

EGU21-2251 EGU General Assembly 2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License.

Syn-deformational melt percolation through a high-pressure orthogneiss and the exhumation of a subducted continental wedge (Orlica-Śnieżnik Dome, NE Bohemian Massif)

Carmen Aguilar¹, Pavla Štípská^{1,2}, Francis Chopin^{1,2}, Karel Schulmann^{1,2}, Pavel Pitra^{1,3}, Prokop

Závada⁴, Pavlína Hasalová¹, and Jean-Emmanuel Martelat⁵

¹Czech Geological Survey - Centre for Lithospheric Research – Prague – Czechia (carmen.gil@geology.cz)

²Université de Strasbourg – CNRS, IPGS UMR 7516 – France

³Univ Rennes – CNRS, Géosciences Rennes, UMR 6118 – France

⁴Institute of Geophysics, Academy of Sciences – Prague – Czechia

⁵Laboratoire de Géologie de Lyon – CNRS UMR5276, Université Claude Bernard et École Normale Supérieure – France

High-pressure granitic orthogneiss of the south-eastern Orlica-Śnieżnik Dome (NE Bohemian Massif) shows relics of a shallow-dipping S1 foliation, reworked by upright F2 folds and a mostly pervasive N-S trending subvertical axial planar S2 foliation. Based on macroscopic observations, a gradual transition perpendicular to the subvertical S2 foliation from banded to schlieren and nebulitic orthogneiss was distinguished. All rock types comprise plagioclase, K-feldspar, quartz, white mica, biotite and garnet. The transition is characterized by increasing presence of interstitial phases along like-like grain boundaries and by progressive replacement of recrystallized K-feldspar grains by fine-grained myrmekite. These textural changes are characteristic for syn-deformational grain-scale melt percolation, which is in line with the observed enrichment of the rocks in incompatible elements such as REEs, Ba, Sr, and K, suggesting open-system behaviour with melt passing through the rocks. The P-T path deduced from the thermodynamic modelling indicates decompression from ~15-16 kbar and ~650–740 °C to ~6 kbar and ~640 °C. Melt was already present at the P-T peak conditions as indicated by the albitic composition of plagioclase in films, interstitial grains and in myrmekite. The variably re-equilibrated garnet suggests that melt content may have varied along the decompression path, involving successively both melt gain and loss. The 6-8

km wide zone of vertical foliation and migmatite textural gradients is interpreted as vertical crustal-scale channel where the grain-scale melt percolation was associated with horizontal shortening and vertical flow of partially molten crustal wedge en masse.