his
favourite list (pushing the favourite button), reserve, call or request a delivery to the
restaurant directly inside the app or being linked to dedicated page.

2.1.2 The Data

In the next section we will describe in detail the data we used in order to try to
build a recommender system for Velada. In this section we anticipate that the app
developers provided us, users and restaurants data, from two different sources: one
directly stored by the app, with all the information of users and items collected at the
sign-in, and one stored by Google Analytics, describing for each user all the actions
he did in the app, from the registration to the present time.

Chapter 2. Velada 6

FIGURE 2.1: The basic user journey inside Velada app
.

7

Chapter 3

The Data

3.1 The data sources

As we said in the previous chapter, raw data files come from two different sources:
one comes directly from the app and the other is derived by a query from the Google
Analytics account of the app.

The data coming from Velada is composed of several tables with all the informa-
tion about users and restaurants, collected by the app at the moment of the user and
restaurant registration. They are static, without time dependency, related only to the
instant of the sign-in.
Each table is a different dataframe describing a different restaurant or user fea-
ture, with information, mostly about restaurants, useful for a Content Based Rec-
ommender, like price, food-type, or the aforementioned Vibes filters. We will see it
more in detail in the Data Analysis section.

The data downloaded from the app Google account is composed of several files with
all the information about users and restaurants, collected by Google Analytics. These
are dynamic data and each file is related to the information collected in one day user
activity.
Each file is a different dataframe describing the different actions the users do inter-
acting with the app, following the user experience saw in the previous chapter. We
will see this too, more in detail in Data Analysis section. This kind of information are
useful for a Content Based Recommender but, with some feature engineering, such
as identifying a target variable (i.e. a variable thanks to which we can establish if
and how much a user approves an item) is also relevant to build a collaborative one.

In the next two sections we will first describe the data frame we obtained initial-
izing the raw data and then we will see more in detail the main information we
retrieve analyzing them.

For the interested reader, an example of the data coming from Velada, is available
in https://github.com/pablogrr/TFM_granatiero.

3.2 Initializing raw data

Preprocessing in real life is a background, hard to see, job that takes a lot of time
and effort. It happened in our case too: indeed we spent a good percentage of our
total time cleaning and preprocessing data. The more demanding readers can find

https://github.com/pablogrr/TFM_granatiero

Chapter 3. The Data 8

in the Github repository the program to convert raw data in an exactly ready-to-use
dataframe.

3.2.1 Data from the app

Let’s see more in detail the data coming directly from the app. It includes: the info at
the registration, stored in several tables, in particular, we will use the data contained
in the following dataframes:

• restaurants: in this dataframe all the main information about restaurants are
collected, for instance:

– name: the name of the restaurant.

– restaurant_id: the identification number of the restaurant.

– neighborhoods: the city area of the given restaurant expressed with an
identification number.

– price range: the price range, from "less than 20" to "more than 100" pro-
ceeding with steps of "20€".

– Michelin stars: the number of stars, from zero to three.

– city: the city expressed with an identification number. At present Madrid
and Barcelona are the only active cities, but there are already registered
restaurants from other cities, like Lima, Paris, Milan, London.

• restaurants_vibes: as we saw, filtering, is one of the main Velada’s tool and
Vibes filters are the more distinctive. In this dataframe each restaurant_id
is related to one or more of the 30 different vibes filters (with many different
insights from with delivery to first date passing through with terrace.)

• restaurants_food_types: this is a more typical way to filter queries in food
apps. In this data frame each restaurant_id is related with one or more
food-types. For a total of 24 different food-types (Asian, Galician, Italian, ...)

• cities_neighborhoods: the same as before but with cities’ areas. This data
frame defines a mapping between a neighborhood and a restaurant.

This kind of categorical information is useful to build recommenders belonging to
the category described in section 1.2.1, the content based. We built this recommender
and we will describe it in the next chapter.

3.2.2 Data from Google Analyitics

We will describe the data from the Google Analytics app account. After some pre-
processings we obtained a dataframe storing for each user all the actions of the user
journey described in chapter 2.1.1, each action related to a specific instant described
by a timestamp. So each row is a user-item interaction, each column a specific fea-
ture describing the interaction, for instance:

> event_name: it takes different values depending the action the user did.

> card_swipe: one of the most iconic user interactions of Velada is to swipe.
This feature says the user swiped a restaurant (see figure 2.1, step 4a and
4b).

Chapter 3. The Data 9

> view_item: the user enters in a restaurant page (see figure 2.1, step 5).

> restaurant_favourite: the user saves a restaurant into his favourite list.
One of the actions that the user can perform in a restaurant page (see
figure 2.1, step 5).

> restaurant_action: the user does one of the action_string_value actions.
Again actions described above, allowed in a specific restaurant page (see
figure 2.1, step 5).

> home_filters: there are several ways to add filters, one of these are in the
homepage. This feature shows the user added a filter in the homepage.

> filter_added: the user added a filter outside the homepage.

> my_favs_remove_restaurant: the user can remove a restaurant from his
favourite restaurant list.

> my_favs_filter_added: as restaurants, it exists also a favourite list of fil-
ters. The user saved a filter in his favourite filter list.

> restaurant_blacklisted: the user moved a restaurant into a blacklist.

> event_timestamp: it relates each user action with a specific instant t.

> user_pseudo_id: a univocal map between a user and an id provided by Google.

> type_string_value: the food-type the user selected adding a filter.

> action_string_value: as we said the actions inside a restaurant page.

> menu: the user saw the menu.

> favourite_press: the user saved the restaurant into his favourite list.

> instagram: the user saw the restaurant IG.

> website: the user saw the restaurant website.

> book_url: the user reserved the given restaurant.

> maps: the user clicked the link to the map.

> curated_by: the user pushed the curated by button.

> chefInstagram: the user pushed the link to the chef IG.

> delivery: the user pushed the link to ask delivery.

> call: the user pushed the link to call a restaurant.

> vibes_string_value: the vibes that the user selected adding a filter.

> dir_string_value: how the user swiped a restaurant.

> down: the user saved the restaurant in his favourite list.

> left: the user skipped the restaurant.

The first thing that comes to our mind, when looking at these data with the aim of
building a recommender system, is the absence of explicit features, like thumbs up,
thumbs down or a classic 5 stars rate. We will need this kind of information in order
to build a recommender system of the Collaborative family.
By the way, we used the information contained in this dataframe also to build a
Content Based Recommender, indeed they are indispensable to create a user repre-
sentation vector.

Chapter 3. The Data 10

3.3 Data analysis

With the data described in the previous chapter we can perform a lot of different
interesting and insightful data analysis. For the sake of clarity in this chapter we
will pay attention to all those aspects that aim to better understand how the recom-
menders we used work and why we took some decisions that we made throughout
the development of this project.

3.3.1 The cities

One of the first decisions we agreed with the app developers, was to limit our model
to the restaurants located in Madrid and the interactions with them. Indeed if we
see at figure 3.2a, at the date of 30/04/2021 the total number of restaurants is 289,
where the 67.82% of them are from Madrid and the rest are from Barcelona or from
other cities. Of these 196 restaurants from Madrid, 189 are active, in the meaning
that users made with them one interaction or more.
The fact that the majority of the activity is from Madrid is even more clear if we
look at figure 3.2b. We can see that the total number of users is 7503, of those users
∼ 91% are from Madrid, where by this we mean users that interacted only with
Madrid restaurants.
At this early stage of the app, Barcelona data is still very poor and this is why we
restrict all our work to Madrid, users and restaurants.

3.3.2 Overall Interactions

In this section we will analyze more in detail how and how much the users interact
with the app. First of all in figure 3.1 we can see the box plot of the users interactions,
counting the statistics of the total number of interactions for all the users. As we will
see, the most common action, in an unbalanced way, is swipe_left, for this reason we
show the data with and without this action: at the top the box plots considering swipe
left action in normal and logarithmic scale. The mean number of actions per user is
∼ 61.13 with the 75% of all users between 1 and 71 actions. If we do not consider
swipe left, the mean reduces to∼ 24.18 with the 75% of all the users between 1 and 26
actions, highlighting that most of the users are at the very first experiences with the
app. We can also observe the presence of outliers, probably due to someone testing
the app.

3.3.3 Actions outside the restaurants pages

As we saw in sections 2.1.1 and 3.2.2, there are two main spaces of interactions, out-
side and inside the restaurants’ pages. There are actions users can perform in both
spaces and there are actions that they can perform just inside or outside restaurants’
pages. Here we analyze all the actions they can do outside.
In figure 3.3a we display a bar plot with all the user actions. As we already said, the
most common action is by far card swipe: swipe is the most entertaining action and
mimicking Tinder with restaurant has been a good choice. Figure 3.3b shows that
∼ 91% of all swipe are swipe left, suggesting that skipping restaurants is something
equivalent to zapping in Netflix. Also in figure 3.3a we can also see that view item is,
with almost an order of magnitude less than card swipe, the second most common
action. And this is not surprising, as after some swipes, the most common thing to

Chapter 3. The Data 11

FIGURE 3.1: A box plot of the total number of users’ interaction with
the app. On the right in logarithmic scale and on the bottom without

considering the Swipe Left action.

(A) All the restaurants in Velada. (B) All the restaurants in Velada.

FIGURE 3.2: Distribution of users and restaurants in Velada.

do is to get more information about a given restaurant, entering its page by push-
ing view item button. In the next page we see the most common actions inside a
restaurant page.

3.3.4 Actions inside the restaurants pages

Inside a restaurant’s page there are 10 possible actions, of which saving the restau-
rant in the favourites list is allowed in many different ways outside and inside the
page. The remaining actions are exclusive of this area of the app.

Chapter 3. The Data 12

(A) Total number of different event_name actions, on the right in logarithmic scale

(B) The total number of card swipe actions.

FIGURE 3.3: Actions outside the restaurants’ pages.

Chapter 3. The Data 13

FIGURE 3.4: The total number of interactions the users can do inside
a restaurant page.

In figure 3.4 we can observe that, the most common actions are the menu button and
the favourite button.
The fact that the favourite actions are popular is a good news for a recommender sys-
tem builder, indeed we can consider it as an explicit positive feedback. Even if less
popular, there are other actions that can be translate unequivocally as a thumb up:
book, delivery and call. Indeed they express an active intention to enjoy the restaurant
by the user.

3.3.5 Likes

One of the key elements of a Collaborative Filtering Model is the presence of an ex-
plicit rate, but as we will see in the next chapter even for a Content Based, we will
need the information if a user actually has positive opinion of a given restaurant. In
absence of it, we built a target variable in a qualitative way, i.e. grouping together all
the interactions that are, as we said in the previous chapter, unequivocally positive
and we will simply call them like. We detect as positive features: favourite (in any
way it happens), book, delivery and call.
Figure 3.5a and 3.5b shows the total number of likes for any user and for any restau-
rant: the two curves show the typical long tail shape, where some restaurants are
more popular than others and some users are more generous in likes than others.

3.3.6 Time dependencies

One of the main objectives of the app project was to build a recommender able to
consider time as a parameter: able to suggest not just the right restaurant but to
do it also in the right moment. For this reason we analyze how long and how of-
ten the users interact with the app, trying to detect some pattern in the users’ be-
haviour. In this section we analyze some dynamic aspects, passing from the first
instant, 2021− 03− 07, 13 : 01, to the last instant, 2021− 04− 30, 21 : 59.
In figure 3.6a we analyze how long the users used the app. For this reason, we took

Chapter 3. The Data 14

(A) The number of like for each restaurant.

(B) The number of like for each user.

FIGURE 3.5: The long tail shape of the curves counting likes.

for each user the distance in days tlast − t0, where tlast is the instant of the last inter-
action and t0 is the instant of the first one: we can see that actually the vast majority
of the users interact for just one day and, by one order of magnitude less, we ob-
serve a recurrency of 5 days (O(102)). In figure 3.6b we try to understand how often
they use the app, for this reason we plot for each user the number of different days
of activity, the cardinality of the set d0, ... , dn where di is a given day where he did
at least one action. In this case too, it falls down by one order of magnitude (from
O(103) to O(102)) passing from 1 single day to 5 different days of interaction.
These numbers suggest us that it is too early to build a recommender with a time
dependency. Indeed our recommender, more than learning a clear users’ opinion
about the restaurants, will learn their very first opinion about them due to a first
interaction with the app. Nevertheless, as we will discuss in the next chapter, with
these premises we obtained some result which leaves us hopeful for the future.

Chapter 3. The Data 15

(A) On the y axis the number of users, on the x axis the distance between the first and the last day of
usage.

(B) On the y axis the number of users, on the x axis the number of different days of activity.

FIGURE 3.6: Time behaviour of users’ activity. On the right in loga-
rithmic scale.

16

Chapter 4

The Recommenders

In this section we will describe in detail the recommenders we built. In the first
section we will describe the preprocessing and the decisions we took as to build a
common framework for all the models. Then we will describe two base models,
simple models built to be a reference to compare performances with each others.
Finally we will show the recommenders we built and results we obtained with them.

4.1 Preprocessing

As we introduced in the previous chapter, the first decision we took is to filter our
data to the restaurants (and interactions) located in Madrid. Indeed we saw in figure
3.2a, that they represent the majority of the total restaurants taking by now almost
all the app interactions.
With an eye at the figure 3.1 we choose to filter the data as to take into account the
users that have a number of interactions N : 10 ≤ N ≤ 1000, to have a minimum
quantity of information and at the same time to remove the outliers.
Actually our data does not have an explicit feature such as score, rate or bought. As
aforementioned, we derive it from our existing features, for instance: we create a
boolean feature called Is_Positive, it takes True as a value if the restaurant is in the
user’s favourites list (in all the different ways it is possible) or if the users consumed
the item. Using the variable defined in section 3.2.2, the following first three actions
say the user is saving the restaurant in his favourite list, the remaining three say he
is booking, asking a delivery or calling a restaurant:

• the event_name has value restaurant_favourite;

• the action_string_value is favourite_press;

• the dir_string_value is down

• the action_string_value is book_url

• the action_string_value is delivery

• the action_string_value is call

And takes False in all the other cases or if the restaurant has been removed from
favourites or blacklisted. From here on out, if a user has Is_Positive==True, we will
simply say that he likes the restaurant.
As starting point, we selected users and restaurants with at least one like. Aggregat-
ing all the likes, we obtained a matrix where each row corresponds to a user, each
column to a restaurant and it takes boolean values depending the user actually likes

Chapter 4. The Recommenders 17

the given restaurant. The Users-Items matrix looks like:

UI =


0 . . . 1 . . . 0
... 0 . . . 0

...
1 0 . . . 1 0
... 0 . . . 0

...
0 . . . 1 . . . 0

 (4.1)

With our data UI matrix has a shape (3027× 189), with a sparsity, evaluated as the
ratio of number of total ones over number of total elements, of 0.048.

4.2 The Metrics

Actually, with the explicit variable like we built, our Recommender has to solve a
(positive/negative) binary classification problem. So, in order to evaluate the mod-
els, we choose three different metrics: Accuracy, Precision@K and Recall@K. To
define them, we let RecK(u) = {ri1 , .. , rjK} be the set of the K recommended restau-
rants and RealN(u) = {ri1 , .. , rjN} the restaurants that are in the test set and the user
u actually likes:

Acc(u) =
|RecN(u)

⋂
RealN(u)|

N
(4.2)

P@K(u) =
|RecK(u)

⋂
RealN(u)|

K
(4.3)

R@K(u) =
|RecK(u)

⋂
RealN(u)|

N
(4.4)

We choose these metrics because they are enough reliable, with the precision we
need for our purpose, and moreover they are easy to interpret and to discuss with
the app developers.
To better understand why we choose this metrics, we anticipate here that will use
K = 5. For users with at least 1 likes, using a test size of 0.1, we obtain for a sample
test set the statistics in table 4.1. As the mean number of likes is 1 and the third quar-
tile is 3, we choose to use the accuracy, defined in equation 4.2, as to have a more
solid and easy to interpret metric. Indeed the accuracy defined above, is indepen-
dent of the number of likes in the test set.

TABLE 4.1: Statistics for a sample test set with size 0.1

#like 2793.00
#users 1295.00
mean 2.16
std 1.84
min 1.00
max 15.00
50% 1.00
75% 3.00

Chapter 4. The Recommenders 18

4.3 The base models

The first two models we built are two models we will use as a baseline to compare
recommenders with each other: a random recommender and a recommender based
on ranking we called most popular recommender.

4.3.1 Random Recommender

The Random Recommender is the simplest recommender we can build. It takes as
input a user_id u and it gives as output K restaurants randomly chosen from a set of
R(u) = {r1, ... , rn} : UI(u, ri) = 0, i.e. ri is a restaurant that the user u still does not
like.

4.3.2 Most Popular K Recommender

The second base model we tested is the Most Popular K, another simple one, largely
used during the cold start.
After having obtained the UI matrix (equation 4.1), for a user u we define R(u) =
{r1, ... , rn} : UI(u, ri) = 0, as before the set of restaurants that the user u still does
not like. We sort the restaurants in R(u) for the number of likes, from the restau-
rants with more likes to the restaurants with less likes. In other words ordered by
the quantity ∑u UI(u, ri), obtaining the set Sort_R(u) = {r1i , ... , rnj}. In this way we
define the set of the most popular K recommended to the user u, the first K restau-
rants of the set Sort_R(u): RecK(u) = {r1i , ... , rKj}.

4.4 The Collaborative Filtering

In this section we will show in detail our Item based Collaborative Filtering Recom-
mender, introduced in chapter one, following (Badrul Sarwar and Riedl, 2001). A
Collaborative Filtering can be item based or user based depending the way we do
the predictions. In the present work, we choose to use the item based model.
This kind of recommender is based on the sparse binary UI matrix of equation 4.1:
each restaurant is described by a N dimensional sparse vector r = (0, ... 0, 1, 0 ... , 0),
that actually is a column of the UI matrix. We try to suggest to u, K restaurants he
still does not like, based on the choices of the other users. In order to do that we
define a distance between two restaurants ri and rj, a function d(ri, rj). In the binary
case, the most used distance is the cosine distance:

d(ri, rj) = 1−
(ri, rj)

|ri||rj|
(4.5)

The smaller d(ri, rj), the more similar should be the users’ tastes on ri and rj. Alter-
natively we can define:

sim(ri, rj) =
(ri, rj)

|ri||rj|
(4.6)

with 0 ≤ sim(ri, rj) ≤ 1. (ri ,rj)

|ri ||rj| is the cosine between the two vectors, a perfect
similarity is reached when the two vectors are parallels.
Using the similarity of ri with others restaurants we can assign a score to all the
restaurants r ∈ R(u) as R(u) is defined in section 4.3.1:

Chapter 4. The Recommenders 19

score(u, r) =
∑ri

sim(ri, r)UI(u, ri)

∑ri
sim(ri, r)

(4.7)

We will then sort all the restaurants r ∈ R(u) based on their scores score(u, r),
obtaining a ordered list of restaurants for u. The first K restaurants in the list are the
restaurants we are recommending to u.

4.5 Content Based

We also tested a Content Based Recommender. With this recommender we are able
to use the information contained in the dataframes described in chapter 3.2, the
dataframe generated at the registration of the user and of the restaurants, with all
the static features, like price, vibes, stars, etc. etc. In order to build it we will rep-
resent the restaurants in a different way than the one we used in the Collaborative
Filtering. As we saw the restaurants in Velada are defined by a series of features,
such as:

• Price: 6 different ranges of price;

• Food Type: 24 different food type categories;

• Vibe: 30 different kinds of vibe;

• Stars: from 0 to 3 stars Michelin;

• Neighborhood: 19 different urban areas.

The restaurant r is represented as a One-Hot-Encode of these five features, obtaining
a vector Vr = (0, ... , 1, ... , 0) where Vr ∈ RN f eat and N f eat is the total number of
different values the five features can assume, in this case N f eat = 83. We then nor-
malized each part of the vector corresponding to a particular feature to a `1 norm.
For instance, if the indexes [i : j] corresponds to the Vibe’s values, then ∑

j
s=i V(s)

r = 1.
Finally the obtained vector is normalized in an `2 norm.
The main idea of a Content Based recommender is to represent users and items in
the same space, as to evaluate distances between users and items. The way we did
it is again using the UI matrix defined in equation 4.1.
We initialize an empty user vector for the user u in the same space of Vr, we then
select the set of restaurants the user u liked, the set RealN(u) : r ∈ RealN(u) if
UI(u, r) = 1. We add one to each component V(i)

u each time a restaurant in RealN(u)
has V(i)

r 6= 0. Finally we normalize twice the vector Vu, in an `1 for each category
slice, and in `2 the whole vector. In this way, we obtain a representation of the user
comparable with items. That allows us to evaluate the distance of the user from all
the other items: the nearest K restaurants are the restaurants we will recommend.
Once again a cosine distance is used: d(u, r) = 1− (Vu,Vr)

|Vu||Vr | .
Each user and each item is a sparse vector V, where each slice of the vector is a one-
hot-encode of a given categorical variable. We can think to select features from the
vectors, just slicing the part corresponding to the desired features. For example if
the components from k to k + 6 are the six components describing prices’ ranges, the
vector V = (V1, .. , Vk−1, Vk+7, ...) represents the given user or item without consid-
ering price as a feature.

Chapter 4. The Recommenders 20

4.6 Results

In this section we will describe and discuss all the experimental results we did, using
the different recommenders we described under different assumptions and setups.
Unless specified, as to compare the models each others we will use the same frame-
work: we used the filtered data as explained in section 4.1, with a number of actions
N, s.t. 10 ≤ N ≤ 1000. Furthermore we took the decision to just consider users and
restaurants with at least 5 likes as to have enough information for each user and for
each restaurant. We will set the number of recommended restaurants as K = 5.

4.6.1 Experiment with base models

Under these assumptions we tested the base models. In order to do it, we built a
dataframe with all the likes, all the user/restaurants couples that have Is_Positive==True,
and we splitted it into train and test set with a test size of 0.1. As to have more con-
sistence of results we repeated the experiment for 5 different splits.
Under these assumptions we obtained for the Random Recommender the following
means.

TABLE 4.2: Score for the base models.

Accuracy P@5 R@5 Sigma Accuracy
Random .014976 .016159 .031632 .002089
Popular .098884 .082661 .161096 .007132

The results in 4.2 are not surprising. Indeed if we see table 4.1, we can see
that in general K < 5, so P@5 < R@5. As we will see in all the cases P@5 <
R@5. Furthermore by measuring if Accuracy ≶ P@5, we can evaluate how much
|RecN(u)

⋂
RealN(u)| ≶ |RecK(u)

⋂
RealK(u)|, i.e. how much count the order in-

side the list of the recommended K restaurants. As might be expected, the only case
where it does not count is the random case.

4.6.2 Experiments with collaborative filtering

In this section we will describe all the experiments performed with the collaborative
item based recommender under different experimental setups.

Rising the minimum number of likes

In this experiment we want to show that, rising the minimum amount of informa-
tion we rise the performance of the model.
As a setup for the first experiment we used the filtered data saw in section 4.1,
with a number of actions N, s.t. 10 ≤ N ≤ 1000 and selecting users and restau-
rants with almost one like, for a total of 3027 Madrid users and 189 Madrid restau-
rants. As before, we split in train and test set, the set of all the couple (u, r) with
Is_Positive == True, with a test size of 0.1 and we repeated the split five times,
obtaining the averaged quantities in table 4.3.

Over all the users in common between test set and train set, that are of the or-
der of ∼ 1230, we obtained almost the 10% of probability to recommend to a user a
restaurant that he truly likes. In a way it is in his favourite list or he actually enjoyed
the restaurant (he did a call or delivery or book_url action). The total number of like in

Chapter 4. The Recommenders 21

the test set, for the users that are also in the train set, is of the order of ∼ 2700.
We then rise the minimum number of likes, considering just the users and restau-
rants with almost 5 likes (we are in the same set up of the base model experiment).
We obtained the results in table 4.3.

TABLE 4.3: Score for the collaborative rising the minimum number of
likes.

Accuracy P@5 R@5 Sigma Accuracy
Min_like 1 0.09634 0.0885 0.19127 0.00323
Min_like 5 0.11420 0.10683 0.21050 .004132

Rising the minimum number of likes, the accuracy and other metrics are im-
proved considerably. The price to pay is that with this setup we are able to make
predictions for less users and restaurants, for instance: the number of Madrid users
with at least five like is 1450 and the number of Madrid restaurants liked by at least
five users is is 187.

Adding the "neighbors" parameter

We obtained another improvement in the model by introducing a new parameter
we called Nneigh. Nneigh is the number of neighbors (restaurants) we will consider,
evaluating the score with the equation 4.7. For instance, evaluating score(u, r), in the
summation instead of summing over all the restaurants, we will sum just over the
Nneigh restaurants more similar to r, basing the similarity on cosine distance (equa-
tion 4.5).
With the setup of the last experiment with min_like = 5, adding the parameter
N_neigh = 10, we obtained another big improvement in accuracy, this time for free,
without sacrificing users:

Acc = 0.12907 ; P@K = 0.11547 ; R@K = 0.22402 ; σacc = 0.004642

Time evolution

With two months of data, for our collaborative recommender, we reach an accuracy
of ∼ 13%, much better of the base models, but not too encouraging. Our hypothesis
is that it is due to a too small data set. To prove it we tested if rising the amount of
data that we use for learning the recommenders, the results are improved.
Therefore we further investigated this model analyzing the change in accuracy with
time, we evaluate the performance under the same conditions of the previous exper-
iment, but taking the different data set through time, including new data every two
weeks:

• Week two: The number of Madrid users after 2 weeks with at least five likes is
205. The number of likes is 3243;

• Week four: The number of Madrid users after 4 weeks with at least five likes
is 532. The number of likes is 8496;

• Week six: The number of Madrid users after 6 weeks with at least five likes is
858. The number of likes is 13808;

Chapter 4. The Recommenders 22

FIGURE 4.1: Change in accuracy adding data every two weeks.

• Week eight: The number of Madrid users after 8 weeks with at least five likes
is 1347. The number of likes is 22855;

• Week ten: The number of Madrid users after 10 weeks with at least five likes
is 1450. The number of likes is 24740;

Figure 4.1 shows how, adding users and interactions to the model, the Collaborative
Filtering is able to learn more about users’ tastes, improving with time, with more
data, the quality of our recommendations. This result supports our hypothesis: the
currently available amount of data is too limited, and the results of this type of rec-
ommender are expected to improve as the app gets more interactions within time.

Trying to add features

We then tried to add to this model more information coming from the other actions
of the users. In order to do that we perform the following experiment: we added
other information to the train set, for instance a 1 in the UI train matrix, for ev-
ery u that did a specific action on restaurant r. We did it for four different actions:
view_item, menu, website, instagram. We added the parameter Reap_min, i.e.
the minimum quantity of time the user has to do the specific action to be counted
(for example, with Reap_min = 3 and view_item, we will count as 1 all the u that
pushed the view_item button of restaurant r, 3 times or more). We performed a grid
search with all the combinations of these four actions and 1 ≤ Rep_min ≤ 3, ob-
taining 45 different settings. Looking at figure 4.2b we can see that, with this data
and this model, there is no evidence that adding other actions actually improves the
accuracy. In all the setups the value of the accuracy is comparable with the one with-
out extra features. It seems also that the view_item actions, at the present moment,
acts more as a noise, becoming bigger the accuracy rising the Reapmin parameter.
Looking at 4.2a, it has to be noted that actually the number of users that did an ac-
tion more than three times is very small (an order of magnitude ≤ O(102)). All this
means that this action not adds relevant information to the model; it is still not able
to improve the normal binary case.

Chapter 4. The Recommenders 23

(A) The number of view_item, menu,
website and instagram actions, for differ-

ent values of Reap_min.

(B) The mean accuracy adding view_item, menu,
website and instagram actions, for different values

of Reap_min.

FIGURE 4.2: Exploring Collaborative Filtering Model adding fea-
tures.

4.6.3 Experiments with Content Based models

As experiment with the Content Based Model, to take advantage of all the infor-
mation we have, we tried to add the users’ actions. In order to do this we used a
different strategy to build the User-Item matrix.
First of all, we assigned a score to each action in a qualitative way:

• One Point: Card-Swipe-Left;

• Two Points: View-Items;

• Three Points: All the actions inside the restaurant page excepted the ones cre-
ating favourites or making an order/reservation;

• Four Points: All the actions putting the restaurant in the favourite list;

• Five Points: All the actions generating an order or a reservation.

It can be seen that we choose this kind of score basing on a qualitative reason; for
instance, how deep goes the interest of the user for the restaurant (Skip it→ Enter
his page→More Actions on it→ Favourite→ Reserve). We then consider for each
couple (u, r) all the set of actions user u did on restaurant r, we assign the score on
each action, obtaining for each (u, r) a set of scores. We finally assign to (u, r) the
max of the set.
We obtained in this way a different User-Item matrix, no more binary but with val-
ues included between zero and five (filling with zeros the UI(u, r) that does not
correspond to any actions). Using this UI matrix, when we build the user vector
Vu, we will weight the user features based on the restaurants’ scores and on quite
different information.
To generate the same framework of the experiments in section 4.6.2, we drop a
portion of testsize = 0.1 likes form the actions data frame, generating a test set of
Is_Positive == True restaurants and a train set of actions. We then generate the UI
with the scores, and we evaluated the K recommended as we did in the binary case.
Figure 4.3b shows the accuracy obtained. We can see that it performs worse than the
Collaborative Filtering. We can also see how it behaves if we drop one feature from
the model. We can see that Price, Stars and Neighborhood do not affect considerably
the result, otherwise vibe improve it and food type worsens it. In particular we can
see that, adding actions information on the model improves the accuracy, indeed the
best set up is the one without Food Type features and considering the scores in the

Chapter 4. The Recommenders 24

User-Item Matrix. This fact is a bit wondering and as to be further investigated. We
can make the hypothesis that it is due to the lack of data or maybe, users in Velada,
use to differentiate a lot the type of food, so much that it eventually becomes a noise.

(A) The number of times each score oc-
curs for the whole data set of actions,
neglecting the swipe left actions and re-

moving the outliers.

(B) Change in accuracy dropping one feature for Content
Based.

FIGURE 4.3: Content based accuracy and rates distribution.

4.7 Failed experiment: non-binary rates

Trials and errors took the major part of the effort of the present project. In this sec-
tion we will briefly describe a failed line of improvement (no relevant results were
reached) in which a lot of efforts were put.
We tried to build a standard Collaborative Filter Recommender as it is described in
(David Goldberg and Terry, 1992), based on items’ rates. As we do not have rates,
we assigned to each (u, r) couple a 1 to 5 score based on the interactions they had.
We did it in two different ways: first of all, we created an assignation rule rating each
action, in a similar way we did for the Content Based model. Then we evaluated the
set of actions for each couple (u, r) assigning as value NaN to all the couples without
any interactions. The first approach was to sum all the values and then scale them to
a 1 to 5 interval. The second approach was the same we used for the Content Based
Model: just to take the maximum value.
After that, we were able to build a sparse matrix UI with all the rates and, rather
than zeros, filled with NaN. With this matrix, we are able to make predictions using
the same ideas we used for the Binary Collaborative Filtering, for instance:

pred(u, r) = ∑s∈N sim(r, s) ∗ (UIr,s)

∑s∈N sim(s, r)

Here N is the set of restaurants already rated by u and sim(r, s) is a similarity func-
tion that has to be defined. We tried to use the most used similarities: one based on
the euclidean distance:

sim(a, b) = 1/

1 +
√

∑
p∈P

(ra,p − rb,p)2



Chapter 4. The Recommenders 25

FIGURE 4.4: Comparing the accuracy of the four model: the random,
the most popular, the content based evaluated with the scored UI and

the Collaborative with binary UI.

and one based on Pearson Correlation:

sim(a, b) =
∑p∈P(ra,p − r̄a)(rb,p − r̄b)√

∑p∈P(ra,p − r̄a)
√

∑p∈P(rb,p − r̄b)

We then create a grid of many different assignation rules with both the aforemen-
tioned ways (the one with the maximum and the one scaling the sums), running the
model with the predictions using both similarities.
In all the cases, we reached much worse results in accuracy than the ones we ob-
tained with the binary models. It seems that actually this way to rate the restaurants,
works as a noise not revealing the real taste of the users. It is really difficult to tell
if the failure to create a rating from different implicit actions is due to the lack of
enough data or a wrong conceptualization.

4.8 Conclusion

Finally in figure 4.4 and in table 4.4 (here the traditional f1 score is the harmonic
mean of precision and recall f 1 = 2

r@k−1+p@k−1) we compare all the models that we
have presented in this section. As before we evaluated the model splitting a test set
of size 0.1 from all the user-items couples that have Is_Positive == True, filtering
from the UI matrix only the users and restaurants that respectively gave at least 5
likes and received at least 5 likes. The Content Based Recommender is the best one
between the ones in figure 4.3b, i.e. the one that uses the UI matrix with rates with-
out considering the food type feature.
As we can see all the models, at the date of May2021, after just two months collect-
ing data, perform much better than the "Random" one, with the "Popular" and the
"Content Based" having similar accuracy and the Collaborative that actually, with
acc ∼ 0.13, is our best model.
The Collaborative, being more performing, it aims to suggest the right restaurant
with a bigger probability than the Most Popular one. Furthermore is relevant to

Chapter 4. The Recommenders 26

note that the number of different restaurants suggested by the Most Popular model,
applied to the whole data set is 22, that is very small compared to the number of
different restaurants suggested by the collaborative, that is 189. This diversifica-
tion guarantees to the app a better rotation of the suggested restaurants and a better
experience to the user, suggesting him more unexpected restaurants, the so called
serendipity.
Furthermore we tried to build a collaborative filtering recommender, based to a 1 to
5 rate, assigning scores to the actions. At present this strategy failed. The reason it
happened has to be investigated more in detail. We guess it is due to the lack of data,
in particular to the lack of data during time. Indeed the users’ actions are concen-
trated in one single day and, rather than express users taste, they are the way they
are exploring the app. It may add inconsistent information to our model.

TABLE 4.4: Final score for all the models.

Accuracy f1 Score P@5 R@5 Sigma Accuracy
Random .014976 .018997 .016159 .031632 .002089
Popular .098884 .097291 .082661 .161096 .007132
Content .080005 .079054 .065315 .138642 .004605
Collaborative .129067 .138785 .115473 .224024 .004642

27

Chapter 5

Future implementations

5.1 Other models for the recommender system

We reached the best result with a binary collaborative filtering. In the absence of
an explicit feature indicating user-item match, we generate it basing on qualitative
arguments. At an app level, maybe an implementation that would facilitate future
improvement in the developing of a recommender algorithm is the introduction in
the app of an explicit score in the meaning of a five star scoring like the one existing
in Netflix, Amazon or something similar.
At a model level, two main models should be implemented in the future, once we
will have more solid users’ behaviour and more solid explicit score: Matrix Factor-
ization Models and Factorization Machine.

5.1.1 Matrix Factorization-based algorithms

A similar but slightly different approach to the ones used for the Collaborative Fil-
tering is the SVD model. Following (Badrul M. Sarwar, 2000), we briefly introduce
SVD model. The main idea is to embed users and items in a latent feature space,
approximating the UI matrix by a lower rank matrix UI using SVD decomposition.
The rank of the approximation is a parameter of the model and it represents the
dimensionality of the latent space. Let’s say it is K, with N users and M items:

UI = PQ where P ∈ RN×K and Q ∈ RK×M (5.1)

According to equation 5.1 each row of the P matrix is an embedding of an user
and each column in Q is an embedding of an item in the same K− dim space. Infer-
ring the missing value in UI and obtaining its decomposition UI, we can assign a
score to each (u, i) couple:

r̂u,i = PuQT
i (5.2)

The hardest challenge of a matrix decomposition based model, is to impute the
missing value to generate a dense matrix. The more recent works suggests modeling
directly the observed ratings only, while avoiding overfitting through a regularized
model. To learn the factor vectors Pu and Qi, we can solve the minimization problem
related to the regularized squared error on the set of known ratings:

min[
K

∑
(u,i)=0

(ru,i − r̂u,i)
2 − λ(||Pu||2 + ||Qi||2)] (5.3)

The computation of equation 5.3 is possible using gradient descent algorithm
such as the ones of the stocastic gradient descent family.

Chapter 5. Future implementations 28

A benefit of the matrix factorization approach compared to the collaborative filtering
is its flexibility in dealing with various data aspects and other application-specific
requirements. For instance we can model equation 5.1.1 splitting it in four parts:

r̂u,i = µ + bu + bi + PuQT
i (5.4)

Here µ is the overall average rating. The parameters bu and bi indicate the ob-
served deviations of user u and item i, respectively, from the average. PuQT

i is the
user-item interaction.
Another advantage of the SVD algorithm of particular interest for Velada is the pos-
sibility to include in additional sources of information about the users and the items.

5.1.2 Factorization Machine

Following the original paper (Rendle, 2010), we introduce here a model that we think
fits very well with Velada data structure.
The starting point of the model is a different user-item representation. We introduce
the sparse vector:

x = (0, ... , 1, ... , 0) where xi ∈RN+M+F (5.5)

where x represents a user-item interaction, including implicit information regarding
the user and the item. Each slice of the vector carries a different kind of information:
the first N components are a one-hot-encode of the users, the next M are a one-hot-
encode of the items, the next F comes from a particular implicit feature. For example,
if the feature is the number of Michelin Stars of the given restaurant, then it adds to
the x vector F = 4 dimensions more, derived from a one-hot-encode of Michelin
Star features (from zero to 3 stars). In line with this thinking we can add as many
dimensions (features) as we want to the model.
The factorization machine model tries to infer the real score ru,i with a r̂u,i that takes
into account the second order interactions:

r̂u,i = f (x) = w0 +
M+N+K

∑
i

wixi + ∑
i,j

xixjVij (5.6)

where the weights w are to be learned training the model. If Z = N + N + F, are the
aforementioned dimensions of x, r̂u,i is given by a linear part and a non linear part.
The linear part is made by Z + 1 parameters (the bias w0 plus the Z components vec-
tor w). The non linear interactions are characterized by a Z× Z matrix Vi,j, giving a
huge amount of parameters.
The core of the Factorization Machine is to reduce the dimensionality thanks to a fac-
torization of the matrix V similar to the one performed for SVD. V is approximated
by Vi,j = (Vi, Vj) = ∑K

p=0 VipVjp, passing from (Z× Z) parameters to K× K, where K
is a parameter of the model.
Further simplifications can be made in order to improve the optimization problem
related with the training of the weights. For instance, for the prediction (Eq. 5.6)
we take advantage of the reformulation of the interaction part, that has only linear
complexity O(KZ), where K is the dimension of the latent space, and Z of the vector
x:

1
2

K

∑
f=1

[(
Z

∑
i=1

Vi, f xi)
2 −

Z

∑
i=1

V2
i, f x2

i)]

Chapter 5. Future implementations 29

The components of the gradient in the Stocastic Gradient Descent, related to the
quadratic loss function L(y, ŷ) = [y− ŷ(θ)]2 are ∂L

∂θ = ∂L
∂ŷ

∂ŷ
∂θ .

Where:


∂ŷ
∂θ = 1 if θ = w0
∂ŷ
∂θ = xi if θ = wi
∂ŷ
∂θ = xi[∑N

1 Vj, f xj −Vi, f xi] if θ = Vi, f

(5.7)

Having a lot different possibilities, we think that in the future this model will permit
a compact way to test all different scenarios of features engineering that Velada’s
data offer.

5.2 Adding the time component to the recommender system

Most recommendation algorithms do not explicitly take into account the temporal
behavior and the recurrent activities of users. Two central but less explored ques-
tions are how to recommend the most desirable item at the right moment, and how
to predict the next returning time of a user to a service.

As we said, one of the initial purposes of this experimental project, was to build
a recommender system able, not only to recommend the right restaurant but also,
considering the behavior of users in time, to make the recommendation at the right
moment. For this reason in this section we will give our proposal, trying to give
an answer to this need. We anticipate here that after having analyzed the data, we
decided to focus our work in the static part of the recommender, due to the lack of
data and information useful to explore recurrency. Nevertheless we implemented a
very simple model that, currently, has no way to be tested.

5.2.1 Introduction

Periodic behavior is a kind of life behavior. The user arriving in a certain area peri-
odically or consuming a certain product, is called a periodic behavior. For example,
a user goes shopping every weekend or a user enjoys his favourite restaurant every
two Fridays. Detecting these frequencies of periodic behaviour has a particular rel-
evance for an app like Velada, as it aims to recommend the right restaurant at the
right time. To do so, we would require user-related time series (more in general,
time related information) of a certain length, that Velada, with its months of life, still
does not have.
Nevertheless in this section we try to introduce the time dependencies and how to
manage the recurrent visits to restaurants for our specific case.

5.2.2 Time Dependencies in Velada

In order to try start implementing the time parameter inside our recommender sys-
tem, as a first step we carried out some analysis, trying to display the time behaviour
of users’ actions and restaurants’ reservations.
Figures 5.1 show the mean number of total actions for each day of the week, for each
hour of the day and the mean number of total book, call and delivery for each day of

Chapter 5. Future implementations 30

(A) Mean user actions each day of the week and stan-
dard deviation averaged over all users.

(B) Sum of users’ actions each hour of the day

(C) Mean user reservations each day of the week and
standard deviation averaged over all users.

FIGURE 5.1: Inspecting average users’ activity during the days of the
week and during the hours of the day.

Chapter 5. Future implementations 31

the week. We can see that the numbers are still very smalls (and, surprisingly, Tues-
day is the day with the bigger activity). The big variance reveals what we saw in 3.6a
and 3.6b: the user activity in this phase of the app is predominantly concentrated in
a single day of usage. For example, the day with more reservations is Friday, with a
total number of reservations equal to 243. Of those 18 users made a reservation two
different Fridays and 3 users did it three different Fridays. It is also to be noted that
the event that the same restaurant has been reserved by the same user is still very
rare (it happened just 99 times). Under these premises it is maybe too early to build
some implementations for both the problems we mentioned above: is very hard to
detect the best moment of the recommendation in terms of days, indeed is impossi-
ble to detect the day of major activity of a given user. Is it also impossible to test any
kinds of implementation approaching the recurrency problem. Indeed there are no
information about recurrent choices of restaurants.
Anyway we suggest an implementation we coded about the recurrency problem that
can be easly tested in the future.
Given a user u, rather than recommend him five restaurants he still does not like,
we also consider the last restaurants that he reserved. Let’s say we built a recom-
mender that suggests K restaurants RecK = r1, ... , rK, without dropping from RecK
restaurants u already liked. In order to suggest a single restaurant to u, we initialize
a probability vector p = (1/K, ... , 1/K) for a multinomial distribution Mult(p). Let
µ = ∆t, the mean distance in time between two consecutive reservations of the same
restaurant ri. We then modeled the probability pi in a linear way s.t., if t0 is the last
reservation day p = λ(t) 1

K :

λ(t) =

{
1 if t > t0 + µ
1
µ (t− t0) if t0 ≤ t ≤ (µ + t0)

(5.8)

In this way, if we are near the day user u reserved the restaurant ri, this restaurant
has small probability to be suggested. If we are at a distance near or bigger to µ
from the last reservation, the probability returns to be the same of the other, unseen,
restaurants.

5.2.3 Related literature

Looking for some reference article, the most hard thing, was to find the kind of item
that can be compared to restaurants. Most of the models we found relates to short
term recurrency with long length time series, like songs or page clicks.
We would suggest to follow the ideas of (Bing Xu and Chen, 2017) proposed a sim-
ple recommender for LBSN (Location-Based Social Network), a new kind of social
network which combines the user’s friendship and the user’s position. This model
wants to make recommendations based on geo-localization, finding recurrency in
users’ displacements. In real life, some users go to a certain area, within multiple
periods. For example, a user goes to an area not only every Friday but also every
two weeks on Monday. This paper, proposed a period acquisition algorithm which
can mine multiple periods in time sequence correctly and efficiently. This could be
applied to Velada, in a way that, as we saw in equation 5.8, rather than finding a
single µ, we should find a set (µ1, ... , µn) of periods. What we are looking for are
the dominant frequencies of a Fourier Transformation of the time series of the users’
actions, the periods related to the bigger coefficients of the Fourier Series.

Chapter 5. Future implementations 32

We think that for its semplicity and immediacy, these ideas could be truly imple-
mented in a not too far future (two or three years) for the most loyal users. Follow-
ing (Bing Xu and Chen, 2017): let’s say Su(ti) a binary series of user u related to a
target event (in our case for example Is_Positive) and ti a generic timestamp event.
Let’s say L = t the set of instants where Su(ti) = 1. For the sake of clarity, if time
sequence is S(ti) = 0001100101010011, the target state is 1, the time stamps at which
the target state happened are {3, 4, 7, 9, 11, 14, 15}. With these instants indexes we
can create a list of candidates periods, i.e. all the differences between indexes:

T = {sp|sp = (ti − tj) if ti < tj} (5.9)

in our case of S(ti), T = {3, 4, 7, 9, 11, 15} and each sp ∈ T has different cardinality,
i.e. there are different (ti − tj) that give the same sp (in oure case sp = 4 is the most
common and happens three times). Then, once we fixed a threshold l, we will find
the true periods (µ1, ... , µn), using the support:

SUPi(t) = hi ×
spi

∆t0
(5.10)

Here hi is the cardinality of spi, ∆t0 is the distance in time between t and the first
ti in which the target event happened. So fixed a threshold l, if l ≤ SUPi(t) we can
finally store spi = µi in our list of periods (µ1, ... , µn), having multiple learned time
interval to recommend restaurant r which the series Su(ti) is related to.
This model needs even more data than the linear one but, rather than learn one
frequency it learns multiple periods, giving a more sophisticated solution of the re-
currency problem. The importance of the learned frequencies is evident and it can
be used in several ways. We might even learn the different frequencies, not just for
a single user but for a user-item couple. In this way we should easly implement
the recommendation in a simple and deterministic way: suggesting the recurrent
restaurant when is its period and an unseen restaurant in any other moment.

33

Chapter 6

Conclusion

6.1 Conclusion

In the present project we described in detail how we built a recommender for the
new restaurant app Velada. We tried to give attention not just on the restaurant sug-
gested, but also on the moment of the suggestion, a recommender able to suggest
the right restaurant at the right moment. After having analyzed the data, we under-
stood it is too early to investigate this second aspect, and we focused our effort on
the static part of the recommender.
The data provided by the App developers, that come from two different sources:
one coming from the app itself, with implicit features describing static qualities like
price ranges or neighborhoods, and the other one from Google Analytics describing all
the actions of the users inside the app during two months. Initializing, preprocess-
ing and analyzing them took a big part, in terms of time, of the whole project.
In the data provided there is no explicit information about the user-item preferences.
We tried to create it, mainly in two different ways, generating a one-to-five score or
generating a binary (thumb up) rate.
We built two main recommenders: a Content Based model and a Collaborative Filter
model. We tested them in many different setups, comparing them with two base
models: a Random Recommender and a ranking-based one we called Most Popular. In
all the settings our models outperform the Random Recommender, in particular the
Content Based is a bit less accurate than the Most Popular and the Collaborative Filter
using a binary rate is actually our best model with a 13% of accuracy score. Nev-
ertheless, we checked that rising the volume of the data, we improved the accuracy
of our model, suggesting that one of the bigger problems of the model is the lack of
data. In particular we detected that most of the users interacted with the app just
the first day. It means that, more than learning users’ tastes, the model is learning
how the users are making their first exploration of the app.
How to use all the implicit information, was one of the biggest challenges: we tried
to create an assignation rule, giving a rate to each couple user-restaurant based on
their interactions. It is not clear at all if this strategy works for the Collaborative
Filter. Instead, we obtained good improvements for the Content Based.
Although one of the initial goals was to include the temporal behavior and the recur-
rent activities of users in the recommender system, the short amount of data avail-
able made it unfeasible. We propose several basic ideas that could be tested as a first
step in this direction.
As future work, there are many questions open after this project. First of all, we
would suggest Velada’s developers to include a more clear, explicit, feature about
user-item preferences (such as one-to-five stars or a simple like) and/or a more clear
way to verify if a user actually went to a reserved restaurant. Regarding the model,

Chapter 6. Conclusion 34

in Chapter 5 we propose different future implementations that could help to im-
prove the recommender system, both regarding the recommender type (with models
that particularly fit we the Velada’s data) and the incorporation of the time compo-
nent. It would be also interesting to repeat our experiments with a much larger
dataset to test if some of our failed approaches were in fact promising ideas tested
without enough data.

35

Bibliography

Badrul M. Sarwar George Karypis, Joseph A. Konstan John T. Riedl (2000). “Appli-
cation of Dimensionality Reduction in Recommender System – A Case Study”.
In: ACM Press Proc. KDD Workshop on Web Mining for e-Commerce: Challenges
and Opportunities (WebKDD). DOI: http://robotics.stanford.edu/~ronnyk/
WEBKDD2000/papers/sarwar.pdf.

Badrul Sarwar George Karypis, Joseph Konstan and John Riedl (2001). “Item-Based
Collaborative Filtering Recommendation Algorithms”. In: Accepted for publication
at the WWW10 Conference.

Bing Xu, Zhijun Ding and Hongzhong Chen (2017). “Recommending Locations Based
on Users’ Periodic Behaviors”. In: ieeexplore.ieee.org Volume 2017.Article ID 7871502.
DOI: https://doi.org/10.1155/2017/7871502.

David Goldberg David Nichols, Brian Oki and Douglas Terry (1992). “Using Col-
laborative Filtering to Weave an information tapestry”. In: Communications of the
ACM Volume 35.Issue 12. DOI: http://www.bitsavers.org/pdf/xerox/parc/
techReports/CSL- 92- 10_Using_Collaborative_Filtering_to_Weave_an_
Information_Tapestry.pdf.

Nicolas Jones, Pearl Pu (2007). “User Technology Adoption Issues in Recommender
Systems”. In: pp. –.

Pasquale Lops, Marco de Gemmis and Giovanni Semeraro (2011). Recommender sys-
tems handbook. Springer Science.

Rendle, Steffen (2010). “Factorization Machines”. In: ieeexplore.ieee.org IEEE Inter-
national Conference on Data Mining. DOI: https://www.csie.ntu.edu.tw/
~b97053/paper/Rendle2010FM.pdf.

Solache, Sara. El nuevo Tinder, en versión gastronómica, se llama Velada. URL: https:
//www.lavanguardia.com/comer/al-dia/20210421/6988159/nuevo-tinder-
version-gastronomica-app-restaurantes-velada.html.

Yehuda Koren Robert Bell, Chris Volinsky. Matrix factorization techniques for recom-
mender systems. URL: https://www.data-science-repo/Recommender-Systems-
[Netflix].pdf.

https://doi.org/http://robotics.stanford.edu/~ronnyk/WEBKDD2000/papers/sarwar.pdf
https://doi.org/http://robotics.stanford.edu/~ronnyk/WEBKDD2000/papers/sarwar.pdf
https://doi.org/https://doi.org/10.1155/2017/7871502
https://doi.org/http://www.bitsavers.org/pdf/xerox/parc/techReports/CSL-92-10_Using_Collaborative_Filtering_to_Weave_an_Information_Tapestry.pdf
https://doi.org/http://www.bitsavers.org/pdf/xerox/parc/techReports/CSL-92-10_Using_Collaborative_Filtering_to_Weave_an_Information_Tapestry.pdf
https://doi.org/http://www.bitsavers.org/pdf/xerox/parc/techReports/CSL-92-10_Using_Collaborative_Filtering_to_Weave_an_Information_Tapestry.pdf
https://doi.org/https://www.csie.ntu.edu.tw/~b97053/paper/Rendle2010FM.pdf
https://doi.org/https://www.csie.ntu.edu.tw/~b97053/paper/Rendle2010FM.pdf
https://www.lavanguardia.com/comer/al-dia/20210421/6988159/nuevo-tinder-version-gastronomica-app-restaurantes-velada.html
https://www.lavanguardia.com/comer/al-dia/20210421/6988159/nuevo-tinder-version-gastronomica-app-restaurantes-velada.html
https://www.lavanguardia.com/comer/al-dia/20210421/6988159/nuevo-tinder-version-gastronomica-app-restaurantes-velada.html
https://www.data-science-repo/Recommender-Systems-[Netflix].pdf
https://www.data-science-repo/Recommender-Systems-[Netflix].pdf

	Abstract
	Acknowledgements
	Intro
	Introduction
	What is a recommender system
	Content Based
	Collaborative Filtering
	Model based

	Restaurant Recommender

	Velada
	The App
	Flow
	The Data

	The Data
	The data sources
	Initializing raw data
	Data from the app
	Data from Google Analyitics

	Data analysis
	The cities
	Overall Interactions
	Actions outside the restaurants pages
	Actions inside the restaurants pages
	Likes
	Time dependencies

	The Recommenders
	Preprocessing
	The Metrics
	The base models
	Random Recommender
	Most Popular K Recommender

	The Collaborative Filtering
	Content Based
	Results
	Experiment with base models
	Experiments with collaborative filtering
	Rising the minimum number of likes
	Adding the "neighbors" parameter
	Time evolution
	Trying to add features

	Experiments with Content Based models

	Failed experiment: non-binary rates
	Conclusion

	Future implementations
	Other models for the recommender system
	Matrix Factorization-based algorithms
	Factorization Machine

	Adding the time component to the recommender system
	Introduction
	Time Dependencies in Velada
	Related literature

	Conclusion
	Conclusion

	Bibliography

