
UNIVERSITAT DE BARCELONA

FUNDAMENTAL PRINCIPLES OF DATA SCIENCE MASTER’S
THESIS

Deep Learning for content-based indexing
of TV programs

Author:
Aitor LUCAS CASTELLANO
Noel RABELLA GRAS

Supervisor:
Dr. Jordi VITRIÀ MARCA

Paula GÓMEZ DURAN

A thesis submitted in partial fulfillment of the requirements
for the degree of MSc in Fundamental Principles of Data Science

in the

Facultat de Matemàtiques i Informàtica

July 1, 2021

http://www.ub.edu
http://mat.ub.edu

iii

UNIVERSITAT DE BARCELONA

Abstract
Facultat de Matemàtiques i Informàtica

MSc

Deep Learning for content-based indexing of TV programs

by Aitor LUCAS CASTELLANO Noel RABELLA GRAS

In recent years, deep neural networks have been successful in a lot of tasks in both
industry and academia due to its scalability to mange large volumes of data and
model parameters. Unfortunately, creating those large models and use their predic-
tions can be computationally expensive to deploy on devices with limited resources.
There is a TV channel called TV3 that wants to improve its recommendation en-
gine without the mentioned impediments. In that thesis, we aim to solve part of
that problem by using YOLO and Places to detect objects and scenes respectively,
and build a smaller model able to learn from them and extract frame objects and
scenes by itself. To do it, we have analyzed in depth Heterogeneous Classifiers (HC),
that ensemble models with some different classes in a smaller model using a convex
optimization approach. As HCs do not handle an scenario where classes differ com-
pletely between models, which is the TV3 case, we have implemented the smaller
model following a label prediction approach by using RMSE and we have evaluated
the model with ranking metrics as we have faced an unsupervised problem.

HTTP://WWW.UB.EDU
http://mat.ub.edu

v

Acknowledgements
I would like to thanks my parents, my little brother and my grandparents for sup-
porting me during my academic days until now. Also, thanks to Noel for sharing
with me all the funny moments that this thesis has left us and for all the days we
have spend in your house. Last but not least, thanks to Estefania for being by my
side and cheering for me during all this time that I have been doing the thesis.

I would like to first of all thank my family for being my main point of support,
especially Isabel. Also to Tamara, for always being there when I need it. And of
course also to Aitor, for knowing how to get a laugh out of any problem.

Finally, on behalf of the two, we would like to thanks Jordi and Paula for all the
meetings, help and moments we have shared during the past months. We wish you
the best.

vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Project PICAE . 1
1.2 The problem of TV programs indexation 1
1.3 The problem of distillation . 1

1.3.1 Introduction to knowledge distillation 2
1.3.2 Unifying Heterogeneous Classifiers with Distillation (SOTA) . . 3
1.3.3 Mathematical notation . 4

Mathematical review of Distillation 4
Extending Knwoledge Distillation with UHC 5
Method 1: Cross-entropy approach 5
Method 2: Matrix factorization in probability space 6
Method 2: Matrix factorization in logit space 6

1.4 Models . 7
1.4.1 MNIST Convolutional Neural Network 7
1.4.2 YOLO (You Only Look Once) . 7
1.4.3 Places365 . 8
1.4.4 EfficientNet . 9

1.5 Thesis structure . 11

2 Experimental setup 13
2.1 Datasets . 13

2.1.1 MNIST . 13
2.1.2 TV3 . 14

2.2 Software . 15
2.2.1 Python . 15
2.2.2 Pytorch . 15

2.3 Hardware . 16

3 Motivation and goals 17
3.1 Transferring knowledge depending on class overlapping 17
3.2 Is it possible to apply UHC to the TV3 problem? 17
3.3 Changing the loss approach to train the TV3 student 18
3.4 Use a more generalized dataset to train a better student 18

4 Experiments on transfering knowledge with MNIST 19
4.1 Development . 19
4.2 Experiment: extracting method estimations 20
4.3 Experiment: evaluating the whole scenario 22
4.4 Experiment: evaluating students . 24

viii

5 Experiments on the TV3 problem 27
5.1 First approach: YOLO, Places on TV3 dataset 27

5.1.1 Extracting YOLO and Places logits 29
5.1.2 Training the student . 30

5.2 Second approach: YOLO, Places on COCO and Places dataset 32
5.3 Evaluation . 33

5.3.1 First approach: take the most significant logit 33
5.3.2 Second approach: Normalized Discounted Cumulative Gain . . 33
5.3.3 Results . 34

Results on TV3 dataset . 34
Results on COCO-Places train dataset 35
Results on COCO-Places test dataset 35
Results on COCO-Places using as test the TV3 dataset 35

6 Conclusions and future work 37
6.1 Conclusions . 37

6.1.1 Conclusions on transferring knowledge on MNIST 37
6.1.2 Conclusions on TV3 . 37
6.1.3 Conclusions on COCO-Places datasets 37

6.2 Future work . 38
6.2.1 Datasets . 38
6.2.2 Training procedure . 38
6.2.3 Optimization formula . 38

A Contribution of each member 39

B Link to the Github Repository 41

C Supplementay material on UHC methods 43

Bibliography 45

1

Chapter 1

Introduction

1.1 Project PICAE

Our thesis is born from a spanish project called PICAE (“Proyecto PICAE: Publi-
cación Inteligente de Contenidos Audiovisuales y Editoriales”). From their website,
their main objective is to study innovative recommendation models of audiovisual
and editorial content with a double objective: to improve the user experience based
on their profile and their environment and, therefore, their satisfaction and loyalty,
as well as to improve the index of digital consumption of these contents, based on
identifying the products that these new forms of consumption demand and how
they should be produced, distributed and promoted to respond to the needs of this
emerging market.

1.2 The problem of TV programs indexation

The objective of our thesis is to solve and improve the content indexation of TV3
(“Televisió de Catalunya - CCMA”), the primary television channel from Catalonia.
On one side, we cannot label all the frames from the TV channels in a supervised
manner because it is unfeasible and can be expensive to hire someone to do it. On
the other side, another problem is related to the metadata of the TV programs. For
instance, the first season of Merlí was produced by TV3, making the corporation to
be the one managing all the stored data in their servers. But for some circumstances,
the second season was managed by another audiovisual production from a different
TV channel. Then, because of having different distributions, there is a lack of data for
TV3 to build its own recommendation engine for their consumers. That is the reason
why project PICAE wants to solve the indexation problem by implementing a new
recommendation engine with innovative features such as image and scene recogni-
tion or apply Natural Language Processing techniques to the generated subtitles of
each program.

1.3 The problem of distillation

Another key aspect to address the TV3 program indexation is related to hardware
and computation. In recent years, deep neural networks have been successful in
a lot of tasks in both industry and academia due to its scalability to mange large
volumes of data and model parameters. Unfortunately, creating those large models
and use their predictions can be computationally expensive to deploy on devices
with limited resources, e.g, embedded devices and mobile phones, if we consider a
huge amount of customers or users.

2 Chapter 1. Introduction

To this end, (Geoffrey Hinton and Dean, 2015) show that knowledge distillation
transfers effectively the knowledge of large models to more compressed models,
i.e, models with smaller size and obtain significant results, solving hardware and
computation problems and being able to deploy the new models on the mentioned
devices.

1.3.1 Introduction to knowledge distillation

A very simple way to improve the performance of machine learning algorithms is to
train many different models on the same data and ensemble in a very large model
trained with a very strong regularization to avoid overfitting problems. Once the
ensemble model has been trained, we can then use a distillation technique to transfer
the knowledge from the ensemble model, which is called teacher, to a smaller model
called student, that is more suitable for deployment.

The key concept in distillation is to not lose validity while transferring the knowl-
edge. The distribution of values among the outputs for a sample provides informa-
tion on how a model represents knowledge, because it assigns a greater value to the
most probable output class, and smaller values to the other classes. If both models,
teacher and student, are trained on the same data independently, the student model
might not have enough capacity to learn a precise knowledge representation given
the same computational resources and same data as the teacher model.

The key difference in distillation is that in a teacher-student architecture such as
in Figure 1.1, a richer knowledge representation is stored in the last layer (soft labels)
of the teacher model, compared to the usage of hard labels from a typical supervised
problem. During the thesis report we will be refering soft labels to logits and vicev-
ersa.

FIGURE 1.1: A simple teacher-student architecture

By this, we do not mean that we do not use the hard labels. On a standard
pipeline such as the one in Figure 1.2, source from (Daniele Foffano and Scholman,
2021), to train a student model, first we introduce the image to both the teacher
and the student, from the teacher side we extract the soft labels of the image and
we combine it with the soft labels of student to input them in a Kullback–Leibler
divergence loss, that measures how one probability distribution is different from
another. On the other side, we compute a supervised part where we extract the hard
labels of the student prediction and we compare it with the true labels of the input

1.3. The problem of distillation 3

image inside a cross-entropy loss. The resultant loss is the sum from both losses and
the backpropagation part is computed with the new loss.

FIGURE 1.2: Pipeline to train a student network

1.3.2 Unifying Heterogeneous Classifiers with Distillation (SOTA)

The success of machine learning in image classification tasks has been largely en-
abled by the availability of big datasets and the creation of very powerful models.
Nowadays, data collection is transitioning towards a more distributed landscape
where data is sourced from multiple entities and then combined to train a classifier in
a central model. However, in many real case scenarios, due to bandwidth restrictions
and privacy concerns, those sources do not share their information and only pri-
vately trained models can be shared. Moreover, each source may not be able to create
powerful models because of low availability for some model classes or maybe they
are not able to train the same classification model due to different computational
resources. To face this problem, (Jayakorn Vongkulbhisal and Visentini-Scarzanella,
2019a) propose a generalisation of knowledge distillation unifying knowledge from
a set of classifiers with different architectures and target classes into a single classi-
fier, given only a generic set of unlabelled data.

As we have mentioned in 1.3.1, knowledge distillation main functionality is to
compress multiple complex teacher models into a simpler architecture. The main
restriction is that distillation assumes that target classes are the same in teachers
and students. This paper goes one step further and propose an ensemble of Hetero-
geneous Classifiers (HCs). HCs are defined as a set of classifiers which may have
different architectures and, more importantly, may be trained to classify different
sets of target classes. To combine the HCs, authors derive a probabilistic relation-
ship connecting the outputs of HCs with the output of the unified classifier, which
is able to classify all target classes of all input HCs. Authors refer to this problem as
Unifying Heterogeneous Classifiers (UHC).

4 Chapter 1. Introduction

Based on this relationship, authors propose two classes of methods, one based
on cross-entropy minimisation and the other on matrix factorisation with missing
entries, to estimate the probability over all classes of a given sample and use it to
train the unified classifier. From this approach, it is possible to train any classifiers
with unlabelled data given the soft labels and its major entropy. Figure 1.3 visualizes
the main differences between the distillation embedding and the UHC.

FIGURE 1.3: Unifying Heterogeneous Classifiers (UHC). (a) Common
knowledge distillation pipeline. (b) UHC pipeline.

1.3.3 Mathematical notation

After introducing the basics from Distillation in 1.3.1 and UHC in 1.3.2, we define
from (Jayakorn Vongkulbhisal and Visentini-Scarzanella, 2019a) each variable as the
following:

• let U be an unlabelled set of images, which authors call the transfer set.

• let C = {Ci}N
i=1 be a set of N Heterogeneous Classifiers (HCs) (teachers), where

each Ci is trained to predict the probability pi(Y = lj) of an image belonging
to class lj ∈ Li.

Mathematical review of Distillation

Distillation is an algorithm for compressing multiple trained models/teachers Ci
into a single unified model/student CU . Compared to UHC, distillation corresponds
to the case where Li = Lj, ∀(i, j). The student model is trained by minimising the
cross-entropy between the soft labels of Ci and CU as:

J(q) = −∑
i

∑
l∈LU

pi(Y = l) log q(Y = l) (1.1)

1.3. The problem of distillation 5

In the case of our work, as we are working with neural networks, class probabil-
ities are usually computed with softmax function:

p(Y = l) =
exp(zl/T)

∑k∈LU
exp(zk/T)

(1.2)

The parameter zl is the logit for class l, T is the temperature parameter.

Extending Knwoledge Distillation with UHC

Given U and C, the goal of UHC is to learn a unified classifier CU (student) that esti-
mates the probability q(Y = lj) of an input image belonging to class lj ∈ LU , where
LU =

⋃N
i=1 Li = {l1, l2, . . . , lL}. Take into account that Ci might be trained to classify

different sets of classes, i.e., we may have Li 6= Lj or even |Li| 6= |Lj| for i 6= j. To
tackle the UHC, the three main steps are:

• Pass the image x ∈ U to Ci to obtain pi ∀i.

• Estimate q from {pi}i.

• Use the estimated q to train CU in a supervised manner.

Going through the second step and defining L−i as the set of classes in LU but
outside Li, we have to relate in some manner the output pi of each Ci to the prob-
ability q over LU . Since pi is defined only in the subset Li ⊆ LU , authors consider
pi(Y = l) as the probability q of Y = l given that Y cannot be in L−i, which leads to:

pi(Y = l) = q(Y = l|Y /∈ L−i) (1.3)

= q(Y = l|Y ∈ Li) (1.4)

=
q(Y = l, Y ∈ Li)

q(Y ∈ Li)
(1.5)

=
q(Y = l)

∑k∈Li
q(Y = k)

(1.6)

Method 1: Cross-entropy approach

Based on Eq. 1.6, we generalize Eq. 1.1 to:

J(q) = −∑
i

∑
l∈Li

pi(Y = l) log q̂i(Y = l) (1.7)

q̂i(Y = l) =
q(Y = l)

∑k∈Li
q(Y = k)

(1.8)

Minimization of 1.7 is converted to a convex problem. Authors define ul ∈ R for
l ∈ LU and replace q(Y = l) with exp(ul). Eq 1.7 is transformed to:

Ĵ({ul}l) = −∑
i

∑
l∈Li

pi(Y = l)

(
ul − log

(
∑

k∈Li

exp(uk)

))
(1.9)

We minimise it using gradient descent. Once the optimal {ul}l l is obtained, we
transform it to q with the softmax function.

6 Chapter 1. Introduction

Method 2: Matrix factorization in probability space

Matrix factorization casts UHC as a problem of filling an incomplete matrix of soft
labels. Consider a matrix P ∈ [0, 1]LxN , where we set Pli (element in row l and
column i) to pi(Y = l) if l ∈ Li and zero otherwise. Then, we define M ∈ [0, 1]LxN

as a mask matrix where Mli is 1 if l ∈ Li and 0 otherwise. We can factorize P into a
masked Hadamard product of vectors as:

M� P = M� (uv>) (1.10)

u =

q(Y = l1)
...

q(Y = lm)

 , v =

1

∑l∈L1
q(Y=l)
...
1

∑l∈LN
q(Y=l)

 (1.11)

In 1.11, u is the vector containing q and v the normalization factor for each Ci. To
estimate the u, we minimize the following problem:

minimize
u, v

||M� (P− uv>)||2F (1.12)

subject to u>1L = 1 (1.13)

v ≥ 0N , u ≥ 0L, (1.14)

where 0k and 1k represent vectors of zeros and ones of size k. This formulation is
a non-negative matrix factorization problem solved using Alternating Least Squares
(ALS), where u is normalized to sum 1 in each iteration.

Method 2: Matrix factorization in logit space

Let zi
l be the given logit output from class l of Ci, and ul be that of CU to be estimated.

Consider a matrix Z ∈ RLxN where Zli = zi
l if l ∈ Li and 0 otherwise. We estimate

the vector of logits u ∈ R as:

minimize
u, v, c

||M� (Z− uv> − 1Lc>)||2F + λ(||u||22 + ||v||22) (1.15)

subject to v ≥ 0N , (1.16)

where c ∈ RN deals with shift in logits, and λ ∈ R is a hyperparameter control-
ling regularization. Optimizing v ∈ RN is equivalent to optimize the temperature of
logits.

1.4. Models 7

1.4 Models

To develop all the experiments we have used the following Deep Learning models:

1.4.1 MNIST Convolutional Neural Network

As we have mentioned during the thesis, we have used the MNIST dataset to check
and scale the problem of UHC before implenting it in the real case scenario. To
investigate how the knowledge is transferred from the teachers to the student, we
have used a simple Convolutional Neural Network (CNN), whose architecture is
shown in Figure 1.4 (further details on the channels parameters are exposed in the
Experiment contents). The CNN is composed by:

• Three convolutional layers, two flatten layers and the output layer.

• Activation function ReLU and Softmax for the output.

• Dropout of 50% after each convolutional layer.

FIGURE 1.4: Architecture of the Convolutional Neural Network

1.4.2 YOLO (You Only Look Once)

YOLO (Joseph Redmon and Farhadi, 2015) is one of the most popular algorithms
that provides object detection in real-time. Its popularity comes mainly from its
speed to detect objects without having to trade-off with a high error rate. As the
name suggest (You only look Once), the algorithm uses a unique convolutional neu-
ral network requirying only a single forward propagation in an image to detect ob-
jects and predict their classes.

The pretrained model of YOLO used along ours experiments was built with the
COCO Dataset. From the original paper (Tsung-Yi Lin, 2014), the MS COCO (Mi-
crosoft Common Objects in Context) dataset is a large-scale object detection, seg-
mentation, key-point detection, and captioning dataset. The dataset consists of 328K
images.

The first version of MS COCO dataset was released in 2014. It contains 164K im-
ages split into training (83K), validation (41K) and test (41K) sets. In 2015 additional
test set of 81K images was released, including all the previous test images and 40K
new images.

8 Chapter 1. Introduction

Based on community feedback, in 2017 the training/validation split was changed
from 83K/41K to 118K/5K. The new split uses the same images and annotations.
The 2017 test set is a subset of 41K images of the 2015 test set. Additionally, the 2017
release contains a new unannotated dataset of 123K images.

On the Figure 1.5 below, we show the detected objects and its predictions of
YOLO over an image from our dataset:

FIGURE 1.5: Object detection and prediction of the scene from pro-
gram Polònia with YOLO

1.4.3 Places365

From the main Github page (“Release of Places365 - CNNs”), Places365 is a sub-
set of images from Places2 database. It has been trained with various Convolu-
tional Neural Networks such as (“ImageNet Classification with Deep Convolu-
tional Neural Networks” 2012, AlexNet), (“Going deeper with convolutions” 2014,
GoogLeNet), (“Very Deep Convolutional Networks for Large-Scale Image Recog-
nition” 2014, VGG) and (“Deep Residual Learning for Image Recognition” 2015,
ResNet). The main train set of Places365 has around 1.8 million images from 365
scene categories, where there are at most 5000 images per category. Meanwhile, the
extended train set of Places365 has extra 6.2 million images along with all the images
of the standard Places365, where there are at most 40,000 images per category.

From the official Places website (“Places2 - CSAIL MIT”), the Places dataset is
designed following principles of human visual cognition. The goal is to build a
core of visual knowledge that can be used to train artificial systems for high-level
visual understanding tasks, such as scene context, object recognition, action and
event prediction, and theory-of-mind inference. The semantic categories of Places
are defined by their function: the labels represent the entry-level of an environment.
To illustrate, the dataset has different categories of bedrooms, or streets, etc, as one
does not act the same way, and does not make the same predictions of what can
happen next, in a home bedroom, an hotel bedroom or a nursery.

1.4. Models 9

In total, Places contains more than 10 million images comprising 400+ unique
scene categories. The dataset features 5000 to 30,000 training images per class, con-
sistent with real-world frequencies of occurrence. Using Convolutional Neural Net-
works (CNN), Places dataset allows learning of deep scene features for various scene
recognition tasks, with the goal to establish new state-of-the-art performances on
scene-centric benchmarks. Here we provide the Places Database and the trained
CNNs for academic research and education purposes.

On the following Figure 1.6, we show an example from our dataset and the
Places365 prediction:

FIGURE 1.6: Scene prediction of the program Polònia

1.4.4 EfficientNet

From the official paper (“EfficientNet: Rethinking Model Scaling for Convolutional
Neural Networks” 2019), EfficientNet is a convolutional neural network architec-
ture and scaling method (see Figure 1.7) that uniformly scales all dimensions using
a compound coefficient. Unlike conventional practice that arbitrary scales these fac-
tors, the EfficientNet scaling method uniformly scales network width, depth, and
resolution with a set of fixed scaling coefficients. For example, if we want to use
times more computational resources, then we can simply increase the network depth
by, width by, and image size by, where are constant coefficients determined by a
small grid search on the original small model. EfficientNet uses a compound co-
efficient to uniformly scales network width, depth, and resolution in a principled
way.

The compound scaling method is justified by the intuition that if the input im-
age is bigger, then the network needs more layers to increase the receptive field and
more channels to capture more fine-grained patterns on the bigger image. The base
EfficientNet-B0 network is based on the inverted bottleneck residual blocks of Mo-
bileNetV2, in addition to squeeze-and-excitation blocks.

10 Chapter 1. Introduction

FIGURE 1.7: Scaling of the EfficientNet architecture

1.5. Thesis structure 11

1.5 Thesis structure

In Chapter 1, we have introduced how Project PICAE and our thesis comes from it.
We have talked about the current problem of TV3 and given a theorical view of the
algorithms we have implemented to solve the problem. Finally, we present, in a high
level perspective, the machine learning models used to develop our experiments
during the thesis.

In Chapter 2, we introduce the experimental setup of the thesis: the main datasets,
why we have used them and how, a friendly introduction to the software and hard-
ware used to give the reader the smallest detail in our proposed choices.

In Chapter 3, we talk about the motivations and goals behind the project. We
ask ourselves which are the key points we want to solve and how we can achieve
possible solutions.

In Chapter 4, we explain all the procedure from the first motivation and goal
using MNIST. We explain in detail each step to help readers to reproduce the results
if they want and we show the results.

In Chapter 5, we explain all the procedure from the motivation and goal of the
TV3 problem. We explain in detail each step to help readers to reproduce the results
if they want and we show the results.

In Chapter 6, we discuss about all the project, the obtained results and which
could be future steps to improve some of the results.

13

Chapter 2

Experimental setup

2.1 Datasets

Two types of data sets have been used to perform the study carried out in this Mas-
ter’s thesis. On the one hand, to test the different methods from Unifying Hetero-
geneous Classifiers with Distillation we have used different datasets to scale the
complexity of the scenario. First, we have used the MNIST dataset to reproduce and
validate if the three exposed methods are able to work in a simple situation. On the
other hand, after checking the algorithms and their performance, we have applied
the methods to the main dataset of the thesis from TV3, which is a real case scenario.

2.1.1 MNIST

From its main page, the MNIST database of handwritten digits, has a training set
of 60,000 examples, and a test set of 10,000 examples. The digits have been size-
normalized and centered in a fixed-size image. It is a good database for people who
want to try learning techniques and pattern recognition methods on real-world data
while spending minimal efforts on preprocessing and formatting.

Images contain grey levels as a result of the anti-aliasing technique used by the
normalization algorithm and are centered in a 28x28 image by computing the center
of mass of the pixels, and translating the image so as to position this point at the
center of the 28x28 field. Figure 2.1 from (“Josef Steppan”, Wikipedia), show a few
samples from the MNIST test dataset.

FIGURE 2.1: Examples of the different handwritten digits

14 Chapter 2. Experimental setup

2.1.2 TV3

The provided dataset is composed of 80 television programs from the primary cata-
lan channel. From each program, there are approximately 10 different episodes with
multiple images. The approach to capture all the frames in the dataset has been to
capture them every ten seconds. The total number of the images in the TV3 dataset is
318299, with multiple sizes that have been reshaped automatically by the software.
To show which are the programs and the images, we have Table 2.1:

2324 240 El nen clonic

33 recomana 60 minuts A ritme de pedal

Acció política Afers exteriors Amb filosofia

Ànima Blog Europa Campiones

Càpsules de ciència Catalunya Experience Cinema 3

Com som Còmics Crackovia

Cuines Divendres Dr. w

Economia en colors El faro Cruïlla de camins

El gran dictat El mur Els dies clau

Els últims artesans En clau de vi Espai Terra

Ets música Fútbol cat Generació digital

Gr Barcelona Gran nord Identitats

Infidels Ja t’ho faràs Jet lag

Karakia Km 0 Kmm

Entrevista d’estiu L’hora del lector La riera

Més 324 Missa conventual Món 324

Néixer de nou No serà fàcil Oh happy day

Oh! Espanya Òpera en texans Parlament

Polònia Polònia: grans moments Programa sindical UGT

Quarts de nou Quequicom Retrats

Riu avall Sala 33 Sense ficció

Singulars Sitges Som dones

Suckers Teatral Telenoticies comarques

Thalassa Tot un món Tria 33 resum

Tria 33 Valor afegit Ventdelplà Vespre 324

Veterinaris Via llibre Xarxa natura

Zona unef .cat -

TABLE 2.1: Different programs in the dataset

2.2. Software 15

Just for illustration purposes, Figure 2.2 shows a sequence of frames showing the
sampling of a scene from a program:

FIGURE 2.2: Sequence from the program El gran dictat

2.2 Software

2.2.1 Python

Python language is incredibly easy to use and learn for new programmers. It is
one of the most accessible programming languages available because it has simpli-
fied and not complicated syntax, which gives more emphasis on natural language.
Due to its ease of learning, usage and big supportive community of python, python
has excellent libraries with different specific focus, such as scikit-learn, numpy or
opencv. As Python has a lot of different machine learning libraries, it is the perfect
programming language to use for project such as our thesis.

2.2.2 Pytorch

From the official Wikipedia page (“Pytorch-Wikipedia”, Wikipedia), PyTorch is an
open source machine learning library based on the Torch library, used for applica-
tions such as computer vision and natural language processing, primarily developed
by Facebook’s AI Research lab (FAIR). It is free and open-source software released
under the Modified BSD license. PyTorch provides two high-level features that are
tensor computing (like NumPy) with strong acceleration via graphics processing
units (GPU) and deep neural networks built on a type-based automatic differentia-
tion system.

In PyTorch, models are directed acyclic graphs (DAG). We can define, change
and execute nodes plus use modules in an Object Oriented Programming (OOP)
manner making the framework more integrated with Python language, which feels
more native and pythonic. Morever, since computation graph in Pytorch is defined
at runtime, we can use debugging tools easily. Another key aspect on why we have
chosen Pytorch is data paralellism, because we are able to leverage multiple GPUS
in most of the computations that we have done during the thesis.

16 Chapter 2. Experimental setup

2.3 Hardware

To develop and run all the experiments we have used the following configuration:

• Intel(R) Core(TM) i7-9800X CPU @ 3.80GHz

– RAM memory (in GB): 94

– Number of cores: 8

– Number of threads: 16

• PNY Nvidia Quadro RTX 4000 8GB GDDR6

17

Chapter 3

Motivation and goals

3.1 Transferring knowledge depending on class overlapping

Is it possible to train teachers with fewer and fewer classes in common and trans-
fer knowledge to a student correctly? We have used (Jayakorn Vongkulbhisal and
Visentini-Scarzanella, 2019a) as the base of our work and we have analyzed in depth
the "advantage" of being able to train classifiers with different class labels to see if
that applies to solve our problem.

That motivation comes from the experiments part in (Jayakorn Vongkulbhisal
and Visentini-Scarzanella, 2019a), where (Jia Deng, 2009, Imagenet), (Fisher Yu,
2015, LSUN) and (“Release of Places365 - CNNs”) are used to train teachers but
not with all their available classes. Authors do not tell anything about that decision,
maybe results do not vary in terms of accuracy and the computational cost decreases
significantly in some manner.

The key fact is that if we consider UHC as a step further from distillation and we
know its premise tell us that soft labels contain richer information than hard labels,
their results section should perform better even if the discarded classes from each
dataset are not significant enough because their soft labels carry important informa-
tion that can be helpful to the most significant ones.

From that, our first goal has been to demonstrate if the proposed methods in
1.3.3 work properly using all label classes from the MNIST dataset, choosen because
of its simplicity, and to check the effect of adding less overlapping until achieving
the case where teachers have no class intersection, which is not considered in UHC
experiments.

3.2 Is it possible to apply UHC to the TV3 problem?

From the above goal, we have seen in Chapter 4 that without any class overlapping,
even in a simple classification problem such as MNIST, the accuracy of the students
decay considerably, even though soft labels are more robust than hard labels. How
can we deal then with indexation problem of TV3? To tackle the problem we have
though to use YOLO for detecting objects in frames and Places365 for scene recog-
nition. The premise is that in an ideal scenario, TV programs usually have specific
locations and objects, so we should be able to compute a mean from the frame pre-
dictions and be able to cluster each program.

Considering to model two teachers from YOLO and Places365, we are facing
the problem of implementing UHC without class overlapping. The main difference
in that case compared to MNIST is that both models have different functions. In
MNIST, even if we train a teacher that learns to identify digits from 0 to 4 and another
teacher from 5 to 9, we are playing with dependant probability distributions at the

18 Chapter 3. Motivation and goals

end, even if a teacher that has never seen a 4, it will predict something similar to
one of their classes, for instance a 9. In the case of YOLO and Places365, we are
playing with class labels that differ in their main functions. Moreover, YOLO returns
independent probabilities for each recognized object in a scene, contrary to Place365,
where classes compete (by competition, we mean the sum of all predictions is 1).

Then, we have asked ourselves, is it possible to build an UHC from here? The
only problem resides in how to manage logits and merge them in order to transfer
correctly the knowledge to the student.

3.3 Changing the loss approach to train the TV3 student

After not being able to merge UHC with TV3, we have thought to use another loss
criteria, which is explained in Chapter 5 and train the student. The goal then is train
a student classifier with the TV3 dataset with the RMSE loss.

3.4 Use a more generalized dataset to train a better student

If we train a student on the TV3 dataset, we are training a model that cannot gener-
alize, and we want something more robust at the end, that the reason on trying to
use the base datasets from YOLO and Places. Can we use samples from COCO and
Places datasets to train a student model that is able to generalize and have a good
performance on the TV3 images?

19

Chapter 4

Experiments on transfering
knowledge with MNIST

4.1 Development

To demonstrate and reproduce if the cross-entropy and matrix factorization methods
from 1.3.3 work correctly and help a student model to learn, we have develop sev-
eral experiments with the CNN architecture mentioned in 1.4.1 by creating different
teacher configurations based on their classes. Models are shown in Table 4.1:

Teacher 1 Teacher 2 Common labels

0 to 4 5 to 9 0

0 to 5 5 to 9 1

0 to 5 4 to 9 2

0 to 6 4 to 9 3

0 to 6 3 to 9 4

0 to 7 3 to 9 5

0 to 7 2 to 9 6

TABLE 4.1: Convolutional Neural Network configurations

The training setup for each teacher is the following one:

• Filter train images by targets and create a Pytorch Dataloader with batchSize =
32.

• Create the teacher model with 128 channels.

• 50 epochs.

• Learning rate 0.001 with learning rate decay of 0.5.

• Cross-entropy loss.

• Stochastic Gradient Descent optimizer with momentum = 0.9.

• Filter test images as the first step and extract accuracies from teachers.

• Save teacher models in a .pt file.

20 Chapter 4. Experiments on transfering knowledge with MNIST

To check if the models have trained correctly, we have plotted the accuracies on
the train and test set in Table 4.2:

Teacher Train acc Test acc

0 to 4 99% 99%

0 to 5 98% 98%

0 to 6 97% 97%

0 to 7 97% 97%

2 to 9 97% 97%

3 to 9 93% 93%

4 to 9 96% 96%

5 to 9 98% 97%

TABLE 4.2: Convolutional Neural Network configurations

After training each pair of teachers, we compute the estimated q following the
next steps:

• Pass train images through teachers to extract logits (soft labels) and probabili-
ties.

• Create the mask M, the probability matrix P and the logit matrix Z.

• Use probabilities for method 1 (Cross-entropy approach) and extract the esti-
mated q.

• Use M and P for method 2: Matrix Factorization in Probability Space and M
and Z for method 2: Matrix Factorization in Logit Space to extract the esti-
mated q.

4.2 Experiment: extracting method estimations

Figures 4.1, 4.2, 4.3 show different tables that we have developed during our exper-
iments on implementing each method. In that scenario, we have 4 labels in common.
The first teacher has been trained with digits 0 to 6, meanwhile the second teacher
has been trained with digits from 3 to 9. For analysis purposes, we have plotted all
estimated values as probabilities.

Figure 4.1 show the estimated q values from the digit 1. In green, the max value
is remarked, in orange, the second max value. In that case, the first teacher is the
one that knows about digit 1, meanwhile the other teacher recognize the digit as the
number 7, because it has never seen a number 1 and obviously, the most similar is
7, which we appreciate in the probability distribution. The cross-entropy method
converges into a distribution that is confused between 1 and 7. On the other hand,
matrix factorization methods converge almost perfectly to the correct number, with
accuracies of 89% and 99% respectively.

4.2. Experiment: extracting method estimations 21

FIGURE 4.1: Estimated q values from digit 1

Figure 4.2 show the estimated q values from the digit 4. In green, the max value is
remarked. In that case, both teachers know about the digit 4. As we can see it seems
that there is no problem in a simple scenario such in MNIST when digits overlap.
The cross-entropy method converges into a distribution where 4 has a 96% of accu-
racy. On the other hand, matrix factorization methods converge almost perfectly to
the correct number, with accuracies of 99%.

FIGURE 4.2: Estimated q values from digit 4

22 Chapter 4. Experiments on transfering knowledge with MNIST

Figure 4.3 show the estimated q values from the digit 7. In green, the max value
is remarked, in orange, the second max value. In that case, opposite to the first
scenario, the first teacher does not know about digit 7, meanwhile the other teacher
has learned in its training about the digit 7.

The interesting part here is how the first teacher recognizes the digit. The net-
work has learned a pattern in which relates 7 to 3, surprisingly, it is not match-
ing 7 with 1 and the probability distribution goes completely towards to 3. The
cross-entropy method converges into a less confused distribution, but it still has a
strong collision between 3 and 7 probabilities. On the other hand, matrix factoriza-
tion methods converge almost perfectly again to the correct number, with accuracies
of 98% and 99% respectively.

FIGURE 4.3: Estimated q values from digit 7

4.3 Experiment: evaluating the whole scenario

To check the general effect of the estimated q values, we have extracted three con-
fusion matrices that go from 0 to 2 labels in common. Figure 4.4 corresponds to the
confusion matrices of teachers with any labels in common. As we can appreciate,
the predictions are not the most accurate ones, for instance, there is a problem for
predicting 9, because most of the times is confused with the number 4.

In Figure 4.5, for the matrix factorization in logit space, the problem of 9 and 4
starts to mitigate as both teachers share the number 4. Anyway, the scenario with
one label in common is still not decent enough. For the cross-entropy method, the
problems still persist, meanwhile matrix factorization in probability space has im-
proved its predictions but not significantly.

4.3. Experiment: evaluating the whole scenario 23

FIGURE 4.4: Confusion matrix with 0 digits in common

FIGURE 4.5: Confusion matrix with 1 digit in common

24 Chapter 4. Experiments on transfering knowledge with MNIST

In Figure 4.6, the confusion between labels mitigates significantly overall. For
the matrix factorization in logit space, the errors have decreased a lot, and for the
cross-entropy part there are also less errors.

FIGURE 4.6: Confusion matrix with 2 digits in common

4.4 Experiment: evaluating students

After computing the estimated values for each image in the three methods, we have
done the following steps:

• Create a Pytorch Dataloader with batchSize = 32.

• Create the student model with lower size, for instance, 64 channels.

• 50 epochs.

• Learning rate 0.001 with learning rate decay of 0.5.

• KL-divergence loss.

• Stochastic Gradient Descent optimizer with momentum = 0.9.

• In each batch, compute the loss between the student output and their corre-
sponding q value and do the backpropagation step.

4.4. Experiment: evaluating students 25

After doing several experiments and taking as reference the accuracies from (Jayakorn
Vongkulbhisal and Visentini-Scarzanella, 2019a), which are bad in general, we can
conclude that for our first goal, transferring the knowledge to a student is not good
enough to considerate the model a good one for production environments. On the
other hand, following the distillation premise, we have seen how Matrix Factoriza-
tion in Logit Space is the best method and the one that carries more significant infor-
mation thanks to soft labels, coinciding with (Jayakorn Vongkulbhisal and Visentini-
Scarzanella, 2019a).

Linking the TV3 problem, from the poor performance of the transferring knowl-
edge problem, it is not feasible to continue with the UHC approach. Moreover, in
case it could work, we should think about an approach to deal with the independant
logits from YOLO.

27

Chapter 5

Experiments on the TV3 problem

After checking the transfer of knowledge from MNIST until having unique different
classes in each teacher and the performace, we have to tackle the indexation problem
using YOLO for detecting objects in frames and Places365 for scene recognition from
a different perspective. The main motivation of this chapter is to go one step further
from UHC and be able to find a viable approach to merge the independent logits
from YOLO with Places.

5.1 First approach: YOLO, Places on TV3 dataset

Remembering the main objective of our thesis, due to hardware and legal require-
ments, it is hard to train different classifiers and use them as an embedding later. In
our specific case, if these requirements did not exist we could just train one model
for object detection and another one for recognition scene. The next figures show
some examples of soft and hard labels of the TV3 dataset with great results:

FIGURE 5.1: Logit outputs from an image from the TV3 dataset

28 Chapter 5. Experiments on the TV3 problem

FIGURE 5.2: Logit outputs from another image from the TV3 dataset

From Figures 5.1 and 5.2 we have extracted the best and worst logits to analyze
how the logit distributions vary. Focusing on results, we see how easy is for the
networks to predict values from images that have never seen.

FIGURE 5.3: Probability outputs from an image from the TV3 dataset

5.1. First approach: YOLO, Places on TV3 dataset 29

FIGURE 5.4: Probability outputs from another image from the TV3
dataset

5.1.1 Extracting YOLO and Places logits

To decide how to extract the final logits from YOLO, we have gone through different
steps until achieving a vector of logits for each image. First, we have faced the issue
of how to manage the different detected boxes that can appear in a single image,
since every box has its own logits. Figure 5.5 show an example of the whole output
after using the YOLO in an image that detects 3 objects:

FIGURE 5.5: Example of one output vector from YOLO

To solve and obtain a unique vector of 80 logits for each image, we have decided
to consider all initial candidate boxes and extract all their logits. Compared to the
main step inside the YOLO algorithm, in which it applies what is called Non-Max
Suppression, we have decided to choose the max logit value for each class label. To
illustrate that step, we can take a look to Figure 5.6. As we can appreciate, person
and tie are two objects from the frame, so their logit values are high compared to the
rest.

30 Chapter 5. Experiments on the TV3 problem

FIGURE 5.6: Extracting the max logit from all initial box candidates

On the other hand, we have extracted the logits from Places365 in a more easy
way. After passing the image through a Resnet architecture, we have obtained the
365 logits. In that case, logits and probabilities have dependant distributions, mean-
ing that if we sum all the probabilities we get as result 1.

5.1.2 Training the student

• Create a Pytorch Dataloader with batchSize = 16.

• Create the student model from EfficientNetB0 changing the output layer to
445.

• GPU paralellization with nn.DataParallel().

• 10 epochs.

• Learning rate 0.001 with learning rate decay of 0.5.

• MSE loss.

• Stochastic Gradient Descent optimizer with momentum = 0.9.

• Propagate the loss (see Figure 5.7 and 5.8 for the variations) and do the back-
propagation step.

5.1. First approach: YOLO, Places on TV3 dataset 31

To train the student model we have followed two different pipelines. In Fig-
ure 5.7, as we are merging all the logits in the same vector, we have scaled yolo logits
to the Places domain because the different between both vector values is significant
and can cause some unbalance towards Places learning.

After the scaling, we compute the RMSE to predict the student outputs and we
update the model until finishing all the epochs.

FIGURE 5.7: Using RMSE on merged logits

The formula we have used to scale logits is the following one:

scaled logits =
x−min(x)

max(x)−min(x)
· [max(t)−min(t)] + min(t) (5.1)

where x are the logits from YOLO and t the logits from Places. By doing that
normalization, we can balance the range of values from YOLO.

On the other side, Figure 5.8 show another approach. We have divided every
output and we have computed a YOLO loss and a Places loss and we have computed
the sum of both before backpropagation.

32 Chapter 5. Experiments on the TV3 problem

FIGURE 5.8: Using RMSE on splitting logits

5.2 Second approach: YOLO, Places on COCO and Places
dataset

After seeing the problems of implementing the student directly from the TV3 dataset,
we have decided to take a image subset from COCO and another one from Places2
to create a new more balanced dataset. We have downloaded a total of:

• 118287 images from COCO.

• 36500 images from Places2.

After having the dataset, we have followed the same steps such as in section 5.1.2
to train the student model. This time, we have followed the approach of summing
the two splitted losses. After 10 epochs, we have discovered that the student could
train even more, so we have added 50 more epochs to the initial 10. After testing a
bit some outputs we have discovered that for the part of Places it has been learning
and having a better performance, meanwhile for the YOLO part the performance has
been poor. The problem has been that Places loss is huge compared to the YOLO loss
and has decreased a lot compared to the YOLO one. To solve it, we have balanced
each loss before computing the total sum (see Figure 5.9) to force the student to learn
better about the YOLO logits.

FIGURE 5.9: Balancing student loss with α and β

5.3. Evaluation 33

5.3 Evaluation

To evaluate all our results from the TV3 problem, we cannot extract any supervised
metric such as MNIST accuracies. The dataset from TV3 are images without labeling,
obviously due the cost of doing the annotation step. We have decided to take as
groundtruth the extracted labels and values from YOLO and Places and we have
computed ranking metrics to rank the list of classes based on their relevance in a
each task.

5.3.1 First approach: take the most significant logit

From the approach we are facing, we can say we are facing a semi-supervised learn-
ing in some manner. We have decided to extract the class label with maximum logitf
from the original groundtruth and from the output prediction of the student model.
What we can achieve with that, is to check if atleast, the most relevant item of each
image is significant enough for our student network. From that, we have computed
an accuracy to have a more quantitative result.

5.3.2 Second approach: Normalized Discounted Cumulative Gain

From (“Discounted cumulative gain”, Wikipedia), Normalized Discounted cumula-
tive gain (nDCG) is a measure of ranking quality. In information retrieval, it is often
used to measure effectiveness of web search engine algorithms or related applica-
tions. Using a graded relevance scale of documents in a search-engine result set,
DCG measures the usefulness, or gain, of a document based on its position in the
result list. The gain is accumulated from the top of the result list to the bottom, with
the gain of each result discounted at lower ranks.

Two assumptions are made in using it:

• Highly relevant documents are more useful when appearing earlier.

• Highly relevant documents are more useful than marginally relevant docu-
ments, which are in turn more useful than non-relevant documents.

DCGp =
P

∑
i=1

reli
log2(i + 1)

= rel1 +
P

∑
i=2

reli
log2(i + 1)

(5.2)

nDCGp =
DCGp

IDCGp
(5.3)

IDCGp =
|REL|

∑
i=1

2reli − 1
log2(i + 1)

(5.4)

34 Chapter 5. Experiments on the TV3 problem

5.3.3 Results

Results on TV3 dataset

FIGURE 5.10: Example on a football field

FIGURE 5.11: Example on a TV studio

5.3. Evaluation 35

Figures 5.10 and 5.11show the main problem of training a student directly from
TV3 images. As we can see, the predictions are biased towards TV studios, offices,
i.e, to closed scenarios, which are the most frequent landscapes. If we try to predict a
output scenario, it fails always due that imbalanced problem. Respect to TV3 we do
not have a test set, and even if we split in a typical train/test split, we should make
it for programs and try to balance everything, so we have decided to just extract
quantitative results from COCO-Places.

Results on COCO-Places train dataset

Max logit approach:

• Label accuracy given max logit YOLO: 49%.

• Label accuracy given max logit Places: 87%.

nDCG approach:

• YOLO top-5 score: 0,43.

• YOLO top-10 score: 0,37.

• Places top-5 score: 0,98.

• Places top-10 score: 0,98.

Results on COCO-Places test dataset

Max logit approach:

• Label accuracy given max logit YOLO: 49%.

• Label accuracy given max logit Places: 87%.

nDCG approach:

• YOLO top-5 score: 0,41.

• YOLO top-10 score: 0,34.

• Places top-5 score: 0,98.

• Places top-10 score: 0,98.

Results on COCO-Places using as test the TV3 dataset

Max logit approach:

• Label accuracy given max logit YOLO: 72%.

• Label accuracy given max logit Places: 3%.

nDCG approach:

• YOLO top-5 score: 0,53.

• YOLO top-10 score: 0,43.

• Places top-5 score: 0,025.

• Places top-10 score: 0,04.

37

Chapter 6

Conclusions and future work

6.1 Conclusions

6.1.1 Conclusions on transferring knowledge on MNIST

First of all, we can conclude that we have been able to atleast reproduce each method
and see how the estimated q values converge in a general way. We have seen that
there is no problem on training different teacher configurations and get almost per-
fect results given a test set for each of these teacher configurations.

After studying how affects having and having less common labels until having
anything in common, we have seen that the UHC approach is not viable to tackle
the TV3 problem. We have demonstrated that soft labels/logits are more robust
than hard labels and from the methods that estimate logits, the better is the Matrix
Factorization in Logit Space, coinciding with the UHC paper.

6.1.2 Conclusions on TV3

We can conclude that if we use YOLO and Places individually, we do not have any
problem to achieve a strong performance, but this is the opposite of what we wanted
to achieve due the hardware and legal problems. We have also checked that our ap-
proach on taking the max of all candidate boxes in YOLO work because the outputs
we extract are very good, in case we could solve hardware problems someday.

From the TV3 dataset, we have concluded that the dataset is not well balanced
in terms of frames, specially for Places dataset because most of the frame scenes are
indoor and in television studios. It does not mean that the student has not learn
properly, because if we take the top 5 results and we compare it with the YOLO
and Places groundtruth, we can be sure we would get very good results. The prob-
lem here is how we have thought about the problem. If we train a student on the
TV3 dataset, we are training a model that cannot generalize, and we want some-
thing more robust at the end, that is why we have swapped to the COCO and Places
dataset as training set.

6.1.3 Conclusions on COCO-Places datasets

From this point, we have faced the problem of having very unbalanced values be-
tween the ground truths. We have tried another scaling approach by adding a factor
to each individual loss before summing them, but from what we have seen, or we
need more and more epochs to balance it, or we think about another approach as
future work.

Even though we have used another dataset to generalize, we have not been able
to get enough samples to have a better class distribution because we have seen from
results that we have faced the same unbalance problem. After testing with another

38 Chapter 6. Conclusions and future work

dataset and obtaining very poor results, it is logic, and we have shared it that if we
take the TV3 dataset as test set, the results are even worse as we have not finished
to refine the training model, we need a lot of epochs in order to see if there is any
possibility to make it work.

6.2 Future work

6.2.1 Datasets

One of the main issues during this project has been the TV3 dataset. Images have
been given to us from a simple sampling of frames. We propose as future work to
apply an algorithm of scene detection that is able to recognize the transition between
frames. Principally, frame detection change between two adjacent frames simply re-
quires the computation of an appropriate continuity or similarity metric. We assume
it will not be the definitive solution, but atleast we think it can provide more base
quality to the TV3 dataset.

For the COCO and Places dataset, we should follow sample images from the
dataset taking into account a more balanced outcome. Assuming we have enough
memory space and hardware computation, we could use the whole training dataset
from each of them to teach the student in a more polite way.

6.2.2 Training procedure

We have faced some issues regarding value magnitudes. We would like to merge
both approaches of merging the logits and scale them in a correct way, we think
it can solve part of the imbalance because of how places benefits from low YOLO
values.

Then, we can still add more and more epochs to the training phase until we reach
a convergence to do an early stopping.

Another thing that we could research about is to fit another loss criteria inside
the training.

6.2.3 Optimization formula

We could go back to UHC and study if there is a way to deal with YOLO outputs.
At the end, if we go back to the formulas on 1.3.3, we understand that part of the
restrictions are made for dependant probabilities.

39

Appendix A

Contribution of each member

During all the time we have developing the master thesis, we have been contributing
and helping each other on every topic we have analyzed, developed or coded. But,
if we have to specify who has lead every topic, the distribution is the following one:

• Unifying Heterogeneous Classifiers

– Paper read by both of us.

– Noel: Method 1 and coding part of method 1.

– Aitor Method 2 and coding part of method 2.

• Yolo and Places

– Noel: analyzed Yolo and coding part.

– Aitor: analyzed Places and coding part.

• Pytorch code

– Developed and revised by both of us.

• Master thesis report

– Everything mentioned topic from above has been written by the assigned
member but revised by both.

– Remaining parts have been written and revised by both.

41

Appendix B

Link to the Github Repository

https://github.com/aitorlucasc/uhc_distillation/

https://github.com/aitorlucasc/uhc_distillation/

43

Appendix C

Supplementay material on UHC
methods

To check the math development of the used methods and the pseudocode, feel free
to check (Jayakorn Vongkulbhisal and Visentini-Scarzanella, 2019b).

45

Bibliography

Daniele Foffano, Pradyot Patil and Renzo Scholman (2021). “Reproduction of Dis-
tilling the Knowledge in a Neural Network”. In: Github. URL: https://pradyot-
09.github.io/Deep-Learning-Reproducibility-Project/.

“Deep Residual Learning for Image Recognition” (2015). In: CVPR. URL: https://
arxiv.org/pdf/1512.03385v1.pdf.

“Discounted cumulative gain”. In: WIkipedia (). URL: https://en.wikipedia.org/
wiki/Discounted_cumulative_gain.

“EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks” (2019).
In: CVPR. URL: https://arxiv.org/pdf/1905.11946.pdf.

Fisher Yu Ari Seff, et al. (2015). “LSUN: Construction of a Large-scale Image Dataset
using Deep Learning with Humans in the Loop”. In: CVPR. URL: https : / /
arxiv.org/pdf/1506.03365.pdf.

Geoffrey Hinton, Oriol Vinyals and Jeff Dean (2015). “Distilling the Knowledge in a
Neural Network”. In: NIPS. URL: https://arxiv.org/pdf/1503.02531.pdf.

“Going deeper with convolutions” (2014). In: CVPR. URL: https://arxiv.org/pdf/
1409.4842v1.pdf.

“ImageNet Classification with Deep Convolutional Neural Networks” (2012). In:
NeurIPS. URL: https://www.cs.toronto.edu/~kriz/imagenet_classification_
with_deep_convolutional.pdf.

Jayakorn Vongkulbhisal, Phongtharin Vinayavekhin and Marco Visentini-Scarzanella
(2019a). “Unifying Heterogeneous Classifiers with Distillation”. In: CVPR. URL:
https://openaccess.thecvf.com/content_CVPR_2019/papers/Vongkulbhisal_
Unifying_Heterogeneous_Classifiers_With_Distillation_CVPR_2019_paper.
pdf.

— (2019b). “Unifying Heterogeneous Classifiers with Distillation: supplementary
material”. In: CVPR. URL: https://openaccess.thecvf.com/content_CVPR_
2019/supplemental/Vongkulbhisal_Unifying_Heterogeneous_Classifiers_
CVPR_2019_supplemental.pdf.

Jia Deng Wei Dong, et al. (2009). “ImageNet: A large-scale hierarchical image database”.
In: IEEE. URL: https://ieeexplore.ieee.org/document/5206848.

“Josef Steppan”. In: Wikipedia (). URL: https://commons.wikimedia.org/wiki/
File:MnistExamples.png.

Joseph Redmon Santosh Divvala, Ross Girshick and Ali Farhadi (2015). “You Only
Look Once: Unified, Real-Time Object Detection”. In: CVPR. URL: https : / /
arxiv.org/pdf/1506.02640.pdf.

“Places2 - CSAIL MIT”. In: MIT (). URL: http://places2.csail.mit.edu/.
“Proyecto PICAE: Publicación Inteligente de Contenidos Audiovisuales y Edito-

riales”. In: website (). URL: https : / / comunitatmedia . cat / es / portfolio /
proyecto-picae/.

“Pytorch-Wikipedia”. In: Wikipedia (). URL: https://en.wikipedia.org/wiki/
PyTorch.

“Release of Places365 - CNNs”. In: Github (). URL: https://github.com/CSAILVision/
places365.

https://pradyot-09.github.io/Deep-Learning-Reproducibility-Project/
https://pradyot-09.github.io/Deep-Learning-Reproducibility-Project/
https://arxiv.org/pdf/1512.03385v1.pdf
https://arxiv.org/pdf/1512.03385v1.pdf
https://en.wikipedia.org/wiki/Discounted_cumulative_gain
https://en.wikipedia.org/wiki/Discounted_cumulative_gain
https://arxiv.org/pdf/1905.11946.pdf
https://arxiv.org/pdf/1506.03365.pdf
https://arxiv.org/pdf/1506.03365.pdf
https://arxiv.org/pdf/1503.02531.pdf
https://arxiv.org/pdf/1409.4842v1.pdf
https://arxiv.org/pdf/1409.4842v1.pdf
https://www.cs.toronto.edu/~kriz/imagenet_classification_with_deep_convolutional.pdf
https://www.cs.toronto.edu/~kriz/imagenet_classification_with_deep_convolutional.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Vongkulbhisal_Unifying_Heterogeneous_Classifiers_With_Distillation_CVPR_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Vongkulbhisal_Unifying_Heterogeneous_Classifiers_With_Distillation_CVPR_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Vongkulbhisal_Unifying_Heterogeneous_Classifiers_With_Distillation_CVPR_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2019/supplemental/Vongkulbhisal_Unifying_Heterogeneous_Classifiers_CVPR_2019_supplemental.pdf
https://openaccess.thecvf.com/content_CVPR_2019/supplemental/Vongkulbhisal_Unifying_Heterogeneous_Classifiers_CVPR_2019_supplemental.pdf
https://openaccess.thecvf.com/content_CVPR_2019/supplemental/Vongkulbhisal_Unifying_Heterogeneous_Classifiers_CVPR_2019_supplemental.pdf
https://ieeexplore.ieee.org/document/5206848
https://commons.wikimedia.org/wiki/File:MnistExamples.png
https://commons.wikimedia.org/wiki/File:MnistExamples.png
https://arxiv.org/pdf/1506.02640.pdf
https://arxiv.org/pdf/1506.02640.pdf
http://places2.csail.mit.edu/
https://comunitatmedia.cat/es/portfolio/proyecto-picae/
https://comunitatmedia.cat/es/portfolio/proyecto-picae/
https://en.wikipedia.org/wiki/PyTorch
https://en.wikipedia.org/wiki/PyTorch
https://github.com/CSAILVision/places365
https://github.com/CSAILVision/places365

46 Bibliography

“Televisió de Catalunya - CCMA”. In: website (). URL: https://www.ccma.cat/tv3/.
Tsung-Yi Lin Michael Maire, et al. (2014). “CVPR”. In: website. URL: https://arxiv.

org/pdf/1405.0312.pdf.
“Very Deep Convolutional Networks for Large-Scale Image Recognition” (2014). In:

CVPR. URL: https://arxiv.org/pdf/1409.1556v6.pdf.

https://www.ccma.cat/tv3/
https://arxiv.org/pdf/1405.0312.pdf
https://arxiv.org/pdf/1405.0312.pdf
https://arxiv.org/pdf/1409.1556v6.pdf

	Abstract
	Acknowledgements
	Introduction
	Project PICAE
	The problem of TV programs indexation
	The problem of distillation
	Introduction to knowledge distillation
	Unifying Heterogeneous Classifiers with Distillation (SOTA)
	Mathematical notation
	Mathematical review of Distillation
	Extending Knwoledge Distillation with UHC
	Method 1: Cross-entropy approach
	Method 2: Matrix factorization in probability space
	Method 2: Matrix factorization in logit space

	Models
	MNIST Convolutional Neural Network
	YOLO (You Only Look Once)
	Places365
	EfficientNet

	Thesis structure

	Experimental setup
	Datasets
	MNIST
	TV3

	Software
	Python
	Pytorch

	Hardware

	Motivation and goals
	Transferring knowledge depending on class overlapping
	Is it possible to apply UHC to the TV3 problem?
	Changing the loss approach to train the TV3 student
	Use a more generalized dataset to train a better student

	Experiments on transfering knowledge with MNIST
	Development
	Experiment: extracting method estimations
	Experiment: evaluating the whole scenario
	Experiment: evaluating students

	Experiments on the TV3 problem
	First approach: YOLO, Places on TV3 dataset
	Extracting YOLO and Places logits
	Training the student

	Second approach: YOLO, Places on COCO and Places dataset
	Evaluation
	First approach: take the most significant logit
	Second approach: Normalized Discounted Cumulative Gain
	Results
	Results on TV3 dataset
	Results on COCO-Places train dataset
	Results on COCO-Places test dataset
	Results on COCO-Places using as test the TV3 dataset

	Conclusions and future work
	Conclusions
	Conclusions on transferring knowledge on MNIST
	Conclusions on TV3
	Conclusions on COCO-Places datasets

	Future work
	Datasets
	Training procedure
	Optimization formula

	Contribution of each member
	Link to the Github Repository
	Supplementay material on UHC methods
	Bibliography

