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A B S T R A C T   

The control exerted by the Mesozoic basin configuration on the Cenozoic tectonic evolution of the Catalan 
Coastal Ranges has been frequently recognized as a key factor to explain its present-day structure. However, 
details of this structural inheritance and its evolution through geological time is still under discussion. In this 
work we present two structural cross-sections based on fieldwork, well and magnetotelluric data in order to 
illustrate the structural styles and tectonic evolution of the Gaià-Montmell High. Here, the Montmell Fault not 
only constitutes the SW segment of one of the major Neogene faults in the Catalan Coastal Ranges (the Montmell- 
Vallès Fault System), but also the NW limit of a Late Jurassic-Early Cretaceous extensional basin(the Montmell- 
Garraf Basin), facts that denote a major role of this fault in the tectonic evolution of the area. The present-day 
structure of the Gaià-Montmell High resulted, therefore, from two successive episodes of inversion during the 
Cenozoic. The first one reactivated the Montmell Fault as compressional during the Paleogene. As a result, and 
among other inversion-related structures, the Gaià-El Camp Thrust developed sa major NW-directed basement 
footwall shortcut. Later on, the previously formed compressional structure during the Paleogene became reac-
tivated as extensional during the Neogene. During this phase, the reactivation of the Montmell Fault looks 
limited and, hence, the extension is transmitted to the Baix Penedès Fault. The reactivation of the Gaià-El Camp 
Thrust is also manifest in the development of an array of extensional faults in the backlimb of the Carme-Cabra 
Anticline that corresponds to the NE-end of El Camp Fault. This episode of negative inversion developed ac-
commodation zones between the four major faults present in the area ( Vallès-Penedès, Montmell, El Camp and 
Baix Penedès faults) that are characterized by the presence of relay ramps with breaching faults.   

1. Introduction 

Pre-existing faults and stratigraphic variations commonly play a 
major role in determining regional evolution during later deformation 
(Jackson, 1980; Cooper et al., 1989; Williams et al., 1989; Coward, 
1994; Buchanan and Buchanan, 1995; Butler et al., 2006). It has been 
widely described how pre-existing faults control not only the location 
and kinematics of later structures (i.e., folds and faults) but also the 
shape and location of orogenic belts and rifts. The structural configu-
ration during the opening of the Bay of Biscay and western Tethys during 
the Mesozoic has been widely recognized as a key factor that controlled 
the location and kinematics of the orogenic belts developed in the NE 
Iberian Peninsula during Late Cretaceous-Cenozoic. Examples of this 

structural control are found in the Pyrenees (Muñoz, 1992; Bond and 
McClay, 1995; García-Senz, 2002; Mencos et al., 2015; Muñoz, 2017), 
the Iberian Chain (Salas and Casas, 1993; Guimerà et al., 1995; Salas 
et al., 2001; Nebot and Guimerà, 2016; Guimerà, 2018; Aldega et al., 
2019), the Columbrets Basin in the Valencia Trough (Etheve et al., 2018; 
Roma et al., 2018) and the Betic Chain (Calvert et al., 2000; Vergés et al., 
2002). Nevertheless, the role played by the Mesozoic structures in the 
Catalan Intraplate Chain (CIC), an orogenic belt also developed NE of 
the Iberian Peninsula during the Cenozoic (Guimerà, 1984; Gaspar- 
Escribano et al., 2004; Juez-Larré and Andriessen, 2006), is not 
completely understood. 

The development of the present-day basin-and-range configuration 
of the Catalan Coastal Ranges (CCR) (Fig. 1) resulted from the 
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extensional reactivation of the main Paleogene contractional structures 
(Fontboté, 1954; Gaspar-Escribano et al., 2004; López-Blanco et al., 
2000; Marcén et al., 2018). Thus, the presence of pre-existing faults has 
been considered as a key factor controlling the tectonic evolution of the 
CCR during the Neogene (Guimerà et al., 1995; Roca et al., 1999; Marín 
et al., 2008; Baqués et al., 2012). 

The control played by pre-Cenozoic structures is still poorly con-
strained and mostly supported by changes in stratigraphic thicknesses 
and regional observations (e.g., Esteban and Robles, 1976; Salas and 
Casas, 1993; Salas et al., 2001). Other studies state the potential Ceno-
zoic reactivation of Mesozoic extensional faults in the region (Roca and 
Guimerà, 1992; Gómez and Guimerà, 1999) and the control the strati-
graphic changes of the Mesozoic succession had in the development of 
Paleogene contractional structures (Anadón et al., 1985; Guimerà and 
Álvaro, 1990). Moreover, some works based on geochemical analysis in 
crustal-scale fault damage zones and gouges (i.e., neoformation of 
minerals, fluid circulation) reveal multiple reactivations in response to 
the tectonic phases affecting the Iberian Peninsula since the Mesozoic (e. 
g., Baqués et al., 2013; Cantarero et al., 2014) and even before the 
Mesozoic (Marcén et al., 2018; Aldega et al., 2019). 

In this paper, we define the structure of a portion of the NW margin 
of the Montmell-Garraf Basin (Salas, 1987), one of the stratigraphically 
differentiated rift basins developed in NE Iberian Peninsula Late 
Jurassic-Early Cretaceous. This area is characterized by the presence of a 

strip of Paleogene folds and thrusts, located at the southern prolongation 
of the major Neogene Vallès-Penedès extensional Fault (Fig. 1). The 
study is essentially focused on the recognition of the main structural 
features and the description of the role played by the Mesozoic basin 
architecture during the Cenozoic tectonic evolution. 

The work is supported by the construction of two structural cross- 
sections based on field and well data (Gaià-Montmell and the Marmel-
lar sections, Fig. 2) that allow the delineation of the structures of the 
uppermost crust. The geometry of the basement and major faults is also 
sustained at depth by a magnetotelluric (MT) survey carried out along 
the Gaià-Montmell section, which yields information on the electrical 
response of the crust up to about 4 km depth. 

2. Geological setting 

2.1. Tectonic setting 

Located in northeastern Iberian Peninsula, the CCR is a structural 
unit with a NE-SW-oriented basin and range physiography that extends 
parallel to the coastline for more than 250 km (Fig. 1). It is approxi-
mately 30 km wide and, in the present-day, constitutes the onshore 
expression of the extensional continental margin that separates the 
thinned crust of the Valencia Trough from the relatively thick crust of 
the Iberian Plate (Dañobeitia et al., 1992; Roca and Guimerà, 1992; 
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Fig. 1. Schematic structural map of the Catalan Margin (Western Mediterranean). ECB: El Camp Basin; ECF: El Camp Fault; GMtH: Garraf-Montnegre High; GMH: 
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Vidal et al., 1995). The CCR is formed by several ENE- to NE-striking 
basement blocks bounded by 50 to 150 km-long faults that display a 
right-stepping en-echelon arrangement (Fig. 1). These major faults 
mostly dip towards the SE and show reverse, normal and limited left- 
lateral strike-slip motion (Ashauer and Teichmüller, 1935; Llopis- 
Lladó, 1947; Anadón et al., 1985; Guimerà, 2004). The general structure 
of the CCR is essentially the result of a multiepisodic and complex Alpine 
evolution that included: 1) two extensional episodes from Late Paleozoic 
to Mesozoic, 2) a compressional period during the Paleogene, and 3) an 
extensional period from latest Oligocene to middle Miocene (Roca and 
Guimerà, 1992; Salas et al., 2001; Roca et al., 2004; Marín et al., 2008; 
Baqués et al., 2012). 

The first extensional episode, Late Permian to Triassic in age, is 
related to the opening of the Neotethys. The second, latest Oxfordian to 
Aptian, is related to the opening of the North Central Atlantic and the 
Bay of Biscay (Salas and Casas, 1993; Salas et al., 2001) that later, led to 
the uncoupling of the Iberian Plate from the Eurasian Plate during 
Albian-early Santonian times (Srivastava et al., 1990; Sibuet et al., 
2004). 

From late Santonian, a faster opening of South Atlantic Ocean pro-
duced the northward drift of Africa and, consequently, the convergence 
and later collision of the recently uncoupled Iberian and Eurasian plates 

(Srivastava et al., 1990; Rosenbaum et al., 2002). This drastic change in 
the relative motion of Iberia generated the Pyrenean fold-and-thrust belt 
from the inversion of the Mesozoic rift-system (Muñoz, 1992; Vergés 
et al., 2002; Muñoz, 2017; García-Senz et al., 2019). In this scenario the 
contractional deformation progressed southwards leading to the inver-
sion of the Mesozoic rift basins developed in the Iberian Plate and 
forming the Iberian Range and the Catalan Intraplate Chain (CIC). The 
preserved structure of the CIC consists of NNW-directed, ENE- to NE- 
trending thick-skinned and thin-skinned thrusts as well as strike-slip 
faults (Guimerà and Álvaro, 1990). According to preserved growth 
strata, the development of the CIC started during Paleocene times and 
progressed from northeast to southwest up to the middle Oligocene 
(Guimerà and Santanach, 1978; Guimerà, 1984; Anadón et al., 1985). 
From that moment and up to the middle Miocene, the rollback of the 
subduction of the Maghrebian Tethys beneath the Iberian Plate pro-
duced the extension of the eastern Iberian Plate from the development of 
widespread back-arc processes (Horváth and Berckhemer, 1982; Car-
minati et al., 1998; van Hinsbergen et al., 2014). This episode led to the 
formation of the northwestern Mediterranean Basin, which, in the CIC 
area, developed as result of the extensional reactivation of Paleogene 
thrusts (Roca, 2001; Gaspar-Escribano et al., 2004; Marín et al., 2008; 
Baqués et al., 2012). The extensionally reactivated faults were 
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responsible of the splitting of the CIC into a set of ENE-WSW blocks 
bounded by crustal-scale SE- to SSE-dipping extensional faults with 
kilometric displacements (Bartrina et al., 1992; Roca and Guimerà, 
1992) (Fig. 1). The extension induced the development of a series of 
basins in the extensional fault hangingwalls filled by more than 4 km of 
sediments ranging in age from Oligocene to Recent (Bartrina et al., 
1992) and an isostatic rebound in the footwalls up to 1.2 km (Gaspar- 
Escribano et al., 2004). 

In this complex structural setting, the study area is located in the 
central part of the CCR in the transfer zone of the two major Neogene 
extensional faults: the Vallès-Penedès Fault and El Camp Fault (Fig. 2). 
This transfer zone is known as the Gaià-Montmell High, has a right- 
stepped en-echelon arrangement and is bounded southeastwards by the 
Baix Penedès Fault. 

2.2. Stratigraphy and thickness variations 

Four stratigraphic assemblages can be distinguished in the study 
area: the Variscan basement, the Mesozoic cover, the Paleogene fill of 
the Ebro Basin and Neogene basin infill of the Baix Penedès Basin 

(Fig. 3). From a Mesozoic stratigraphy point of view two main domains 
can be differentiated: the Miramar-Gaià Domain in the NW and the 
Montmell Domain in the SE (Figs. 2 and 3). 

Paleozoic rocks of the Variscan basement have been reported and 
described at the bottom of the Senant-1 well in the Ebro Basin (Lanaja, 
1987; Fig. 1) as well as in the adjoining Miramar Range (Julivert, 1955; 
Melgarejo, 1987) and Prades High (Figs. 1 and 2). The Paleozoic suc-
cession would be made up by Cambrian to Carboniferous slates with thin 
interbeds of Devonian carbonates (Julivert, 1955; Sáez and Anadón, 
1989; Julivert and Durán, 1990) and Upper Carboniferous to Permian 
granitoids (Serra and Enrique, 1989; Enrique and Solé, 2004). The 
present work assumes similar Paleozoic rocks under the Gaià-Montmell 
High, which are considered as the structural basement. 

Unconformably overlying the Variscan basement, the Mesozoic 
succession shows significant variations across the study area (Figs. 2 and 
3). In the Miramar-Gaià Domain, the Mesozoic succession is thin and 
only includes 200 to 350 m of Triassic rocks (Fig. 3) (Virgili et al., 2006; 
Galán-Abellán et al., 2013; Mercedes-Martín et al., 2014). Towards the 
SE, however, the Mesozoic of the Montmell Domain exceeds 2 km of 
thickness (Salas, 1987) and is stratigraphically more complete including 
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Triassic, Jurassic and Cretaceous rocks. On top of the Germanic Triassic, 
there is a 70 m-thick unit of uppermost Triassic dolomites, followed by a 
300 m unit of Lower-Middle Jurassic dolomitic breccias and a 1200 m- 
thick succession of shallow marine limestones, dolomites and shales of 
Late Jurassic-Early Cretaceous age (Salas, 1987; Salas et al., 2001; 
Albrich et al., 2006). The Upper Jurassic-Lower Albian succession is part 
of a major extensional basin (the Montmell-Garraf Basin) that includes 
the southern end of the Vallès-Penedès Basin, the Garraf High and some 
adjacent offshore areas (Anadón et al., 1979; Salas, 1987; Salas and 
Casas, 1993) (Fig. 1). An Upper Albian to Cenomanian sequence of 
fluvial and shallow marine carbonates complete the Mesozoic record in 
the Montmell Domain (Salas, 1987; Salas et al., 2001). 

Whereas Paleogene strata are absent in the Montmell Domain, the 
thin Mesozoic of the Miramar-Gaià Domain appears unconformably 
overlaid by the Paleogene sediments of the Ebro Basin infill. These are 
350 to 500 m-thick marine and continental sediments, and range in age 
between Paleocene and early Eocene (Ferrer, 1971; Anadón, 1978; 
Colombo, 1986). Towards the northwest, in the undeformed Ebro Basin, 
the Paleogene succession thickens up to 1.5 km and includes sediments 
up to late Oligocene in age (Barberà et al., 2001). 

Towards the E and SE of the Gaià-Montmell High, the Mesozoic 
succession is unconformably overlaid by the basin infill of the Vallès- 
Penedès and Baix Penedès basins. These sediments are made up by al-
luvial fan, lagoonal evaporites, carbonate coralgal and fan-delta silici-
clastic deposits mainly early to late Miocene in age (Cabrera and Calvet, 
1996) unconformably overlaid by Pliocene alluvial sediments (Gallart, 
1981) (Figs. 2 and 3). 

3. Methods 

The present work is based on the construction of structural sections 
across the area of study using well, field data and later constrained by 
one 2D magnetotelluric model. Two NW-SE-oriented cross-sections have 
been constructed in the study area: the Gaià-Montmell section (Fig. 4) 
and the Marmellar section (Fig. 5). The Gaià-Montmell section is 
approximately 40 km long and, from NW to SE, runs from the unde-
formed Ebro Basin to the Baix Penedès Basin (Fig. 2). The Marmellar 
section is 7 km long and runs approximately 10 km east of the Gaià- 
Montmell section. This second section crosses the southern end of the 
Vallès-Penedès Fault at the NE edge of the Montmell Domain (Figs. 2 and 
4). The orientations of the sections are respectively N146◦ and N161◦, 
both orthogonal to the NE-SW predominant trend of the Alpine struc-
tures. The cross-sections are based on field data (mostly bedding and 
fault attitudes), geological map analyses and observed thicknesses of the 
sedimentary units. When the stratigraphic units do not crop out in the 
area (e.g., Lower and Middle Triassic), thicknesses have been estimated 
from the regional reviews of Marzo (1980) and Calvet and Marzo 
(1994), as well as from information from the Senant-1 and Sant Sadurní- 
1 wells (Lanaja, 1987, Figs. 1 and 3). The Senant-1 well has also been 
used to define the depth of the basement in the undeformed areas of the 
Ebro Basin (Fig. 3). The geometry and location of the bottom of the Baix 
Penedès Basin (Fig. 2) has been constrained by the gravimetric studies 
performed by Hernández and Casas (1985) and Casas and Permanyer 
(1991). 

During the construction of the cross-sections, projection and 
extrapolation of dip data were performed defining cylindrical domains 
and using the kink-band method. The sections have been constructed 
and balanced using 2Dmove software. To show the tectonic evolution of 
the area, the Gaià-Montmell section has been partially restored at the 
end of (a) the Mesozoic rifting phase, and (b) the contractional Paleo-
gene deformation. During such restorations, the line-length unfold 
method (Dahlstrom, 1969), which straightens the beds while main-
taining constant the line length, was used. Because the sections were 
constructed using the kink method, layer thicknesses remained constant 
during the unfolding process. This process allows calculating shortening 
and stretching value for each of the restored paleo-steps. 

The magnetotelluric method (MT) has been used to determine the 
electrical properties of the upper crust across the Gaià-Montmell section 
and constrain the structure when possible. The MT is an electromagnetic 
geophysical method based on the simultaneous measurements on Earth's 
surface of naturally occurring electric and magnetic fields variations. 
The relations between electric and magnetic fields at different periods 
are used to define the impedance tensor whose components provide 
information about the electrical resistivity distribution at depth (Simp-
son and Bahr, 2005). This technique is very sensitive to conductive 
bodies that, in depth, can be associated with the presence of conductive 
rocks, minerals and partial melts, and also to the presence of fluids. 
Taking into consideration the marked lithological differences between 
the stratigraphic sequences present along the Gaià-Montmell section the 
main goals of the MT study were: 1) to recognize the geometry of the 
boundaries between the main stratigraphic and structural units in depth, 
and 2) to identify basement conductivity anomalies that could denote 
the presence of damage zones and fluid circulation. 

4. Structure of the Gaià-Montmell High 

4.1. Gaià-Montmell section 

The structure of the Gaià-Montmell High is illustrated in the Gaià- 
Montmell section (Fig. 4). The Gaià-Montmell High relates to the posi-
tive relief located between the Baix Penedès Basin and the SE margin of 
the Ebro Basin, which is represented by the Carme-Cabra Anticline 
(Fig. 2). This anticline is an ENE-WSW-trending structure that involves 
the Variscan basement as well as Triassic and Paleogene sediments. It 
has a 13 km long and nearly horizontal backlimb and a shorter 1 km long 
vertical to overturned forelimb (Fig. 4 and Fig. A of the Supplementary 
material). This uplifted area has been interpreted as the result of the 
emplacement of a NW-vergent basement thrust (Gaià-El Camp Thrust), 
the ramp of which constantly dips less than 30◦ underneath the 
ensemble of the Gaià-Montmell High and branches at the lower part of 
the Montmell Fault. Such geometry is constrained by the width of the 
uniformly uplifted area (~13 km) and supported by the ESCI- 
Catalanides deep seismic profile that shows that basement-involved 
thrusts in the CCR do not affect the top of the lower reflective crust 
located at 12 to 15 km depth (Fernàndez et al., 1990; Sàbat et al., 1997; 
Roca et al., 2004). In this scenario, the geometry of the frontal limb of 
the Carme-Cabra Anticline is interpreted as controlled by a triangular 
zone of distributed shear at the tip of this propagating thrust (Allmen-
dinger, 1998; Mitra and Mount, 1998; Allmendinger et al., 2004). 

From a structural point of view, the Gaià-Montmell High can also be 
divided in two domains. In the Miramar-Gaià Domain, the hangingwall 
of the Gaià-El Camp Thrust is practically horizontal and shows little 
deformation, except for the presence of sets of minor post-Paleogene SE- 
directed normal faults located in the Carme-Cabra Anticline backlimb, 
affecting the basement and generating extensional rollovers on their 
hangingwalls. On the other hand, the Montmell Domain shows gentle 
NW-vergent fault-bend folds compatible to the presence of basement 
reverse faults. These and their related folds involving the basement 
appear affected by high-angle SE-dipping extensional faults. The syn-
cline present east of La Juncosa, for instance, appears controlled by the 
emplacement of one these basement-involved faults west of Masies de 
Sansuies (Fig. 4). This reverse fault develops a frontal structure with a 
discrete, relatively steep front limb and a flat crest behind it that is 
similar to the overall geometry observed in the Miramar-Gaià Domain 
but at minor scale. 

Both structural domains are separated by a highly deformed and 
narrow strip located SE of L'Arboçar (labeled “L'Arboçar deformation 
strip” in Fig. 4). In this area, Middle Triassic and Lower Ypresian (Iler-
dian) rocks belonging to the Miramar-Gaià Domain are strongly 
deformed by NW-verging recumbent folds, thrust faults and backthrusts 
mostly interpreted as detached at the top of the Lower Triassic (Bunt-
sandstein). A pre-Paleogene nearly vertical extensional basement fault 

M. Marín et al.                                                                                                                                                                                                                                  



Tectonophysics814(2021)228970

6

Fig. 4. Gaià-Montmell section showing the Alpine structure at the linkage zone between the Neogene Vallès-Penedès and El Camp faults in the central Catalan Coastal Ranges. See location of the section in Fig. 3. The 
hatched area labelled with “T” indicates the zone of distributed shear at the upper tip of the Gaià-El Camp Thrust. B) Detail of the structure of the L'Arboçar deformation strip. 
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seems to control the location and development of the backthrusts in the 
NW limit of the deformation strip. Northwest and southeast of this strip, 
the Triassic is located at the same structural high. However, the base of 
the Cenozoic occupies a significantly lower position in the Miramar-Gaià 
Domain than in the Montmell Domain, where the top of the outcropping 
thick Mesozoic succession indicates that this would be located at least 
500 m higher. This structural and stratigraphic configuration, in 
conjunction with the NW vergence of the structures developed along the 
L'Arboçar deformation strip, suggest interpreting the NW limit of the 
Montmell Domain as a nearly complete inverted SE-dipping Mesozoic 
extensional fault. In this scenario, the L'Arboçar deformation strip would 
correspond to the transmission of the compressional deformation to the 
Montmell Fault footwall, which induced the formation of detachment 
folds and thin-skinned thrusting facilitated by the presence of evaporitic 
decollement levels within the Triassic (Fig. 4). 

The age of this suggested inversion of the Montmell Fault is poorly 
constrained due to the lack of preserved growth and post-growth strata 
around this fault. Only the presence of Paleocene to lower Ypresian 
strata contractionally deformed in the L'Arboçar deformation strip 

indicates that it had to take place after early Ypresian (post-Ilerdian). On 
the other hand, the development of the Gaià-El Camp thrust sheet is well 
constrained by the presence of syntectonic sediments preserved in the 
Sant Miquel del Montclar area (Figs. 2 and 4). At this location, the 
Carme-Cabra Anticline forelimb presents series of NW-dipping upper 
Eocene conglomerates unconformably overlying overturned lower 
Eocene conglomerates, sandstones and mudstones (Anadón et al., 1985). 
These growth geometries allow establishing the age of the emplacement 
of the Gaià-El Camp thrust sheet as middle Eocene. 

The Gaià-Montmell section also shows several extensional faults 
affecting the previously outlined compressional structure. A set of SE- 
dipping, basement-involved extensional faults bound the Baix Penedès 
Basin towards the NW and show an accumulative displacement of about 
2.5 km. The existence of the Mesozoic succession underneath the Baix 
Penedès Basin remains uncertain due to the absence of subsurface data 
in this area. However, we assume its presence taking into consideration 
data from the Sant Sadurní-1 well, which cuts fossil-rich limestones 
rocks of Early Cretaceous age (Neocomian) (Lanaja, 1987; see Fig. 1 for 
its location). 
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In addition, a set of minor SE-dipping faults that affect Mesozoic and 
Paleogene strata of the Carme-Cabra Anticline backlimb is present be-
tween the villages of Vallespinosa and Querol as well as NW of L'Arbo-
çar. Cartographically, these faults are NE-SW-oriented, laterally 
disappearing towards the NE (Fig. 2), they display relatively high angles 
(>75◦) and show metric to decametric fault throws. Taking into 
consideration roll-over geometries and the fact that they are only pre-
sent in the Gaià-El Camp thrust sheet hangingwall, these are interpreted 
as rooted in the Gaià-El Camp Thrust. If this fault linkage exists, this 
would imply the Gaià-El Camp Thrust plane also underwent extensional 
reactivation during the Neogene. 

4.2. Marmellar section 

The Marmellar section is located at the southeast of the Gaià-Mont-
mell High and includes the southeasternmost part of the Miramar-Gaià 
Domain, the SW end of the Vallès-Penedès Fault and the Montmell 
Domain (Figs. 2 and 5). At this location, the Miramar-Gaià and the 
Montmell domains are separated by a NE-SW-oriented fault that later-
ally corresponds to what has been described in the Gaià-Montmell sec-
tion as the Montmell Fault. Additionally, the section is adjacent to the 
Mesozoic succession-type described by Salas (1987) and labeled “M” in 
Fig. 2, which allows a detailed recognition of the Mesozoic rocks 
outcropping in the area. 

The structure of the Montmell Domain belongs to an array of NE-SW- 
oriented, SE-dipping basement extensional faults that split the area into 
a system of NW-tilted fault blocks filled by up to 1100 m thick Jurassic to 
Barremian rocks (Fig. 5). These faults have throws of hectometric 
displacement up to 300–400 m and kilometric lengths up to 5 km, which 
allows considering these extensional faults as vertically restricted (Nicol 
et al., 1996). At depth, these basement-involved extensional faults show 
domino style dipping 55–60◦ towards the SE and display reverse and 
normal drag folding in their hangingwalls. Moreover, minor compres-
sional features deforming the Mesozoic sedimentary cover are present 
the Montmell Domain. Basically, these are represented by SE-directed 
reverse faults and low angle NE-vergent thrusts respectively located at 
the hangingwalls and footwalls of some of the major extensional faults. 

Structural data was collected at the Riera del Marmellar outcrop in 
Lower Cretaceous marine limestones belonging to the Montmell Fault 
hangingwall. At this location, beds are 1 to 4 m-thick, trend NE-SW, dip 
around 31◦ to the NW and contains metric-scale faults, tension veins and 
numerous stylolite surfaces. Gathered structural data mainly consists of 
normal faults with orientations ranging N30–70, dipping 65 to 80◦ to-
wards the NW with 80◦WNW of slip, as well as reverse faults with ori-
entations N50–65, dipping 70 to 80◦ towards the SE with 70◦E of slip. 
Data was displayed on stereoplots and later restored to their original 
geometry by rotating bedding to horizontal (Fig. 5). Once restored, all 
collected faults originally look as normal faults with orientations mainly 
ranging N15–75, dipping 30 to 85◦ towards the NW and with slip di-
rection towards the NW. Fluid geochemistry analysis performed by 
Baqués et al. (2012) in the same area relates these mesostructures to the 
Mesozoic syn-rift stage that led to the development of the Montmell- 
Garraf Basin. 

The Montmell Fault, a basement-involved SE-dipping extensional 
fault, represents the NW boundary of the Montmell Domain. This fault is 
nearly vertical (>85◦) at surface that progressively decreases its dip at 
depth up to 45◦. This major structure also coincides with the NW 
boundary relatively thick Lower Cretaceous successions outcropping in 
the Montmell Domain, the map view configuration of which corresponds 
to series of NE-SW-oriented normal faults separated by narrow transfer 
zones that can be correlated with the presence of a basement fault that 
becomes segmented at surface (Fig. 2). Its interpreted location matches 
the NE prolongation of the Montmell Fault as interpreted in the Gaià- 
Montmell section (Fig. 4). Contractional structures such as low-angle 
NW-directed thrusts and their related fault-bend and fault-propagation 
folds are present in the Montmell Fault footwall. These structures 

involve Jurassic and Middle to Upper Triassic rocks and, because of they 
show short wavelengths in the geological map, they have been inter-
preted as rooted at the evaporitic levels of the uppermost Lower Triassic 
(Buntsandstein) that is considered a good regional detachment. 

At surface, the Miramar-Gaià Domain is characterized by a Jurassic 
to Miocene cover deformed in a 2 km-wide gentle syncline (Pinedes 
Altes Syncline, Fig. 5) bounded towards the NW by a SE-dipping 
monocline. Miocene is only present in this syncline and unconform-
ably overlies Lower Cretaceous and Jurassic rocks that show a more 
thigh syncline geometry. The syncline appears affected by some minor 
extensional faults mainly developed at its lower part and includes in-
ternal onlaps in its NW limb. At smaller scale, the outcropping Jurassic- 
Lower Cretaceous cover appears affected by minor NW and SE-verging 
folds. These, locally cut by small thrusts, are interpreted as drape/ 
fault-bend folds developed over Muschelkalk thrust horses limited by 
the Keuper and the uppermost Buntsandstein evaporite decollements. 

The NE-SW orientation of the monocline limiting the Pinedes Altes 
Syncline to the NW and its lateral continuity with the cartographic trace 
of the Vallès-Penedès Fault towards the NE allow interpreting this 
structure in the Marmellar section. In map view, the Vallès-Penedès 
Fault shows splays and relay faults developed at the termination of a 
fault segment. Approximately 1 km NE of the Marmellar section, 
Jurassic rocks outcrop in both the hangingwall and the footwall of the 
Vallès-Penedès Fault denoting the loss of displacement of this towards 
the SW (Fig. 2). Therefore, in the Marmellar section, the Vallès-Penedès 
Fault has been interpreted as a SE-dipping (~65◦) basement-involved 
normal fault that dies out in the Upper Triassic interval and drape 
folds the overlying Jurassic and Miocene rocks. 

Based on these geometrical relationships, it is possible to establish 
the relative kinematic ages of some of the structures illustrated in the 
Marmellar section. The relatively thick Mesozoic succession and the 
structural data collected in the Riera del Marmellar outcrop (Fig. 5), 
indicate this fault experienced extensional motion during, at least, the 
Lower Cretaceous coevally to the formation of the Montmell-Garraf 
Basin (Salas, 1987). Compressional features along the Montmell Fault 
cartographic trace are essentially located in its hangingwall and affect 
Mesozoic rocks. This may suggest a post-Lower Cretaceous compres-
sional phase that, at this location, did not reactivate the Montmell Fault 
but developed buttressing against the previously formed extensional 
fault (Gillcrist et al., 1987; Cooper et al., 1989). Minor reverse faults also 
developed in the Miramar-Gaià Domain, basically consisting of NW- and 
SE-directed thrusts at the NW and SE limbs of the Pinedes Altes Syncline 
and affecting Jurassic rocks (Fig. 5). Although the age of the compres-
sion is poorly constrained by preserved strata (mostly Mesozoic rocks 
coeval or previous to the extensional phase), it is possible to sustain that 
compression occurred after their deposition (post- Lower Cretaceous), 
and previously to the deposition of the Miocene sediments that uncon-
formably overlie the observed contractional structures. This fact makes 
possible relating the compressional features observed in the Marmellar 
area to the regional compressional phase that affected the central part of 
the CCR during Paleocene to Eocene. On the other hand, onlap geome-
tries in Miocene sediments preserved above the monocline that char-
acterizes the NW limb of the Pinedes Altes Syncline indicate these 
sedimented deposited during the extensional motion of the Vallès- 
Penedès Fault during Miocene times. 

5. Magnetotelluric data and 2D inversion model 

Nineteen magnetotelluric (MT) soundings with recording times 
ranging from 8 to 12 h were acquired along the Gaià-Montmell section 
(Fig. 2). Time series were processed using the Egbert and Booker (1986) 
method and applying remote reference when possible. Apparent re-
sistivity and phase resulting curves cover periods from 0.001 s to 1 s. 

To determine if the geoelectrical structure is 1D, 2D, 3D/2D (2D 
structures with galvanic distortion) or 3D, a dimensionality analysis was 
performed using the WALDIM code (Martí et al., 2009b) that is based on 
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the invariant rotation parameters of the impedance tensor. The dimen-
sionality results (Fig. B of the supplementary material) show that for 
periods shorter than 1 s, this behavior can be considered highly variable 
with a rather frequent 2D component, whereas at periods longer than 1 
s, the geoelectrical behavior is strongly 3D. In all 2D and 2D/3D cases, 
the strike is rather parallel with a trend that ranges between N015◦ and 
N065◦; orientation that is consistent with the N40–60◦ trend of the 
geological structures (Figs. 1 and 3). So, the dimensionality analysis 
results reveal that a 2D MT model could be rather reliable to determine 
the geoelectrical structure in periods shorter than 1 s, but not at longer 
ones where the dominant 3D data structure can induce wrong in-
terpretations (Ledo, 2005). Considering this dimensional breakdown, a 
directionality analysis was performed using the STRIKE code developed 
by McNeice and Jones (2001). It states a geoelectrical direction of N55◦

although it also indicates a 3D effect of the regional structure. The ele-
ments of the impedance tensor were rotated applying this direction to 
obtain the two main directions for the 2D modeling: the transverse 
electric (TE) mode when the electric field is parallel to the strike and the 
transverse magnetic (TM) mode if the parallel one is the magnetic field. 
The obtained apparent resistivity and phase curves for each sounding 
are shown in the Fig. C of the Supplementary material. Data and model 
responses are presented as pseudo-sections built by plotting the data in 
an x-T map, where x-axis corresponds to the data position on the profile 
and T-axis to the period, which is considered as a proxy of the depth: TE 
and TM apparent resistivity and phase responses (Fig. D of the Supple-
mentary material). 

The 2D modeling is based on the simultaneous fit of the TE and TM 
data and has been done using the 2D RLM2DI inversion code (Rodi and 
Mackie, 2001) considering a 5% error floor that reaches an RMS of 2.7. 
The final 2D model is presented in Fig. 6A, which shows the calculated 
apparent resistivities. 

5.1. Correspondence between the 2D magnetotelluric model and the Gaià- 
Montmell section 

The MT model illustrates the geoelectrical structure along the Gaià- 

Montmell section with the presence of different conductivity/resistivity 
bodies (Fig. 6A). In general terms, the MT model shows a geoelectrical 
structure shaped by two stacked up layers. The lower layer has a very 
resistive (≥1000 Ω⋅m) and homogeneous character below 0.5–2.5 km, 
although some less-resistant bands (~100–600 Ω⋅m) are also present (e. 
g. below the Montmell Domain and the NW limit of the Miramar- Gaià 
Domain). The geoelectrical behavior of the upper layer is, on the other 
hand, highly heterogeneous where the presence of conductive bodies 
with low lateral continuity (mostly isolated conductive bodies) prevails. 

The comparison between the resistivity model and the Gaià-Mont-
mell section (Fig. 6B) allows the correlation of the geoelectrical struc-
ture to different types of rheologies. The highly resistive and laterally 
continuous response of the lower geoelectrical layer (R1 and R3, Fig. 6A) 
can be correlated to the Variscan basement, which is made up by epi-
metamorphic and plutonic rocks. The high resistivity of the basement is 
corroborated by two additional parametric MT soundings acquired 30 
km southwest of the study area in the Prades High on top of Paleozoic 
rocks (soundings Pz1 and Pz2, see Fig. 1 for location). MT soundings at 
this location reveal that Carboniferous slates and Permian granitoids 
show resistivities ≥1000 Ω⋅m (Fig. E in the supplementary material), 
fact which is also documented in other locations of the Iberian Peninsula 
such as the Iberian Massif (Muñoz et al., 2008), the Pyrenees (Ledo et al., 
1998; Campanyà et al., 2018) and the Betic Cordillera (Martí et al., 
2009a; Rubinat et al., 2010). 

The upper geoelectrical layer is, instead, very variable in depth and 
in resistivity character. From NW to SE, it includes conductive/resistive 
bodies C1, C2, C3, C4, R2, C5 and C6. Comparing the geoelectrical 
character to geological data and interpretations along the Gaià-Mont-
mell section (Fig. 6B), these bodies can be divided in two different 
groups, those that correlate with the Mesozoic and/or Cenozoic sedi-
mentary cover (C1, C2, R2, C5 and C6) and those that suit with positions 
of the Variscan basement (C3 and C4). Located in the northernmost part 
of the section, C1 agrees with the Mesozoic and Cenozoic sedimentary 
infill of the Ebro Basin, the thickness of which accounts to 1649 m of 
sedimentary cover above the Variscan basement as described in the 
Senan-1 well (Lanaja, 1987; see Figs. 1 and 3 for well location). 
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Likewise, conductive body C2 coincides in thickness and location with 
the Triassic succession, which, in the Miramar-Gaià Domain, mainly 
consists of clastic sediments with evaporitic episodes and carbonates 
(Fig. 3). On the other hand, resistive body R2 agrees with the position of 
Jurassic and Lower Cretaceous rocks, which mainly consist of massive 
limestones and dolostones present in the Montmell Domain. Geo-
electrical body C5 also coincides with the clastic sediments with evap-
oritic and carbonate episodes of the Triassic of the southeastern 
Montmell Domain. At the southeastern end of the section, the conduc-
tive body C6 agrees with the Neogene infill of the Baix Penedès Basin, 
the thickness of which is pointed out by Casas and Permanyer (1991) as 
approximately 2000 m of mainly terrigenous sediments (Cabrera and 
Calvet, 1996). 

Taking into consideration the intrinsic resistive character of the 
Variscan basement, the explanation about the nature of the conductive 
body C3 is conjectural. Low resistive values at this location (≤10 Ω⋅m) 
can be related to highly fractured rocks (e.g., Pous et al., 2001; Martí 
et al., 2020) and/or metallic mineralizations (Martí et al., 2009a) similar 
to those recognized in the central CCR southwest of the study area in the 
Prades High (Fig. 1). Examples of documented metal mineralizations in 
this area consist of Pb-Zn-Ba-Ag-Ni-Cu sediment-hosted veins, late 
Hercynian to Triassic in age, formed along intra-Paleozoic and Lower 
Triassic fractures (Cardellach et al., 1990; Canet et al., 2005; Alfonso 
et al., 2012). Hence, metal mineralizations, which include highly 
conductive elements, would enhance the conductive character of the 
Variscan basement rocks at C3 (Fig. 6). 

The geoelectrical body C4 belongs to a 1–2 km wide, SE-dipping 
band of relatively low resistivity (≥15 Ω⋅m) 2 km depth underneath 
the NW limit of the Montmell Domain (Fig. 6). This band is clearly 
differentiated from the surrounding high resistive and homogeneous 
signature that characterizes Variscan basement and appears in agree-
ment with the location of the NW limit of the Montmell Domain. The 
origin of this low resistivity is uncertain, although it seems to be related 
to a different type or degree of deformation between the Miramar-Gaià 
and the Montmell domains. While the Miramar-Gaià Domain formed 
during the Paleogene compression concentrating its deformation at the 
tip of the Gaia-El Camp Thrust and the frontal limb of the Cabra-Carme 
Anticline, the structural analysis in the Montmell Domain indicates a 
higher degree of deformation that includes thick-skinned extensional 
and contractional structures. The Variscan basement is highly deformed 
in the central CCR and only planar-type Paleozoic structures such as low- 
angle thrusts have been described (Julivert and Durán, 1990). However, 
this type of geometries does not suit with the description of C4. 
Considering C4 is related to the presence of a SE-dipping basement fault, 
its 1 to 2 km width would correspond to the damage zone located at the 
Montmell Fault footwall where conductivity has been enhanced by the 
presence of fluids within a fractured and permeable zone (e.g., Pous 
et al., 2001) and, perhaps, metal conductive mineralizations. 

Considering these interpretations, the MT model has allowed con-
straining three key structural aspects along the Gaià-Montmell section 
(Fig. 6): 1) the depth of the base of the Mesozoic to Cenozoic sedimen-
tary infill of the Ebro Basin over the Variscan basement in the north-
ernmost sector (conductive body C1 between MT soundings 001 and 
002); 2) the geometry of the Montmell Fault underneath the northern 
limit of the Montmell Domain and the location at depth of its related 
shortcut (conductive body C4 between MT soundings 020 and 010); and 
3) the base of the Mesozoic to Miocene sedimentary infill of the Baix 
Penedès Basin in the southernmost sector (conductive body C6 south of 
the MT sounding 015). 

6. Discussion: tectonic evolution and structural inheritance of 
the central CCR 

Structural and stratigraphic observations along the Gaià-Montmell 
and Marmellar sections, together with regional geophysical data and 
geological maps allow the characterization of the deformation history of 

the linking zone between the Vallès-Penedès and El Camp basins (Figs. 1 
and 2). The tectonic evolution of this area includes three major Alpine 
events: A Late Jurassic-Early Cretaceous extension, a latest Cretaceous- 
early Oligocene compression and uplift, and a late Oligocene-Neogene 
extension. 

6.1. Late Jurassic (Oxfordian) – early cretaceous extension: Montmell- 
Garraf Basin formation 

The Alpine cycle regionally starts with a Late Permian-Early Triassic 
extensional period that controlled the deposition of siliciclastic and 
carbonate units along NE-SW-trending basins (Galán-Abellán et al., 
2013; Mercedes-Martín et al., 2014; Mercedes-Martín and Buatois, 
2020). However, in the study area Triassic strata show no lateral 
thickness variations indicating a relative tectonic quiescence during this 
period. The first hints of Mesozoic tectonic activity do not appear until 
the Late Jurassic. Upper Oxfordian to Valanginian carbonate-dominated 
sediments deposited in an incipient depocenter (the Montmell-Garraf 
Basin), bounded towards the NW by a high-angle SE-dipping exten-
sional fault. The constant thickness of the Valanginian sediments in-
dicates they were deposited over a planar extensional ramp (McClay, 
1995; Withjack and Schlische, 2006; Ferrer et al., 2016). This fault 
would correspond to the breakaway fault of the extensional system, the 
present-day location of which corresponds to the SE limit of L'Arboçar 
deformation strip (Fig. 4). Laterally towards the NE, this fault corre-
sponds to the SW prolongation of the Vallès-Penedès Fault (Figs. 2 and 
5). 

Late Valanginian to Hauterivian strata are absent in the Montmell- 
Garraf Basin and Barremian sediments paraconformably overlie pre-
served Valanginian (Fig. 5). This hiatus throughout the Neocomian is 
widespread recognized in the region and, with a diachronic character, 
has been interpreted in two ways: as a period of decelerated subsidence, 
emersion and relative tectonic quiescence in the external zones of the rift 
basin system (Anadón et al., 1979; Salas et al., 2001), or related to a 
thermal post-Late Jurassic-early Valanginian rifting phase (Salas et al., 
2020). From Barremian on, an acceleration of the subsidence takes place 
in the Montmell-Garraf Basin following two different phases: 1) Barre-
mian to early Albian, 2) late Albian to Cenomanian. During this period, 
the breakaway fault shifts towards the SE to the present-day location of 
the Montmell Fault (Figs. 4 and 5). Considering this scenario, the 
Montmell Fault, can therefore be considered as the SW segment of a 
major structure that we call the Montmell-Vallès Fault System. 

Barremian to Lower Albian sediments were deposited in the 
Montmell-Marmellar area with significant thickness variations. Up to 
550 m of Barremian to Lower Aptian shallow marine carbonates 
deposited on the Montmell Fault hangingwall in the Marmellar area. In 
comparison, towards the NW in the Miramar-Gaia Domain, Paleocene 
sediments conformably lie over Triassic strata (Fig. 4) and Jurassic to 
Cretaceous sediments are absent. This fact can be explained by erosion 
or non-deposition. The nonexistence of clastic deposits during this 
period, which would represent the erosion of Jurassic and Cretaceous 
strata before the Paleocene, most likely indicates a hiatus scenario due to 
the presence of a paleo-structural high NW of the Montmell Fault (Ebro 
High, Fig. 7C) during, at least, the extensional motion of the Montmell 
Fault from Barremian to early Albian. 

The end of the extensional motion of the Montmell Fault cannot be 
established with precision with the analyzed data. However, regional 
criteria associate the end of the extension to the development of the 
Middle Albian Unconformity (Fig. 3) (Salas, 1987; Salas et al., 2001; 
Salas et al., 2020). From this time and up to the Cenomanian, a relatively 
constant thickness unit characterized by the entrance of clastic sedi-
ments is deposited (Salas and Casas, 1993). This period has been 
traditionally interpreted as post-rift thermal relaxation with associated 
homogeneous subsidence (Robles, 1982; Alonso et al., 1993; Salas et al., 
2001). However, new interpretations relate this period to late crustal 
extension over a low angle fault that passively transports the area 
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previously formed by high-angle extensional faults (Tugend et al., 2015) 
and, hence, with the resulting extensional displacement of the Montmell 
Fault. 

6.2. Late cretaceous - early Oligocene compression: positive inversion of 
the Montmell Fault and emplacement of the Gaià-El Camp thrust sheet 

From late Santonian (Late Cretaceous), the convergent motion be-
tween the Iberian and Eurasian plates is activated (Roest and Srivastava, 

1991; Rosenbaum et al., 2002), yet the transmission of compressional 
stresses into the study area arises in the lattermost Cretaceous (Maas-
trichtian?). During this period of the convergence, up to three phases can 
be distinguished. The first phase takes place at the end of the Cretaceous 
and is recorded in the Miramar-Gaià Domain by the presence of a par-
aconformity that brings the basal Paleocene and the Keuper into contact 
(Figs. 3 and 4). The presence of this unconformity indicates a regional 
pre-Paleocene uplift that can be linked to an uppermost Cretaceous 
contractional deformation over the entire area or, conversely, to an 

B: Early Oligocene (end of the Paleogene compresion).

Undeformed Ebro Basin Uplifted Montmell-Garraf BasinMiramar-Gaià Domain
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3.9 km
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C: Middle Albian (end of the Late Jurassic-Early Cretaceous extension).
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isostatic adjustment of the Montmell Fault footwall after the Late 
Jurassic to Lower Cretaceous rifting phase. From a tectonic point of 
view, this period can be both contractional and quiescent. The second 
phase occurs from Paleocene to early Eocene times, and is characterized 
by the sedimentation of concordant fine-grained terrigenous beds and 
carbonates with little lateral thickness variations deposited in the distal 
areas of the Pyrenean foreland (Anadón et al., 1979; Anadón et al., 
1985). These deposits indicate the absence of significant deformation or 
creation of relief in the adjacent areas of the central CCR and, therefore, 
a period of tectonic quiescence. The third and most relevant compres-
sional phase in the study area takes place from Middle Eocene to early 
Oligocene. During this period compressional structures emerged in both 
Miramar-Gaià and Montmell domains. The footwall of the Montmell 
Fault was strongly deformed by a set of basement shortcuts that laterally 
become thin-skinned-controlled fold-and-thrust systems detached at top 
Buntsandstein and Keuper evaporitic levels. On the other hand, minor 
deformation appeared in the Montmell Domain where SE-vergent 
backthrusts and pop-up structures developed (Figs. 4 and 5), possibly 
as a result of slight buttressing effect. This structural style around the 
Montmell Fault is also observed in several parallel minor extensional 
faults in the Montmell Domain (Figs. 4 and 5), which denote the 
contractional reactivation of pre-existent Mesozoic extensional faults in 
the area. The tectonic inversion is basically characterized by minor 
hangingwall buttressing later passively transported by shortcuts devel-
oped in the upper part of the reactivated faults, and thin-skinned thrust 
systems detached in the Triassic evaporite levels of the Miramar-Gaià 
Domain. 

The whole ensemble of the Miramar-Gaià Domain became uniformly 
uplifted by the Gaià-El Camp Thrust. Considering the dip of this thrust 
and the fact that it merges at depth to the Montmell Fault, the Gaià-El 
Camp Thrust can be interpreted as a major footwall shortcut developed 
to provide a smoother fault trajectory during the inversion of the 
Montmell Fault (Fig. 7B). 

Paleogene growth geometries at the SE margin of the Ebro Basin 
consisting of Upper Eocene to lower Oligocene sediments unconform-
ably deposited over Lower to Middle Eocene strata (St. Miquel del 
Montclar area, Figs. 4 and 7B) allow establishing the precise age of the 
Gaià-El Camp Thrust emplacement as late Bartonian to Lower Oligo-
cene. Conversely, the age of the inversion of the Montmell-Garraf Basin 
cannot be fully constrained due to the lack of preservation of growth 
sequences. Nevertheless, taking into consideration that up to Lower 
Ypresian (Ilerdian) sediments are involved in the Montmell Fault foot-
wall deformation with no growth geometries, it can be stated that the 
contractional motion in this area is, at least, late Ypresian (Cuisian). 
Additionally, the fact that the Gaià-El Camp Thrust has been interpreted 
as a major shortcut supports the idea that the primary reactivation of the 
Montmell Fault was to some extent older (late Ypresian to Lutetian). 

6.3. Latest Oligocene(?)/early Miocene - late Miocene extension: Baix 
Penedès Basin formation and partial reactivation of the Gaià-El Camp 
Thrust 

The Paleogene structure described in the previous section is affected 
by extensional deformation that cuts or, at times, reactivates previously 
formed faults. Most of the interpreted extensional faults have a pre-
dominant ENE-WSW orientation, dip towards the SE and generally 
display decametric to hectometric displacements (Figs. 2 and 7A). Four 
major faults (Vallès-Penedès, Montmell, El Camp and Baix Penedès 
faults) show kilometric fault traces and display an overlapped arrange-
ment linked by large NW-SE-oriented accommodation zones (Fig. 8). 

The Vallès-Penedès Fault progressively loses its displacement to-
wards the SW overstepping with the Montmell and the Baix Penedès 
faults in the respectively Marmellar and Sant Martí Sarroca transfer 
zones (Fig. 8). In this area, the Vallès-Penedès Fault throw becomes less 
than 300–400 m, displaying a drape-fold detached in the Upper Triassic 
evaporites on its hangingwall (Fig. 5). Extensional displacement is, 

hence, relayed to the Montmell and the Baix Penedès faults, which ex-
tends towards the SW with a similar orientation. The Montmell Fault 
shows decametric fault throws and a low accumulated extensional 
displacement. The Baix Penedès Fault, in turn, shows a segmented fault 
pattern with several SE-dipping splays at surface and a considerably 
higher accumulated throw reaching several hundreds of meters. NW-SE- 
trending breaching faults are present in the Sant Martí Sarroca Transfer 
Zone (Fig. 8). The Baix Penedès Fault is interpreted as rooted at the deep 
NW-vergent basement ramp underneath the area (Fig. 7). 

On the other hand, the displacement of the El Camp Fault drastically 
decreases towards the NE and becomes a narrow array of SE-dipping 
faults with hectometric accumulated displacements at the Carme- 
Cabra Anticline backlimb (Figs. 2 and 8). Considering the geometry of 
the Miramar-Gaià Domain as the result of the displacement and uplift 
over a low angle basement ramp shallowing towards the NW (Fig. 7B), 
this array of extensional faults at the NE end of El Camp Fault has been 
interpreted as rooted in the Gaià-El Camp Thrust (Figs. 4 and 7A). 

In this context of overlapped major extensional faults, the NW-SE- 
trending faults present in the Sant Martí Sarroca Transfer Zone as well 
as the Pont d'Armentera Fault (Fig. 8) are considered as relay ramp- 
breaching faults of a soft linked extensional system (Fossen and Rote-
vatn, 2016). These zones would transfer displacement between the 
Vallès-Penedès and the Baix Penedès faults and between El Camp Fault 
and the Montmell-Vallès Fault System respectively. 

The extensional reactivation (or negative inversion) of preexisting 
faults is suggested by several evidences such as: 1) the development of 
an array of extensional faults rooted at the discrete fault plane of the 
Paleogene Gaià-El Camp Thrust at the NE end of El Camp Fault; 2) the 
extensional geometry of the Montmell Fault (although this fault has a 
reverse movement during Paleogene times); or 3) the Baix Penedès Fault 
and its splays which are also rooted at a Paleogene reverse fault footwall 
ramp. However, the reactivation of the Montmell Fault is relatively 
limited, and the extension seems basically relayed to the Baix Penedès 
Fault, which induced the development of a 1.5 km deep basin on its 
hangingwall (Fig. 7A). 

All these structural observations indicate a post-early Oligocene 
extensional period that resulted in the extensional reactivation of the 
previously formed Paleogene and Late Jurassic-Early Cretaceous faults, 
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the age of which can be constrained based on the tectonostratigraphic 
relationships. Undeformed Pleistocene alluvial deposits fossilize most of 
the major faults in the central CCR, hence, indicating their extensional 
motion is pre-Pleistocene. Additionally, major faults, which often show 
drape-folds on their hangingwalls, cut or fold Serravallian sediments. 
Therefore, their extensional motion must be considered as post- 
Serravallian. Yet, extensional growth strata geometries are indeed 
observed in upper Serravallian-lower Tortonian sediments deposited 
over the hangingwall of the Vallès-Penedès Fault in the Marmellar area 
(Fig. 5), which would indicate, at least for this fault, extensional motion 
during this period. This fact agrees to previous regional studies that 
indicate extension in the CCR occurred between Burdigalian and Mes-
sinian times (Gallart, 1981; Cabrera et al., 1991; Cabrera and Calvet, 
1996; Porta and Civís, 1996; Cabrera et al., 2004). The lack of upper 
Oligocene and Neogene sediments preserved over in the Miramar-Gaià 
and Montmell domains prevent establishing a relative chronology of the 
observed extensional faults. 

7. Conclusions 

A new field-based dataset integrated with MT data acquired across 
the Gaià-Montmell High has allowed the recognition of the main fea-
tures characterizing the upper crustal Alpine structure. MT data along 
the Gaià-Montmell section has allowed a better definition of the struc-
ture at depth and the identification of zones with potential fractures and 
conductive fluids. 

The structure of the Gaià-Montmell High consists of two domains 
with a differentiated tectono-stratigraphic evolution: the Miramar-Gaià 
and the Montmell domains. The Miramar-Gaià Domain belongs to an 
area with a very thin Mesozoic succession (only Triassic) uplifted over 
the Ebro Basin by a NW-vergent low-angle basement thrust (the Gaià-El 
Camp Thrust). The Montmell Domain belongs to an area with a well- 
developed Mesozoic succession that includes Triassic, Jurassic and 
Cretaceous rocks. This domain is limited towards the NW by the 
Montmell Fault and its structure consists of NW-vergent compressional 
faults affected by high-angle SE-dipping extensional basement faults. A 
highly deformed area with prominent NW-vergent thrust imbrications 
characterizes the limit between the two domains. 

The Montmell Fault corresponds to the SW prolongation of the 
Vallès-Penedès Fault. Both faults are partially overlapped and linked by 
the Marmellar Accommodation Zone. We call this major structure the 
Montmell-Vallès Fault System. This constituted the NW limit of the 
Montmell-Garraf extensional basin, which developed during the Late 
Jurassic-Early Cretaceous (Oxfordian to middle Aptian). 

A period of tectonic inversion and contractional reactivation related 
to the Paleogene compressional phase is attested by the presence of 
highly deformed areas (thin-skinned thrusting and footwall shortcut 
development) along the Montmell-Vallès Fault System footwall. These 
contractional structures belong to the positive inversion of the Mesozoic 
Montmell-Garraf Basin and the emplacement of a NW-directed basement 
thrust (Gaià-El Camp Thrust) that uplifted the Montmell-Garraf Basin 
and the adjoining marginal areas of the Ebro High. Reactivation of the 
Montmell Fault appears to be by some means restricted and, hence, 
deformation propagated to the fault footwall resulting in shortcut for-
mation. The areas where footwall shortcut structures formed are char-
acterized by conductive bodies at depth. 

The age of the positive inversion can be relatively well established by 
syn-kinematic sediments preserved in the SE margin of the Ebro Basin. 
These indicate that the Gaià-El Camp Thrust emplacement is late Bar-
tonian to lower Oligocene. The absolute age of the Montmell-Vallès 
Fault reactivation is uncertain. However, taking into consideration 
preserved pre-kinematic strata in its footwall, it can be established as, at 
least, late Ypresian (Cuisian). 

Negative tectonic inversion of the previously formed Paleogene and 
Late-Jurassic faults is also within reach in the Gaià-Montmell High. 
During Latest Oligocene(?)/early Miocene - late Miocene extensional 

displacement at the SW-end of the Vallès-Penedès Fault is relayed to the 
Baix Penedès Fault and, at minor scale, to the Montmell Fault. Accord-
ingly, accommodation zones characterized by the presence of relay 
ramp-breaching faults developed. The negative inversion of the Gaià-El 
amp Thrust is also identified at the NE-end of El Camp Fault, where an 
array of extensional faults developed in the Miramar-Gaià Domain. 
Tectonostratigraphic relationships indicate that extension occurred be-
tween Burdigalian and Messinian times. 
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Vidal, N., Gallart, J., Dañobeitia, J., Díaz, J., 1995. Mapping the Moho in the Iberian 
Mediterranean margin by multicoverage processing and merging of wide-angle and 
near-vertical reflection data. In: Banda, E., Torné, M., Talwani, M. (Eds.), Rifted 
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